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Abstract—Massive data streams are now fundamental to many data processing applications. For example, Internet routers produce

large scale diagnostic data streams. Such streams are rarely stored in traditional databases and instead must be processed “on the fly”

as they are produced. Similarly, sensor networks produce multiple data streams of observations from their sensors. There is growing

focus on manipulating data streams and, hence, there is a need to identify basic operations of interest in managing data streams, and

to support them efficiently. We propose computation of the Hamming norm as a basic operation of interest. The Hamming norm

formalizes ideas that are used throughout data processing. When applied to a single stream, the Hamming norm gives the number of

distinct items that are present in that data stream, which is a statistic of great interest in databases. When applied to a pair of streams,

the Hamming norm gives an important measure of (dis)similarity: the number of unequal item counts in the two streams. Hamming

norms have many uses in comparing data streams. We present a novel approximation technique for estimating the Hamming norm for

massive data streams; this relies on what we call the “l0 sketch” and we prove its accuracy. We test our approximation method on a

large quantity of synthetic and real stream data, and show that the estimation is accurate to within a few percentage points.

Index Terms—Data stream analysis, approximate query processing, data structures and algorithms, data reduction.
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1 INTRODUCTION

DATA streams are now fundamental to many data
processing applications. For example, telecommunica-

tion network elements such as switches and routers periodi-
cally generate records of their traffic—telephone calls,
Internet packet, and flow traces—which are data streams
[3], [26], [37]. Atmospheric observations—weather measure-
ments, lightning stroke data, and satellite imagery—also
produce multiple data streams [38], [44]. Emerging sensor
networks produce many streams of observations, for exam-
ple, highway traffic conditions [35], [42]. Sources of data
streams—large scale transactions, Web clicks, ticker tape
updates of stock quotes, toll booth observations—are
ubiquitous in daily life.

For many applications that produce data streams, it is
useful to visualize the underlying data seen so far, or
underlying state of the system as a very high-dimensional
vector (note that in most cases the vector is not explicitly
represented or materialized). For example, if we consider a
data stream created by network flows that originate from a
source IP address, the state at any time t can be visualized as a
vector aa ¼ a1 . . . an that is indexed by the destination IP

address. The entry along each dimension (ai) represents the
total number of flows that were observed between the given
source IP address and the destination IP address ai. The input
is usually presented in the order it arrives (rather than sorted
onanyattribute) and consists of updates only. For instance, in
the example above, we may not receive data sorted on the
destination IP address and each data element would
represent an additional flow along an arbitrary destination
IP address. Formally, eachupdate toaa is representedbyapair
ði; dkÞ, which is interpreted as “add the value dk to the
ith coordinate.” Thus, at any time t, the value of ai is the sum
of dks that were added to the ith coordinate. The sequence of
updates we see on the stream therefore implicitly represents
aa. Thus,we call aa the (implicit) state vector of the data stream.

Data stream processing entails a special constraint.
Despite the exponential growth in the capacity of storage
devices, it is not common for such streams to be stored. Nor
is it desirable or helpful to store them, since the cost of any
simple processing—even just sorting the data—would be
too great. The main challenge in handling data streams is to
perform necessary computations “on the fly” using a small
amount of storage, while maintaining low total running
time.

Since there is growing focus on manipulating data
streams, the database and data processing infrastructure
needed to handle stream data is now being investigated.
Also, there is a need to identify basic operations of interest
in managing data streams and to support them efficiently.
The database community has just begun to investigate the
challenges involved [2], [4], [27] complementing the efforts
emerging in the other communities—algorithms [16], [18],
[29], [30], [32], networking [3], physical sciences [44], and
elsewhere.

In this paper, we propose Hamming norm computation as a
basic operation of interest for data stream processing.
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Consider a data stream with state vector aa. The Hamming
norm of vector aa, written jaajH , is the number of values i for
which ai 6¼ 0. That is, jaajH ¼ jfijai 6¼ 0gj.

There are two compelling reasons for proposing Ham-
ming norms. First, in the special case where aa represents a
vector of counts similar to our earlier example, jaajH is the
number of distinct items in the data stream (the number of
distinct values i seen); computing jaajH on a stream is
equivalent to maintaining the number of distinct values in a
database relation in the presence of inserts and deletes to it.
As such, this is an important problem in traditional
databases. Second, when we apply Hamming norm to two
(or more) data streams, we get very interesting measures.
For two streams that represent state vectors aa and bb,
respectively, we may consider the Hamming norm of the
sum of the vectors or of their difference. The Hamming
norm of the sum jaaþ bbjH ¼ jfijðai þ biÞ 6¼ 0gj represents the
union of the two streams. The Hamming norm of the
difference jaa� bbjH ¼ jfijðai � biÞ 6¼ 0g ¼ jfijai 6¼ bigj is the
number of dimensions in which they differ.1 Both of these
values are of fundamental interest. We will see a few of the
large number of uses for the Hamming norm in more detail
in Section 2.

The main features of this work are as follows:

1. The initiation of the study of Hamming norm
computations for data streams.

2. A novel algorithm for calculating a very small
summary for any data stream (what we call the
l0 sketch) such that the Hamming norm of that stream
can be found up to a user-specified approximation
factor (with high probability) using only the
l0 sketches. This is the first known algorithm for the
problem of Hamming norm computation. For the
special case of estimating thenumber of distinct items,
algorithms are known to exist and we demonstrate
that our algorithm can outperform them. Our algo-
rithm has following properties.

