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Abstract

Many scenarios, such as network analysis, utility monitoring, and financial applications,
generate massive streams of data. These streams consist of millions or billions of simple up-
dates every hour, and must be processed to extract the information described in tiny pieces.
These notes provide an introduction to (and set of references for) data stream algorithms,
and some of the techniques that have been developed over recent years to help mine the
data while avoiding drowning in these massive flows of information.

1 Introduction

In recent years there has been growing interest in the study and analysis of data streams: flows
of data that are so large that it is usually impractical to store them completely data. Instead,
they must be analyzed as they are produced, and high quality results guaranteed, no matter
what outcomes are observed as the stream progresses. These notes survey some of the key
ideas and techniques that have been developed to analyze and mine such massive data streams.
See [Mut05] for a longer survey from an algorithmic perspective. Several other tutorials have
covered different aspects of stream processing [BBD™02, GGR02].

Motivation for studying data streams comes from a variety of areas: scientific data genera-
tion, from satellite observation to experiments on subatomic particles can generate terabytes of
data in short amounts of time; sensor networks may have many hundreds or even thousands of
nodes, each taking readings at a high rate; and communications networks generate huge quan-
tities of meta-data about the traffic passing across them. In all cases, this information must be
processed and analyzed for a variety of reasons: to monitor a system, analyze an experiment,
or to ensure that a service is running correctly. However, given the massive size of the input,
it is typically not feasible to store it all for convenient access. Instead, we must operate with
resources much smaller than the size of the input (“sublinear”), and still guarantee a good
quality answer for particular computations over the data.

Data Stream algorithms have been popular since the mid-nineties due to a number of pa-
pers introducing and motivating the problems [HRR98, AMS96, FKSV99]. But the earliest
algorithms in this model can be traced back about thirty years [MP80, BM81, FM83]. From
the disparate motivating settings we can abstract a general framework within which to study
them: the streaming model. In fact, there are several variations of this model, depending on
what form the input may take and how an algorithm must respond.

1.1 Preliminaries

Models: Arrivals only, or Arrivals and Departures. The basic model of data streams is
an arrivals-only one. Here, the stream consists of a quantity of tuples, or items, which describe
the input. Typically each tuple is a simple, small object, which might indicate, for example, the



identity of a particular object of interest, and a weight or value associated with this arrival. In
a network, the observation of a packet could be interpreted as a tuple indicating the intended
destination of the packet, and the size of the packet payload in bytes. For another application,
the same packet could be interpreted as a tuple whose identity is the concatenation of the
source and destination of the packet, with a weight of 1, indicating that it is a single packet.
Typically, we can interpret these streams as defining massive implicit vectors, indexed by item
names, and whose entries are (usually) the sum of the associated counts (although many other
interpretations may be possible). A richer model allows departures: in additional to positive
updates to entries in this implicit vector, they may be negative. This captures more general
situations in which earlier updates might be revoked, or observations for which negative values
are feasible. In either case, the assumption is that each tuple in the input stream must be
processed as it is seen, and cannot be revisited later unless it is stored explicitly by the stream
algorithm within its limited internal memory.

Randomization and Approximation. Within these models, many natural and fundamental
questions can be shown to require space linear in the input to answer exactly. For example, to
test whether two separate streams are the same (i,e. they encode the same number of occurrences
of each item) requires us to store space linear in the number of distinct items, which could be
immense. To be able to make progress, we typically allow approximation: returning an answer
that is correct within some small fraction, € of error; and randomization: allowing our algorithms
to make random choices and to fail with some small probability J. Algorithms which use both
randomization and approximation we refer to as (e, ) approximations.

Update time, query time and space usage. To evaluate algorithms that operate on
streams, we typically look at their behavior with respect to three additional features:

e Update time: the time to process each stream update.
e Query time: the time to use the information stored to answer the question of interest.
e Space Usage: the amount of memory used by the algorithm to keep information.

Typically, these three are measured in terms of parameters of the stream: the number of tuples, n
and the number of different items m; and the parameters € and é. To be an effective streaming
algorithm these measures, particularly the space used, should be sublinear in m and n, and
ideally poly-logarithmic (i.e. O((logmlogn)€) for some constant c.

