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Abstract

The central goal of data stream algorithms is to process massive streams of data using sublinear
storage space. Motivated by work in the database community on outsourcing database and data stream
processing, we ask whether the space usage of such algorithms be further reduced by enlisting a more
powerful “helper” who can annotate the stream as it is read. We do not wish to blindly trust the helper,
so we require that the algorithm be convinced of having computed a correct answer. We show upper
bounds that achieve a non-trivial tradeoff between the amount of annotation used and the space required
to verify it. We also prove lower bounds on such tradeoffs, often nearly matching the upper bounds, via
notions related to Merlin-Arthur communication complexity. Our results cover the classic data stream
problems of selection, frequency moments, and fundamental graph problems such as triangle-freeness
and connectivity. Our work is also part of a growing trend — including recent studies of multi-pass
streaming, read/write streams and randomly ordered streams — of asking more complexity-theoretic
questions about data stream processing. It is a recognition that, in addition to practical relevance, the
data stream model raises many interesting theoretical questions in its own right.

1 Introduction

The data stream model has become a popular abstraction when designing algorithms that process network
traffic and massive data sets [4, 26]. The computational restrictions that define this model are severe: algo-
rithms must use a relatively small amount of working memory and process input in whatever order it arrives.
This captures constraints in high-throughput data processing settings. For example, network monitoring of-
ten requires (near) real-time response to anomalies and hence traffic must be processed as it arrives, rather
than being stored and processed offline. For massive data sets stored in external memory, being able to pro-
cess the data in any order avoids the I/O bottlenecks that arise with algorithms that assume random access.
Unfortunately, while some problems admit efficient streaming algorithms, many others provably require a
lot of working memory or multiple passes over the data, which is typically not feasible.

This paper considers the potential for off-loading stream computation to a more powerful “helper” so
that single pass, small-space stream computation is possible even for such “hard” functions. The additional
power of the helper can arise in a variety of situations, e.g., multiple processing units, special purpose
hardware, or a third party who provide a commercial stream processing service. This last case has recently
garnered attention in the context of outsourcing database processing [32, 34, 39]. A key issue is that we
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do not want to blindly trust the helper: hardware faults or outright deception by a third-party would lead
to incorrect results. So our protocols must have sufficient information contained in the help to allow the
“verifier” to be convinced that they have obtained the correct answer. We think of this help as annotations
augmenting the original stream. Our goal is to design protocols so that the verifier finds the correct answer
with an honest helper, and is likely not fooled by a dishonest helper. The primary metrics are the amount of
annotations provided by the helper and the amount of working space used by the verifier.

Our approach is naturally related to Interactive Proofs and Merlin-Arthur communication protocols [1,
5, 30] but differs in two important regards. Firstly, the verifier must process both the original data and the
advice provided by the helper under the usual restrictions of the data stream model. Secondly, we focus on
annotations that can be provided online i.e., annotation that only depends on data that has arrived before the
annotation is written. Note that in Merlin-Arthur communication, it is assumed that the helper is omniscient
and that the advice he provides can take into account data held by any of the players. In the stream model,
this would correspond to prescience where the annotation in the stream at position t may depend on data
that is yet to arrive. In contrast we are primarily interested in designing algorithms with online annotation,
This corresponds to a helper who sees the data concurrently with the verifier.

Our Contributions. We first formally define the relevant models: traditional and online Merlin-Arthur
communication, and streaming models with either prescient or online annotations. We then investigate the
complexity of a range of problems in these models, including selection, frequency moments, and graph prob-
lems such as triangle-counting and connectivity. Estimating frequency moments in particular has become a
canonical problem when exploring variants of the data stream model such as random order streams [11] and
read/write streams [7]. Our results include:

• Selection. The problem of finding the median of m values in the range [n] highlights the difference
between prescient and online annotation. For any h,v such that hv ≥ m we present an O(v logm)-
space algorithm that uses O(h logm logn) bits of online annotation. Furthermore, we show that this
trade-off is optimal up to polylogarithmic factors. In contrast, a trivial O(logmn) space algorithm can
verify O(logn) bits of prescient annotation.

• Frequency Moments and Frequent Items. We next consider properties of { fi}i∈[n] where fi is the
frequency of the token “i”. For any h,v such that hv ≥ n, we present a O(v logm)-space algorithm
that uses (φ−1h logm) bits of online annotation and returns exactly the tokens whose frequency ex-
ceeds φm. We also show an O(logm) space algorithm that uses O(ε−1 log2 m) bits of online annota-
tion and returns a set of tokens containing {i : fi ≥ φm} and no elements from {i : fi ≤ (φ − ε)m}.
This algorithm relies on a powerful way that annotation can be used in conjunction with sketch-
based algorithms. For any h,v such that hv ≥ n, we present an O(kv logm)-space algorithm that uses
O(k2h logm) bits of online annotation and computes Fk = ∑i f k

i exactly (k ∈ Z+). The trade-off is
optimal up to polylogarithmic factors even if the algorithm is allowed to use prescient annotation. To
prove this we present the first Merlin-Arthur communication bounds for multi-party set-disjointness.
Additionally, we generalize the protocol for Fk to any frequency-based function, which is a function
of the form ∑i∈[n] g( fi) for some g : N0 → N0. We obtain (n2/3 logn,n2/3 logn) prescient protocols
and (n3/4 logn,n3/4 logn) online protocols for this important class of functions, as well as improved
schemes for functions based on low-frequencies and for skewed data streams.

• Graph Problems. For graphs defined by streams of m edges on n nodes, we show that only O(logn)
space is needed by the verifier to determine whether a graph is connected, contains a perfect matching,
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is triangle-free or bipartite, with annotation proportional to the input size. We show that our algorithms
are optimal in many cases. For any h,v such that hv≥ n3, we also present an Õ(v) space algorithm for
counting triangles that uses Õ(h) bits of annotation where Õ hides poly-logarithmic factors. Finally,
for any h,v such that hv ≥ n2, we present (h logn,v logn) protocols for determining whether a graph
is connected or bipartite, or contains a perfect matching.

Related Work. When multiple passes over the input are allowed, it is natural to consider annotations that
can be written to the “input tape” and are available to the stream algorithm in subsequent passes [3, 18, 19].
The read/write stream model, which provides both multiple passes and multiple working tapes, can be
viewed as a natural extension of the multi-pass annotation model [7, 8, 25]. However, such annotations are
of no use if only a single pass over the input is allowed.

Few examples of prior work have explicitly considered annotations that are provided by an (untrusted)
third party. Gertner et al. [23] showed that the set of languages recognized by a verifier with logarithmic
space given annotation polynomial in the input size is exactly NP. In contrast, our focus is on the case where
the annotation is (sub)linear in the input size and can be provided online; the distinction between prescient
and online annotation was not relevant in their results because with polynomial annotation, the entire input
could be repeated. Feigenbaum et al. [21] observe that a logarithmic space verifier can check a linear
space annotation for the disjointness problem. In communication complexity, the role of non-deterministic
advice has been studied more extensively, see e.g., [5, 31]. The work of Aaronson and Widgerson [1] and
Klauck [30] are particularly relevant. They resolve the MA complexity of two-party set disjointness —
we extend some of their techniques to our streaming model. Lastly, recent work has considered which
computations which can be verified relatively efficiently while permitting multiple rounds of interaction
between the parties [24].

There has also been more applied work which implicitly defines annotation protocols. The notion of
stream punctuations are, in our terminology, simple prescient annotations, indicating facts such as that
there are no more tuples relevant to timestamp t in the remainder of the stream [38]. Work on stream
outsourcing studies the problem of verifying that a claimed “grouping” corresponds to the input data [39].
They solve exact and approximate versions of the problem by using a linear amount of annotation. Lastly,
work on proof infused streams answers various selection and aggregation queries over sliding windows [32]
with logarithmic space and linear annotation. However, a critical difference is that this work requires that
the helper and verifier agree on a one-way hash function, for which it is assumed the helper cannot find
collisions. Our results are in a stronger model without this assumption.

2 Models and Definitions

2.1 Communication Models

Let f : X1× ·· · ×Xt → {0,1} be a function, where each Xi is a finite set. This naturally gives a t-player
number-in-hand communication problem, where Player i holds an input xi ∈ Xi and the players wish to
output f (x1, . . . ,xt) correctly, with high probability.