. The approximation factor is a priori guaranteed
to be 1� � with constant probability, and the
sketch requires only space Oð1=�2Þ. Note that
this is of constant size for a fixed fraction � and is
independent of the size of the data stream of the
signal.

. The l0 sketches can be maintained efficiently in
presence of a stream consisting of dynamic
updates. We can estimate Hamming norms
without requiring to rescan the entire relation
even under an arbitrary mixture of additions
and deletions.

. The l0 sketches can be computed separately and
then combined in a number of ways: They can
be added or subtracted to find the union or
difference of the corresponding streams. Ham-
ming norm information can be computed in
time proportional to the size of the l0 sketch,
which is effectively constant. This procedure is
therefore fast, much faster than sampling.

. The l0 sketch is an embedding of the Hamming
norm into a very small number of dimensions.

As such l0 sketches can be used to answer
nearest neighbors and other proximity and
similarity queries amongst data streams for
Hamming norms.

3. We perform a thorough set of experiments with both
synthetic data and real NetFlow data drawn from a
large ISP, demonstrating the power of the l0 sketches
on computing various Hamming norms. We show
experiments where we estimate Hamming norms
accurately, correct to within a few percentage points
of the correct answer. For this we use a working
space of only 8Kb and handle datasets of tens of
megabytes, and we can fix this working space while
scaling up to gigabytes of data and larger size with
the same accuracy guarantees. For finding the
Hamming norm of a single stream, which corre-
sponds to the maintenance of the number of distinct
elements under insertions and deletions to the
databases, our solution is more accurate than
existing methods. For multiple general data streams
where both insertions and deletions are allowed to
occur arbitrarily within both streams, we present the
first known solutions for union and difference
problems.

The approach of l0 sketches to approximate Hamming
norms allows us to zero-in to estimate distinct values and
differences in massive data streams using a very small
summary structure.

We motivate Hamming norms in more detail in Section 2,
and discuss previous work in Section 3. We present
preliminaries in Section 4 and our solution in Section 5.
The results of experimental evaluations are shown in
Section 6 and conclusions given in Section 7.

2 MOTIVATING HAMMING NORMS OF

DATA STREAMS

We will motivate Hamming norms in more detail by
considering two applications.

2.1 Maintaining Distinct Values in Traditional
Databases

The Hamming norm of a stream2 is of large interest in itself.
It follows from the definition above that this quantity is
precisely the number of distinct items in the stream. For
example, let aa be a stream representing any attribute of a
given database, so ai is the number of tuples in the database
with value i in the attribute of interest. Computing the
Hamming norm of aa provides the number of distinct values
of that attribute taken by the tuples. This is a foundational
problem. We consider a traditional database table which is
subject to a sequence of insertions and deletions of rows. It
is of importance to query optimization and otherwise to
know the number of distinct values that each attribute of
the table assumes. The importance of this problem is
highlighted in [9]: “A principled choice of an execution plan
by an optimizer heavily depends on the availability of
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1. Notice that the generated “difference stream,” aa� bb, will usually
contain negative values corresponding to points where bi > ai.

2. To simplify the exposition, here and in the remainder of this paper we
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vector of a stream.”



statistical summaries like histograms and the number of
distinct values in a column for the tables referenced in the
query.” Distinct values are also of importance in statistics
and scientific computing (see [23], [24], [31]). Unfortunately,
it is provably impossible to approximate this statistic
without looking at a large fraction of the database (e.g.,
via sampling) [9]. Our algorithm avoids this problem by
maintaining the desired statistics under database updates, so
that we never have to compute it from scratch.

2.2 Monitoring and Auditing Network Databases

Network managers view information from multiple data
stream sources. Routers periodically send traffic informa-
tion: traces of IP packets and IP flows (which are aggregated
IP packet flows) [37]; there are management routine
updates: SNMP traps, card/interface/link status updates,
route reachability via pings, and other alarms [28]; config-
uration information: topology and various routing tables
[3]. Network managers need ways to take this continuous
stream of diagnostic information and extract meaningful
information. The infrastructure for collecting this informa-
tion is often error-prone because of unreliable transfer
(typically UDP and not TCP is used for data collection),
network elements fail (links go down), configuration tables
have errors, and data is incomplete (not all network
elements might be configured to provide diagnostic data).

Continuous monitoring tools are needed to audit
different data sources to ensure their integrity. This calls
for “slicing and dicing” different data streams and
corroborating them with alternate data sources. We give
three examples of how this can be accomplished by
computing the Hamming distance between data streams.

1. Let ai be the number of transit IP packets sent from
IP address i that enter a part of the network, and bi
be the number of IP packets that exit that part from i.
We would like to determine the Hamming Distance
between these counts to find out how many transit
flows are losing packets within this part of the
network.

2. There are published methods for constructing flows
from IP packet traces. We can take traces of
IP packets, aggregate them, and generate a flow
log from this. This can then be compared with the
flows generated by routers [14], [37] to spot
discrepancies in the network.

3. Denial of Service attacks involve flooding a network
with a large number of requests from spoofed IP
addresses. Since these addresses are faked, re-
sponses are not acknowledged. So, the Hamming
difference between a vector of addresses which
issued requests and those which sent acknowl-
edgments will be high in this situation [36]. The
Hamming norm of the difference between these two
vectors provides a quick check for the presence of
sustained Denial of Service attacks and other net-
work abnormality, and could be incorporated into
network monitoring toolkits.