Tail Inequalities. Many results are proved by defining estimators which are correct in ex-
pectation, and then analyzing the probability of being far from the correct answer using tail
inequalities, such as Markov, Chebyshev or Chernoff Bounds. These are well covered in standard
textbooks [MR95].

1.2 Sampling.

A key problem in data streams is how to draw a sample drawn uniformly from the stream, when
the length of the stream is not known in advance (this is also a popular interview question
for technical jobs). The research community has developed a rich literature on applications
of random sampling algorithms in databases and data streams. The canonical algorithm is
often referred to as Reservoir Sampling [Vit85]. One of the most common and well studied
applications of sampling in large data warehouse environments is to provide fast approximate
answers to complex aggregation queries based on statistical summaries which are created and
maintained using various sampling techniques [O1k97, GM98, GMP97]. Random sampling is a
standard technique for constructing approximate summary statistics, such as histograms, for



query optimization and query planning purposes [GMP97, CMNO98|. Random sampling is widely
used for distinct-values estimators [Gib01, GT01, CCMNO00] which play an important part in
network monitoring and online aggregation systems. Various algorithms for sampling from
streams of weighted data items have been proposed in [DLT03, ADLT05, ES06]. Sampling from
the support set of distinct items in the stream can be accomplished via min-wise hashing [Bro98,
BCFM98|, which leads to a variation on reservoir sampling via min-wise sampling [NGSA04].

1.3 Entropy Estimation.

The problem of estimating the entropy of a distribution defined by a stream has attracted a
lot of study in the last few years. The problem is to approximate the (zero-th order) entropy
of a stream of m values drawn from an alphabet of size n. In the networking world, the
problem of approximating the entropy of a stream was considered in Lall et al. [LSOT06]. They
focused on estimating Fpr, under assumptions about the distribution defined by the stream
that ensured that computing H based on their estimate of F would give accurate results.
Guha, McGregor and Venkatasubramanian [GMVO06] gave constant factor as well as (e,0d)-
approximations for H, using space that depends on the value of 1/H. Chakrabarti, Do Ba
and Muthukrishnan [CDMO06] gave a one pass algorithm for approximating H with sublinear
but polynomial in m space, as well as a two-pass algorithm requiring only poly-logarithmic
space. Bhuvanagiri and Ganguly [BGO06] described an algorithm that can approximate H in
poly-logarithmic space in a single pass. The algorithm is based on the same ideas and techniques
as recent algorithms for optimally approximating frequency moments [IW05, BGKS06], and can
tolerate streams in which previously observed items are removed. The exact space bound is

O <63(log4 m)(log ) logm + logn + log 6_1>

loge=1 + loglogm

which is suboptimal in its dependency on €, and has high cost in terms of logm. Cormode et
al.[CCMO07] gave a sampling-based algorithm which uses O(e~?log(6~1)logm) words of space,
and showed a space lower bound of Q(e72/log?(e™!)), meaning that the algorithm is near-
optimal in terms of its dependency on e.

References

[ADLT05] N. Alon, N. Duffield, C. Lund, and M. Thorup. Estimating sums of arbitrary
selections with few probes. In ACM Principles of Database Systems, 2005.

[AMS96] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. In ACM Symposium on Theory of Computing, pages 20—29,
1996. Journal version in Journal of Computer and System Sciences, 58:137-147,
1999.

[BBDT02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In ACM Principles of Database Systems, pages 1-16, 2002.

[BCFM98| A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. In ACM Symposium on Theory of Computing, pages 327-336, 1998.

[BGO6] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data
streams. In ESA, 2006.



[BGKS06]

[BMS1]

[Bro9g]

[CCMO7)

[CCMNO0]

[CDMO6]

[CMNOS]

[DLTO03]

[ES06]

[FKSV99)

[FM83]

[GGRO2]

[Gib01]

[GMOS]

[GMP97]

Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha.
Simpler algorithm for estimating frequency moments of data streams. In SODA,
pages 708-713, 2006.

B. Boyer and J. Moore. A fast majority vote algorithm. Technical Report ICSCA-
CMP-32, Institute for Computer Science, University of Texas, February 1981.

