SAND REPORT

SAND2002-xxxx
Unlimited Release
August 2002

Discrete Optimization Models for
Protein Folding

Bob Carr and Bill Hart, Sandia
Alantha Newman, MIT

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/ordering.htm

SAND2002-xxxx Distribution

Unlimited Release Category UC-999
Printed August 2002

Discrete Optimization Models for Protein
Folding

Bob Carr and Bill Hart
Organization 09215
Discrete Algorithms and Math Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-9999
rdcarr,wehart@sandia.gov

Alantha Newman
Laboratory for Computer Science
MIT
Cambridge, MA
alantha@theory.lcs.mit.edu

Abstract

Protein folding is an important problem in Computational Biology; the
function of a protein depends on the three-dimensional shape to which it folds.
The HP model is a widely studied model of protein folding that abstracts the
dominant force in protein folding: the hydrophobic interaction. We develop
discrete optimization models to help predict the best (i.e. lowest energy) folding
in this model.

Contents

1 Introduction 7
2 Problem Statement.......... 8
Notatlon 8
An Upper Bound. 9
3 Integer and Linear Programs 9
Variables for IP and LP Formulations 10
Integer Programs. 11
Linear Programs 12
4 More Integer Programming Formulations................. 13
Aggregate Constraints 14
Quality of the LP Solution 17
Backbone Constraints 19
Another IP and LP Formulation 21
5 Branch and Bound 27
6 Integrality Gaps........oooiiii 29
7 Six Index Constraints ...t 30
8 Future Worko 31
9 Implementation 32
AMPL Code for LP with 2-Index Variables and Flow Constraints (LP3). ... 32
Experimental Results 36
References. 37
Figures
1 An example of a string folding 8
2 Showing one constraint does not imply another 14
3 Backbone constraints 19
4 An example in which LP3 and LP,4 have different objective values. 27
5 A string which shows a gap of 2 for LP3 and LP, 29

Discrete Optimization Models
for Protein Folding

1 Introduction

The protein folding problem is an important and widely-studied problem in Compu-
tational Biology. A protein is a sequence of 100-300 amino acid residues. Shorter
amino acid chains are called peptides. There are approximately 20 different amino
acids. The functions of proteins and peptides are determined by their respective three-
dimensional (3D) shapes. Under certain standard conditions (e.g. extreme heat may
cause a protein to unfold), proteins always fold to the same unique native 3D struc-
ture. This shape is principally determined by the one-dimensional (1D) sequence.
This was shown by Christian Anfinsen, who won the 1972 Nobel Prize in Chemistry
for his work on protein structure in living cells [1]. He wondered why a protein folded
into a particular 3D shape and what (e.g. enzymes?) directed it to this folding. In
an article in the Journal of Biological Chemistry [3], he showed that the sequence of
amino acids in a protein or peptide chain determines the folding pattern. In other
words, the process of protein folding can be largely explained by the physical and
chemical interactions among the amino acids. This work is the basis for the belief the
native structure of a protein can be predicted computationally using the information
contained in the amino acid sequence [7].

In this report, we discuss discrete optimization approaches to the problem of pro-
tein folding in the Hydrophobic-Polar (HP) model (also known as the Hydrophobic-
Hydrophilic model). The widely-studied HP model was introduced by Ken Dill [4, 5].
This model abstracts the dominant force in protein folding: the hydrophobic inter-
action. The hydrophobicity of an amino acid measures its affinity for water. The
hydrophobic resides in a protein form a tightly clustered core. In the HP model, each
amino acid residue is classified as an H (hydrophobic or non-polar) or a P (hydrophilic
or polar). The model further simplifies the problem by restricting the feasible fold-
ings to the 2D or 3D square lattice. An optimal conformation for a string of amino
residues in this model is one that maximizes the number of H-H contacts, i.e. pairs
of H’s that are adjacent in the folding but are not neighbors on the string. Thus, the
problem of protein folding in the HP model is combinatorially equivalent to folding
a given string of 0’s and 1’s on the square lattice to form a self-avoiding walk that
maximizes the number of pairs of adjacent 1’s, i.e. let H=1 and P=0.

One of the most immediately obvious drawbacks of the HP model is that on

7

the square lattice, residues in even positions in the given string can have as their
neighbors on the lattice only residues from odd positions in string and vice versa.
In the actual protein folding problem, there is no such restriction. The HP model
has also been studied on the 2D and 3D triangular lattice [2], which does not have
this parity problem. We believe that our methods can be extended to the triangular
lattice. However, the square lattice seems to be the best place to start computational
experiments since a string has fewer possible conformations on the square lattice than
it does on the triangular lattice.

2 Problem Statement

We are given a string of 0’s and 1’s. Our goal is to find a valid folding of this string
on the 2D square lattice that maximizes the number of pairs of adjacent 1’s. In other
words, we want to find a self-avoiding walk that maximizes the number of pairs of
adjacent 1’s when the string is superimposed on it. For example, suppose we have
the string 101010101001010101. Then an optimal folding is shown in Figure 1. This
folding has eight contacts.

- @ --

Figure 1. An optimal folding for the string
101010101001010101. 0’s and 1’s are denoted by unfilled and
filled dots, respectively. Contacts are denoted by the dashed
lines.

Notation

Let S be a string in {0, 1}™. We will refer to each 0 and each 1 in the given string as
an element. We will refer to each 1 in an odd position on the string as an odd-1 and

each 1 in an even position on the string as an even-1. We will denote the number of
odd-1’s in the string S as O[S] and the number of even-1’s in a string S as £[S].