MA Communication: We first consider a variant of this communication model. A Merlin-Arthur protocol
(henceforth, “MA protocol”) for f is one that involves the usual t players, plus a “super-player,” called Mer-
lin, who knows the entire input x = (x1, . . . ,xt). The protocol works as follows: first Merlin deterministically
writes a help message h on the blackboard, and then Players 1 through t run a randomized protocol P , using
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a public random string R, eventually outputting a bit out(P;x,R,h). To clarify, R is not known to Merlin at
the time he writes h. An MA protocol is δ -error if there exists a function h : X1× . . .×Xt → {0,1}∗, such
that:

1. If f (x) = 1 then PrR[out(P;x,R,h(x)) = 0]≤ δ .

2. If f (x) = 0 then ∀h′ PrR[out(P;x,R,h′) = 1]≤ δ .

We define err(P) to be the minimum δ such that the above conditions are satisfied. We also define the
help cost hcost(P) to be the maximum length of h, over all x, and the verification cost vcost(P) to be the
maximum number of bits communicated by Players 1 through t over all x and R. Finally, we define the cost
of P to be cost(P) = hcost(P)+vcost(P). We then define the δ -error MA-complexity of f as MAδ ( f ) =
min{cost(P) : P is an MA protocol for f witherr(P)≤ δ} . Further, we define MA( f ) = MA1/3( f ).

Online-MA Communication: We also consider a variant of the above model, specific to one-way pro-
tocols (i.e., protocols where the players speak once each, in increasing order), where Merlin constructs t
help messages h1, . . . ,ht so that the ith message is only a function of the first i inputs. To make this precise
we need to amend the definition of δ -error: An online-MA protocol is δ -error if there exists a family of
functions hi : X1× . . .×Xi→{0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h1(x1),h2(x1,x2), . . . ,ht(x1, . . . ,xt)) = 0]≤ δ .

2. If f (x) = 0 then ∀h′ = (h′1,h
′
2, . . . ,h

′
t) PrR[out(P;x,R,h′) = 1]≤ δ .

The message hi is revealed privately to the ith player. We define the help cost, hcost(P), to be the
maximum length of ∑i∈[t] |hi|. We define err(P),vcost(P), and cost(P) as for MA. Define MA→

δ
( f ) =

min{cost(P) : P is an online MA protocol for f with err(P)≤ δ} and write MA→( f ) = MA→1/3( f ).

2.2 Data Stream Models

The annotated data-stream models are most conveniently defined relative to the above communication mod-
els. Again we consider the computation of a function f on a t-tuple x ∈ U t for some universe U , e.g., {0,1}
or [n]. The main difference from the communication model is that we further insist that the message sent by
player i must be computed with limited memory and only sequential access to xi and hi. Without advice, this
is equivalent to the usual definition of the single-pass data stream model. We will also consider non-Boolean
functions f and a notion of approximation: we say f is computed correctly if the answer returned is in some
pre-defined set C( f (x)), e.g., {a : |a− f (x)| ≤ ε f (x)}.

Stream Model with Prescient Annotations: In the context of the stream model we consider the help
h provided by Merlin to be decomposed into t (deterministic) functions that map the input to binary help
strings: h1 : U t → {0,1}∗, . . . ,ht : U t → {0,1}∗. Let h(x) := (h1(x), . . . ,ht(x)). We then consider a ran-
domized protocol, A, with oracle access to a random string R, where Player i computes a message of size
at most w given only w bits of working memory and only sequential access to the bit stream 〈xi,hi(x)〉.
The output of this protocol is allowed to include the special symbol ⊥ if the verifier is not convinced of
the validity of the annotation. Such a protocol is said be δ -error if PrR[out(A;x,R,h) 6∈C( f (x))] ≤ δ and
PrR[out(A;x,R,h′) 6= ⊥] ≤ δ for any h′ = (h′1,h

′
2, . . . ,h

′
t) 6= h(x). We define err(A) to be the minimum δ

such that the above conditions are satisfied. We define the help cost hcost(A) to be the maximum length
of ∑i |hi|, over all x, and the verification cost vcost(A) = w. We say that A and h forms an (h,v) prescient
scheme if hcost(A) = O(h+1), vcost(A) = O(v+1) and err(A) < 1/3.
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Stream Model with Online Annotations: For online annotations we insist that the ith help function is
only a function of (x1, . . . ,xi). The other definitions are as above. We say that A and h form an (h,v) online
scheme as above if hcost(A) = O(h+1), vcost(A) = O(v+1) and err(A) < 1/3.

2.3 Preliminary Lemmas

In multiple places we make use of basic fingerprinting techniques which enable a verifier to test whether two
large streams represent the same object using small space. Let Z+ denote the set of non-negative integers,
and let Fq denote the finite field with q elements (whenever it exists). Let A = 〈a1, . . . ,am〉 denote a data
stream, with each ai ∈ [n]. Then A implicitly defines a frequency distribution f(A) := ( f1, . . . , fn), where
f j = |{i ∈ [m] : ai = j}|. Fingerprints are formed by computations over Fq, as BFq(r, f) := ∏

n
j=1(r− j) f j .

To make fingerprints, we choose q based on an a priori bound m on ‖f‖1.

Lemma 2.1. Let q≥ m be a prime, and choose r uniformly at random from Fq. Given an input stream A of
length m, the fingerprint BFq(r, f(A)) can be computed using O(logq) storage. Suppose f′ ∈ Zn

+ is a vector
with f′ 6= f(A) and ‖f′‖1 ≤ m. Then the “collision probability” Prr∈RFq [BFq(r, f′) = BFq(r, f(A))]≤ m/q.

Proof. To compute the fingerprint in streaming fashion, express BFq(r, f(A)) = ∏
m
i=1(r−ai). The bound on

the collision probability follows from the fact that for any f ∈ Zn
+, the polynomial BFq(X , f) ∈ Fq[X ] has

degree at most ‖f‖1.

This fingerprint implies a prescient protocol for a multi-set inclusion problem:

Lemma 2.2. Let A ⊂ U be a set of size n and let B ⊂ U be multi-set of size t. Let B′ be the set formed by
removing all duplicate elements from B. Then, given a stream which begins with the elements of A followed
by the elements of B, there is a (t log t, log t) prescient scheme that establishes whether B′ = A.

Proof. Note that we may assume that t ≥ n otherwise A 6= B′ and this is easy to certify. The helper annotates
each a∈ A with the multiplicity, fa, of a in B. This allows the verifier to incrementally construct a fingerprint
of the set {(a, i) : a ∈ A, i ∈ [ fa]}. The prover annotates the jth occurrence of b ∈ B with j, which allows the
verifier to incrementally construct a fingerprint of the set {(a, i) : a ∈ B′, i ∈ [ fa]}. The verifier accepts if the
two fingerprints match.

3 Warm-Up: Index and Selection

In this section, we present an online scheme for the SELECTION problem: Given desired rank ρ ∈ [m], output
an item ak from the stream A = 〈a1, . . . ,am〉 ∈ [n]m, such that |{i : ai < ak}|< ρ and |{i : ai > ak}| ≤m−ρ .
We assume m = Θ(n) to simplify the statement of bounds. An easy (logm, logm) prescient scheme is for
the helper to give an answer s as annotation at the start of the stream. The verifier need only count how
many items in the stream are (a) smaller than s and (b) greater than s. The verifier returns s if the rank of s
satisfies the necessary conditions. Next, we present (almost) matching upper and lower bounds when only
online annotation is allowed.

To do this, we first consider the online MA complexity of the communication problem of INDEX: Alice
holds a string x ∈ {0,1}N , Bob holds an integer i ∈ [N], and the goal is for Bob to output INDEX(x, i) :=
xi. The lower bound for SELECTION will follow from the lower bound for INDEX and a key idea for the
SELECTION upper bound follows from the communication protocol for INDEX.
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Theorem 3.1 (Online MA complexity of INDEX). Let h and v be integers such that hv ≥ N. There is an
online MA protocolP for INDEX, with hcost(P)≤ h and vcost(P) = O(v logh); and any online MA protocol
Q for INDEX must have hcost(Q)vcost(Q) = Ω(N). So, in particular, MA→(INDEX) = Θ̃(

√
N).

Proof. For the lower bound, we use the given online MA protocolQ to build a randomized one-way INDEX

protocol Q′. Let h = hcost(Q). Let B(n, p) denote the binomial distribution with parameters n and p, and
let k be the smallest integer such that X ∼B(k,1/3)⇒ Pr[X > k/2]≤ 2−h/3. A standard tail estimate gives
k = Θ(h). Let a(x,R) denote the message that Alice sends inQwhen her random string is R, and let b(a, i,h)
be the bit Bob outputs upon receiving message a from Alice and h from Merlin. In the protocol Q′, Alice
chooses k independent random strings R1, . . . ,Rk and sends Bob a(x,R1), . . . ,a(x,Rk). Bob then outputs
1 iff there exists a h-bit string h such that MAJORITY (b(a(x,R1), i,h), . . . ,b(a(x,Rk), i,h)) = 1. Clearly,
cost(Q′)≤ k ·vcost(Q) = O(hcost(Q)vcost(Q)). We claim thatQ′ is a 1

3 -error protocol for INDEX whence,
by a standard lower bound (see, e.g., Ablayev [2]), cost(Q′) = Ω(N).

