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Dis
rete Optimization Modelsfor Protein Folding1 Introdu
tionThe protein folding problem is an important and widely-studied problem in Compu-tational Biology. A protein is a sequen
e of 100-300 amino a
id residues. Shorteramino a
id 
hains are 
alled peptides. There are approximately 20 di�erent aminoa
ids. The fun
tions of proteins and peptides are determined by their respe
tive three-dimensional (3D) shapes. Under 
ertain standard 
onditions (e.g. extreme heat may
ause a protein to unfold), proteins always fold to the same unique native 3D stru
-ture. This shape is prin
ipally determined by the one-dimensional (1D) sequen
e.This was shown by Christian An�nsen, who won the 1972 Nobel Prize in Chemistryfor his work on protein stru
ture in living 
ells [1℄. He wondered why a protein foldedinto a parti
ular 3D shape and what (e.g. enzymes?) dire
ted it to this folding. Inan arti
le in the Journal of Biologi
al Chemistry [3℄, he showed that the sequen
e ofamino a
ids in a protein or peptide 
hain determines the folding pattern. In otherwords, the pro
ess of protein folding 
an be largely explained by the physi
al and
hemi
al intera
tions among the amino a
ids. This work is the basis for the belief thenative stru
ture of a protein 
an be predi
ted 
omputationally using the information
ontained in the amino a
id sequen
e [7℄.In this report, we dis
uss dis
rete optimization approa
hes to the problem of pro-tein folding in the Hydrophobi
-Polar (HP) model (also known as the Hydrophobi
-Hydrophili
 model). The widely-studied HP model was introdu
ed by Ken Dill [4, 5℄.This model abstra
ts the dominant for
e in protein folding: the hydrophobi
 inter-a
tion. The hydrophobi
ity of an amino a
id measures its aÆnity for water. Thehydrophobi
 resides in a protein form a tightly 
lustered 
ore. In the HP model, ea
hamino a
id residue is 
lassi�ed as an H (hydrophobi
 or non-polar) or a P (hydrophili
or polar). The model further simpli�es the problem by restri
ting the feasible fold-ings to the 2D or 3D square latti
e. An optimal 
onformation for a string of aminoresidues in this model is one that maximizes the number of H-H 
onta
ts, i.e. pairsof H's that are adja
ent in the folding but are not neighbors on the string. Thus, theproblem of protein folding in the HP model is 
ombinatorially equivalent to foldinga given string of 0's and 1's on the square latti
e to form a self-avoiding walk thatmaximizes the number of pairs of adja
ent 1's, i.e. let H=1 and P=0.One of the most immediately obvious drawba
ks of the HP model is that on7



the square latti
e, residues in even positions in the given string 
an have as theirneighbors on the latti
e only residues from odd positions in string and vi
e versa.In the a
tual protein folding problem, there is no su
h restri
tion. The HP modelhas also been studied on the 2D and 3D triangular latti
e [2℄, whi
h does not havethis parity problem. We believe that our methods 
an be extended to the triangularlatti
e. However, the square latti
e seems to be the best pla
e to start 
omputationalexperiments sin
e a string has fewer possible 
onformations on the square latti
e thanit does on the triangular latti
e.2 Problem StatementWe are given a string of 0's and 1's. Our goal is to �nd a valid folding of this stringon the 2D square latti
e that maximizes the number of pairs of adja
ent 1's. In otherwords, we want to �nd a self-avoiding walk that maximizes the number of pairs ofadja
ent 1's when the string is superimposed on it. For example, suppose we havethe string 101010101001010101. Then an optimal folding is shown in Figure 1. Thisfolding has eight 
onta
ts.

Figure 1. An optimal folding for the string101010101001010101. 0's and 1's are denoted by un�lled and�lled dots, respe
tively. Conta
ts are denoted by the dashedlines.NotationLet S be a string in f0; 1gn. We will refer to ea
h 0 and ea
h 1 in the given string asan element. We will refer to ea
h 1 in an odd position on the string as an odd-1 and8



ea
h 1 in an even position on the string as an even-1. We will denote the number ofodd-1's in the string S as O[S℄ and the number of even-1's in a string S as E [S℄.An Upper BoundThe best-known upper bound was introdu
ed in [7℄. An even-1 or an odd-1 
an haveat most 2 
onta
ts if it is not the �rst or last element on the string. The �rst andlast element on the string 
an ea
h have at most 3 
onta
ts. Thus, an upper boundon the maximum number of 
onta
ts in any folding of a given string S is:2 �minfO[S℄; E [S℄g+ 2:Comparing the optimal values produ
ed by our models to this upper bound gives ussome idea of how well our models are performing. These upper bounds are also usedto obtain approximate solutions for this problem [7, 8℄.3 Integer and Linear ProgramsIn this se
tion, we present some integer programs (IPs) for the protein folding problemin the HP model as well as their respe
tive linear programming relaxations (LPs).First, we will introdu
e the ne
essary notation.Let I be the set of indi
es in S, i.e. I = f1; : : : ng. We break down I as follows:E is the set of indi
es of elements in even positions.O is the set of indi
es of elements in odd positions.We break down E and O further as follows:HO is the set of indi
es of odd-1's in S,HE is the set of indi
ies of even-1's in S,PO is the set of indi
es of odd-0's in S,9