An Upper Bound

The best-known upper bound was introduced in [7]. An even-1 or an odd-1 can have
at most 2 contacts if it is not the first or last element on the string. The first and
last element on the string can each have at most 3 contacts. Thus, an upper bound
on the maximum number of contacts in any folding of a given string S is:

2« min{O[S], £[S]} + 2.
Comparing the optimal values produced by our models to this upper bound gives us

some idea of how well our models are performing. These upper bounds are also used
to obtain approximate solutions for this problem [7, 8.

3 Integer and Linear Programs

In this section, we present some integer programs (IPs) for the protein folding problem
in the HP model as well as their respective linear programming relaxations (LPs).
First, we will introduce the necessary notation.

Let I be the set of indices in S, i.e. I = {1,...n}. We break down I as follows:

£ is the set of indices of elements in even positions.

O is the set of indices of elements in odd positions.
We break down £ and O further as follows:

Hp is the set of indices of odd-1’s in S,
H¢ is the set of indicies of even-1’s in S,

Py is the set of indices of odd-0’s in 5,

9

Pr is the set of indices of even-0’s in S.

ThllS, HgUPg:(‘:andHoUPozoanngUPgUHoUPo:gUO:].

Let V represent the set of feasible vertices in the lattice, i.e. a vertex occurs at
each intersection of a horizontal and vertical line in the lattice. We will assume that
one of the points (e.g. the odd point closest to the middle) on the string is assigned
to a particular lattice point, which defines the feasible region of vertices in the lattice.
In other words, once this middle element is fixed, there are only a finite number of
lattice points to which we can assign the other elements. We classify the points in V'
as follows:

Ve is the set of even lattice points in V.

Vo is the set of odd lattice points in V.

Let 6(v) denote the set of feasible vertices adjacent to v, which consists of at most
four lattice points. The set of feasible edges in the lattice is denoted by E, which is
the set of (v, w) such that v € Vo and w € Ve, w € §(v).

Variables for IP and LP Formulations

Now we will define the variables that we will use in our various integer programs.
First we list the variables that we use:

L. Rivyw) Vi€ Ho,j € He,(v,w) € F

2. hww) VY(v,w) € FE,

3. Tjyy Vi€ Hp,v € Vo,

4. x5, Vj€ Hg,we Vg,
Now we will explain the function/meaning of each variable. We will not use all the
variables immediately—some will be used in integer programs introduced later on in

the paper. Also, by convention, we will always use ¢ and v to refer to indices for odd
elements on the string and odd lattice points, respectively. Similarly, we will always

10

use j and w to refer to indices for even elements on the string and even lattice points,
respectively.

The variable h;,)(jw) indicates whether or not there is a contact between elements
i and j on edge (v,w). For example, if Ay (jw) is set to 1 in an integer program, then
there is a contact between 7 and j across edge (v,w), and if hgy)(jw) is set to 0, then
there is no contact between i and j on edge (v, w).

The variable A, represents the total amount of contacts between all odd ele-
ments and all even elements on edge (v, w). In an integer solution, if there is a contact
between any i € Hp and any j € Hg on edge (v, w), then the value of h(,,) would
be 1. If there are no contacts on this edge, the value of h(,,) would be 0. Note that
there is a relationship between the variables h;,)jw) and hyy)-

hww) = D Y i) w)- (1)

t€cHp j€Hg

The variable z;, indicates whether or not the element 7 is placed on vertex point
v. In an integer solution, x;, is set to 1 if element ¢ is placed on lattice point v and
0 otherwise. Odd elements are placed only on odd lattice points and even elements
are placed only on even lattice points. Thus, we distinguish between these two cases
and create variables w;, for the odd case and x;,, for the even case. Note that any
string folding corresponds to a 0-1 assignment of the variables {x;,,z;,}. However,
note that not every 0-1 assignment to the variables corresponds to a folding, which
is why we need to impose constaints on these variables.

Integer Programs

The following integer program is one possible integer program for our problem. Every
integer solution defines a valid folding and every folding corresponds to an integer
solution. Thus, there is a one-to-one correspondence between foldings and integer
solutions.

11

IP1:

max Z Z Z h(w)(]w)

(v,w)eEE i€Hp jEHg

subject to : wa = 1 Viel (2)
veV
Zl‘iv S 1 YoeV (3)
icl
Z Ti+1lw Z iy Viel \ {’ﬂ}, veV (4)
wed(v)
Z h(iv)(]w) < Ty Vi € HOJ (UJ w) S (5)
JEHe
Z R(iv) () < 3y, VjE€Hg (v,w)EE (6)
i€Hp
Ry (jw)s Tivs Tjuw € {0,1}. (7)
Lemma 1. There is a one-to-one correspondence between foldings and integer solu-

tions.

Proof: Showing that every folding corresponds to an integer solution is easy. We will
show that every integer solution corresponds to a folding. In an integer solution, for
each element 7, there is exactly one v such that z; = 1 (constraint (2)). Moreover,
each lattice point v contains at most one element (constraint (3)). Constraint (4)
guarantees that each consecutive element on the string is placed on an adjacent lattice
point to its neighbor on the string. Thus, we have a valid folding. O

Constraints (5) and (6) are used to force elements to be placed on lattice points v
and w if there there is a contact between elements i and j on edge (v, w). Constraint
(7) enforces the integrality of all the variables. It is possible that we only need to
force the x variables to be integer and this will automatically enforce the h variables
to be integer.