To prove the claim, consider the case when xi = 1. By the correctness of Q there exists a suitable help
message h from Merlin that causes Pr[b(a(x,R), i,h) = 0] ≤ 1/3. Thus, by construction and our choice of
k, the probability that Bob outputs 0 in Q′ is at most 2−h/3. Now suppose xi = 0. Then, every possible
message h from Merlin satisfies Pr[b(a(x,R), i,h) = 1]≤ 1/3. Arguing as before, and using a union bound
over all 2h possible messages h, we see that Bob outputs 1 with probability at most 2h ·2−h/3 = 1

3 .
The upper bound follows as a special case of the two-party set-disjointness protocol in [1, Theorem. 7.4]

since the protocol there is actually online. We give a more direct protocol which establishes intuition for our
SELECTION result. Write Alice’s input string x as x = y(1) · · ·y(v), where each y( j) is a string of at most h bits,
and fix a prime q with 3h < q < 6h. Let y(k) be the substring that contains the desired bit xi. Merlin sends
Bob a string z of length at most h, claiming that it equals y(k). Alice picks a random r ∈ Fq and sends Bob
r and the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicating O(v logq) = O(v logh) bits. Bob checks
if BFq(r,z) = BFq(r,y(k)), outputting 0 if not. If the check passes, Bob assumes that z = y(k), and outputs xi

from z under this assumption. By Lemma 2.1, the error probability is at most h/q < 1/3.

Remark. The above lower bound argument in fact shows that an online MA protocol P for an arbitrary two-
party communication problem f satisfies hcost(P)vcost(P) = Ω(R→( f )). Thus, MA→( f ) = Ω(

√
R→( f ))

where R→( f ) is the one-way, randomized communication complexity of f .

Theorem 3.2. For any h,v s.t. hv ≥ m there is a (h logm,v logm) online scheme for SELECTION and any
(h,v) online scheme for SELECTION must have hv = Ω(m).

Proof. Conceptually, the verifier builds a vector r = (r1, . . . ,rn) ∈ Zn
+ where rk = |{ j ∈ [m] : a j < k}|. This

is done by inducing a new stream A′ from the input stream A: each token a j in A causes virtual tokens
a j + 1,a j + 2, . . . ,n to be inserted into A′. Then r = f(A′); note that ‖r‖1 = O(m2). As in the INDEX

protocol, the vector r is arranged into v subvectors of dimension h, and the verifier retains only fingerprints
— based on a prime q = O(m2) — on each subvector. After the stream is seen, the helper claims that the
answer is s, by providing the values of ri for all i in the subvector containing s. The verifier fingerprints the
provided block, and outputs s if it agrees with their stored fingerprint, otherwise it returns ⊥.

For the lower bound, we use a standard reduction from the INDEX problem: Given string x, we form
the stream over [2n] by placing a j = 2 j− x j in the stream for each j. Further, given the integer index i, we
place i copies of 2n and m− i copies of 1. Consequently, the median of this length 2m stream is 2i−xi, from
which the value of xi can be recovered. To complete the proof, observe that any streaming scheme to solve
this problem would imply a communication protocol with the same cost; and that all players can perform
this reduction online without extra space or annotation.
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Notice that in the above scheme the information computed by the verifier is independent of ρ , the rank
of the desired element. Therefore these algorithms work even when ρ is revealed at the end of the stream.

4 Frequent Items, Frequency Moments, and Generalizations

In this section we consider properties of f = { fi : i ∈ [n]} where fi is the frequency of the token “i” in
the stream. In particular, the kth frequency moment is defined as Fk = ∑i∈[n] f k

i and the frequent items are
defined as the set {i : fi > T}, for some threshold T . Both problems have a long history in the data streams
literature. It is well known that in the traditional data stream model, exact computation of Fk (k 6= 1) requires
Ω(n) space. Even constant factor approximation requires Ω(n1−2/k) space [12].

4.1 Frequent Items

We provide results on finding exact and approximate frequent items. A prescient helper can list the set of
claimed frequent items, along with their frequencies, for the verifier to check against the stream. But we
must also ensure that the helper is not able to omit any items that exceed the threshold. Our result shows a
compact witness set for the exact case, which leads to online schemes for the exact and approximate versions
of the problem.

Theorem 4.1. There exists a (φ−1 logm,φ−1 logm) prescient scheme and a (φ−1nα logm, n1−α logm) online
scheme (α ∈ [0,1]) for finding {i : fi > T := φm}. Any (h,v) online scheme for this problem must have
hv = Ω(n).

Proof. For the upper bound, consider a binary tree T whose leaves are the elements of the universe [n]. We
will specify a witness set W of size O(φ−1) to identify to identify all leaves i with fi > T ; we base W on
the concept of Hierarchical Heavy Hitters (HHHs) [14]. Below, we refer to the set of Hierarchical Heavy
Hitters as H.

We define H inductively, beginning with the leaves and working our way to the root r. We include
a leaf in H if its frequency exceeds T . Let v be a node at distance l from r (i.e. at level l of T ), and
assume inductively that we have determined all HHHs at levels greater than l. Let Hu denote the set of
descendants of u that have been included in H, and associate each node u with the set of elements at the
leaves of the subtree rooted at u. Call this set L(u) where L(u) = {i} if u is the ith leaf. Finally, define
S(u) := L(u) \

(
∪v∈Hu L(v)

)
. Intuitively, S(u) is the set of leaves in L(u) that have not already contributed

their frequency to an HHH descendant of u. Define the conditioned frequency (alternatively, the conditioned
subtree count) of u as g(u) := ∑i∈S(u) fi; we include u in H if g(u) > T . Observe there are at most φ−1

items in H since T = φm: each leaf contributes its frequency to g(u) for exactly one u ∈ H, and therefore
|H|T ≤ ∑u∈H g(u)≤ m.

We now define our witness set W as all leaves i in H in addition to all nodes u such that u’s parent is in
H but u is not in H. Observe that each node u ∈W is witness to the fact that no leaves i ∈ S(u) can have
fi > T ; we also include the root r in W to account for any leaves that are not descendants of any node in H.
The sets S(u) for u ∈W form a partition of [n]. Note that |W |= O(φ−1) since |H| ≤ φ−1.

This leads to two schemes for the problem. In the first, prescient scheme, the helper lists all nodes
u ∈W sorted by the natural order on nodes, and the verifier remembers this information. The verifier may
then compute the conditioned frequency of each such u using space O(|W | logn) = O(φ−1 logn): each time
an item i appears in the stream, the verifier determines the unique u ∈W such that i ∈ S(u) (u is simply the
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ancestor of i in W farthest from the root), and increments g(u). The verifier checks that g(i) > T for all leaf
nodes i ∈W , and that g(u)≤ T for all internal nodes in W and outputs ⊥ otherwise.

The second, online scheme is more involved. In the online setting, it is no longer possible for the verifier
to track the conditioned frequency of each node in W while observing the stream. However, it is possible for
the verifier to track (fingerprints of) a related quantity for each node v: namely the unconditioned frequency
(alternatively, unconditioned subtree count), which we now define.

For each node u in T , recall that L(u) denotes the leaves of the subtree rooted at u, and Hu denotes the
descendants of u that are in H. Define the unconditioned frequency of u as f (u)= ∑i∈L(u) fi; one may think of
f (u) as the frequency of u in the stream, even though u is an internal node in T . Observe that there is a simple
relationship between the conditioned and unconditioned counts of u, namely g(u) = f (u)−∑v∈Hu g(v). The
verifier may exploit this relationship to force the helper to provide the true conditioned frequencies for each
node u ∈W .

The 2n−1 nodes in the tree are divided into v groups of h such that hv ≥ 2n, as in the simple protocol
for INDEX (Theorem 3.1). While observing the stream, the verifier keeps a fingerprint of the vector of
unconditioned frequencies of each group. In doing so, the verifier is essentially treating each entry i in the
stream as an update to (the unconditioned counts of) the logn ancestors of i in T .

For any node u, let v(u) denote the vector corresponding to u’s group. After the stream is seen, the
helper provides the witness set W , beginning with the leaves in W and working level by level towards the
root. While processing the reported nodes in W , the verifier will modify (the fingerprints of) each group’s
vector in such a way that when each node u ∈W is presented, the entry corresponding to u in v(u) will
equal g(u). For each internal node u in W , the helper also presents the parent of u, and the conditioned
subtree counts for both nodes. The verifier can ensure that the conditioned frequency of u, g(u), is below T ,
indicating that no other nodes in the subtree of u have significant (conditioned) frequency.

The verifier will identify certain nodes u as being members of H, when g(u) exceeds T . When processing
(u,g(u)), the verifier treats this as a “deletion” of g(u) occurrences of u and of each ancestor v of u (note
that fingerprints can handle deletions as well as insertions). That is, for each ancestor v of u, the verifier
subtracts g(u) from the appropriate entry of v(v) by modifying the fingerprint of v(v) accordingly. As a
result, when each node u ∈W is presented by the helper, the entry corresponding to u in v(u) is equal to
f (u)−∑v∈Hu f (v) = g(u).