A. Broder. On the resemblance and containment of documents. In Proceedings of
Compression and Complezity of Sequences (SEQUENCES’97), pages 21-29, 1998.

A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for com-
puting the entropy of a stream. In ACM-SIAM Symposium on Discrete Algorithms,
2007.

M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards estimation
error guarantees for distinct values. In ACM Principles of Database Systems, pages
268-279, 2000.

Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating entropy and
entropy norm on data streams. In STACS, pages 196-205, 2006.

S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram
construction: How much is enough? In ACM SIGMOD International Conference
on Management of Data, pages 436—447, 1998.

N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled
flow statistics. In Proceedings of ACM SIGCOMM, 2003.

P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir.
Information Processing Letters (IPL), 97:181-185, 2006.

J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-
difference algorithm for massive data streams. In IEEE Conference on Foundations
of Computer Science, pages 501-511, 1999.

P. Flajolet and G. N. Martin. Probabilistic counting. In IEEE Conference on
Foundations of Computer Science, pages 76-82, 1983. Journal version in Journal of
Computer and System Sciences, 31:182—209, 1985.

M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: You
only get one look. In ACM SIGMOD International Conference on Management of
Data, 2002.

P. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries
and event reports. In International Conference on Very Large Data Bases, pages
541-550, 2001.

P. Gibbons and Y. Matias. New sampling-based summary statistics for improv-
ing approximate query answers. In ACM SIGMOD International Conference on
Management of Data, pages 331-342, 1998.

P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approx-
imate histograms. In International Conference on Very Large Data Bases, pages
466475, 1997.



[GMVO06]

[GTO1]

[HRR98]

[TWO5]

[LSO*06]

[MPS8O]

[MRO5]

[Mut05]

[NGSA04]

[01k97]
[Vit85]

Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming
and sublinear approximation of entropy and information distances. In SODA, pages
733-742, 2006.

P. Gibbons and S. Tirthapura. Estimating simple functions on the union of data
streams. In ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 281-290, 2001.

M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
Technical Report SRC 1998-011, DEC Systems Research Centre, 1998.

Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency
moments of data streams. In STOC, pages 202-208, 2005.

Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data stream-
ing algorithms for estimating entropy of network traffic. In ACM SIGMETRICS,
2006.

J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theo-
retical Computer Science, 12:315-323, 1980.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers,
2005.

S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for
robust aggrgation in sensor networks. In ACM SenSys, 2004.

F. Olken. Random Sampling from Databases. PhD thesis, Berkeley, 1997.

J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37-57, March 1985.



2 Frequency Moments

Given a stream of items i, let f; denote the total number of occurrences of 7 in the stream. The
kth frequency moment Fj is defined as

Fe=>_Ifil*

)

These were studied in the influential paper of Alon, Matias and Szegedy [AMS96].

2.1 F, Estimation.

F results in the most frequent item. It is provably hard to approximate with relative-error,
but good estimates can be found in practice with error bounds stated in terms of Fj or Fb, via
appropriate “sketch” data structures.

The Count-Min (CM) Sketch is a compact summary data structure capable of representing
a high-dimensional vector and answering queries on this vector, in particular point queries and
dot product queries, with strong accuracy guarantees. Such queries are at the core of many
computations, so the structure can be used in order to answer a variety of other queries, such as
frequent items (heavy hitters), quantile finding, join size estimation, and more. It also leads to
efficient solutions for estimating Fi, with additive error of at most eF}. Since the data structure
can easily process updates in the form of additions or subtractions to dimensions of the vector
(which may correspond to insertions or deletions, or other transactions), it is capable of working
over streams of updates, at high rates.

The data structure maintains the linear projection of the vector with a number of other
random vectors. These vectors are defined implicitly by simple hash functions. Increasing the
range of the hash functions increases the accuracy of the summary, and increasing the number
of hash functions decreases the probability of a bad estimate. These tradeoffs are quantified
precisely below. Because of this linearity, CM sketches can be scaled, added and subtracted, to
produce summaries of the corresponding scaled and combined vectors.