There are many other potential applications of Hamming
norm computation such as in database auditing and data
cleaning. Data cleaning requires finding columns that are

mostly similar [15]; the Hamming norm of columns in a
table can quickly identify such candidates, even if the rows
are arranged in different orders. It is beyond the scope of
this paper to go into detail on all these applications, so we
do not elaborate further on them.

3 PRIOR WORK

3.1 Work on Data Streams and Sketches

Previous work on data streams has addressed problems of

finding approximately the l2 (Euclidean) norm and the l1
norm of massive vectors whose entries are listed in an

arbitrary order [1], [18], [32]. We study a related problem, of

finding the Hamming norm of a vector, and the Hamming

distance between pairs of vectors. No previous results were

known for these problems in their general form as stated

here. As mentioned in the introduction, our algorithms are

based on the technique called sketching. The basic idea is to

represent the whole dataset using only very small amount

of space, while preserving important information. When

combined with data streams, these sketches must be

produced online as the data arrives.
The sketching technique has its roots in the field of

mathematics called functional analysis [34]. We consider in

particular the application of sketching to approximate

lp norms of the data. The lp norm of a vector aa is equal to

jjaajjp ¼
X
i

jaijp
 !1

p

:

Sketching was first applied to tracking approximate size of

a self-join of a relation in [1]; in our language, this

corresponds to maintaining the l2 norm of the vector

represented by a stream. The techniques of Alon et al. [1]

and Johnson and Lindenstrauss [34] were later generalized

by Indyk [32] to maintain the lp norm of the stream vector

for any p 2 ð0; 2�. In the context of databases, the group of

techniques covered by the umbrella term “sketching” have

been applied to finding representative trends in massive

one and multidimensional time series data [12], [33]. They

have also been applied to multidimensional histograms [43]

and data cleaning [15]. But, our concept of l0 sketch is a

novel approach to estimating the Hamming norm and

l0 sketches have not been used previously in the literature.
Besides comparing multiple streams, there has been

work on the problem of one pass clustering of data streams

[30]. There has been a lot of work in computing over data

streams for purposes such as set resemblance, data mining,

creating histograms, and so on [11], [17], [29]. Particularly

relevant is some recent work [23], [25] which studies the

problem of finding the size of the union of two streams.

Here, the streams define multisets of elements, and it is the

size of the union of the supporting sets that is of interest.

Their method is only applicable to streams which consist

solely of inserts—they fail when deletions are allowed. The

method we present solves this problem when both

insertions and deletions are allowed to occur arbitrarily

within both streams.
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3.2 Maintaining Distinct Elements Estimates

There have been two main styles of approach to counting
distinct elements: these are sampling-based and synopsis-
based. Sampling methods attempt to do a small amount of
probing of a complete list of the items in an attempt to find
how many distinct values there are [7], [9], [10], [31].
However, sampling-based approaches are known to be
inaccurate and substantial lower bounds on the sample size
required have been shown [9], proving that a large fraction
of the data must be sampled. The alternative paradigm
consists of synopsis-based approaches which keep a small
summary of the stream, and update this every time an item
is added or removed. We focus on these synopsis methods,
since they can work in our data streams model, whereas
sampling is not suited to dynamic modification of the data.
The most widely applicable synopsis method is that of
Flajolet and Martin [21], [22], which we describe in outline
to enable comparison with our algorithm.

The algorithm is shown in Fig. 1. The crucial part is the
set of m hash functions hashj, which map item values onto
the range ½1 . . . logn�. hashj is designed so that the
probability Pr½hashjðiÞ ¼ ‘� ¼ 2�‘, over all choices of hash
functions from the family from which hashj is drawn.
Intuitively, this procedure works because if the probability
that any item is mapped onto counter ‘ is 2�‘, then if there
are d nonzero entries in the vector, then we expect d=2 to be
mapped to the first entry, d=4 to be mapped to the second,
and so on until there are none expected in the ðlog2 dÞth.
Several repetitions of this procedure are done indepen-
dently and the result scaled by an appropriate factor
(established in [22] as 1.2928).

Theorem 1 Due to Flajolet and Martin, (Theorem 2 of [21]).

This procedure gives an unbiased estimate of the number of
distinct values that are seen in a stream.

This solves the problem of finding the number of distinct
values in a stream of values, which as we know is the
Hamming norm of that stream. However, this method fails
to find the Hamming norm of general vectors since it relies
on the input conforming to certain conditions: The result is
not defined if the implicit vector aa has any entries that are
negative. This can lead to decreasing a counter below zero,

or to producing an estimate of the number of distinct
elements that is highly inaccurate. In particular then, this
method cannot be used to find the Hamming norm of the
difference of two streams, jaa� bbjH , since this leads to
negative values in the “difference stream,” aa� bb.

There has been much recent work extending these
results. Gibbons and Tirthapura [25], [23] propose a
method which uses a similar kind of hashing to keep a
small sample of the stream, from which the number of
distinct values can be approximated. Bar-Yossef et al. [6],
[5] describe and analyze a number of algorithms for this
problem. In particular, they prove (Theorem 1 of [5]) that
the probabilistic counting algorithm of Flajolet and Martin
gives a 1� � approximation with probability 1� � using
space proportional to 1=�3 log 1=� logn. They also give new
algorithms which use ~OOðð1=�3 þ lognÞ log 1=�Þ space,3 a
significant improvement in the dependency on n and �.
However, one disadvantage is that these new algorithms
do not allow values to be deleted (corresponding to a
negative value for a dk). Our algorithm is not limited in
this way.