The helper is further required to follow each pair (u,g(u)) with all the entries of the vector v(u) (i.e. the
group containing u, accounting for all deletions that the verifier has simulated so far). If the helper does not
faithfully provide the vector v(u), a fingerprint of the claimed vector will fail to match the verifier’s finger-
print with high probability. Consequently, the helper is forced to provide the true conditioned frequencies
of each node u in W .

In total, the verifier requires space v logn to maintain v fingerprints, and the helper needs to pro-
vide min{O(|W |h),n} items and (conditioned) counts, yielding a (min{n logm,hφ−1 logm},v logm) online
scheme. A subtlety here is that the output size can exceed the verifier’s memory, so the verifier may output
a partial result before returning ⊥.

The lower bound follows from the hardness of INDEX: a string x of length n (assume n is odd) induces a
stream A, by placing a j = 2 j− x j in the stream for each j. Then, given index i, we place n−1 copies of 2i
in the stream. Observe that if xi = 0 then f2i > m/2, else f2i < m/2. Thus, determining the frequent items
for T = 1

2 m solves INDEX, proving the bound.
JT comment: If we wanted a lower bound that applied to prescient protocols as well, we could

simply reduce from Disjoint instead of Index. The reduction from Disjoint is equally simple, and
we wouldn’t need to full power of Theorem 4.5 – we’d just need Klauck’s 2003 result that the MA

8



complexity of two-party Disjoint is Ω(
√

n).

In many cases, it suffices to find a set of approximate frequent items: these include all items with fi > φm
and no items with fi < (φ − ε)m for parameters ε,φ . Solutions to this problem in the traditional streaming
model are often based on “sketch” algorithms. We define an integer linear sketch broadly as any summary
v which can be computed as v = Sf(A) for a “sketch matrix” S with integral entries. Such sketches include
instantiations of the Johnson-Lindenstrauss transform [27], Count-Sketch [13], and Count-Min [16]. Each
stream token i increments v by Sei, where ei is the vector that is 1 in location i and 0 elsewhere. The sketch
can be fingerprinted: each update multiplies the fingerprint by BFq(r,Sei). This observation means that the
helper can annotate (parts of) v at the end of the stream, for verification. However, to define an efficient
scheme, we also need to show: (1) the verifier can compute Sei in small space, so S must have a compact
representation; and (2) the verifier must be able to extract the result from v in a streaming fashion, in space
sublinear in the size of the sketch.

We use ideas from verifying exact frequent items to build a scheme for verifying approximate fre-
quent items via sketching. Count-Sketch [13] defines a “basic” sketch of length w via two pairwise in-
dependent hash functions b` : [n] → [w], and c` : [n] → {−1,+1}. The sketch vector v is defined by
v`, j = ∑i:b`(i)= j fic`(i), and the basic estimate of the frequency of i is f̂i,` = c`(i)v`,b`(i). This satisfies
| f̂i,`− fi|= O((F2/w)1/2) with constant probability; to reduce the error probability, the median of the basic
estimates from d basic sketches with different hash functions is taken, f̂i = median1≤`≤d f̂i,`. Count-Min is
essentially Count-Sketch with c`(i) := 1 for all `. It promises | f̂i,`− fi|= O(F1/w) [16].

Theorem 4.2. There exists an (s logn logm, logm) online scheme to verify the approximate frequent items
found by Count-Sketch or Count-Min sketches of size s.

Proof. Given a threshold T , the set of approximate frequent items are {i : f̂i > T}. To deal with the presence
of error in the frequency estimates obtained from Count-Sketch or Count-Min sketches, we use a simplified
version of the witness-tree approach from Theorem 4.1 to ensure that no items are omitted. This simplified
witness set W ′ is based on (approximate) unconditioned frequencies instead of conditioned frequencies, and
will have size O(φ−1 logn), larger than W by a logn factor.

Specifically, consider an expanded set of items that includes the set of tree nodes u in T and their
corresponding unconditioned frequencies f (u) (recall f (u) is the sum of the frequencies of all leaves in
L(u), the subtree rooted at u). The helper and verifier now keep a sketch vk for each level k of the tree, to
obtain estimated unconditioned frequencies f̂ (u) for each node u in the tree. We henceforth assume that
f̂ (u) = f (u)± εm; when using sketches with d = O(logn), this holds for each i with probability at least
1−1/16n, and so it holds over all 2n frequencies with probability at least 7/8.

The simplified witness set W ′, given threshold T , consists of all leaves i with f̂i > T in addition to pairs
of nodes (u,v) such that u is the child of v, and f̂ (u)≤ T but f̂ (v) > T . Here, each pair (u,v) ∈W is witness
to the fact that no leaves i ∈ L(u) can have fi > T . The sets L(u) for such u together with {i : fi > T} cover
all of [n]. Further, there can be at most φ−1 such nodes v at any level of the binary tree, as the sum of f̂ (v)
is at most (1+ ε)m. This bounds the size of this witness set to |W ′|= O(φ−1 logn) if ε < φ

2 .
The verifier can validate this witness set W over the full set of nodes and their estimated unconditioned

frequencies as follows. By presenting the set of nodes v in W in order of minL(v), the verifier can ensure that
the nodes identified do cover all of [n] as required (and hence that no high frequency items are omitted). If the
helper provides for each node v∈W the information about v contained in the sketch, as (v, f̂v, f̂v,1, . . . f̂v,d) the
verifier can check that f̂v is above or below T as appropriate. The verifier ensures that f̂v is derived correctly
from the d values of f̂v,` (using O(d) working space). The verifier also incrementally builds a fingerprint of
the set B = {(v, `, f̂v,`)}. At the end of the annotation, the helper lists the entries of each sketch vk

`, j in order
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and tags each entry with the set of v’s for which it has been used to make an estimate. The verifier builds a
fingerprint of the tuples (v, `,c`(v)vk

`,b`(v)
), and checks that it matches the fingerprint of B (this is essentially

an instance of the multiset equality protocol in Lemma 2.2). The verifier fingerprints also the (untagged)
sketch to check it matches the verifier’s fingerprinted sketch built from the input stream.

The total amount of annotation is O(s logn) sketch entries, from the logn sketches of size s. The verifier
needs to remember d estimated frequencies (to verify their median) and O(logn) fingerprinted sketches (one
for each level). We mention that if φ� ε , then the verifier only needs to inspect a small fraction of the sketch
entries to verify the frequent items. In this case, one can obtain a tradeoff: write the sketch as an array of
h× v entries, so that hv≥ s. The verifier can create v fingerprints each summarizing h entries of the sketch.
To verify, the helper modifies the above algorithm to only present those blocks of h entries which include
a value that needs to be seen by the verifier. In total, to verify O(|W ′|) approximate frequencies requires
verifying O(φ−1d logn) entries, giving an (φ−1h logm log2 n,v logm) online scheme.

Other algorithms find all items i such that f̂i ≥ φF1/2
2 .These can also be adapted to our setting using

similar ideas, and verified in logarithmic space with annotation proportional to the sketch size.

4.2 Protocols for Frequency Moments

We now show a family of algorithms that exhibit an optimal verification/annotation trade-off for the exact
computation of Fk. Our algorithm is inspired by the “algebrization” results of Aaronson and Wigderson [1]
but the key idea can be traced back to classic interactive proof protocols of Lund et al. [33] and Shamir [36].

Theorem 4.3. Suppose h and v are positive integers with hv ≥ n. Then, for integers k ≥ 1, there exists a
(k2h logm,kv logm) online scheme for computing Fk exactly.

Proof. Let A be the input stream. We map the length n vector f(A) into an h× v matrix ( f (x,y))x∈[h],y∈[v],
using any canonical bijection between [n] and [h]× [v]. Pick a prime q ≥ max{mk,3kh}; since m ≥ n, this
can be done while ensuring that logq = O(k logm). We shall work in the field Fq, which is safe because q
exceeds the maximum possible value of Fk(A). Let f̃ (X ,Y ) ∈ Fq[X ,Y ] be the unique polynomial satisfying
degX( f̃ ) = h−1, degY ( f̃ ) = v−1 and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a random
r ∈ Fq. As the stream is read, the verifier maintains a sketch consisting of the v quantities f̃ (r,1), . . . , f̃ (r,v).
Clearly, this sketch fits in O(v logq) bits of storage.

At the end of the stream, the annotator provides a polynomial s′(X) ∈ Fq[X ] that is claimed to be equal
to s(X) := ∑y∈[v] f̃ (X ,y)k, which has degree at most k(h−1), thus using O(kh logq) bits of annotation. The
verifier evaluates s′(r) from the supplied annotation and computes s(r) = ∑y∈[v] f̃ (r,y)k from his sketch,
checks that s′(r) = s(r) and outputs ⊥ if not. If the check passes, the verifier outputs ∑x∈[h] s′(x) as the final
answer. Clearly, this answer is correct if the annotation was honest. Further, the verifier is fooled only if
s′ 6= s, but s′(r) = s(r); the probability of this is at most k(h−1)/q≤ 1

3 , by choice of q.
It remains to show that the sketch can be computed incrementally in O(v logq) space. To maintain each

f̃ (r,y) for y ∈ [v], note that upon reading a new token i ∈ [n] that maps to (a,b) ∈ [h]× [v], the necessary
update is of the form f̃ (r,y)← f̃ (r,y)+ pa,b(r,y) , where pa,b is the Lagrange polynomial

pa,b(X ,Y ) = ∏
i∈[h]\{a}

(X− i)(a− i)−1 · ∏
j∈[v]\{b}

(Y − j)(b− j)−1.