Linear Programs

We obtain a linear programming relaxation from IP; by relaxing constraint (7) to the
following:

0 S Ly, Tjw S 1. (8)

12

A linear program provides an upper bound on the optimal integral solution. Also, of
key importance is the fact that it can be solved much faster than an integer program.
One way to measure the quality of an integer program is to determine the upper
bound guaranteed by its linear relaxation. In general, the better the bound provided
by the linear relaxation, the higher the quality of the integer program.

4 More Integer Programming Formulations

There are many other ways to formulate this problem as an integer program. For
example, in IP;, we could replace constraint (4) with constraint (9), which is shown
below.

Z Ti—1w Z Tiv Viel \ {n},v eV. (9)

wed(v)

This would also result in a valid integer program. Alternatively, we can include both
constraints (9) and (4). We will show that including both these constraints leads to
a stronger linear program than including only one of these constraints. We will add
constraint (9) to IP; and refer to its corresponding linear programming relaxation as
LP;.

It is not immediately clear that constraints (9) and (4) are both necessary, i.e.
that constraint (9) does not imply constraint (4) or vice versa. However, we will show
that constraint (9) does not imply constraint (4) or vice-versa. To do this we will
give a feasible LP solution for a string of length 9 such that constraint (4) is obeyed
but constraint (9) is violated.

Such a feasible solution is shown in Figure 2. The values shown in Figure 2 are
the fractions of each z; that are placed at the labeled lattice points, i.e. the x,
values. Let i = 6, v = ¢. Note that constraint (9) is violated for z¢, since xg;, = 2/3
and >, 5,y Tsw = 1/3. Note that constraint (4) is not violated for any of the x;,
variables. We can repeat this argument for the string labeled in the reverse order and
we would obtain an example in which constraint (9) is not violated but constraint (4)
is violated. Thus neither constraint is implied by the other.

13

V3 Xy UsXp Xy 18, w3xs

B A AR S SU
T - S
Ao 2xg
O2U3Ng
O g e
u3Xy USX, u3X, 13X, UNXg :
B e T
- CowsXg
B T X &

1/3: X JJ3X2 13 XS 1133X4 1/3}(5 : :

Figure 2. Constraint (9) is violated for i = 6, v = q.
However, note that no other constraints (e.g. constraint (4))
are violated.

Aggregate Constraints

We can obtain another integer program and its corresponding linear programming
relaxation by replacing constraints (5) and (6) in IP; and LP; with the aggregate
constraints (10) and (11). We refer to the resulting integer and linear programs as
[P, and LP,, respectively.

Z Z h(iv)(jw) < Z Tiw V(v,w) ek (10)

iEHo jEHg ’iEHo
Z Z h(iv)(jw) < Z Ljw V(U,’U)) cE (11)
j€EHg i€cHp jEHg

We can use the variables A,y to simplify IP,. Thus, IP; is a formulation which has
fewer h variables than IP;. Recall the definition of Ay, from (1).

14

hww) = Y Y hiiv)gw)

t€cHp j€Hg

We restate IPy here for clarity and convenience:

IP2:

max > Y hw
veVo wed(v)
subject to : wa =1 Viel
wa < 1 YweV

Ty VielI\{n},veV

(]
8
L
g
vV

Ty YVielI\{n}lveV

g
8
=
g
vV

wed(v)
how) < Z Ty Y(v,w) € E
t€Hp
how) < ijw V(v,w) € E
JeHe

Ly, .Cb'jw € {0,1}

It is clear that the optimal objective value for LPs is at least as large as the optimal
objective value for LP;. This is because a solution for LP; does not violate any
constraints in LP,. Additionally, we can also show that the optimal objective value
for LP, is at least as large as the optimal objective value for LPs when the objective
function is of the form {c,,}, i.e. there is a cost function that associates a cost with
every edge (v, w).

Lemma 2. The optimal values of LP, and LP, are equal, i.e. |OPT(LP))| =
|OPT(LP,)).

Proof: We will show that if we use any objective function of the form {c,, }, then the
objective values of LP; and LP;, will be the same. First, we will show that given a set
of {A(iw)(jw) }>» we can find a set of {h(w)} such that {hw)} satisfy all the constraints
in LPy. We define h(,,) as follows:

15

> D havw) = how). (12)

1€Hp jeHg

Constraints (5) and (6) imply (10) and (11). Thus, using (1), we see that from any
feasible solution for LP;, we can obtain a feasible solution for LP, with the same
objective value.

Now, we want to show that given a solution for LPy, i.e. given a set of {/(yw)},
we can find a solution set {h(iv)(jw)} that obeys all the constraints in LP,. Without
loss of generality, assume that for some v, w:

Consider the following table for v, w. Assume there are k ¢’s in Hp labeled ¢ ...
and assume there are m j’s in Hg labeled 75 ... j,,.

1 3 5 k
J
2 hiyw) PEoee) Mevew) P (kv)(2w) < Ty
4 hoyaw) hEoyaw) Py (@w) P(kv)(4w) < Ty
6 havyew) MEoy6w) Peo)sw) P(kv)(6w) < Tew
m Aoy mw) Pso)mw) D) (m) Moymw) S Tmw
L1y L3y L5y Ty

We are trying to assign a value to each h(y)(jw) S0 that constraints (5) and (6) are
not violated and equality (12) is met.