3.3 Database Work on Network Monitoring

Database issues in network monitoring are beginning to get
explored. Specific data processing problems in networking
databases have been studied such as constructing traffic
matrices [20]. The database architecture necessary for
processing multiple configuration and data files arising in
networks has been discussed in [3], [19]. In the specific case
of sensor network data streams, a system architecture has
been presented in [35]. At least two different philosophies
seem to exist for dealing with network traffic data streams:
One is to appropriately sample to decrease them to
manageable size and to collate them in massive data
warehouses [19], and the other is to deploy a database
infrastructure where querying and summarization can be
pushed to network elements and processing is distributed
(for example, [14], [26]). However, we are not aware of any
prior work using the Hamming norm in this context.

4 PRELIMINARIES

4.1 Data Stream Model

We assume a very general, abstracted model of data
streams where our input arrives as a stream of data values,
ði; dkÞ. This indicates that we should add the integer dk to
the count for item i. Clearly, we can accommodate
subtractions by allowing dk to be negative. Update opera-
tions have the effect that each tuple ði; dkÞ causes
ai  ai þ dk. The accumulation of all these pieces of
information defines the implicit vector, aa such that ai ¼ l
means that over all tuples for item i the total of the dks is l.

An important factor is any restrictions on how the
information in the stream arrives. For the most part, we
expect the data to arrive in no particular order, since it is
unrealistic to expect it to be sorted. Another question is
whether every attribute value will be seen at most once,
or whether there can be multiple such data items spread
out arbitrarily within the stream. Here, we assume the

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003
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Fig. 1. The Flajolet-Martin algorithm for computing the Hamming norm of

a stream.



most general case, that the data arrives unordered and
the same value can appear multiple times within the
stream. This is termed the unordered, unaggregated model
(cash register) in [27].

The processing of massive data streams requires the use
of a more restricted model of computation. In this model,
we must process a stream of data, with the demand that
each item in the stream must be processed completely and
then discarded before the next is received. It is not possible
to backtrack on the stream, so once a data item has been
seen it cannot be retrieved unless it is explicitly stored in the
working space. For a method in this model to be useful in
practice, it must therefore use an amount of working space
much smaller than the total size of the data, and also
process each item rapidly. There has been a great deal of
interest in processing data streams recently, see, for
example, [4], [35].

Example. We consider the following stream of IP flows as
< source; dest > pairs:

< 10:0:0:59; 10:0:0:21 >;< 10:0:0:105; 10:0:0:109 >;

< 10:0:0:59; 10:0:0:21 >;< 10:0:0:105; 10:0:0:17 >;

< 10:0:0:59; 10:0:0:105 >;< 10:0:0:252; 10:0:0:253 > :

In this example, we see that the same source address
appears many times throughout the stream and the same
pair can appear more than once. In a realistic setting,
IP address pairs can come in arbitrary order (and are drawn
from a space of ð232Þ2 possible pairs).

4.2 Stable Distributions

A vital part of our solution is the use of what are known as
stable distributions. We consider statistical distributions
that are (strictly) stable, with a stability parameter p. Strictly
stable distributions with stability parameter p have the
following property: If random variables X1; X2 . . .Xl have
stable distributions with stability parameter p, then a1X1 þ
a2X2 . . . alXl is distributed as ð

P
i jaij

pÞ1=pX0, where X0 is
also a random variable with p stable distribution. This
property will let us use the stable distributions to compute
lp norms. For example, the Gaussian distribution is stable
with stability parameter 2, and the Cauchy distribution is
stable with parameter 1. See, for example, [39] for more
details of stable distributions.

5 OUR HAMMING NORM COMPUTATION

We first show the algorithm for computing a sketch to
approximate the Hamming norm of a single stream. This
takes a number of steps: how the Hamming norm can be
found via lp norms, how to create the small sketch that will
be used in all our computations, how this can be found in
the streaming model, and how values can be drawn from
the necessary statistical distributions. We then show how
these results can be easily extended to compute norms of
combinations (union and differences) of streams.

5.1 The l0 Norm

Theorem 2. The Hamming norm jaajH can be approximated by
finding the lp norm of the vector aa for sufficiently small p ð0 <
p � �= logUÞ provided we have an upper bound ðUÞ on the
size of each entry in the vector, so 8i : jaij < U .

Proof. We provide another mathematical definition for the
Hamming norm which is crucial for our algorithms. We
want to find jfijai 6¼ 0gj. Observe that jaij0 ¼ 1 if ai 6¼ 0;
we can define jaij0 ¼ 0 for ai ¼ 0. Thus, the Hamming
norm of a vector aa is given by

P
i jaij

0. This is similar to
the definition of the lp norm of a vector given in
Section 3.1. We must define l0 ¼

P
i jaij

0 ¼ jaajH . Hence,
the l0 norm as defined here is our Hamming norm, and
we refer to our sketches as l0 sketches.