The Count-Min sketch was first proposed in 2003 [CMO05a] as an alternative to several other
sketch techniques, such as the Count sketch [CCFCO02] and the AMS sketch [AMS96]. The goal
was to provide a simple sketch data structure with a precise characterisation of the dependence
on the input parameters. The sketch has also been viewed as a realisation of a counting Bloom
filter or Multistage-Filter [EV02], which requires only limited independence randomness to show
strong, provable guarantees. The simplicity of creating and probing the sketch has led to its
wide use in disparate areas since its initial description.

2.2 F; estimation

In their 1996 paper, Alon, Matias and Szegedy gave an algorithm to give an (e, d)-approximation
of the self-join size [AMS96]. The algorithm computes a data structure, where each entry in
the data structure is computed through an identical procedure but with a different 4-wise
independent hash function for each entry. Each entry can be used to find an estimate of the
self-join size that is correct in expectation, but can be far from the correct value. Carefully
combining all estimates gives a result that is an (e, §)-approximation as required. The resulting
data structure is often called a “tug-of-war” sketch or AMS Sketch, since the data structure
concisely summarizes, or ‘sketches’ a much larger amount of information.

To build one element of the sketch, the algorithm takes a 4-wise hash function b : [1...U] —
{—1,+1} and computes Z = Zijzl h(i) f;. Note that this is easy to maintain under the turnstile
streaming model: initialize Z = 0, and for every update in the stream (i, c) set Z = Z 4 cx*h(3).



The value of Z? is an unbiased estimate for F», due to the independence of the hash functions;
further, the variance can be bounded in terms of F7, leading to an efficient (e, d) approximation
via independent repetitions of the estimator.

This sketch can be seen as a low-independence implementation of the Johnson-Lindenstrauss
lemma [JL84]. See also [DG99, IM98] for concise explanations and proofs of this dimensionality
reduction lemma.

2.3 I} estimation

The problem of estimating Fp, also known as distinct counting has been studied in [FM83,
Gib01]. This is a foundational problem in database summarization, e.g. consider a traditional
database table which is subject to a sequence of insertions and deletions of rows. It is of
importance for query optimization to know the number of distinct values that each attribute of
the table assumes. The importance of this problem is highlighted in [CCMNO0]: “A principled
choice of an execution plan by an optimizer heavily depends on the availability of statistical
summaries like histograms and the number of distinct values in a column for the tables referenced
in the query.” Distinct values are also of importance in statistics and scientific computing
(see [Gib01, GM99, HNSS95]). Note that it is provably impossible to approximate this statistic
without looking at a large fraction of the database (eg via sampling) [CCMNO0]. The alternative
paradigm consists of synopsis based approaches which keep a small summary of the stream, and
update this every time an item is added or removed. The most widely known synopsis method
is that of Flajolet and Martin [FM83, FMS&5]. This approach assumes fully-independent hash
functions, although has been noted to work well in practice using standard hash functions.
Improved results require only pairwise independence, and can be seen as generalizations of the
FM technique [GT01, BYJK'02].

Bar-Yossef et al. [BYJK'02] provide a variety of algorithms for this problem, based on
careful analysis of hashing routines. The simplest to describe and analyze simply hashes all
items onto a domain of size m3, and tracks the ¢ = O(1/e?) smallest hash values seen. The
value of the tth smallest hash value is then used to estimate Fy. This estimator is good with
constant probability; repeating several times in parallel with independent random choices drives
down the probability of failure exponentially in the number repetitions.

Motivated by sensor networks, generalizations of these data structures have been used to
build simple duplicate-resilient aggregates in [CLKB04, NGSA04]. These begin with computing
aggregates (SUM, COUNT) in a duplicate-resilient way, and progress to quantiles and heavy
hitters. The Range Efficient version of the problem occurs when the input arrives as a series
of ranges of values [a...b], and must be processed efficiently. Pavan and Tirthapura [PT07]
provide a range-efficient algorithm based on careful analysis of hash-function structure. This
can be used to solve the Dominance Norm problem efficiently [CMO03].

2.4 Extensions

Higher Frequency Moments. AMS give a sampling based algorithm for arbitrary Fj with
space O(m!~1/F) for a stream over a universe of size m [AMS96]. Coppersmith and Kumar give
an improved algorithm which is more similar to the F» tug of war sketch [CK04]. Optimal bounds
are provided by Indyk and Woodruff [IW05] and tightened by Bhuvangiri et al. [ BGKS06] based
on randomly sampling items at different sampling rates.