PE is the set of indi
es of even-0's in S.Thus, HE [ PE = E and HO [ PO = O and HE [ PE [HO [ PO = E [ O = I.Let V represent the set of feasible verti
es in the latti
e, i.e. a vertex o

urs atea
h interse
tion of a horizontal and verti
al line in the latti
e. We will assume thatone of the points (e.g. the odd point 
losest to the middle) on the string is assignedto a parti
ular latti
e point, whi
h de�nes the feasible region of verti
es in the latti
e.In other words, on
e this middle element is �xed, there are only a �nite number oflatti
e points to whi
h we 
an assign the other elements. We 
lassify the points in Vas follows:VE is the set of even latti
e points in V .VO is the set of odd latti
e points in V .Let Æ(v) denote the set of feasible verti
es adja
ent to v, whi
h 
onsists of at mostfour latti
e points. The set of feasible edges in the latti
e is denoted by E, whi
h isthe set of (v; w) su
h that v 2 VO and w 2 VE ; w 2 Æ(v).Variables for IP and LP FormulationsNow we will de�ne the variables that we will use in our various integer programs.First we list the variables that we use:1. h(iv)(jw) 8i 2 HO; j 2 HE ; (v; w) 2 E2. h(vw) 8(v; w) 2 E;3. xiv 8i 2 HO; v 2 VO;4. xjw 8j 2 HE ; w 2 VE :Now we will explain the fun
tion/meaning of ea
h variable. We will not use all thevariables immediately{some will be used in integer programs introdu
ed later on inthe paper. Also, by 
onvention, we will always use i and v to refer to indi
es for oddelements on the string and odd latti
e points, respe
tively. Similarly, we will always10



use j and w to refer to indi
es for even elements on the string and even latti
e points,respe
tively.The variable h(iv)(jw) indi
ates whether or not there is a 
onta
t between elementsi and j on edge (v; w). For example, if h(iv)(jw) is set to 1 in an integer program, thenthere is a 
onta
t between i and j a
ross edge (v; w), and if h(iv)(jw) is set to 0, thenthere is no 
onta
t between i and j on edge (v; w).The variable h(v;w) represents the total amount of 
onta
ts between all odd ele-ments and all even elements on edge (v; w). In an integer solution, if there is a 
onta
tbetween any i 2 HO and any j 2 HE on edge (v; w), then the value of h(vw) wouldbe 1. If there are no 
onta
ts on this edge, the value of h(vw) would be 0. Note thatthere is a relationship between the variables h(iv)(jw) and h(vw).
h(v;w) = Xi2HOXj2HE h(iv)(jw): (1)

The variable xiv indi
ates whether or not the element i is pla
ed on vertex pointv. In an integer solution, xiv is set to 1 if element i is pla
ed on latti
e point v and0 otherwise. Odd elements are pla
ed only on odd latti
e points and even elementsare pla
ed only on even latti
e points. Thus, we distinguish between these two 
asesand 
reate variables xiv for the odd 
ase and xjw for the even 
ase. Note that anystring folding 
orresponds to a 0-1 assignment of the variables fxiv; xjwg. However,note that not every 0-1 assignment to the variables 
orresponds to a folding, whi
his why we need to impose 
onstaints on these variables.
Integer ProgramsThe following integer program is one possible integer program for our problem. Everyinteger solution de�nes a valid folding and every folding 
orresponds to an integersolution. Thus, there is a one-to-one 
orresponden
e between foldings and integersolutions. 11



IP1: max X(v;w)2E Xi2HO Xj2HE h(iv)(jw)subje
t to : Xv2V xiv = 1 8i 2 I (2)Xi2I xiv � 1 8v 2 V (3)Xw2Æ(v) xi+1w � xiv 8i 2 I n fng; v 2 V (4)Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E (5)Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E (6)h(iv)(jw); xiv; xjw 2 f0; 1g: (7)Lemma 1. There is a one-to-one 
orresponden
e between foldings and integer solu-tions.Proof: Showing that every folding 
orresponds to an integer solution is easy. We willshow that every integer solution 
orresponds to a folding. In an integer solution, forea
h element i, there is exa
tly one v su
h that xiv = 1 (
onstraint (2)). Moreover,ea
h latti
e point v 
ontains at most one element (
onstraint (3)). Constraint (4)guarantees that ea
h 
onse
utive element on the string is pla
ed on an adja
ent latti
epoint to its neighbor on the string. Thus, we have a valid folding.Constraints (5) and (6) are used to for
e elements to be pla
ed on latti
e points vand w if there there is a 
onta
t between elements i and j on edge (v; w). Constraint(7) enfor
es the integrality of all the variables. It is possible that we only need tofor
e the x variables to be integer and this will automati
ally enfor
e the h variablesto be integer.Linear ProgramsWe obtain a linear programming relaxation from IP1 by relaxing 
onstraint (7) to thefollowing: 0 � xiv; xjw � 1: (8)12