We show that the l0 norm of a vector can be well-
approximated by ðlpÞp if we take p small enough. We
consider

P
i jaij

p ¼ ðlpÞp for a small value of p (p > 0). If,
for all i we have that jaij � U for some upper bound U ,
then

jaajH ¼
X
i

jaij0 �
X
i

jaijp �
X
i

Upjaij0

� Up
X
i

jaij0 � ð1þ �Þ
X
i

jaij0 ¼ ð1þ �ÞjaajH:

We use the fact that ai is an integer and 8i : jaij � U . The
last inequality uses Up � ð1þ �Þ which follows if we set
p � logð1þ �Þ= logU � �= logðUÞ. tu

5.2 Creating the l0 Sketch

Definition 1. We define an l0 sketch vector skðaaÞ with
dimension m as follows: skðaaÞ is the dot product xx � aaT
(where xx is a matrix of values xi;j), so

skðaaÞj ¼
Xn
i¼1

xi;jai:

Each xi;j is drawn independently from a random stable
distribution with parameter p, with p as small as possible.
Here, 1 � i � n and 1 � j � m; n is the dimension of the
underlying vector aa, and m is the dimension of the sketch
vector.

According to Section 4.2, each entry of skðaaÞ is
distributed as ð

P
i jaij

pÞ1=pX, where X is a random variable
chosen from a p-stable distribution. We will use skðaaÞ to
make our approximation of the l0 norm. In particular, we
use this sketch to find

P
i jaij

p for 0 < p � �= logU , from
which we can approximate the Hamming norm up to a
ð1þ �Þ factor. By construction, we can use any skðaaÞj to
estimate the ðlpÞp ¼

P
i jaij

p. We combine these values to get
a good estimator for the ðlpÞp by taking the median of all
entries jskðaaÞjj

p. This is a good approximation of the
Hamming norm of the stream:

Fact: Let X be any real random variable with density
function continuous over ð�1;1Þ. For m ¼ C logð1=�Þ=�2
(where C is a large constant), let s1 . . . sm be independently
chosen from the same distribution as X. Then, M ¼
medianðs1; . . . ; smÞ satisfies

1=2� � � Pr½X < M� � 1=2þ �

with probability � 1� �.

Proof. Denote F ðtÞ ¼ PrX½X < t�. We need to show that if
m ¼ C logð1=�Þ=�2Þ, then

Pr
s1...sm

½1=2� � � F ðMÞ � 1=2þ �� � 1� �:
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We will show

Pr
s1...sm

½F ðMÞ < 1=2� �� < �=2;

the probability of F ðMÞ > 1=2þ � can be bounded in the
same way.

Let c� be the smallest real number such that
F ðc�Þ ¼ 1=2� �. The key observation is that, since F ðtÞ
is nondecreasing in t, F ðMÞ < 1=2� � implies M < c�.
Now, since M is the median of s1 . . . sm, M < c� implies
that at least m=2 values of sis are smaller than c�. And,
this is sufficient since we can define indicator variables
Yi 2 f0; 1g, such that Yi ¼ 1 if and only if si < c�.
Y1 . . .Ym are independent, Pr½Yi ¼ 1� ¼ 1=2� �, and we
need to bound from the above probability thatP

i Yi > m=2, i.e., that the sum of Yis is larger from its
expectation by a factor of 1=2

1=2�� � 1þ 2�. This is solved by
applying the Chernoff bound. tu

We apply this fact to our situation with values drawn
from stable distributions.

Theorem 3.

ð1� �ÞpmedianjjskðaaÞjj
p � median jX0jp

X
i

jaijp
 !

�

ð1þ �ÞpmedianjjskðaaÞjj
p

with probability 1� � if m ¼ Oð1=�2 � log 1=�Þ, where X0 is
a random variable with symmetric, strictly p-stable
distribution.

Proof. The proof of this theorem follows from the results of

Indyk in [32] and the above fact. By the properties of

stable distributions given in Section 4.2, if X0 . . .Xn are

distributed identically and independently as stable

distributions with parameter p, then a1X1 þ . . . anXn is

distributed as jjaajjpX0. Then, ðja1X1 þ . . . anXnjÞ is dis-

tributed as jðjjaajjpX0Þj ¼ jjaajjpjX0j. Hence, when we take

the median of values jskðaaÞj we get jjaajjpmedianðjX0jÞ,
where medianðjX0jÞ is the median of absolute values

from a stable distribution with parameter p. By the above

fact and that the cumulative distribution function F has

bounded derivative around the median, we perform this

procedure independently m ¼ Oð1=�2 log 1=�Þ times. This

gives us with probability at least 1� �

ð1� �Þ medianjjskðaaÞjj � medianjjX0j
X
i

jaijp
 !1=p

�

ð1þ �Þ medianjjskðaaÞjj:

Raising this to the power p gives the result as stated. tu

5.3 Computation in the Streaming Model

We now list the additional modifications to this proce-
dure to produce a streaming algorithm with low space
requirements.

Maintaining the Sketch Under Updates. The l0 sketch is
initially the zero vector, since this is the sketch of an empty
stream. We can then build the sketch progressively as each

item in the data stream is received. Our update procedure
on receiving tuple ði; dkÞ is as follows: We add dk times xi;j

to each entry skðaaÞj (1 � j � m) in the sketch. That is, given
ði; dkÞ

81 � j � m : skðaaÞj  skðaaÞj þ dkxi;j:

Clearly, this procedure ensures that at any point, the sketch
is indeed the dot product of the vector aawith xx, as required.