Combined Frequency Moments. Cormode and Muthukrishnan proposed the problem of
computing multiple frequency moments in the context of dynamic graph streams [CMO5b].



These compute frequency moments on top of Fy on a secondary attribute. Other combinations
of frequency moments have not been well studied.
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3 Lower Bounds

Since its introduction in 1979 by Yao, communication complexity [Yao79, KN97b] has proven to
be a powerful technique for proving lower bounds for a variety of computation models including
the cell-probe and data-stream models. The majority of results in this area are on the fixed-
partition model of communication complexity, where the goal is for two or more players to
evaluate a function over their mutual inputs, i.e. computing f(z,y) when one player holds x
and the other has y. Many functions can be shown to require a large amount of communication
to evaluate when the input is partitioned between the players in this manner. These can imply
lower bounds for different models of computation by arguing that such partitions arise in the
course of the necessary computation. If we can encode a particular communication “within”
a streaming computation, then the communication complexity of the communication problem
implies the same space bound for the streaming problem, since the storage used by the algorithm
can be seen as a message that is being passed.

Two fundamental “hard” problems in communication complexity that lead to many stream-
ing lower bounds are:

e INDEX: Alice holds string x of length n, Bob holds index y € [n], and Bob must output
the yth bit of z, given a single message from Alice. Even allowing randomization, this
problem requires 2(n) bits of communication when Alice is allowed to send only a single
message. Clearly, when Bob is allowed to talk to Alice first, O(logn) bits suffice [KN97a].

e DisJOINTNESS: Alice and Bob both hold strings z and y, and must determine whether
there is any bit location where both strings are 1. This requires £2(n) communication, even
allowing multiple rounds of communication and randomization. The problem remains
hard even under weakenings, such as the strings being picked uniformly from certain
distributions, or a constant fraction of bits being set to 1 [Raz92, KS92].

A third problem is GAPHAMMING: here, Alice and Bob both have strings with the promise
that their strings have Hamming distance either less than N/2—+/N or greater than N/2++/N.
This was initially shown to have (V) communication complexity via a complex VC-dimension
argument [IW03, Woo04], but simpler arguments are now known which reduce GAPHAMMING
to INDEX [JKSO07].

The linear hardness of GAPHAMMING can then be used to show hardness of frequency mo-
ments of Q(e2) [TW03, Woo04]; and Q(e~2/log(1/e)) for entropy estimation [CCMO07]. This
shows that known algorithms for these problems are essentially optimal in terms of their de-
pendency on e.
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4 Extensions and Open Problems

Several open problems are detailed in the “Kanpur List” [McGO07], although note that some
have been addressed since creation of the list.

Deterministic Streaming Algorithms. There are many known deterministic streaming
algorithms, especially for problems such as frequent items and quantile finding. See the imple-
mentation and comparison paper [CHOS8] for some detailed discussions of some of these.

Clustering on Data Streams. Formally, given a set of items, a good clustering places those
items that are similar together in clusters, and ensures that the items in different clusters are
different. It is natural to try to extend clustering to a stream, but what does it mean when
the stream is so large we cannot store for each point which cluster it is allocated to? Typically,
we seek a number of clusters, k, which is much smaller than the number of points, n to be
clustered. After seeing the stream, the output is just the k clusters, from which the mapping
of points to clusters is implicit (e.g. each point is mapped to its closest cluster).

An example problem of clustering a stream is to optimize the k-center objective: attempting
to minimize the diameter (the maximum distance between any two points in the same cluster).
An algorithm arises by guessing the diameter of the clustering is some value d. The first point
is allocated a cluster of its own. For each subsequent point in the stream, if it is far from
any existing cluster, a new cluster containing the new point is created, else it is allocated to
an existing cluster. If the guess of d was good, then no more than k clusters will be created.
Moreover, if d was reasonably close to the true diameter, then the diameter of the stream
clustering will be within a factor of 2 of the best possible cluster radius. By trying different
guesses of d in parallel, and discarding any that generate more than k clusters, we can build
a (1+¢,0) (i.e. deterministic) clustering algorithm [CCFM97, CMZ07]. Different techniques
are needed to guarantee good results for other clustering objective functions, such as k-median,
k-means and so