A linear program provides an upper bound on the optimal integral solution. Also, ofkey importan
e is the fa
t that it 
an be solved mu
h faster than an integer program.One way to measure the quality of an integer program is to determine the upperbound guaranteed by its linear relaxation. In general, the better the bound providedby the linear relaxation, the higher the quality of the integer program.
4 More Integer Programming FormulationsThere are many other ways to formulate this problem as an integer program. Forexample, in IP1, we 
ould repla
e 
onstraint (4) with 
onstraint (9), whi
h is shownbelow. Xw2Æ(v) xi�1w � xiv 8i 2 I n fng; v 2 V: (9)This would also result in a valid integer program. Alternatively, we 
an in
lude both
onstraints (9) and (4). We will show that in
luding both these 
onstraints leads toa stronger linear program than in
luding only one of these 
onstraints. We will add
onstraint (9) to IP1 and refer to its 
orresponding linear programming relaxation asLP1.It is not immediately 
lear that 
onstraints (9) and (4) are both ne
essary, i.e.that 
onstraint (9) does not imply 
onstraint (4) or vi
e versa. However, we will showthat 
onstraint (9) does not imply 
onstraint (4) or vi
e-versa. To do this we willgive a feasible LP solution for a string of length 9 su
h that 
onstraint (4) is obeyedbut 
onstraint (9) is violated.Su
h a feasible solution is shown in Figure 2. The values shown in Figure 2 arethe fra
tions of ea
h xi that are pla
ed at the labeled latti
e points, i.e. the xivvalues. Let i = 6; v = q. Note that 
onstraint (9) is violated for x6q sin
e x6q = 2=3and Pw2Æ(q) x5w = 1=3. Note that 
onstraint (4) is not violated for any of the xivvariables. We 
an repeat this argument for the string labeled in the reverse order andwe would obtain an example in whi
h 
onstraint (9) is not violated but 
onstraint (4)is violated. Thus neither 
onstraint is implied by the other.13
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Figure 2. Constraint (9) is violated for i = 6; v = q.However, note that no other 
onstraints (e.g. 
onstraint (4))are violated.Aggregate ConstraintsWe 
an obtain another integer program and its 
orresponding linear programmingrelaxation by repla
ing 
onstraints (5) and (6) in IP1 and LP1 with the aggregate
onstraints (10) and (11). We refer to the resulting integer and linear programs asIP2 and LP2, respe
tively.Xi2HOXj2HE h(iv)(jw) � Xi2HO xiv 8(v; w) 2 E (10)Xj2HE Xi2HO h(iv)(jw) � Xj2HE xjw 8(v; w) 2 E (11)We 
an use the variables h(vw) to simplify IP2. Thus, IP2 is a formulation whi
h hasfewer h variables than IP1. Re
all the de�nition of h(vw) from (1).14



h(v;w) = Xi2HOXj2HE h(iv)(jw)We restate IP2 here for 
larity and 
onvenien
e:IP2: maxXv2VO Xw2Æ(v) h(v;w)subje
t to : Xv2V xiv = 1 8i 2 IXi2I xiv � 1 8v 2 VXw2Æ(v) xi�1w � xiv 8i 2 I n fng; v 2 VXw2Æ(v) xi+1w � xiv 8i 2 I n fng; v 2 Vh(v;w) � Xi2HO xiv 8(v; w) 2 Eh(v;w) � Xj2HE xjw 8(v; w) 2 Exiv; xjw 2 f0; 1g:It is 
lear that the optimal obje
tive value for LP2 is at least as large as the optimalobje
tive value for LP1. This is be
ause a solution for LP1 does not violate any
onstraints in LP2. Additionally, we 
an also show that the optimal obje
tive valuefor LP1 is at least as large as the optimal obje
tive value for LP2 when the obje
tivefun
tion is of the form f
vwg, i.e. there is a 
ost fun
tion that asso
iates a 
ost withevery edge (v; w).Lemma 2. The optimal values of LP1 and LP2 are equal, i.e. jOPT (LP1)j =jOPT (LP2)j.Proof: We will show that if we use any obje
tive fun
tion of the form f
vwg, then theobje
tive values of LP1 and LP2 will be the same. First, we will show that given a setof fh(iv)(jw)g, we 
an �nd a set of fh(vw)g su
h that fh(vw)g satisfy all the 
onstraintsin LP2. We de�ne h(vw) as follows: 15



Xi2HOXj2HE h(iv)(jw) = h(vw): (12)Constraints (5) and (6) imply (10) and (11). Thus, using (1), we see that from anyfeasible solution for LP1, we 
an obtain a feasible solution for LP2 with the sameobje
tive value.Now, we want to show that given a solution for LP2, i.e. given a set of fh(vw)g,we 
an �nd a solution set fh(iv)(jw)g that obeys all the 
onstraints in LP1. Withoutloss of generality, assume that for some v; w:Xi2HO xiv � Xj2HE xjw:Consider the following table for v; w. Assume there are k i's in HO labeled i1 : : : ikand assume there are m j's in HE labeled j2 : : : jm.i: 1 3 5 : : : kj :2 h(1v)(2w) h(3v)(2w) h(5v)(2w) : : : h(kv)(2w) � x2w4 h(1v)(4w) h(3v)(4w) h(5v)(4w) : : : h(kv)(4w) � x4w6 h(1v)(6w) h(3v)(6w) h(5v)(6w) : : : h(kv)(6w) � x6w. . . . . .. . . . . .. . . . . .m h(1v)(mw) h(3v)(mw) h(5v)(mw) : : : h(kv)(mw) � xmwx1v x3v x5v : : : xkvWe are trying to assign a value to ea
h h(iv)(jw) so that 
onstraints (5) and (6) arenot violated and equality (12) is met.We will assign values to the h(iv)(jw) variables in the �rst 
olumn so that the sumof the variables in the �rst 
olumn is equal to x1v. We 
an do this by setting h(1v)(2w)to be as large as possible su
h that it is at most x2w and at most x1v. Then we seth(1v)(4w) to be as large as possible so that the sum of the two variables is no more than16