Since pa,b(r,y) = 0 for any y ∈ [v] \ {b}, the verifier need only update the single value f̃ (r,b), by adding
pa,b(r,b), upon reading this token. Note that using a table of O(v) appropriate precomputed values, this
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update can be computed in a small amount of time. For h = v =
√

n, this takes a constant number of
arithmetic operations per update without affecting the asymptotic space cost.

Numerous problems such as computing Hamming distance and Inner Product, and approximating F2 and
F∞, can be solved using Fk as a primitive or using related techniques.

Approximate F2. F2 can be approximated up to a 1 + ε factor from an integer linear sketch of size
O(1/ε2). In particular, if CSw(A) denotes a length-w Count-Sketch vector of the stream A built using
4-wise independent hash functions, then F2(CSw(A)) estimates F2(A) with relative error ε = w−1/2 with
constant probability [37]. Thus, if the verifier and helper have access to a source of public randomness
to define the hash functions used by the sketch (or we extend the model to allow the verifier to send the
description of the randomly chosen hash functions to the helper at the start of the protocol), the above F2
scheme yields a (ε−2α logm,ε2α−2 logm) online scheme for any α ∈ [0,1]. This follows from the combi-
nation of the algebrization approach with the observation that the verifier can track linear updates to their
sketch efficiently.

Approximate F∞. Recall that F∞ = maxi fi and note that F t
∞ ≤ Ft ≤ nF t

∞. Hence, if t = logn/ log(1 + ε),
then (Ft)1/t is at most a factor 1+ε from F∞. This yields a (( 1

ε
logn)2h logm, ( 1

ε
logn)v logm) online scheme

for approximating F∞ for any h,v such that hv≥ n.

Inner Product and Hamming Distance. Consider a stream consisting of length N binary string x fol-
lowed by length N binary string y. Exact computation of F2 implies online schemes for certain functions
of x and y. For example, the inner-product x ·y is (F2(x+ y)−F2(x)−F2(y))/2 and the Hamming distance
is |{i : xi = 1}|+ |{i : yi = 1}|−2x ·y. Hence we get (Nα logN,N1−α logN) online schemes for both func-
tions, for any α ∈ [0,1]. Alternately, the above approach can be used to directly generate protocols for these
problems with the same bounds.

Convex Hull on a 2D Grid. Consider an instance of the convex hull problem where all input points P fall
on the intersection points of a two-dimensional grid defining g possible point locations. Let C be the convex
hull of a stream of points. Then there exists a ((|C|+gα) logn,(|C|+g1−α) logn) online protocol to report
the convex hull. The helper provides the claimed hull C′, which the verifier can store exactly, and verify that
it is indeed convex. Define c(C) as the set of (grid) points contained within a convex shape C, and observe
that it is easy to enumerate (but not store) c(C) in space O(|C|). The verifier then must establish that C′ ⊆ P,
and that P ⊆ c(C′). Both these subset tests can be verified efficiently. Consider sets X ,Y , represented as
characteristic vectors x,y s.t. xi = 1 iff i ∈ X and 0 otherwise. Then

X ⊆ Y ⇐⇒ F2(y− x) = |Y |− |X |.

Consequently, the helper can run the above protocol on vectors over the g grid points to allow the verifier to
agree that the two containments hold. As described, this protocol requires that P should contain no duplicate
points; we explain later how to use our protocol for frequency-based functions to handle the situation when
each point in P is duplicated a small number of times.

4.3 Lower Bounds on Frequency Moments

We next present lower bounds on the trade-off possible for computation of Fk.
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Theorem 4.4. Any (h,v) scheme (online or prescient) that exactly computes Fk requires hv = Ω(n) and any
(h,v) scheme that approximates Fk up to a constant factor (online or prescient) requires hv = Ω(n1−5/k).

These bounds are based on bounds we prove on the MA complexity of DISJn,t : {0,1}nt →{0,1}, the t-
party communication problem defined as follows. The input is a t×n Boolean matrix, with Player i holding
the ith row, for i ∈ [t]. The desired output is ∧t

i=1 ∨n
j=1 ¬xi j, i.e., 1 iff the subsets of [n] represented by the

rows are disjoint. We call an input x = (xi j)i∈[t], j∈[n] valid if every column of x has weight either 0 or 1
or t, and at most one column has weight t. Note that DISJn,t is naturally related to frequency moments:
for any valid input x, Fk(S) ≥ tk if DISJn,t(x) = 0 and Fk(S) ≤ n if DISJn,t(x) = 1 where S is the multi-set
{ j : xi j = 1}. The next theorem, a generalization of a result by Klauck [30], and reductions from DISJn,2
or DISJn,O(n1/k) establish the first and second parts of Theorem 4.4 respectively in a straightforward manner.
The next theorem also resolves a question of Feigenbaum et al. [21].

Theorem 4.5. Let P be an ε-error MA protocol for DISJn,t , where ε ≤ 1/3. Then hcost(P) ·vcost(P) =
Ω(n/t4). In particular, MA(DISJn,t) = Ω(

√
n/t2).

Proof. A rectangle is defined as a subset of inputs of the form X1×·· ·×Xt , where each Xi ⊆ {0,1}n is a
subset of all possible inputs for Player i. In deterministic communication protocols, the inverse image of
any transcript of such a protocol must be a rectangle. Let A = DISJ−1

n,t (1) and B = DISJ−1
n,t (0).

Lemma 4.6 (Alon-Matias-Szegedy [4], generalizing Razborov [35]). There exists a distribution µ over
valid inputs with 1) µ(A) = µ(B) = 1/2 and 2) µ(T ∩B) = (2e)−1µ(T ∩A)− t2−n/2t4

for each rectangle
T .

Assume t = ω(n1/4) since otherwise the bound is trivial. Put h = hcost(P) and v = vcost(P). An input
x∈ A is said to be covered by a message h from Merlin if PrR[out(P;x,R,h) = 0]≤ ε . By correctness, every
such input must be covered, so there exists a help message h∗ that covers every input in a set G ⊆ A, with
µ(G) ≥ 2−hµ(A) = 2−h−1. Fix Merlin’s message in P to h∗ and amplify the correctness of the resulting
randomized Merlin-free protocol by repeating it O(h) times and taking the majority of the outputs. This
gives us a randomized protocol P ′ for DISJn,t with communication cost c = O(hv) whose error, on every
input in G∪ B, is at most 2−2h. Let µ ′ denote the distribution µ conditioned on G∪ B. Note that, by
condition (1) of Lemma 4.6,

∀x ∈ {0,1}nt : either µ
′(x) = 0 or µ(x)≤ µ

′(x)≤ 2µ(x) . (1)

By fixing the random coins of P ′ we can obtain a deterministic protocolQ, for DISJn,t , such that errµ ′(Q)≤
2−2h and cost(Q) = c. By the rectangle property, there exist disjoint rectangles T1,T2, . . . ,T2c such that
out(Q;x) = 1 iff x ∈

⋃2c

i=1 Ti. Therefore

2c

∑
i=1

µ
′(Ti∩B)≤ 2−2h (2)

and

µ
′

(
A\

2c⋃
i=1

Ti

)
≤ 2−2h (3)

By (1), µ ′(A) = µ ′(G)≥ µ(G)≥ 2−h−1. Using (1), and a rearrangement of (3):

2c

∑
i=1

µ(Ti∩A) ≥ 1
2

2c

∑
i=1

µ
′(Ti∩A) ≥ 1

2

(
µ
′(A)−2−2h

)
≥ 2−h−3 .
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Suppose c ≤ n/5t4 and n is large enough. Applying condition (2) of Lemma 4.6 we get ∑
2c

i=1 µ(Ti ∩B) ≥
2−h−3/(2e)−2ct2−n/2t4 ≥ 2−h−6. However, by (1) and (2), we have ∑

2c

i=1 µ(Ti∩B)≤ 2−2h, a contradiction.
Hence hv = Ω(c) = Ω(n/t4).