We will assign values to the Ay)(jw) variables in the first column so that the sum
of the variables in the first column is equal to z1,. We can do this by setting A1) 2w)
to be as large as possible such that it is at most x5, and at most x;,. Then we set
h(10)(aw) to be as large as possible so that the sum of the two variables is no more than

16

T1, and h1y)aw) 1S no greater than w,). We repeat this for Ay jw), where j > 4
and j € He. When we are done, we will have the following:

Z h(1o)(jw) = T1v-

JjEHe

Then we repeat for x3,, etc. Recall that the sum of the x;,’s is no more than the sum
of the ;,’s. Thus, we can always find an assignment for the h;,)(jw)’s such that none
of the constraints are violated. If for some z;, we could not find a set of Ay)(jw)
variables to assign the value (because doing so would violate constraint (6)) then we
would have a contradiction, since this would mean that the sum of the x;,’s is less
than the sum of the x;,’s. O

Lemma 3. For a given string S, the values of the x;, variables in optimal LPy and
LPy solutions are the same. In other words, the projections of the LP, and LPs
solutions onto the x vartables are the same.

Proof: Note that in the proof of Lemma 2, as we go from the {h,, } variables to the
h(iv)(jw) variables and vice-versa, we use the same set of x variables.]

Another way to deal with LP; is to not have variables for h(;,)j») when 7 and j
are consecutive, i.e. j =i+1 or j =¢—1. In this case, the proof of Lemma 2 does not
go through. However, note that it still goes through if there are no consecutive 1’s in
the input string S. If there are consecutive 1’s in the input string S, then the bound
provided by LP, with this alternation could be better than the bound provided by
LP;. However, we will show in the next section that the quality of the LP solutions
are roughly the same regardless of whether or not we allow Ay)(jw) variables for
consecutive 7 and j.

Quality of the LP Solution

Unfortunately, the relaxations discussed so far may not provide fractional solutions
that are very close to integral solutions. As noted in Section 2, the upper bound on
the number of contacts in a string S is 2 * min{O[S], £[S]|} + 2. These relaxations
can yield a fractional answer that is twice as large as this upper bound.

Lemma 4. The objective values of LPy and LPs are each at least 4xmin(O[S], E[S]).

17

Proof: To show this, we will give a solution for LP; that is valid for any string S
and that has an objective value of 4 x min{Q[S], £[S]}. We will let k represent the
number of elements in S, i.e. the length of S. Without loss of generality, assume
O[S] < £[S] and let n be the number of lattice points, i.e. |Vo| = |Ve| = 5. We
also assume k < n, i.e. the string can actually be folded onto the lattice. We let
Tipy = % for all i € Hp,v € Vp and zj, = % for all j € He,w € Vg. Then we let
h(iv)(jw) = m foralli € Ho,j € He,v € Vo,w € V.

Note that constraint (2) is satisfied since for each 7, there are 7 possible v € V
with the same parity. Constraint (3) will be satisfied because we have

Constraints (9) and (4) will be satisfied as long as each lattice point v has at least one

neighbor. Constraint (5) is satisfied since for i € Hp, we have &, *O[S] 2 and for
even i, we have ﬁ +E[S] = 2. The number of Ay (jw) Varlables is £[S]* O[S] 4(%5).
This is because there are £[S] * O[S] pairs of 1’s such that odd-1’s are paired with
even-1’s. And there are § odd lattice points each with 4 neighbors, i.e. each odd
lattice point serves as an endpoint for 4 edges so we have a total of 4(%) edges. Thus,

the objective value will be:

max 3 Y S Z By) = 5[5]*0[5]*3*4*5[;” — 40[S]. (13)

i€Hp jeHg veVp w€(5

So the value of the objective function is at least 4+ min{O[S], £[S]}. Note that this is
the right value asymptotically. Since we can choose the n lattice points so that they
form a convex region, about 4,/n of the lattice points have less than 4 neighboring
lattice points. O

If we use the 4 index formulation but do not allow h;,)w) variables for consec-
utive 7 and j, then we can still use the same values for the x variables. However,
asymptotically, this does not change the value of the LP solution given in Equation
13. Specifically, for every j € H¢ and edge (v, w) € E, there are only O[S]—2 h(v)(jw)
variables. So when we remove the h;,)(jw) variables for consecutive : and j, the value
of the optimal LP, solution is at least:

18

max 3 3 S Z hwy) = 5[5]*(0[51—2)*3*4*5[;” _ 40[5] - 8.

i€Hp jeHg veVp w€(5

The integrality gap for both formulations is 4 since there are strings for which the
optimal folding achieves only o(1) + min{O[S], £[S]} contacts [8].

Backbone Constraints

We can add more constraints to strengthen our LP. Figure 3 gives an example where

adding new constraints may help. Figure 3 depicts a situation in which z;, = 211, =
% and Ti1.0 = Tjw = % If 2,7 +1 € Ho and 5,7 +1 € Hg, then hy)jw) and

h(jt+1,0)(i+1,0) can each be assigned a value as high as %

12 X; 12 Xjg1
—_— 00—
\' w
\J w
- @<—
1/2Xj+1 1]2XJ

Figure 3. An example in which backbone constraints can
be added to the LP formulation to give a better bound on
the optimal folding.

Even in a fractional solution, this situation should not occur because the backbone
or actual string is occupying the edge so the edge cannot be used for a contact.
For example, in an integral solution, if element ¢ were placed on lattice point v and
element i + 1 were placed on lattice point w, then the edge (v, w) would not be used
for any contacts since it is occupied by the actual string.

In order to make the optimal LP value closer to the optimal integer value of a
folding, we will add constraints that we refer to as backbone constraints. We will use
the following variables: The variable E(j);4+1,,) means that element ¢ is on lattice
position v and element 7 4+ 1 is on lattice element w. Since these variables are only
for consecutive elements on the string, we can abbreviate them as follows:

19

By = Eavyitiw), Erv

ww

= Eiv)(i-1,)-

Then we can add the following valid inequalities to strengthen our LP formulation.
We will add these constraints to LP; and refer to the resulting LP as LPjs.