x1v and h(1v)(4w) is no greater than x(4w). We repeat this for h(1v)(jw), where j > 4and j 2 HE . When we are done, we will have the following:Xj2HE h(1v)(jw) = x1v:Then we repeat for x3v, et
. Re
all that the sum of the xiv's is no more than the sumof the xjw's. Thus, we 
an always �nd an assignment for the h(iv)(jw)'s su
h that noneof the 
onstraints are violated. If for some xiv, we 
ould not �nd a set of h(iv)(jw)variables to assign the value (be
ause doing so would violate 
onstraint (6)) then wewould have a 
ontradi
tion, sin
e this would mean that the sum of the xjw's is lessthan the sum of the xiv's.Lemma 3. For a given string S, the values of the xiv variables in optimal LP1 andLP2 solutions are the same. In other words, the proje
tions of the LP1 and LP2solutions onto the x variables are the same.Proof: Note that in the proof of Lemma 2, as we go from the fhvwg variables to theh(iv)(jw) variables and vi
e-versa, we use the same set of x variables.Another way to deal with LP2 is to not have variables for h(iv)(jw) when i and jare 
onse
utive, i.e. j = i+1 or j = i�1. In this 
ase, the proof of Lemma 2 does notgo through. However, note that it still goes through if there are no 
onse
utive 1's inthe input string S. If there are 
onse
utive 1's in the input string S, then the boundprovided by LP2 with this alternation 
ould be better than the bound provided byLP1. However, we will show in the next se
tion that the quality of the LP solutionsare roughly the same regardless of whether or not we allow h(iv)(jw) variables for
onse
utive i and j.Quality of the LP SolutionUnfortunately, the relaxations dis
ussed so far may not provide fra
tional solutionsthat are very 
lose to integral solutions. As noted in Se
tion 2, the upper bound onthe number of 
onta
ts in a string S is 2 � minfO[S℄; E [S℄g + 2. These relaxations
an yield a fra
tional answer that is twi
e as large as this upper bound.Lemma 4. The obje
tive values of LP1 and LP2 are ea
h at least 4�min(O[S℄; E [S℄).17



Proof: To show this, we will give a solution for LP1 that is valid for any string Sand that has an obje
tive value of 4 � minfO[S℄; E [S℄g. We will let k represent thenumber of elements in S, i.e. the length of S. Without loss of generality, assumeO[S℄ � E [S℄ and let n be the number of latti
e points, i.e. jVOj = jVE j = n2 . Wealso assume k � n, i.e. the string 
an a
tually be folded onto the latti
e. We letxiv = 2n for all i 2 HO; v 2 VO and xjw = 2n for all j 2 HE ; w 2 VE . Then we leth(iv)(jw) = 2(E [S℄)n for all i 2 HO; j 2 HE ; v 2 VO; w 2 VE .Note that 
onstraint (2) is satis�ed sin
e for ea
h i, there are n2 possible v 2 Vwith the same parity. Constraint (3) will be satis�ed be
ause we have:Xi2I xiv = Xi2HO xiv � k2 � 2n � 1:Constraints (9) and (4) will be satis�ed as long as ea
h latti
e point v has at least oneneighbor. Constraint (5) is satis�ed sin
e for i 2 HO, we have 2(E [S℄)n�O[S℄ � 2n and foreven i, we have 2(E [S℄)n �E [S℄ = 2n . The number of h(iv)(jw) variables is E [S℄�O[S℄�4(n2 ).This is be
ause there are E [S℄ � O[S℄ pairs of 1's su
h that odd-1's are paired witheven-1's. And there are n2 odd latti
e points ea
h with 4 neighbors, i.e. ea
h oddlatti
e point serves as an endpoint for 4 edges so we have a total of 4(n2 ) edges. Thus,the obje
tive value will be:maxXi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) = E [S℄ � O[S℄ � n2 � 4 � 2E [S℄n = 4O[S℄: (13)So the value of the obje
tive fun
tion is at least 4�minfO[S℄; E [S℄g. Note that this isthe right value asymptoti
ally. Sin
e we 
an 
hoose the n latti
e points so that theyform a 
onvex region, about 4pn of the latti
e points have less than 4 neighboringlatti
e points.If we use the 4 index formulation but do not allow h(iv)(jw) variables for 
onse
-utive i and j, then we 
an still use the same values for the x variables. However,asymptoti
ally, this does not 
hange the value of the LP solution given in Equation13. Spe
i�
ally, for every j 2 HE and edge (v; w) 2 E, there are only O[S℄�2 h(iv)(jw)variables. So when we remove the h(iv)(jw) variables for 
onse
utive i and j, the valueof the optimal LP2 solution is at least: 18



maxXi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) = E [S℄ � (O[S℄� 2) � n2 � 4 � 2E [S℄n = 4O[S℄� 8:
The integrality gap for both formulations is 4 sin
e there are strings for whi
h theoptimal folding a
hieves only o(1) + minfO[S℄; E [S℄g 
onta
ts [8℄.Ba
kbone ConstraintsWe 
an add more 
onstraints to strengthen our LP. Figure 3 gives an example whereadding new 
onstraints may help. Figure 3 depi
ts a situation in whi
h xiv = xj+1;v =12 and xi+1;w = xjw = 12 . If i; j + 1 2 HO and j; i + 1 2 HE , then h(iv)(jw) andh(j+1;v)(i+1;w) 
an ea
h be assigned a value as high as 12 .