Geometric Streams When the stream consists of points, it is natural to estimate geometric
quantities such as diameter of the point set, convex hull, etc. [CMO03]. In [Ind03, Ind04], certain
matching, spanning tree and clustering problems were studied on spatial streams. The work
in [KMSO02] proposes exponential histograms in one dimension for maintaining statistics on the
distribution of points on a straight line. There has been work on estimating diameter of point
sets in two dimensions [FKZ02]. Adaptive sampling is introduced in in [HS03, HS04], which
approximates the diameter and convex hull of a point set in one pass up to a factor of 1 &€ in
space O(e_%).

Other geometric algorithms are based on the notion of “core-sets”: a small subset of the input
such that solving the problem on the subset gives a good approximation to the solution on the
full input [FS05, HPM04, HPMO04, Cha06]. And another class of algorithms use a hierarchical
approach: solving the problem exactly on a small subset of data that fits in memory, then
merging such solutions to get an approximate solution to the full problem.

Sliding Window Computations. The notion of a sliding window is a natural one when
processing a stream of updates: since there are too many tuples to store (especially when pro-
cessing joins), simply drop the oldest tuples. This simple definition holds much complexity, and
has led to numerous papers and theses on processing this definition (see [Gol06] and references
therein). Evaluating aggregate queries over sliding windows—even simple queries based on sum
and count—can require a lot of state to be maintained, since tuples must be stored until they
expire to correctly compute their effect on the aggregate. Consequently, there has been much
research on approximate computation of aggregates under sliding windows using much smaller
space resources. The earliest work focused on tracking sums and counts: both Exponential
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Histograms (EH) [DGIMO02] and Deterministic Waves [GT02] answer these queries on a window
of size N with relative error € by keeping a careful arrangement of O(% logeN) counts and
timestamps. They can extend to more complex aggregates by replacing their internal counts
with other data structures such as sketches, but this causes the space to blow up by further
multiples of % and log V.

For more complex functions, such as quantiles and frequent items, Arasu and Manku pro-
posed a generic approach with cost only a log % log N factor larger than the unwindowed ap-
proximate algorithms [AMO04]. Lee and Ting [LT06] reduce the space for frequent items for
a fixed size window to O(%), the same as the unwindowed case. There has also been recent
interest in handling cases where tuples with timestamps do not arrive in timestamp order: re-
sults have been shown for sums and counts [BT07], sampling [CTX07] and quantiles and heavy
hitters [CKT08a]. This flexibility comes at a cost: the bounds are further logarithmic factors
more expensive than their ordered counterparts. Likewise, methods for sampling from a sliding
window require space logarithmically (in the number of tuples in the window) larger than the
desired sample size [BDMO02].

Time-Decay. Among time decay functions, exponential decay is most popular, since a reg-
ular counter can be replaced with an exponentially decayed counter without increasing the
(asymptotic) space cost. More recently, there has been interest in extending to aggregates be-
yond sums and counts, including sampling under exponential decay [Agg06], and quantiles and
heavy hitters [CKT08b], which obtain the same space bounds as the undecayed case. For decay
with other functions, such as a polynomial, the space cost is typically (much) higher. Cohen
and Strauss introduced a variety of techniques for tracking sums and counts under backward
decay [CS03], with cost O(% log N). This was extended to sampling and aggregate computa-
tion [CTX07, CKT08a], with similar blow-ups of poly(%, log N) over the undecayed version.
Other models of streaming (multiple passes, MUD model). A generalized model of
streaming allows multiple passes to be made over the data. This is valid for settings where the
data may reside on slow storage (e.g. tape) so it can be passed over multiple times, but random-
access is not practical. This concept has been explored since the early days of computation,
and arguably the first paper on streaming by Munro and Paterson in 1978 [MP80a] looked at
pass/space tradeoffs for finding medians. More recently, various other complex problems (graph
and matrix streaming) have tolerated multiple passes to improve the space bounds. Feldman et
al. [FMS*08] provide a “massive unordered data” model, which abstracts some of the properties
of parallel distributed processing settings such as MapReduce, and contrast the power of the
model with centralized streaming.