4.4 Frequency-Based Functions

It is natural to ask whether the F2 algorithm of Theorem 4.3 generalizes to more complicated functions. We
demonstrate that this is indeed the case by presenting non-trivial algorithms for the class of all frequency
based functions. A frequency based function is any function f on frequency vectors f = ( f1, . . . , fn) of the
form f(f) = ∑i∈[n] g( fi) for some g : N0→ N0. We assume g(x)≤ nc for some constant c, so that all values
in the range of g and f require O(logn) bits to represent. If there are constants C1 and C2 such that g(x) = C1
for all x≥C2, then we say ∑i∈[n] g( fi) is based on low frequencies.1

Frequency-based functions have a number of important special cases, including frequency moments, F0
(the number of distinct items in the stream), and point and range queries on the frequency distribution, and
can also be used to compute F∞, the highest frequency in the frequency vector. These functions occupy
an important place in the streaming world: Alon, Matias, and Szgedy asked for a precise characterization
of which frequency-based functions can be approximated efficiently in the standard streaming model in
their seminal paper [4], and Braverman and Ostrovsky [9] recently gave a zero-one law for approximating
monotonically increasing functions of frequencies that are zero at the origin – this can be contrasted with
our result that in the annotation model, all frequency-based functions have non-trivial exact protocols.

Theorem 4.7. Suppose m = Θ(n). Let f be any frequency-based function. Then f has an (n2/3 logn,n2/3 logn)
prescient protocol, and an (n3/4 logn,n3/4 logn) online protocol. Additionally, if f is based on low-frequencies,
then f has an (n2/3 logn,n2/3 logn) online protocol.

Proof. We first describe the prescient protocol. Let A be the input stream. As in the F2 algorithm, we shall
work in the field Fq for a sufficiently large prime q, and we map the length n vector f(A) into an h×v matrix
( f (x,y))x∈[h],y∈[v], where h and v are parameters to be specified later. Let f̃1(X ,Y ) ∈ Fq[X ,Y ] be the unique
polynomial satisfying degX( f̃1) = h−1, degY ( f̃1) = v−1 and f̃1(x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The
verifier picks a random r ∈ Fq, and maintains a sketch consisting of the v quantities f̃1(r,1), . . . , f̃1(r,v) as
the stream is read.

The goal is to compute ∑x,y∈[h]×[v] g( f̃1(x,y)). As a first attempt at generalizing the F2 protocol, we could
have the helper send a polynomial to the verifier claimed to be

s1(X) =
v

∑
y=1

g̃1 ◦ f̃1(X ,y),

where g̃1 is defined through interpolation as the unique degree-m polynomial that agrees with g on [m] :=
{0,1, . . . ,m}. Then the verifier can compute h(f(A)) = ∑x∈[h] s1(x), and we can ensure the polynomial sent
by the helper is as claimed in much the same manner as the F2 protocol. Below, we refer to this protocol
as the polynomial-agreement protocol. The problem with this approach is that g̃1 ◦ f̃1 has degree mh, and
therefore s1 requires up to mh words to represent—it would be more efficient for the helper to just repeat the
stream in sorted order!

The solution is to reduce the degree of g̃1 by removing the heavy hitters from A with the aid of the
prover. That is, we run the prescient heavy hitters protocol of Theorem 4.1 to determine H := ∑i∈S g( fi)

1In full generality, we can obtain improves protocols for functions for which C2 = o(n1/12).
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where S = {i : fi ≥ nk}. Here, k is a parameter to be specified later. Note this requires communication
O( m

nk logn) = O(n1−k logn) since m = Θ(n) by assumption. Intuitively, H represents the contribution of the
heavy hitters to the frequency-based function, and the verifier then “removes” these items from the stream
by setting fi = 0 for all i ∈ S. Assuming without loss of generality that g(0) = 0, this ensures that the
removed items do not contribute to the sum ∑i∈[n] g( fi). The verifier and helper then run the polynomial-
agreement protocol on the modified frequency vector. We emphasize that the protocol just described consists
of a single message from the helper to the verifier; the helper may send his message for the Heavy Hitter
protocol, appended with his message for the polynomial-agreement protocol.

More precisely, we may view the new frequency vector f (with heavy hitters removed) as defining a
function f̃ :∈ Fq[X ,Y ] that agrees with the modified frequency vector on the domain [h]× [v]. Now define
g̃(W,Z) through interpolation as the polynomial with degree nk in each variable that agrees with g on [nk].
Finally, define

s(X) =
v

∑
y=1

g̃◦ f̃ (X ,y)

Note s has degree at most hnk. The prover’s message to the verifier consists of a polynomial s′ : Fq→ Fq,
which also has degree at most hnk and can therefore be specified with O(hnk logn) bits.

The remainder of this proof is in line with the F2 protocol. The helper claims s′ = s; if s′ is as claimed
then verifier can compute f(f(A)) via the identity f(f(A)) = ∑x∈[h] s(x)+H. So it suffices check s = s′.

To accomplish this, the verifier evaluates s′(r) from the supplied annotation and computes s(r) =
∑y∈[v] g̃( f̃ (r,y)) from his sketch, checks that s′(r) = s(r) and outputs ⊥ if not. If the check passes, the
verifier outputs ∑x∈[h] s′(x) as the final answer. Clearly, this answer is correct if the annotation was honest.
Further, the verifier is fooled only if s′ 6= s, but s′(r) = s(r); the probability of this is at most k(h−1)/q≤ 1

3 ,
by choice of q.

It remains to show that we can set the parameters h, v, and k of the above protocol to achieve hcost =
vcost = O(n2/3 logn). The communication cost is O(n1−k logn) bits for the Heavy Hitters protocol plus
O(hnk logn) bits for sending the polynomial s′. The space cost is O(n1−k logn) bits for the Heavy Hitters
protocol and O(v logn) bits for the verifier’s sketch. Setting k = 1

3 , h = n
1
3 , and v = n

2
3 has the desired costs.

A subtlety is that we also have to account for the cost of storing g, since the verifier must be able evaluate
s(r) = ∑y∈[v] g̃( f̃ (r,y)). In the protocol just described, we assume that g has a succinct implicit description;
this is indeed the case for important examples such as F0, F∞, and point and range queries on the frequency
distribution that are described subsequently.

In order to achieve an (n3/4 logn,n3/4 logn) online protocol for f, observe that the only place where the
protocol described above used prescience was to identify Heavy Hitters. In our online protocol, we simply
substitute the online Heavy Hitter protocol of Theorem 4.1 with parameter α ∈ [0,1] in place of the prescient
version. In this case, the communication cost of the protocol is O(n1−knα logn) bits for the Heavy Hitters
protocol and O(hnk logn) bits for sending the polynomial s′. The space cost is O(n1−α logn) bits for the
Heavy Hitters protocol and O(v logn) bits for the verifier’s sketch. Balancing these costs by setting k = 1

2 ,
α = 1

4 h = n
1
4 , and v = n

3
4 gives the desired costs.

Finally, we describe how to achieve an online (n2/3 logn,n2/3 logn) protocol if f is based on low-
frequencies. Suppose there is are constants C1 and C2 such that g(x) = C1 for all x ≥ C2. Then we may
obviate the need for a Heavy Hitters protocol entirely: while observing the stream, the verifier keeps a
buffer of the n2/3 most recent items observed, and “collapses down” any items appearing more than C2
times in the buffer to an instance occuring exactly C2 times. It is easy to see that f is the same for the
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collapsed stream as for the original stream, since f is based on low frequencies. And as a result of the col-
lapsing, no item in the filtered stream has frequency higher than O(n1/3). Therefore, a protocol similar to
the polynomial-agreement protocol applied to the collapsed stream yields the desired bounds.

Theorem 4.7 provides protocols for the following problems:

• F0, the number of items with non-zero count. This follows by observing that F0 is equivalent to
computing ∑i∈[u] g( fi) for g(0) = 0 and g(x) = 1 for x > 0. Since F0 is based on low frequencies, we
achieve an (n2/3 logn,n2/3 logn) online protocol.

• More generally, we can compute functions on the inverse distribution, i.e. queries of the form “how
many items occur exactly k times in the stream” by setting, for any fixed j, g( j) = 1 and g(i) = 0
for i 6= j. One can build on this to compute, e.g. the number of items which occurred between j and
j′ times, the median of this distribution, etc. If j is a constant, as in the case of ‘rarity’ ( j = 1) [17]
we achieve an (n2/3 logn,n2/3 logn) online protocol. Otherwise, we achieve an (n2/3 logn,n2/3 logn)
prescient protocol and an (n3/4 logn,n3/4 logn) online protocol.

• We obtain a protocol for F∞ = maxi fi, with a little more work. The helper first claims a lower bound
lb on F∞ by providing the index of an item with frequency F∞, which the verifier checks by running the
INDEX protocol from Theorem 3.1. Then the verifer runs the above protocol with g(i) = 0 for i≤ lb
and g(i) = 1 for i > lb; if ∑i∈[u] g( fi) = 0, then the verifier is convinced no item has frequency higher
than lb, and concludes that F∞ = lb. We therefore achieve an (n2/3 logn,n2/3 logn) prescient protocol
and an (n3/4 logn,n3/4 logn) online protocol for F∞ (or an (n2/3 logn,n2/3 logn) online protocol in the
case that F∞ is at most a constant).

Handling Duplicates via Frequency-Based Functions. We mention that the protocol of Theorem 4.7
can be used to solve problem of verifying a Convex Hull on a 2D Grid, even in the presence of duplicate
input points. The same approach allows duplicate edges to be handled in the subsequent protocols for graph
computations.