wv

jx1/2j+1x1/2

wv

i i+11/2 1/2 xx

Figure 3. An example in whi
h ba
kbone 
onstraints 
anbe added to the LP formulation to give a better bound onthe optimal folding.Even in a fra
tional solution, this situation should not o

ur be
ause the ba
kboneor a
tual string is o

upying the edge so the edge 
annot be used for a 
onta
t.For example, in an integral solution, if element i were pla
ed on latti
e point v andelement i+ 1 were pla
ed on latti
e point w, then the edge (v; w) would not be usedfor any 
onta
ts sin
e it is o

upied by the a
tual string.In order to make the optimal LP value 
loser to the optimal integer value of afolding, we will add 
onstraints that we refer to as ba
kbone 
onstraints. We will usethe following variables: The variable E(iv)(i+1;w) means that element i is on latti
eposition v and element i + 1 is on latti
e element w. Sin
e these variables are onlyfor 
onse
utive elements on the string, we 
an abbreviate them as follows:19



E+ivw = E(iv)(i+1;w); E�ivw = E(iv)(i�1;w):Then we 
an add the following valid inequalities to strengthen our LP formulation.We will add these 
onstraints to LP1 and refer to the resulting LP as LP3.Xw2Æ(v)E�ivw = xiv (14)Xw2Æ(v)E+ivw = xivXv2Æ(w)E�j+1;vw = xjwXv2Æ(w)E+j�1;vw = xjwXi2HO E�ivw +Xi2HO E+ivw + h(v;w) � Xi2HO xiv (15)Xj2HE E�j+1;vw +Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw:Note that if i 2 HO and i + 1 2 HE , then E+ivw has the same fun
tion as h(iv)(i+1;w).Similarly for E�ivw and h(iv)(i�1;w). Also, note that if i 2 HO and i � 1; i + 1 2 HE ,then 
onstraint (15) (written below) is the same as 
onstraint (10).Xi2HO E�ivw +Xi2HO E+ivw +Xi2HO Xj2HE ;j 6=i�1;i+1h(iv)(jw) � Xi2HO xiv:In LP1, the four-index LP, 
onstraint (15) would be repla
ed with:E�ivw + E+ivw + Xj2HE ;j 6=i+1;i�1h(iv)(jw) � xiv:20



Another IP and LP FormulationIP3: max X(v;w)2E h(vw)subje
t to : Xv2VO xiv = 1 8i 2 HOXv2VE xjw = 1 8j 2 HEXi2HO xiv � 1 8v 2 VOXj2HE xjw � 1 8w 2 VEXw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VOXw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw 8j 2 HE ; w 2 VEXi2HO E�ivw +Xi2HO E+ivw + h(v;w) � Xi2HO xiv 8v 2 VOXj2HE E�j+1;vw +Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw 8v 2 VEEivw; xiv; xjw; h(vw) 2 f0; 1g:Lemma 5. Ba
kbone 
onstraints imply the 
onne
tivity 
onstraints, i.e. 
onstraints(14) imply 
onstraints (9) and (4).Proof: From the ba
kbone 
onstraints, we have:xiv = Xw2Æ(v)E�ivw:21



For ea
h variable xi�1;w, we also have:xi�1;w = Xu2Æ(w)E+i�1;wu:This last 
onstraint implies that xi�1;w � E+i�1;wv, sin
e v 2 Æ(w). Note that E+i�1;wv =E�ivw. For ea
h of terms in the �rst 
onstraint in this proof, we 
an obtain theinequality xi�1;w � E�ivw. Thus, we have the desired inequality:xiv � Xw2Æ(v) xi�1;w:We 
an repeat this argument to derive 
onstraint (4).Lemma 6. The optimal solution for LP3 is at most 2 �minfO[S℄; E [S℄g+ 2.Proof: The optimal solution for the linear program is P(v;w)2E h(vw). Without lossof generality, we assume O[S℄ � E [S℄. Re
all that 
onstraint (15) is in the linearprogram. We rewrite this 
onstraint as follows:h(vw) � Xi2HO xiv �Xi2HO E�ivw �Xi2HO E+ivw:Summing over all the edges, we have:X(v;w)2E h(vw) � X(v;w)2EXi2HO xiv � X(v;w)2EXi2HO E�ivw � X(v;w)2EXi2HO E+ivw:The �rst sum is upper bounded by 4O[S℄. To show this, �rst we note that:Xv2VO xiv = 1:22



If we sum over all edges, as opposed to all odd verti
es, note that ea
h odd vertexv 2 VO is an endpoint in at most 4 edges. Thus, we have:X(v;w)2E xiv = Xv2VO Xw2Æ(v) xiv = Xw2Æ(v)Xv2VO xiv = Xw2Æ(v) 1 � 4;X(v;w)2EXi2HO xiv = Xi2HO X(v;w)2E xiv � Xi2HO 4 = 4O[S℄:Now we will analyze the following sum:X(v;w)2E Xi2HO ;i 6=1E�ivw = Xi2HO ;i 6=1 X(v;w)2EE�ivw:Ea
h variable E�ivw is asso
iated with a unique odd vertex, i.e. the odd vertex v. Wehave the following 
onstraints for ea
h odd vertex:Xw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VO:Thus, we 
an rewrite the sum as follows:Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=1Xv2VO Xw2Æ(v)E�ivw = Xi2HO;i 6=1Xv2VO xiv = Xi2HO ;i 6=1 1 = O[S℄�1:Note that: X(v;w)2EE�ivw = X(v;w)2EE+ivw:Thus, Xi2HO;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=n X(v;w)2EE+ivw = O[S℄� 1:23