ZE‘

wed(v
E : ww
wed(v)
E :]-}-1 vw
ved(w
E : lvw
ved(w
E : Eww + E : Z'uw + h(”:w)
i€Hp i€Ho
E : j+1vw E : 1vw+hvw
JjEHg jEHg

VAN

VAN

> @ (15)

Note that if i € Hp and i + 1 € Hg, then E has the same function as Piv)(i+1,w) -

ww

Similarly for E.

ww

and h(y)(i—1,w)- Also, note that if i € Hp and i — 1,7 +1 € Hg,

then constraint (15) (written below) is the same as constraint (10).

Z Esz + Z ow + Z Z h'(iv)(jw) S Z Tiy-

i€Hop i€Ho i€Ho jEHg jAi—1,i+1

t€EHp

In LPy, the four-index LP, constraint (15) would be replaced with:

E 4+ E" +

vw ww Z h’(iv)(jw) < Tjy.

]eryj¢i+17i_1

20

Another IP and LP Formulation

IP3:
max Z h(vw)
(vw)eE
subject to : Z Tiw = 1 Vie Hp
veVo
Y wj, = 1 Vj€He
veVe
Z Tiw < 1 YveTVp
t€Hp
Z Zjw < 1 YwelVg
JjeHg
Y En, = xn Vi€ Ho,velo
wed(v)
Y Ef, = xw Vi€ HoweVo
wed(v)
> B = Tjw VjE€HeweVe
ved(w)
Y Bl = %jw Vi€ HeweVe
ved(w)
N EBpwt D> By thew <Y ww YoETVo
i€Hp i€Hp t€Hp
Z E]_+1 vw + Z E;—fl vw + h(U,w) < Z Ljw Vo € Vg
Jj€He JjEHe Jj€He

Eivw; Liy, Ljw, h(vw) € {07 1}

Lemma 5. Backbone constraints imply the connectivity constraints, i.e. constraints

(14) imply constraints (9) and (4).

Proof: From the backbone constraints, we have:

Ly = Z Ez;w
)

wed(v

21

For each variable x;_; ,,, we also have:

Ti—1w = E 1 "

ued(w)

This last constraint implies that z;_1 ., > E;" since v € §(w). Note that E;"

i—1,wv? i—lwv —

E; .- For each of terms in the first constraint in this proof, we can obtain the

inequality ;1. > Ej,,,. Thus, we have the desired inequality:
Ty S Z Tij— lLw-
wed(v

We can repeat this argument to derive constraint (4). O

Lemma 6. The optimal solution for LPs is at most 2 x min{O[S], E[S]} + 2.

Proof: The optimal solution for the linear program is Z (v,0)EE h(owy. Without loss

of generality, we assume O[S] < £[S]. Recall that constraint (15) is in the linear
program. We rewrite this constraint as follows:

h(vw) < Z Tiy — Z Ez; Z ww”
icHo icHo i€Ho
Summing over all the edges, we have:
PN DID DL D DED DY i) DR By -
(vyw)eE (vw)eEE 1€EH (v,w)eE i€Ho (v,w)EE i€Ho

The first sum is upper bounded by 40[S]. To show this, first we note that:

If we sum over all edges, as opposed to all odd vertices, note that each odd vertex
v € Vo is an endpoint in at most 4 edges. Thus, we have:

IR ID IS B SEED SEN

(v,w)eEE veVo wed(v wed(v) vEVD wed(v

)SIDSETED DI SIS SFEIC

(v,w)EE i€EHO i€Ho (v,w)EE 1€Hp

Now we will analyze the following sum:
2. 2. Bw= >,) B
(vyw)EE i€EHp,i#l 1€Hp i#l (v,w)EE

Each variable E,,, is associated with a unique odd vertex, i.e. the odd vertex v. We
have the following constraints for each odd vertex:

> En, =i Vi€ HoveVo.
wed(v)

Thus, we can rewrite the sum as follows:
Y Thus ¥ Y P s L Tas ¥o-os
1€Hp i#1 (v,w)EE 1€Hp il veEVo wed(v i€EHp,iZl veVp 1€EHp i£l

Note that:

Z E_ Z ww
(v,w)eE (vw)eE
Thus,
Y Y Ea- Y Y mL-os-1

i€Hp i#l (v,w)EE 1€Hp i#n (v,w)EE

23

Therefore, we have:

> hiw) <40[S] = (O[S] = 1) = (O[S] — 1) < 20[S] + 2.

(v,w)eEE

So the maximum value of the objective function is 2 * min{O[S], £[S]} + 2. O

Note that this LP will not always give a solution whose objective value is at least
2+ min{O[S], £]S]}. It may give a solution whose objective value is strictly better.
For example, if we consider the string of 20 consecutive 1’s, the objective value is 14.5
according to our AMPL implementation. (See Section 9 for the AMPL Code.)

An alternate formulation for the linear program above would entail using the four
index variables h(;,)jw) instead of the two index variables i yy).

By + By +) hange) < @i Vi € Ho, (v,w) € E, (16)
JEH
By owt Efq,uw + Z hiiv)jw) < Tjw Vj € Hg, (v,w) € E.
i€Hp

Suppose we substitute constraints (16) for constraints (15). We will refer to the
resulting integer and linear program as IP, and LP,, respectively.