Computation with Small Space Usage. We need to
show that this technique can be implemented in small
space. So, we do not wish to precompute and store all the
values xi;j. To do so would consume much more space than
simply recording each ai from which the number of distinct
items could be easily found. Instead, we will generate xi;j

when it is needed. Note that xi;j may be needed several
times during the course of the algorithm, and must take the
same value each time. We can achieve this by using
pseudorandom generators for the generation of the values
from the stable distributions. In other words, we will use
standard techniques to generate a sequence of pseudoran-
dom numbers from a seed value (see, for example, [41]). We
will use i to seed a pseudorandom number generator
randomðÞ. We will then use the stream of pseudorandom
numbers generated by randomðÞ to generate a sequence of
p-stable distributed random variables xi;1; xi;2; . . .xi;m. This
ensures that xi;j takes the same value each time it is used,
since we use the same seed i each time, but that it still has
the appearance of being drawn from a p-stable distribution.
Results in [32] assure us that we can use random number
generators in place of a true source of randomness with out
any fear of loss of quality of the results.

5.4 Generating Values from Stable Distributions

We need to be able to generate values from a stable
distribution with a very small stability parameter p.
Standard methods such as those described by Chambers
et al. [8], [39] can be used to draw values from a stable
distribution with arbitrary parameters. These take uniform
random numbers r1; r2 drawn from the range ½0 . . . 1� and
output a value drawn from a stable distribution with
parameter p. This is much like the Box-Muller procedure for
drawing values from the Normal distribution. We denote
this transform as a (deterministic) function stableðr1; r2; pÞ
computable in constant time. This function is defined as
follows: First, we compute � ¼ �ðr1 � 1

2Þ. Then,

stableð1=2þ �=�; r2; pÞ ¼
sin p�

cos1=p �

cosð�ð1� pÞÞ
� ln r2

� �1�p
p

:

To use the result of Theorem 3, we need to findmedianjX0jp,
the median of absolute values from a stable distribution
with parameter p. We can do this in advance using numeric
methods and then scale by this constant factor to find the
desired result, denoted scalefactorðpÞ in our algorithm.

However, under our initial implementation, the time cost
of using stable distributions against using probabilistic
counting was quite high. The time can be much reduced by
considering other methods to draw values from stable
distributions, since the majority of the processing time is in
creating the values of the stable distribution using a
transformation from uniform random variables. We now
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describe some ways which allow these values to be drawn
much more quickly, while retaining the ability to compute
them in the stream with small space overheads. The
following ideas are mostly due to John Nolan [39], [40].

Definition 2. A random variable X is said to be in the domain
of attraction of Z if and only if there exist constants cn > 0,
dn 2 < with

cnðX1 þX2 þ . . .þXnÞ � dn �!
d

Z;

where X1; X2; . . . ; Xn are independent identically distributed
copies of X and �!d denotes convergence in distribution.

DefineX ¼ signðUÞ � jUj�1=p, whereU is aUniformð�1; 1Þ
random variable. It can be shown thatX is in the “domain of

attraction” of a p-stable distribution. This means that if

X1; X2; . . . ; Xn are i.i.d. copies of the randomvariableX, then

ðX1 þX2 þ . . .þXnÞ=cn1=p converges in distribution to a

p-stable distribution. Note, according to the definition above

cn ¼ cn1=p and dn ¼ 0, where c ¼ cðpÞ ¼ �
2�ðpÞ sinð�p=2Þ

� �1=p
is a

constant independent of n. In general, a1X1 þ a2X2 þ . . .þ
anXn=cjja1; . . . ; anjjp converges to a p-stable distribution.

This indicates that, instead of using the i.i.d. random
variables that are p-stable distributed, if we use i.i.d. random
variables that are distributed asX ¼ signðUÞ � jUj�1=p, where
U isUniformð�1; 1Þ,weget the sameresultingdistributionas
n tends to infinity. Thus, for large values of n, the distribution
a1X1 þ a2X2 + . . . + anXn=c jjaajjp is very close to the p-stable
distribution and can be used to estimate the quantity of
interest, jjaajjp, usingmediansas above.Asimilar trickofusing
pseudorandom generators to reduce space requirement can
be used, as before. Effectively, the method remains the same
except for the step where we use the transform
stableðr1; r2; pÞ: Instead, we will only generate one random
variable r1which isuniformover ð�1; 1Þandadd thequantity
dk � sign ðr1Þjr1j�1=p to sk½j�. In order to extract the approx-
imation of jjaajjp, we need to do some additional scaling:
Instead of multiplying by scale factor(p), we multiply by
scale factorðpÞ=cðpÞp. We note that, as p tends to zero, the
quantity cðpÞp tends to 1.

The advantage of using the above method is that the
quantity signðr1Þjr1j�1=p is faster to compute. We incorpo-
rated this method into our implementation and compared it
to generating sketches using Stable Distributions directly, as
well as to the method of Proabilistic counting. Table 1
summarizes the per-item processing time in milliseconds

for each of the different methods. The time is independent
of the data distribution, and varies linearly with the number
of repetitions, that is, the size of the sketch. This is for
illustrative purposes only, since we have not attempted to
fully optimize the code, and is specific to the machine on
which we ran the experiments. However, we observe that
while the Stable Distributions method incurs significant
per-item processing cost, approximating stable distributions
is competitive with probabilistic counting in terms of time
taken. In subsequent sections, we will see that it obtains
similar levels of accuracy.

The full algorithm for processing a stream is shown in
Fig. 2. We can now state our main theorem about
computing this norm.

Theorem 4. We can compute a sketch, skðaaÞ of a stream aa
using the algorithm in Fig. 2. The sketch has length
m ¼ Oð1=�2 � log 1=�Þ, and allows approximation of the
Hamming norm within a factor of 1� � of the true answer
with probability 1� �. Processing each new item and
computing the Hamming norm of aa both take time linear
in the size of the sketch, i.e., Oð1Þ for fixed � and �.