Therefore, we have:X(v;w)2E h(vw) � 4O[S℄� (O[S℄� 1)� (O[S℄� 1) � 2O[S℄ + 2:So the maximum value of the obje
tive fun
tion is 2 �minfO[S℄; E [S℄g+ 2:Note that this LP will not always give a solution whose obje
tive value is at least2 �minfO[S℄; E [S℄g. It may give a solution whose obje
tive value is stri
tly better.For example, if we 
onsider the string of 20 
onse
utive 1's, the obje
tive value is 14.5a

ording to our AMPL implementation. (See Se
tion 9 for the AMPL Code.)An alternate formulation for the linear program above would entail using the fourindex variables h(iv)(jw) instead of the two index variables h(vw).E�ivw + E+ivw +Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E; (16)E�j+1;vw + E+j�1;vw +Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E:Suppose we substitute 
onstraints (16) for 
onstraints (15). We will refer to theresulting integer and linear program as IP4 and LP4, respe
tively.
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IP4: max X(v;w)2E Xi2HOXj2HE h(iv)(jw)subje
t to : Xv2VO xiv = 1 8i 2 HOXv2VE xjw = 1 8j 2 HEXi2HO xiv � 1 8v 2 VOXj2HE xjw � 1 8w 2 VEXw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VOXw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw 8j 2 HE ; w 2 VEE�ivw + E+ivw +Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 EE�j+1;vw + E+j�1;vw +Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 EEivw; xiv; xjw; h(vw) 2 f0; 1gLemma 7. Suppose S 
ontains no 
onse
utive 1's. Then LP4 is no stronger thanLP3, i.e. substituting 
onstraints (16) for 
onstraints (15) does not lead to a strongerrelaxation.Proof: We 
an apply the following modi�
ation of the proof of Lemma 2. Considerthe following table for an arbitrary edge (v; w) 2 E. Assume there are k i's in HOlabeled i1 : : : ik and assume there are m j's in HE labeled j1 : : : jm. Instead of usingxiv and xjw in the bottom row and right 
olumn, as we did in the proof of Lemma 2,we use fiv and fjw, whi
h we de�ne below:25



fiv = xiv � E�ivw � E+ivw;fjw = xjw � E�j+1;vw � E+j�1;vw:i: 1 3 5 : : : kj :2 h(i1v)(j1w) h(i2v)(j1w) h(i3v)(j1w) : : : h(ikv)(j1w) � fj1w4 h(i1v)(j2w) h(i2v)(j2w) h(i3v)(j2w) : : : h(ikv)(j2w) � fj2w6 h(i1v)(j3w) h(i2v)(j3w) h(i3v)(j3w) : : : h(ikv)(j3w) � fj3w. . . . . .. . . . . .. . . . . .m h(i1v)(jmw) h(i2v)(jmw) h(i3v)(jmw) : : : h(ikv)(jmw) � fjmwfi1v fi2v fi3v : : : fikvNote that if there are no 
onse
utive 1's in S, then there will be no h(iv)(jw) variablesin the above table in whi
h j = i+ 1 or j = i� 1. If there were su
h variables, thenthey would have to be assigned 0 and we would not be able to apply the proof ofLemma 2. But sin
e all the h(iv)(jw) variables in the table 
an be non-zero, we 
anuse the same te
hnique as in the proof of Lemma 2.Note that: Xi2HO fiv = Xi2HO(xiv � E�ivw � E+ivw);Xj2HE fjw = Xj2HE(xjw � E�j+1;vw � E+j�1;vw):Without loss of generality, assumePi2HO fiv �Pj2HE fjw. We want to distributethe value h(v;w) among the h(iv)(jw) variables. We 
an set the variable h(i1v)(j1w) tominffi1v; fj1wg. Then we 
an set the variable h(i1v)(j2w) to be as large as possible sothat h(i1v)(j1w) + h(i1v)(j2w) � fi1v, et
. We 
an set all the h(iv)(jw) variables so thattheir sum equals the sum of the fiv variables.Note that if the string S 
ontains 
onse
utive 1's, then the proof of Lemma 7 doesnot go through. Furthermore, we 
an 
onstru
t an example in whi
h LP3 and LP426



have di�erent obje
tive values. Figure 4 gives an example in whi
h LP3 has a higherobje
tive fun
tion than that of LP4.
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i+1x x x

x xFigure 4. The variable h(v;w) 
an have value at least 12 inLP3. In LP4, the 
ontribution of edge (v; w) would be 0 sin
ethe variable h(iv)(i+1;w) is not de�ned, i.e. it is impli
itly 0.The only di�eren
e between LP3 and LP4 is that and LP4 does not allow \
onta
ts"between adja
ent elements on the string. Let f(S) represent the number of pairs of
onse
utive 1's in S. Then the values of LP3 and LP4 for a string S are related asfollows: LP3 � LP4 � LP3 - f(S). There is no other other bene�t to using the 4-indexvariables rather than the 2-index variables with the 
urrent set of 
onstraints.5 Bran
h and BoundUsing bran
h and bound, we would like to bran
h only on x variables in odd positionsor only on x variables in even positions. This would allow us to 
ut down the numberof variables to bran
h on by a fa
tor of 2. This would be a good approa
h if thefollowing 
onje
ture holds.Conje
ture 1. Suppose we have an optimal solution fxiv; h(v;w)g for LP2 su
h thatxiv is integral if i; v are odd. We will 
all this an odd integral solution. Then we 
anuse this solution (e.g. round this solution) to obtain a fully integral solution with thesame obje
tive value.Given an odd integral solution, we want to show that we 
an 
onstru
t a solutionwith the same obje
tive value in whi
h all the xjw are also integral for even j; w.We have not been able to prove this 
onje
ture. If we 
onsider the path formed by
onse
utive xiv variables for odd i, we 
an easily see that it forms a self-avoiding walk27