Skewed Streams. Many skewed distributions are well captured by Zipf distributions with
appropriate parameters. Natural phenomena, such as sizes of cities, distribution of income,
social networks and word frequency can all be modeled with Zipf distributions with parameter z.
Even the number of citations of papers demonstrates a highly skewed Zipf distribution [Red98].
More relevant to our study of large data streams, web page accesses for different sites have been
observed to obey a skewed Zipf distribution with parameter between 0.65 and 0.8. [BCF199].
The “depth” to which surfers investigate websites is also captured by a Zipf distribution, with
parameter 1.5 [HPPL9S8]. Files communicated over the Internet display Zipf distribution in
a variety of ways: transmission times are Zipf with parameter approximately 1.2; the size of
files requested, transmitted, and available for download are all Zipf with parameters respectively
measured as 1.16, 1.06 and 1.06 [BCT99]. FTP traffic sizes was estimated to have z in the range
0.9 to 1.1. More strongly, such skewed behavior of requests appears not only over individual
addresses but also when grouped into subnets or larger networks [KLPS02], meaning that the
skewed distribution is self-similar (multi-fractal).
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Sketches have been analyzed in the presence of skewed data. For the top k problem, [CCFC02]
specifically studied Zipfian data and showed that for z > %, O(E%) space suffices. The Count-
Min sketch can be used in this setting, an yields a data stream summary that can answer point
queries with € accuracy with space only O(e~ min{1,1/ Z}), which is essentially tight for skewed
distributions. The same data structure can also estimate F» of the stream in o(1/¢?) space for

z > 1 [CMO5b).

Graph Streams. In [HRR98], the authors studied special multigraphs and showed (n?)
lower bounds on space needed for solving many problems. Computing with more general graph
properties such as shortest paths, connectivity etc. is provably difficult in the cash register
model, so the semi-streaming model was proposed [Mut03] where the space is proportional to n,
the number of nodes, and sublinear in m, the number of edges. This is of interest in structural
analysis of web graphs and in estimating transitivity of binary relations in databases. Some
interesting results have been obtained in the semi-streaming model for graph properties such
as diameters, spanners etc. [FKMT04, FKM*05]. In [BYKSO02], the authors presented a way to
estimate the count of triangles in graphs, using space potentially super-linear, but sublinear if
the graphs had certain properties.

Matrix Streaming. Streams can define massive matrices explicitly or implicitly. Typically,
little can be computed even approximately in a single pass, but in a small constant number of
passes, several quantities can be approximated fairly well, in terms of the Frobenius or other
norms of the matrix. See the tutorial by Drineas and Kannan for a detailed explanation of
approximate sampling and streaming methods for massive matrix analysis [DMO06].

Permutation Streaming. Gupta and Zane [GZ03] approximated the number of inversions
(disordered pairs of items) in a list. They presented an algorithm that retains the k smallest
elements after sampling at an appropriate rate. This is then repeated for every quantile of the
form %(1 +¢)? up to n. This gives a total of % log en parallel sampling routines. The % smallest
items can be stored exactly. Overall, the space requirement is O(Ei3 log? en) samples.

The problem of approximating the edit distance and longest increasing sequence in a stream
has also attracted much study. The most recent results are due to Ergun and Jowhari [EJ0S],
which reduces the problem to a simpler combinatorial problem (up to a factor of 2), then
approximates this using a different generalized quantiles algorithm. A lower bound of Q(N'/?)
is given for the deterministic case, but the randomized setting is less well understood.

Random Order Streams. Random-order data streams were considered in one of the first
papers considering a data-stream model [MP80b]. In recent years there has a been a resurgence
of interest in the model for a variety of reasons [DLOMO02, GMV06, GM06, GM07b, GM07a,
CJP08]. Uniform or near uniform orderings can arise in a number of ways, such as when process-
ing a stream of samples that are drawn independently from a non-time varying distribution. For
problems such as quantile estimation and finding frequent items it has been shown that there is
a considerable difference between processing random-order stream and adversarial streams. In
particular, streaming algorithms to find the median using polylog space require exponentially
fewer passes if the stream is ordered randomly [GMO6] and that this is tight [GMO07a, CJPO0S].