Specifically, the convex hull protocol from Section 4.2 must check that the input points are contained
within the claimed convex hull C′. It exploited the fact that for sets X ,Y represented as indicator vectors
x,y, it holds that X ⊆Y ⇐⇒ F2(y−x) = |Y |− |X |, allowing the verifier to check that C′ ⊆ P and P⊆ c(C′)
using Theorem 4.3. More generally, for any vector y such that yi > 0 if and only if i ∈ Y , it holds that
X ⊆ Y ⇐⇒ yi − xi ≥ 0 for all i. Assume b is a known upper bound on F∞(y), which corresponds to
the maximum number of times any point in Y is duplicated. Let g̃ be defined through interpolation as the
polynomial of degree 2b over the finite field Fp such that g̃(x) = 0 for 0≤ x≤ b, and g̃(x) = 1 for−b−1≤ x(
mod p) < 0. Then ∑i g̃(yi−xi) = 0 if and only if X ⊆Y . Applying the polynomial-agreement protocol from
within the proof of Theorem 4.7 under this definition of g̃, we obtain a (kh logn,v logn) protocol for checking
X ⊆ Y for any hv ≥ n2. This yields a a ((|C|+ kgα) logn,(|C|+ g1−α) logn) online protocol to report the
convex hull, where g is the number of possible point locations.

4.5 Frequency-Based Functions for Skewed Streams

In practice, the frequency distributions of data streams are often skewed, in the sense that a small number of
frequent items make up a large portion of the stream. We observe that, if the stream is sufficiently skewed,
so that there are few heavy hitters, we can achieve a more efficient frequency-based function protocol. To
see this, notice that in the protocol of Theorem 4.7, after the prover tells the verifier the heavy hitters, the
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verifier only needs to know an approximate upper bound on the F∞ of the stream A′ obtained from the
original stream A by deleting all the heavy hitters. That is, the prover only needs to convince the verifier
that he has presented “enough” of the true heavy hitters (and their exact frequencies) so that F∞(A′)≤ b for
some upper bound b = Θ(nk)—then we may define g̃ to agree with g on [b], so that the degree of g̃ remains
O(nk).

Therefore, it suffices to force the prover to identify enough heavy hitters so that F∞(A′) ≤ b for some
upper bound b = Θ(nk). Observe that if there are not many heavy items, this can be accomplished efficiently
by having the prover send a list L of heavy hitters and their frequencies (proving the frequencies are truthful
via L parallel INDEX queries) and then appending a proof of an approximate upper bound (within factor
1+ ε) as per Section 4.2 on the quantity F∞ of A′.

It suffices to let ε be any positive constant in order to achieve b = O(nk). If there are fewer than l items
with frequency greater than nk, the INDEX queries, if they are online, require annotation O(lh logn) and
space O(v logn), while the approximate F∞ protocol requires annotation O(h log3 n) and space O(v log2 n).
In what follows, we will choose l to be polynomial in n, so we will obtain a (lh logn,v log2 n) scheme for
identifying the set of heavy hitters and an upper bound ub on F∞(A′).

For concreteness, we will analyze the costs of our improved protocol under the assumption that the
frequencies of items in the stream follow a zipfian distribution, so that the ith largest frequency is (at most)
mi−z for parameter z. Setting this equal to nk and rearranging, we obtain that there are at most (m/nk)1/z

heavy hitters to identify.
Therefore, if m = Θ(n), we can (with high probability) reduce the cost of the heavy hitters sub-protocol

within the scheme of Theorem 4.7 to (n(1−k)/zhpoly logn,vpoly logn). Adding in the annotation cost of
sending the polynomial g̃◦ f̃ , and the space cost of storing the verifier’s sketch, the entire protocol therefore
requires Õ(n(1−k)/zh + hnk) and space Õ(v). Balancing exponents by setting k = 1

z+1 , h = n
1
2 + 1

2(z+1) , and

v = n/h, we obtain an (n
1
2 + 1

2(z+1) poly logn,n
1
2 + 1

2(z+1) poly logn) protocol.
For example, if z = 2, we obtain an (n2/3 poly logn,n2/3 poly logn) online protocol, which essentially

matches the cost of our online protocol for functions based on low-frequencies, but applies to any frequency-
based function. If z = 3, we obtain an (n5/8 poly logn,n5/8 poly logn) online protocol.

Finally, we present a more efficient prescient protocol. If we use prescient INDEX protocols rather
than online ones, our heavy hitters protocol only requires annotation Õ(l + h1) and space Õ(l + v1), pro-
vided h1v1 ≥ n. Hence, the entire protocol has communication cost Õ(n(1−k)/s + h1 + h2nk) and space cost
Õ(n(1−k)/s + v1 + v2), where h1v1 = h2v2 = n. Assume 1 < s ≤ 2. Then setting k = 2−s

2+s , h1 = v1 = n1/2,
h2 = nz/(2+z), and v2 = n2/(2+z), we obtain an (n2/(2+z) poly logn,n2/(2+z) poly logn) protocol. For example,
if z = 2, we obtain a (n1/2 poly logn,n1/2 poly logn) prescient protocol. For z > 2, protocols with the same
cost follow by setting k = 0, h1 = h2 = v1 = v2 = n1/2.

5 Graph Problems

In this section we consider computing properties of graphs on n nodes, determined by a stream of m
edges [20, 26]. We present tight results for testing connectivity of sparse graphs, determining bipartite-
ness, determining if a bipartite graph has a perfect matching, and counting triangles. Our bipartite perfect
matching result achieves optimal tradeoffs up to logarithmic factors.

Triangles via Matrix Multiplication. Estimating the number of triangles in a graph has received signif-
icant attention because of its relevance to database query planning (knowing the degree of transitivity of
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a relation is useful when evaluating relational queries) and investigating structure properties of the web-
graph [6, 10, 28]. In the absence of annotation, any single pass algorithm to determine if there is a non-zero
number of triangles requires Ω(n2) bits of space [6]. We show that the answer can be verified with O(n2)
annotation in logarithmic space. The following theorem, proved using ideas from [6] coupled with Theorem
4.5, shows that this is best possible.

Theorem 5.1. Any (h,v) scheme for counting triangles must have hv = Ω(n2).

Proof. We show a reduction from an instance DISJ(n2/9),2. We represent the instance as n/3×n/3 matrices
X ,Y in the natural way. We proceed to construct a graph that has a triangle iff Xi, j = Yi, j = 1 for some
i, j ∈ [n/3]. The nodes are partitioned into sets U,V,W so that |U |= |V |= |W |= n/3. Insert edges {(ui,wi) :
i ∈ [n/3]}∪{(ui,v j) : Xi, j = 1}∪{(wi,v j) : Yi, j = 1}. There is a triangle (ui,v j,wi) iff Xi, j = Yi, j = 1, and
there is no other way to form a triangle. The result follows from Theorem 4.5.

We now outline an online scheme with vcost = O(logn) and hcost = O(n2). A major subroutine of our
algorithm is the verification of matrix multiplication in our model. That is, given n×n matrices A,B and C,
verify that AB = C. Our technique extends the classic result of Frievalds [22] by showing that if the helper
presents the results in an appropriate order, the verifier needs only O(logn) bits to check the claim. Note
that this much annotation is necessary if the helper is to provide C in his stream.

Theorem 5.2. There exists a (n2, logn) online scheme for matrix multiplication.

Proof. By the result of Kimbrel and Sinha [29], the verifier can check AB = C by picking r uniformly
from Fq and checking that A(BrT) = CrT for vector r = (r1, . . . ,rn). This fails to distinguish differ-
ent matrices with probability at most n/q. Rather than computing A(BrT) and CrT explicitly, the veri-
fier will compare fingerprints of CrT and ABrT. These are computed as sCrT and sABrT, for a vector
s = (s1, . . . ,sn) where s is picked uniformly from Fq. This also fails with probability at most n/q. We
observe that (1) sCrT = ∑i, j sir jCi, j can be computed easily whatever order the entries of C are presented
in. (2) sABrT = (sA)(BrT) is the inner product of two n-dimensional vectors, and that (sA)i = ∑ j s jAi, j and
(BrT)i = ∑ j r jB j,i. Therefore, if the helper presents the ith column of A followed by the ith row of B for each
i in turn, the verifier can easily compute sABrT, in O(logq) space. Picking q ≥ 6n ensures that the verifier
is fooled with probability at most 1/3, and the total space used by the verifier to store r, s and intermediate
values is O(logn).

With this primitive, arbitrary matrix products (A`A`−1 . . .A2A1) are verified with O(`n2) annotation by veri-
fying A2,1 :=A2A1, then A3,2,1 :=A3A2,1, etc. Matrix powers A` are verified with O(n2 log`) annotation.

Theorem 5.3. There is a (n2, logn) online scheme for counting triangles.