on the subset of odd latti
e points and for every even j, at most two xjw variables
an be non-zero.Lemma 8. In an odd-integral solution, at most two xjw 
an be non-zero when j iseven.Proof: For all odd i, we have that xiv are integral. Consider xip and x(i+2)q for someodd i and some p; q su
h that xip = 1 and x(i+2)q = 1. By 
onstraint (4), we have:Xv2Æ(p) x(i+1)v � xip:Thus, the total value of xi+1 distributed on the four neighbors of p is 1. Similarly, by
onstraint (9), we have: Xv2Æ(q) x(i+1)v � x(i+2)q:So p and q must share neighbors and the most neighbors any two points have in
ommon is 2.Empiri
ally, we've observed that in odd integral solutions, the value of the xjwvariables for even j is usually 0 or 12 .
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6 Integrality GapsWe 
an show that the integrality gap for LP3 and LP4 is 2� � for any � > 0. We willuse the string S = f0gqf01gkf0g2qf1000gkf0gq. We let k denote a positive integerand q = 4k2. In [8℄, it is shown that no folding of S has more than (1 + o(1))O[S℄
onta
ts. However, we 
an easily 
onstru
t a fra
tional solution for LP3 for whi
h theobje
tive fun
tion is 2O[S℄.

2

strings of 0’s

S

S

1

y

z

Figure 5. Let S1 = f01gk and let S2 = f0001gk . Thestring splits in half at points y and z, whi
h allows the stringto 
ross itself, something not allowed in an integral solution.
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7 Six Index ConstraintsAnother idea for strengthening the linear program is to add 6-index 
onstraints. Onereason to use su
h 
onstraints is that they would invalidate the solution given inFigure 5.Suppose we let the variable h(iv)(jw)(ku) be a 1 if there is a 
onta
t between i andj on edge (v; w) and between j and k on edge (w; u). Then we 
an have the following
onstraint for 
ollinear v; w; u. Re
all that n denotes the length of the input string.h(iv)(jw)(ku) = 0 i < k < j : ji� kj < 2 � (n� j):The idea behind this 
onstraint is as follows: Suppose i and k are distan
e d aparton the string and both form a 
onta
t with j. Suppose i; j; k are pla
ed on latti
epoints v; w:u, respe
tively, where v; w; u are 
ollinear. Then sin
e the string 
annot
ross itself, the distan
e from j to the last point on the string n (or the nearestendpoint) must be less than distan
e d=2. If this is not the 
ase, then at some pointthe substrings j : : : n and i : : : k will have to 
ross ea
h other.We 
annot simply add this 
onstraint to LP3 or LP4 be
ause we are not optimiz-ing over double 
onstraints. However, this 
onstraint might still be used to obtaininformation about the optimal folding of a string, be
ause if a string has more thanO[S℄ 
onta
ts, then it must have double 
onta
ts. We de�ne a double 
onta
t as two
onta
ts that are adja
ent to ea
h other, i.e. 
onta
ts formed on edges (v; w) and(w; u) where v; w; u are either 
ollinear or the two edges form a right angle. In otherwords, if a folding has more than O[S℄ 
onta
ts, then some 1's must have more than 1
onta
t. Thus, we 
ould add the following 
onstraints to LP3 for all adja
ent v; w; u:h(iv)(jw)(ku) � h(iv)(jw);h(iv)(jw)(ku) � h(jw)(ku):And we 
ould repla
e the obje
tive fun
tion with the following:max Xi;k2HO Xj2HE Xadja
ent v;w;uh(iv)(jw)(ku):30



Or, alternatively, with: Xi;k2HE Xj2HO Xadja
ent v;w;uh(iv)(jw)(ku):If the LP solution for both of these obje
tive fun
tions were 0, then we would knowthat an optimal folding 
ontains only maxfO[S℄; E [S℄g 
onta
ts.8 Future WorkTwo of the known approximation algorithms for the folding problem on the 2D latti
e[7, 8℄ have the following property in 
ommon. Both algorithms result in a foldingin whi
h the original string is divided into two strings and there are only 
onta
tsbetween elements on di�erent strings. In other words, the folding results in two stringsS1 and S2 su
h that a 
onta
t only o

urs between i in S1 and j in S2 but never i; jin S1 or i; j in S2.Rounding the LP, e.g. LP3 or LP4, seems diÆ
ult. An easier approa
h may be todivide the string S into 2 strings S1 and S2 (there are n2 possibilities) and solve LP4only allowing the variables h(iv)(jw) to be non-zero when i is from S1 and j is from S2or vi
e-versa.
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9 ImplementationIn this se
tion, we present the ampl 
ode and experimental results for LP3.AMPL Code for LP with 2-Index Variables and Flow Con-straints (LP3).param length; #length is the length of the input string Sparam feasibleDistan
e := length/2+2;param firstA
id := 1;param lastA
id := firstA
id+length-1;param middleOddA
id := (floor((lastA
id-firstA
id)/2)-1+firstA
id +(floor((lastA
id-firstA
id)/2)-1+firstA
id+1)mod 2);set A
ids := firstA
id .. lastA
id;param H := 1;param P := 0;set Sequen
eValues := fH,Pg;param sequen
e A
ids within Sequen
eValues;set O := fi in A
ids: (i-firstA
id) mod 2 = 0g;set E := fi in A
ids: (i-firstA
id) mod 2 = 1g;set H O := fi in A
ids: (i-firstA
id) mod 2 = 0 and sequen
e[i℄=Hg;set H E := fi in A
ids: (i-firstA
id) mod 2 = 1 and sequen
e[i℄=Hg;set P O := fi in A
ids: (i-firstA
id) mod 2 = 0 and sequen
e[i℄=Pg;set P E := fi in A
ids: (i-firstA
id) mod 2 = 1 and sequen
e[i℄=Pg;#################latti
e#################param firstX := 1;param firstY := 1; 32