The proof of this claim relies on the results from the
preceding sections and Theorems 2 and 3. The algorithm
has two basic parts: The sketch is updated based on every
item encountered in the stream; the approximation of the
l0 norm is found by returning the median value of the
absolute values of the sketch vector, scaled appropriately.

5.5 Computing Norms of Multiple Streams

With relatively little modification, the above method can be
used to find the union or difference of two or more streams.

Theorem 5. The Hamming difference, jaa� bbjH can be computed
using sketches of size Oð1=�2 log 1=�Þ. The difference is then
approximated within a factor of 1� � with probability 1� �.

Proof. The Hamming distance between two streams can be
computed using just the Hamming norm, since it is equal
to jfijai 6¼ bigj ¼ jfijðai � biÞ 6¼ 0gj ¼ jaa� bbjH . Hence, we
need to find skðaa� bbÞ. As seen before, the sketch skðaaÞ is
the result of the dot product of the induced vector aa with
the matrix of values xi;j. So skðaa� bbÞ ¼ skðaaÞ � skðbbÞ
follows immediately from the fact that the dot product is
a linear function. Therefore, to find the approximate
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Hamming distance between two streams we have the
following simple procedure: 1) Find sketches for each
stream individually as before. 2) Compute a new sketch
as skðaaÞ � skðbbÞ. 3) Find the Hamming norm of this
compound sketch as described above, by finding the
median value. tu

Theorem 6. The Hamming norm of the union of multiple
streams, jaaþ bbþ . . . jH can be computed using sketches of size
Oð1=�2 log 1=�Þ. The norm is then approximated within a
factor of 1� � with probability 1� �.

This also results from the linearity of the dot product
function, in the same way to the above proof. It follows that
the union of multiple streams aa; bb . . . ¼ aaþ bbþ . . . and so a
sketch for this can be computed as

skðaaþ bbþ . . .Þ ¼ skðaaÞ þ skðbbÞ þ . . . :

This, in particular, allows the computation of the number of
distinct elements over several separate streams, without
overcounting any elements common to two or more of the
streams.

6 EXPERIMENTS

We implemented our method of using stable distributions
to approximate the Hamming norm of a stream and
Hamming norm of two or more streams. We implemented
Probabilistic Counting as described in Section 3.2 for
approximating the number of distinct elements, since this
is the method that comes closest to being able to compute
the Hamming norm of a sequence. The two methods of
generating sketch values described in Section 5.4 were also
tested. This allows us to test how well our methods perform
for the two main motivating applications: counting the
number of distinct items in a stream, and comparing
streams of network data.

6.1 Implementation Issues
For computing with stable distributions, we implemented
the method of Chambers et al. [8], [39] to generate stable
distributions with arbitrary stability parameters, as well
as the method using Uniform variables raised to the
power �1=p, which converges in distribution to Stable.

Median of Stable Distributions. As noted above, the
result we find from our comparison is the Lp norm of
vectors, multiplied by the median of absolute values from a
stable distribution with parameter p. So, to find the accurate
answer, we need to scale this by an appropriate scaling
factor. We know of no way to find the necessary scaling
factor analytically, so we find it empirically instead. In
Fig. 3, we show the results of using random simulation to
find the median of stable distributions for different values
of the stability parameter p. Each data point represents the

median of 80,000 values chosen at random from a
distribution with that parameter. We then take this to the
power 1=p, giving the scaling factor necessary for finding
the ðLpÞp distance—this is what we will want when we are
using very small values of p to approximate the Hamming
norm of a sequence. We repeated the experiment nine times
for each value of p as a multiple of 0.01 less than 2. For any
given value of p, we can use the median of stable
distributions for this parameter to scale our results
accordingly.

Ideally, we set the stability parameter p of the stable

distribution to be as low as possible, to approximate as well

as possible the actual Hamming norm. However, as p gets

closer to zero, the values generated from stable distributions

get significantly larger, gradually exceeding the range of

floating point representation. Through experimentation, we

found the smallest value of p that did not generate floating

point overflow was 0:02. Hence, we set p to this value,

where the median of the stable distribution as generated by

this procedure is 1:425 ¼ scale factorð0:02Þ. Note that using

p ¼ 0:02 means that, even if every distinct element occurs a

million times, then the contribution by every distinct

element to the Hamming norm will be ð106Þ0:02 ¼ 1:318, so

this gives a worst case overestimate of 32 percent. This

could be a large source of error, although even this level of

error is likely to be acceptable for many applications. In fact,

we shall see that most of our experiments show an error of

much less than 10 percent.
Experimental Environment. Experiments were run on a

Sun Enterprise Server on one of its UltraSparc 400MHz

processors. To test our methods, we used a mixture of

synthetic data generated by random statistical distributions,

and real data from network monitoring tools. For this, we

obtained 26Mb of streaming NetFlow data [37], from an

AT&T network. We performed a series of experiments, first

to compare the accuracy of using sketches against existing

methods for counting the number of distinct elements. We

started by comparing our approach with the probabilistic

counting algorithm for the insertions-only case (i.e., no

deletions). We then investigated the problem for streams

where both insertions and deletions were allowed. Next, we

ran experiments on the more general situations presented

by Network data with streams whose entries in the implicit

vectors are allowed to be negative. As mentioned earlier,

probabilistic counting techniques can fail dramatically

when presented with this situation. Finally, we ran

experiments for computing the Hamming distance between

network data streams and on the union of multiple data

streams. We were unable to use Probabilistic Counting in

this case, since this method is not applicable in this case.