Recent work by Chakrabarti et al. [CCMO8] shows that for partitioning ¢ length n binary
strings between Q(t2) players, there is an Q(n/t) communication bound. For a natural p+1 level
pointer jum;l)ing problem encoded in n bits, any p round protocol between two players requires

Q(27Pn@-12PT1-2) bits of communication. This implies the same robust bound for median
finding and related selection problems. There are linear lower bounds for the Gap Hamming
Distance and Index. These lead to wide variety of lower-bounds for data-stream problems in
the random-order model: for approximating frequency moments, the number of distinct values,
entropy, information divergences, selection, and graph connectivity.
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Probabilistic Streams. Recent work on probabilistic database systems has focused on dif-
ferent aspects of managing uncertain data tuples in relational DBMS architectures, including
the complexity and algorithmic problems of query evaluation [DS04], data modeling issues, and
managing lineage for probabilistic query results [BSHWO06]. Similar questions arise in the pro-
cessing of streams with probabilistic information. Jayram et al. [JKV07, IMMVO07] have studied
the problem of evaluating simple aggregate functions (focusing, in particular, on AVERAGE) over
streams of uncertain data. Cormode and Garofalakis studied the expectation and variance of
frequency moments on streams of uncertain data [CG07].

Distributed Streams (Sensor nets, P2P). Today, a majority of data is fundamentally
distributed in nature. Data for almost any task is collected over a broad area, and streams
in at a much greater rate than ever before. In particular, advances in sensor technology and
miniaturization have led to the concept of the sensor network: a (typically wireless) collection of
sensing devices collecting detailed data about their surroundings. A fundamental question is how
to monitor such data? The “one shot approach” requires a query to be distributed to relevant
sites in the network, and the answer computed and relayed back to the user. Computing simple
algebraic functions (e.g., MIN, MAX, SUM, AVG) over a hierarchical architecture can be done
using ‘in-network’ aggregation of fixed-size partial aggregates (e.g., the TAG system [MFHHO02]).
For more complex functions, techniques avoid linear communication costs through effective
approximation using composable data synopses for count distinct, quantiles, heavy hitters, join
size, and so on [FM83, AMS96, GK04, AGMS99, CM05a, MSDOO05].

It is also open to consider extensions to other application areas and more complex commu-
nication models, e.g., monitoring P2P services over shared infrastructure (OpenDHT [RBK™05]
over PlanetLab), and dealing with constrained communication models (e.g., intermittent-connectivity
and delay-tolerant networks (DTNs) [JFRO05]).

Continuous, Distributed Computation. The continuous, distributed setting puts a much
more stringent demand on us: a continuous query is distributed to the participating sites, and
they must collaborate to ensure that the answer to the query is continuously provided to the
user that is accurate (e.g., within specified error bounds) compared to the exact current state.
Various approaches taken here include:

e Adaptive Slack Allocation. A first cut is to take the allowable “slack” in answering
the query within allowable bounds, and distribute it between different participants for
different query types, e.g., top-k (most frequent) items, [BOO03], item values, [OJWO03],
set expressions, [DGGRO4], and duplicate resilient aggregates [CMZ06]. In such settings,
communication is necessary to adjust the slacks, plus some global communication is needed
when a large rebalancing of slacks takes place.

e Predictive Models of Site Behavior. Recent work extends the idea of local-slack al-
location by incorporating simple models of the data evolution to “predict” site behavior.
Combined with intelligent summarization techniques, these approaches only require con-
cise communication exchanges when prediction models are no longer accurate [CGMRO5,

CGO5b, CGO5al.

e Distributed Triggering. An important common feature of many distributed continuous
monitoring problems is evaluating a condition over distributed data and triggering when
it is met. Recent work that has provided several solutions to this problem based on
a variety of techniques, both deterministic and randomized (where the probability of
triggering increases with the amount by which a threshold is exceeded) [SSK06, HNGT07,
JHRWO04, CMYO08].
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Authenticated Streaming. When the stream is being processed by a third party, what
guarantee is there that the correct answer is being returned? Authenticated streaming tries to
add additional intermediate information that can be verified if needed. Initial results are due
to Garofalakis et al. [GHMO07] and Hadjieleftheriou et al. [LYHKO7].
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