param numX := length+1;param numY := length+1;param lastX := firstX+numX-1;param lastY := firstY+numY-1;set X
oord := firstX .. lastX;set Y
oord := firstY .. lastY;param firstVertex := 1;param numVertex := numX*numY;param lastVertex := firstVertex+numVertex-1;set Verti
es := firstVertex .. lastVertex;param extra
tX v in Verti
es within X
oord :=((v-firstVertex) mod numX) + firstX;param extra
tY v in Verti
es within Y
oord :=floor((v-firstVertex)/numX) + firstY;param extra
tVertex x in X
oord, y in Y
oord within Verti
es :=firstVertex+ (y-firstY)*numX + (x-firstX);param xdiff v in Verti
es, w in Verti
es :=extra
tX[v℄-extra
tX[w℄;param ydiff v in Verti
es, w in Verti
es :=extra
tY[v℄-extra
tY[w℄;param middleOddX :=(floor(numX/2)-1+firstX + (floor(numX/2)+firstX)mod 2);param middleOddY :=(floor(numY/2)-1+firstY + (floor(numY/2)+firstY)mod 2);param middleOddVertex := extra
tVertex[middleOddX,middleOddY℄;set FeasibleVerti
es := v in Verti
es:33



abs(xdiff[v,middleOddVertex℄) + abs(ydiff[v,middleOddVertex℄)<= feasibleDistan
e ;set V O := v in FeasibleVerti
es:(extra
tX[v℄-firstX+extra
tY[v℄-firstY) mod 2 = 0;set V E := v in FeasibleVerti
es:(extra
tX[v℄-firstX+extra
tY[v℄-firstY) mod 2 = 1;set Neighbors v in FeasibleVerti
es := w in FeasibleVerti
es:(abs(xdiff[v,w℄) + abs(ydiff[v,w℄)) = 1;set Edges := (v,w) in V O 
ross V E : w in Neighbors[v℄;set OddTriangle :=v in V O: (extra
tX[v℄ <= extra
tX[middleOddVertex℄) and((extra
tX[middleOddVertex℄-extra
tX[v℄) <=(extra
tY[middleOddVertex℄-extra
tY[v℄));######################variables######################var h Edges >=0, <=1;var e minus (A
ids 
ross Edges) >= 0, <=1;var e plus (A
ids 
ross Edges) >= 0, <=1;var x O (O 
ross V O) >= 0, <=1;var x E (E 
ross V E) >= 0, <=1;######################
onstraints######################subje
t to pla
eOddElements i in O:sum v in V O x O[i,v℄ = 1;subje
t to pla
eEvenElements j in E:sum w in V E x E[j,w℄ = 1; 34



subje
t to limitOddVertexLoad v in V O:sum i in O x O[i,v℄ <= 1;subje
t to limitEvenVertexLoad w in V E:sum j in E x E[j,w℄ <= 1;subje
t to oddMinusFlow (i,v) in O 
ross V O : i != firstA
id:sum w in Neighbors[v℄ e minus[i,v,w℄ = x O[i,v℄;subje
t to oddPlusFlow (i,v) in O 
ross V O : i != lastA
id:sum w in Neighbors[v℄ e plus[i,v,w℄ = x O[i,v℄;subje
t to evenMinusFlow (j,w) in E 
ross V E : j != lastA
id:sum v in Neighbors[w℄ e minus[j+1,v,w℄ = x E[j,w℄;subje
t to evenPlusFlow (j,w) in E 
ross V E : j != firstA
id:sum v in Neighbors[w℄ e plus[j-1,v,w℄ = x E[j,w℄;subje
t to hOddSideWithFlow (v,w) in Edges:sum i in H O : i !=firstA
id e minus[i,v,w℄+ sum i in H O : i != lastA
id e plus[i,v,w℄+ h[v,w℄ <= sum i in H O x O[i,v℄;subje
t to hEvenSideWithFlow (v,w) in Edges:sum j in H E : j != lastA
id e minus[j+1,v,w℄+ sum j in H E : j != firstA
id e plus[j-1,v,w℄+ h[v,w℄ <= sum j in H E x E[j,w℄;subje
t to fixMiddleOddVertex:x O[middleOddA
id,middleOddVertex℄ = 1;subje
t to fixFirstVertex:sum v in OddTriangle x O[firstA
id,v℄ = 1;######################obje
tive fun
tion ######################minimize 
onta
ts: - sum (v,w) in Edges h[v,w℄;
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Experimental ResultsWe ran LP3 on some of the ben
hmarks for the problem in the 2D HP model. Thesewere taken from: www.
s.sandia.gov/te
h reports/
ompbio/tortilla-hp-ben
hmarks.html.We ran the LP's on the following strings:1. hphpphhphpphphhpphph2. hhpphpphpphpphpphpphpphh3. pphpphhpppphhpppphhpppphh4. ppphhpphhppppphhhhhhhpphhpppphhpphpp5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh6. hhhpphphphpphphphpphString length upper bound LP3 Opt1 20 11 10.67529996 92 24 11 11 93 25 8 8 84 36 16 14.89908257 145 48 25 24.88770748 226 20 11 10.76264643 10
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