Proof. Denote the graph adjacency matrix by A, with Ai,i := 0. The helper lists Av,w and A2
v,w for all pairs

(v,w) in some canonical order. The verifier computes ∑v,w Av,wA2
v,w as the number of triangles. The verifier

uses fingerprints to check that A matches the original set of edges, and the protocol in Theorem 5.2 to ensure
that A2 is as claimed.

We also show that it is possible to trade-off the computation with the helper in a “smooth” manner. The
approach is based on an observation of Bar-Yossef et al. [6]: The frequency moments of a derived stream
can be expressed in terms of the number of triples of nodes with exactly {0,1,2,3} edges between them.
In small space we can induce a length m(n− 2) stream by replacing each edge (u,v) by the set of triples
{(u,v,w) : w 6= u,v}. It follows that the number of triangles can be expressed in terms of the frequency

17



moments of this derived stream, as (F3− 2F2 + F1)/12. By using the protocol of Theorem 4.3, we obtain
the following theorem.

Theorem 5.4. There is a (n3α ,n3−3α) online scheme for counting triangles (α ∈ [0,1]).

Bipartite Perfect Matchings. We now present two online schemes for testing whether a bipartite graph
has a perfect matching. Our first scheme is efficient for sparse graphs, while our second achieves optimal
tradeoffs between hcost and vcost for dense graphs, up to logarithmic factors. Graph matchings have been
considered in the stream model [20, 40] and it can be shown that any single pass algorithm for determining
the exact size of the maximum matching requires Ω(n2) space. We show that we can off-load this computa-
tion to the helper such that, with only O(n1+α logn) annotation, the answer can be verified in O(n1−α logn)
space. This is shown to be best possible by combining a reduction from [20] coupled with Theorem 3.1.

Theorem 5.5. There exists an (m, logn) online scheme for bipartite perfect matching, as well as an (n1+α logn,n1−α logn)
online scheme for any 0 ≤ α ≤ 1. Any (h,v) online scheme for bipartite perfect matching requires hv =
Ω(n2).

Proof. We begin by presenting the (m, logn) scheme. We consider the general case, where there may be
nodes in [n] with no incident edges, which are to be ignored for the matching. If there is a perfect matching
M, the annotation lists all edges in M, and the degree of all nodes in [n]. Let x be the characteristic vector
that has 1 in the vth coordinate iff the degree of v is non-zero, y be the vector of node frequencies in M. The
verifier can use fingerprints to ensure that the claimed degree sequence is correct, and that x matches y.

If the graph does not have a perfect matching, Hall’s theorem provides a witness. Let L∪R be a bipar-
tition of the graph, then there exists L′ ⊂ L such that |L′| > |Γ(L′)|, the neighbors of L′. The helper lists
for each node: its degree; whether it is in L or R; and whether it is in L′, Γ(L′), or neither. Then the helper
presents each edge (u,v), along with the same information on each node. Using Lemma 2.2, the verifier can
ensure that the sets are consistent with a constant number of fingerprints. It remains to check that each edge
is allowable and |L′|> |Γ(L′)|.

Our (n1+α logn,n1−α logn) scheme follows the same conceptual outline as the above: if G has a perfect
matching, the helper provides the matching, while if G has no perfect matching, the helper demonstrates
this via Hall’s theorem.

If there is a perfect matching M, the annotation lists all edges in M, followed by a proof that M ⊆ E.
More specifically, for any hv ≥ n2, the discussion of finding a convex hull in Section 4.2 describes how to
obtain a v logn-space protocol using annotation h logn for showing M ⊆ E, assuming no duplicate edges.
This can be extended to a (kh logn,v logn) protocol if edges may be duplicated up to k times. The helper uses
this protocol to demonstrate M ⊆ E, and the verifier checks that M is a matching by comparing a fingerprint
of M to one of the set {1,2, . . . ,n}.

If the graph does not have a perfect matching, let L∪R be a bipartition of the graph, as before, and
let L′ ⊂ L such that |L′| > |Γ(L′)|. We will use the (n1+α logn,n1−α logn) online protocol for integer n×n
matrix-vector multiplication described in subsequent work [15, Theorem 4]. The verifier must check that (1)
L is a bipartition of n; (2) L′ ⊆ L; and (3) |L′|> |Γ(L′)|. Let x ∈ {0,1}n be the indicator vector of L, and let
A be the adjacency matrix of G, i.e. Ai j = 1 if there is an edge between i and j in G and Ai j = 0 otherwise.
(1) is equivalent to the condition xT Ax = 0, which can be checked using integer matrix-vector multiplication
to verify Ax, followed by an inner-product protocol to verify xT Ax. (2) can be checked trivially while the
helper specifies L by requiring the nodes of L′ to be marked. To check (3), notice that |Γ(L′)| is equal to the
number of non-zero entries in the vector Ax. This can be computed while the verifier checks (1), and that
|Γ(L′)|< |L′|.
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The result is a (kn1+α logn,nα logn) online protocol for 0 ≤ α ≤ 1. We remark that the above two
protocols also provide (m,1) and (n1+α logn,n1−α logn) schemes for proving bipartiteness, respectively;
proving non-bipartitness can by accomplished simply by providing an odd cycle C (the verifier checks C is
odd, C is a cycle, and C ⊆ E).

Connectivity. The problem of determining if a graph is connected was considered in the standard stream
model [20, 26] and the multi-pass W-stream model [19]. In both models, it can be shown that any constant
pass algorithm without annotations needs Ω(n) bits of space. In our model, the helper can convince a verifier
with O(logn) space whether a graph is connected with only O(m) annotation. This is the best possible for
sparse graphs where m = O(n) by combining a reduction from [20] with Theorem 3.1. We also achieve
tradeoffs between hcost and vcost for dense graphs, obtaining an (n1+α logn,n1−α logn) online protocol.

Theorem 5.6. There exists an (m, logn) online scheme for connectivity, as well as an (n1+α logn,n1−α logn)
online scheme for any 0≤α ≤ 1. Any (h,v) scheme (online or prescient) for connectivity requires hv = Ω(n)
even when m = O(n).

Proof of Theorem 5.6. We begin with the (m, logn) protocol. If the graph is connected then there exists a
spanning tree T directed towards the root and an injective labeling of the nodes f : V → [|V |] such that each
non-root node with label j is linked to exactly one node with label > j. The helper outputs such a function f ,
and the verifier ensures that it is an injection. Then each (directed) edge (u,v) in T and its labels f (u) > f (v)
is presented in decreasing order of f (u). The verifier checks this order, and ensures that it is consistent with
f via fingerprinting. The helper must also list all edges, so that the verifier can ensure that all T edges are
from the input.

If the graph is not connected the annotation presents a bipartition of the graph. Each node is presented
along with its label, and each is presented along with the corresponding node labels. The verifier uses
fingerprinting to ensure no edge is omitted, and the multiset protocol of Lemma 2.2 to ensure that the node
labels are consistent.

The (n1+α logn,n1−α logn) scheme follows the same conceptual outline as above: if G is connected, the
helper demonstrates this by providing a spanning tree; if G is disconnected, the helper identifies a bipartition
of the graph. In the first case, the helper provides a set of edges T claimed to be a spanning tree, and the
verifier must check (1) T is spanning and (2) T ⊆ E. (1) is accomplished as in the (m,1) case, by appropriate
labelling of the O(n) edges, with O(n) annotation. The description of the convex hull protocol of Section
4.2 explains how to check (2) with space n1−α logn and annotation n1+α logn.

If G is disconnected, the helper presents a set L⊂V , L 6=V , and claims that L is disconnected from V \L.
Let A be the adjacency matrix of G, and let x ∈ {0,1}n be the indicator function of L. To check that L is as
claimed, it suffices for the verifier to compute Ax, and check that the each non-zero entry of Ax corresponds
to vertices in L (intuitively, this means the set L′ of vertices at distance one from L is contained in L). The
first step uses the integer matrix-vector multiplication protocol of [15, Theorem 4]. This allows the verifier
to ensure that the set {i : (Ax)i 6= 0} matches L, via fingerprints.

For the lower bound, we reduce an instance of DISJn,2 to connectivity of a graph with O(n) edges over
nodes v0,0 . . .v3,n: create edges (v j,0,v j,i) for j ∈ {0,2,3} and i ∈ [n]. Then if xi = 1, add edge (v0,i,v1,i),
else add edge (v1,i,v2,i); and if yi = 1, add edge (v1,i,v3,i) else add edge (v2,i,v3,i). The resulting graph is
connected only if x and y are not disjoint. The result follows from Theorem 4.5.

Here, we have considered undirected graphs. The technique extends to checking (strong) connectivity
of directed graphs, but we omit the details for brevity.
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Subsequent Work. Subsequent work has further studied the protocols for graph computations in this
model [15]. In particular, it is observed that given any deterministic RAM algorithm with running time
R, there exists a (m + R, logn) protocol which simulates the algorithm in the annotation model. This im-
plies alternate proofs for the existence of (m,1) protocols for bipartite perfect matchings, bipartiteness, and
connectivity.
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