24

IP4:

max Y > > i)

(v,w)eE i€Hp jeHg

subject to : Z Tiw = 1 Vie Hp

veVo
d wj, = 1 Vj€He
veEVg
Z Tiv S 1 VYve Vo
t€EHp
Z Tjp < 1 Yw € Vg
JjEHg
Y E,, = aw Vi€ Hovelo
wed(v)
Y El, = ww Vi€ Hovelo
wed(v)
> Ejipw = Tjw Vji€HsweVe
ved(w)
Z E;_—l,vw = Tjw VjeHe,we Ve
ved(w)
E,.,+E!, + Z hivgwy < Tiw Vi€ Ho,(v,w) € E
JEH
E_jikl,vw + E_;'ll,vw + Z h(zv)(]w) S L jw v'] € HS’ (U’ ’U)) =
i€Hp

Eivwaxivaxjwah(vw) € {071}

Lemma 7. Suppose S contains no consecutive 1°s. Then LP, is no stronger than
LPs, i.e. substituting constraints (16) for constraints (15) does not lead to a stronger
relazation.

Proof: We can apply the following modification of the proof of Lemma 2. Consider
the following table for an arbitrary edge (v,w) € E. Assume there are k i’s in Hp
labeled i; ... and assume there are m j’s in H¢ labeled 7; ... j,,. Instead of using
Z;y and wj, in the bottom row and right column, as we did in the proof of Lemma 2,
we use f;,, and fj,,, which we define below:

25

_ - +
fiU - xiv _Eww _E

ww)

fj’w = Tjw — ji+1,vw_E;;1,vw'
i1 3 5 k
J:
2 hiw)Giw)y Masn)Giw) Plsv)Grw) - Plgo)Giw) < fiw
4 hiro)jow) Miso)Gow) Plisv)Gow) - Pligo)Gow) < Jiw
6 hiw)Gsw) Plian)Gsw) Mago)Gsw) -+ M) Gaw) < Jiw
m Ry) Gmw) Pl Gmw) Migo)mw) -+ M)y S fimw
filv fizv fi3v s fikv

Note that if there are no consecutive 1’s in S, then there will be no h)(jw) variables
in the above table in which j =i+ 1 or j = ¢ — 1. If there were such variables, then
they would have to be assigned 0 and we would not be able to apply the proof of
Lemma 2. But since all the hy)(jw) variables in the table can be non-zero, we can
use the same technique as in the proof of Lemma 2.

Note that:

Z fiv = Z (xiv - E;}w - Ei+uw)7

1€EHp t€EHp

E JR— E . _ BT B
wa - (Z‘]w Ej-l—l,vw Ej—l,vw)'

JjeHe JeHg

Without loss of generality, assume >, fiv < 3~ jcy, fiw- We want to distribute
the value h(,,) among the h(.) variables. We can set the variable A v)(j,w) t0
min{ fi,, fj,w}. Then we can set the variable h(ivo)(jow) O be as large as possible so
that A, vgiw) + M) Gew) < fires etc. We can set all the hy)w) variables so that
their sum equals the sum of the f;, variables. O

Note that if the string S contains consecutive 1’s, then the proof of Lemma 7 does
not go through. Furthermore, we can construct an example in which LP; and LP,

26

have different objective values. Figure 4 gives an example in which LP3 has a higher
objective function than that of LP,.

(H) (H)
Xi.qg V2X 12X, q

12X v2Xi,q 12X, 5
(H) (H)

Figure 4. The variable h(y,w) can have value at least % in
LP3. In LPy, the contribution of edge (v, w) would be 0 since
the variable h(;y)(i11,0) is not defined, i.e. it is implicitly 0.

The only difference between LP3 and LP, is that and LP, does not allow “contacts”
between adjacent elements on the string. Let f(S) represent the number of pairs of
consecutive 1’s in S. Then the values of LP3 and LP, for a string S are related as
follows: LP3 > LP4 > LP3 - f(S). There is no other other benefit to using the 4-index
variables rather than the 2-index variables with the current set of constraints.

5 Branch and Bound

Using branch and bound, we would like to branch only on x variables in odd positions
or only on z variables in even positions. This would allow us to cut down the number
of variables to branch on by a factor of 2. This would be a good approach if the
following conjecture holds.

Conjecture 1. Suppose we have an optimal solution {T, hw)} for LPy such that
Tiy 18 tntegral if i, v are odd. We will call this an odd integral solution. Then we can
use this solution (e.g. round this solution) to obtain a fully integral solution with the
same objective value.

Given an odd integral solution, we want to show that we can construct a solution
with the same objective value in which all the z;, are also integral for even j,w.
We have not been able to prove this conjecture. If we consider the path formed by
consecutive x;, variables for odd 7, we can easily see that it forms a self-avoiding walk

27

on the subset of odd lattice points and for every even j, at most two x;, variables
can be non-zero.

Lemma 8. In an odd-integral solution, at most two x;, can be non-zero when j is

evern.

Proof: For all odd 4, we have that z;, are integral. Consider x;, and z(;;2), for some
odd 7 and some p, ¢ such that x; = 1 and 2(;49); = 1. By constraint (4), we have:

Z T(i+1)y = Tip-

vEN(p)

Thus, the total value of x;,; distributed on the four neighbors of p is 1. Similarly, by
constraint (9), we have:

Z T(irl)w = T(it2)q-

v€d(q)

So p and ¢ must share neighbors and the most neighbors any two points have in
common is 2. O

Empirically, we've observed that in odd integral solutions, the value of the x;,
variables for even j is usually 0 or %

28

6 Integrality Gaps

We can show that the integrality gap for LP3 and LP, is 2 — € for any ¢ > 0. We will
use the string S = {0}9{01}¥{0}22{1000}%{0}q. We let k denote a positive integer
and ¢ = 4k*. In [8], it is shown that no folding of S has more than (1 + o(1))O[S]
contacts. However, we can easily construct a fractional solution for LP3 for which the
objective function is 20[S].

©
@
[]
©
o

o—o ° o—o —_— S
q & @ Q q
] © [] 1S Q _— Sz
q q
b o stringsof 0's
y
z

Figure 5. Let S; = {01}* and let So = {0001}*. The
string splits in half at points y and z, which allows the string
to cross itself, something not allowed in an integral solution.

29

7 Six Index Constraints

Another idea for strengthening the linear program is to add 6-indez constraints. One
reason to use such constraints is that they would invalidate the solution given in
Figure 5.

Suppose we let the variable h;y)jw)ke) be a 1 if there is a contact between ¢ and
j on edge (v, w) and between j and k on edge (w,u). Then we can have the following
constraint for collinear v, w, u. Recall that n denotes the length of the input string.

h’(iv)(jw)(k;u) =0 i<k <j . |Z—]{J| < 2*(n—j).

The idea behind this constraint is as follows: Suppose ¢ and k are distance d apart
on the string and both form a contact with j. Suppose i, j, k are placed on lattice
points v, w.u, respectively, where v, w,u are collinear. Then since the string cannot
cross itself, the distance from j to the last point on the string n (or the nearest
endpoint) must be less than distance d/2. If this is not the case, then at some point
the substrings j...n and 7...k will have to cross each other.

We cannot simply add this constraint to LP; or LP, because we are not optimiz-
ing over double constraints. However, this constraint might still be used to obtain
information about the optimal folding of a string, because if a string has more than
O|[S] contacts, then it must have double contacts. We define a double contact as two
contacts that are adjacent to each other, i.e. contacts formed on edges (v, w) and
(w,u) where v, w, u are either collinear or the two edges form a right angle. In other
words, if a folding has more than O[S] contacts, then some 1’s must have more than 1
contact. Thus, we could add the following constraints to LP3 for all adjacent v, w, u:

Py (jw) k) < Pav) (jw)
hiv)(jw)ku) < Pju)(ou)-

And we could replace the objective function with the following:

max Z Z Z Piv)(w)(ku) -

i,k€eHp jeHE adjacent v,w,u

30

Or, alternatively, with:

DX D> ManGw

i,k€eHg jEHo adjacent v,w,u

If the LP solution for both of these objective functions were 0, then we would know
that an optimal folding contains only max{O[S], £[S]} contacts.

8 Future Work

Two of the known approximation algorithms for the folding problem on the 2D lattice
[7, 8] have the following property in common. Both algorithms result in a folding
in which the original string is divided into two strings and there are only contacts
between elements on different strings. In other words, the folding results in two strings
S; and S, such that a contact only occurs between ¢ in S} and j in Sy but never ¢, j
in Sy or 7,7 in S,.

Rounding the LP, e.g. LP3 or LP,4, seems difficult. An easier approach may be to
divide the string S into 2 strings S; and Sy (there are n? possibilities) and solve LP,
only allowing the variables h)(jw) to be non-zero when 4 is from S; and j is from S,
or vice-versa.

31

9 Implementation

In this section, we present the ampl code and experimental results for LPj.

AMPL Code for LP with 2-Index Variables and Flow Con-
straints (LPs3).

param length; #length is the length of the input string S

param feasibleDistance := length/2+2;

param firstAcid := 1;

param lastAcid := firstAcid+length-1;

param middleOddAcid := (floor((lastAcid-firstAcid)/2)-1+firstAcid +
(floor((lastAcid-firstAcid)/2)-1+firstAcid+1)mod 2);

set Acids := firstAcid .. 1lastAcid;
param H := 1;
param P := 0;

set SequenceValues := {H,P};

param sequence Acids within SequenceValues;

set 0 := {i in Acids: (i-firstAcid) mod 2 = 0};
set E := {i in Acids: (i-firstAcid) mod 2 = 1};
set HO := {i in Acids: (i-firstAcid) mod 2 = 0 and sequence[i]l=H};
set HE := {i in Acids: (i-firstAcid) mod 2 = 1 and sequence[il=H};
set PO := {i in Acids: (i-firstAcid) mod 2 = 0 and sequence[i]=P};
set PE := {i in Acids: (i-firstAcid) mod 2 = 1 and sequence[i]=P};

HHHHEH A H R AR Latt L cot#HHEHHHHHHEHRHHH

1;
1;

param firstX :
param firstY :

32

param numX :
param numY :

length+1;
length+1;

firstX+numX-1;
firstY+numY-1;

param lastX :
param lastY :

set Xcoord :
set Ycoord :

firstX .. lastX;
firstY .. 1lastY;

param firstVertex := 1;
param numVertex := numX*numY;
param lastVertex := firstVertex+numVertex-1;

set Vertices := firstVertex .. lastVertex;

param extractX v in Vertices within Xcoord :
((v-firstVertex) mod numX) + firstX;

param extractY v in Vertices within Ycoord :
floor ((v-firstVertex)/numX) + firstY;

param extractVertex x in Xcoord, y in Ycoord within Vertices :=
firstVertex+ (y-firstY)*numX + (x-firstX);

param xdiff v in Vertices, w in Vertices
extractX[v]-extractX[w];

param ydiff v in Vertices, w in Vertices
extractY[v]-extractY[w]l;

param middle0ddX :=
(floor(numX/2)-1+firstX + (floor(numX/2)+firstX)mod 2);

param middle0ddY :=
(floor(numY/2)-1+firstY + (floor (numY/2)+firstY)mod 2);

param middleOddVertex := extractVertex[middle0ddX,middle0ddY];

set FeasibleVertices := v in Vertices:

33

abs (xdiff[v,middle0ddVertex]) + abs(ydiff[v,middle0ddVertex])
<= feasibleDistance ;

set V.0 := v in FeasibleVertices:
(extractX[v]-firstX+extractY[v]-firstY) mod 2 = 0;

set V.E := v in FeasibleVertices:
(extractX[v]-firstX+extractY[v]-firstY) mod 2 = 1;

set Neighbors v in FeasibleVertices := w in FeasibleVertices:
(abs(xdiff[v,w]) + abs(ydifflv,w])) = 1;

set Edges := (v,w) in V.0 cross V.E : w in Neighbors[v];

set OddTriangle :=
v in V_.0: (extractX[v] <= extractX[middleDddVertex]) and
((extractX[middleOddVertex]-extractX[v]) <=
(extractY[middleOddVertex]-extractY([v]));

HHHHEH SRR var 1 abl e s##HEHHHHHEHHHHHER AR IS

var h Edges >=0, <=1;
var eminus (Acids cross Edges) >= 0, <=1;
var e_plus (Acids cross Edges) >= 0, <=1;
var x.0 (0 cross V.0) >= 0, <=1;
var x_.E (E cross V_.E) >= 0, <=1;
#uHHAH AR constraint s###H B HEH B HAHAHHAHAHH
subject to placeOddElements i in O:
sum v in V.0 x 0[i,v] = 1;

subject to placeEvenElements j in E:
sum w in V.E x E[j,w] = 1;

34

subject to limitOddVertexLoad v in V_0O:
sum i in 0 x0[i,v] <= 1;

subject to limitEvenVertexLoad w in V_E:
sum j in E x E[j,w] <= 1;

subject to oddMinusFlow (i,v) in O cross V.0 : i != firstAcid:
sum w in Neighbors[v] eminus([i,v,w] = x 0[i,v];

subject to oddPlusFlow (i,v) in O cross V.0 : i != lastAcid:
sum w in Neighbors[v] e_plus[i,v,w] = x 0[i,v];

subject to evenMinusFlow (j,w) in E cross V.E : j != lastAcid:
sum v in Neighbors[w] eminus[j+1,v,w] = x E[j,w];

subject to evenPlusFlow (j,w) in E cross V.E : j != firstAcid:
sum v in Neighbors[w] e_plus[j-1,v,w] = x E[j,w];

subject to hOddSideWithFlow (v,w) in Edges:
sum i in HO : i !'=firstAcid e_minus[i,v,w]
+ sum 1 in HO : i != lastAcid e_plus[i,v,w]
+ hlv,w] <= sum i in HO x O0[i,v];

subject to hEvenSideWithFlow (v,w) in Edges:
sum j in HE : j != lastAcid eminus[j+1,v,w]
+ sum j in HE : j != firstAcid e_plus[j-1,v,w]
+ hlv,w] <= sum j in HE x E[j,w];

subject to fixMiddleOddVertex:
x_0[middleOddAcid,middle0ddVertex] = 1;

subject to fixFirstVertex:
sum v in OddTriangle x_O[firstAcid,v] = 1;

HHEHEEEEEEEEEAEAEEE oD jective function #tsii i #####H#H##

minimize contacts: - sum (v,w) in Edges hl[v,w];

35

Experimental Results

We ran LP3; on some of the benchmarks for the problem in the 2D HP model. These
were taken from: www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html.

We ran the LP’s on the following strings:

1. hphpphhphpphphhpphph
2. hhpphpphpphpphpphpphpphh
3. pphpphhpppphhpppphhpppphh
4. ppphhpphhppppphhhhhhhpphhpppphhpphpp
5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh
6. hhhpphphphpphphphpph
String length upper bound LPj3 Opt
1 20 11 10.67529996 9
2 24 11 11 9
3 25 8 8 8
4 36 16 14.89908257 14
5 48 25 24.88770748 22
6 20 11 10.76264643 10

36

References

1]

2]

8]

“Protein Foldings and the Thermodynamic Hypothesis, 1950-1962",
http://profiles.nlm.nih.gov/KK/Views/Ezhibit.

R. Agarwala, S. Batzoglou, V. Dancik, S. Decatur, M. Farach, S. Hannenhalli,
S. Muthukrishnan and S. Skiena, “Local Rules for Protein Folding on a Tri-
angular Lattice and Generalized Hydrophobicity in the HP Model”, Journal of
Computational Biology (1997) Vol. 4(2):275-296.

Christian Antifsen, Robert R. Redfield, Warren I. Choate, Juanita Page and
William R. Carroll, “Studies on the Gross Structure, Cross-Linkages, and termi-
nal Sequences in Ribonuclease”, Journal of Biological Chemistry Vol. 207, No. 1
(March 1954):201-210.

K. A. Dill, “Theory for the Folding and Stability of Globular Proteins”, Bio-
chemistry (1985) Vol. 24:1501.

K. A. Dill, “Dominant Forces in Protein Folding, Biochemistry (1990) Vol.
29:7133-7155.

H. J. Greenberg, W. E. Hart, and G. Lancia, “Opportunities for Combinatorial
Optimization in Computational Biology”, INFORMS Journal of Computing, To
appear.

William Hart and Sorin Istrail, “Fast Protein Folding in the Hydrophobic-
Hydrophilic Model within Three-Eighths of Optimal”, Journal of Computational
Biology Vol. 3, No. 1, 1996:53-96.

Alantha Newman, “A New Algorithm for Protein Folding in the HP Model”,
Proceedings of SODA, 2002, 876-884.

37