Instead, we compared the two methods of drawing values

to use in sketches.
For our experiments, the main measurement that we

gathered is how close the approximation was to the correct

value. This was done by using exact methods to find the

correct answer (exact), and then comparing this to the

approximation (approx). Then, a percentage error was

calculated simply as

ðmaxðexact; approxÞ=minðexact; approxÞ � 1Þ 	 100%:
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6.2 Results of Hamming Norm Experiments

Hamming Norm of Network Data. We first examined
finding the Hamming norm of the sequence of IP addresses,
to find out how many distinct hosts were active. We used
exact methods to be able to find the error ratio. We increased
the number of items examined from the stream, and looked at
between 100,000 and700,000 items in 100,000 increments. The
results presented on the left of Fig. 4 show that there were
between 20,000 and 70,000distinct IP addresses in the stream.
Both probabilistic counting and sketches were used, given a
workspace of 8Kb. Using sketches is highly competitive with
probabilistic countingand is, on thewhole,more reliablewith
an expected error of close to 5 percent against probabilistic
counting, which is nearer to 10 percent.

This should also be compared against sampling-based
methods as reported in [23], where the error ratio was
frequently in excess of 200 percent. This shows that for
comparable amounts of space usage, the two methods are
competitive with each other for counting distinct items. The
worst case for the l0 sketch occurs when the number of
distinct elements is very low (high skew), and here exact
methods could be used with small additional space
requirements.

Streams Based on Sequences of Inserts and Deletes.

Our second experiment tested how the methods worked on
more dynamic data, with a mixture of insertions and
deletions. It also tested how much they depend on the
amount of working space. We created a sequence of
insertions and deletions of items, to simulate addition and
removal of records from a database table. This was done by

inserting an element with one probability, p1, and removing
an element with probability p2, while ensuring that for each
element i, the number of such elements seen was never less
than zero. Again, 100,000 transactions were carried out to
test the implementation.

We ran a sequence of experiments, varying the amount
of working space allocated to the counting programs, from
0.5Kb, up to 32Kb. The results are shown on the right of
Fig. 4. The first observation is that the results outdo what
we would expect from our theoretical limits from
Theorem 4. Even with only 1Kb of working space, the
sketching procedure using stable distributions was able to
compute a very accurate approximation, correct to within a
few percentage points. It is important to note that l0 sketches
were able to nearly equal or better the fidelity of
probabilistic counting in every case, and also offer addi-
tional functionality. Although in this example the quality of
the result does not improve as more working space is made
available for it, we claim that this is due to the algorithm
being fortunate in small space, since these procedures are in
their nature strongly probabilistic. Certainly, with a work-
space of only a few kilobytes, we can be sure of a result
which is highly likely to be within a few percentage points
of the correct answer. This is more than good enough for
most of the applications we have already mentioned.

Insertions Only. We tested the algorithms on synthetic
data generated from a Zipf distribution with varying levels
of skewness. The results are shown in Fig. 5. We used
sketches that were vectors with 512 entries, against Flajolet-
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Martin probabilistic counting given the same amount of
working space. We also examined the difference between
the two methods of drawing values for the sketch vectors.
100,000 elements were generated from Zipf distributions
with parameters ranging from 0 (uniform distribution) up
to 4 (highly skewed). The variation in skew tests the ability
of the methods to cope with differing numbers of distinct
items, since low skew generates many distinct items,
whereas high skew gives only a few.

Both algorithms produce answers that, in most cases, are
within a few percentage points of the true answer. The
worst case is still around 10 percent away from the correct
answer. All three methods give similar results for the most
part, with little to choose between them. The worst cases
occur when the data is highly skewed (skew parameter of
2.5 and higher), when the true number of distinct values is
one hundred or lower, so the absolute error is still quite
small. The two methods of generating values for sketches
appear quite similar in terms of accuracy.

Hamming Norm of Unrestricted Streams. We generated
a set of synthetic data to test the method’s performance on
the more general problems presented by Network data. The
main purpose of the next experiment was to highlight that
existing methods are unable to cope with many data sets.
Zipf distributions with a variety of skewness parameters
were used. Additionally, when a value was generated, a
coin was tossed: With probability 1

2, the transaction is an
insertion of that element, and with probability 1

2 it is a
deletion of that element. The results are presented on the
left of Fig. 6. When we compare the results of probabilistic
counting on this sequence to the Hamming norm of the
induced vector, we see massive disparity. The error fraction
ranges from 20 percent to 400 percent depending on the
skew of the distribution, and it is on the uniform
distribution on which this procedure performs the worst.
On the other hand, using sketches gives a result which is
consistently close to the correct answer, and in the same
region of error as the previous experiments. Probabilistic
counting is only competitive at computing the Hamming
norm for distributions of high skew. This is when the
number of nonzero entries is low (less than 100), and so it
could be computed exactly without difficulty using a small
amount of memory.

Hamming Distance Between Network Streams. Our
second experiment on network data was to investigate
finding the Hamming distance (dissimilarity) between two

streams. This we did by construction, to observe the effect

as the Hamming distance increased. We fixed one stream,

then constructed a new stream by merging this stream with

a second. With probability p, we took item i from the first

stream, and with probability 1� p we took item i from the

second, for 100,000 items. We then created sketches for both

streams and found their difference using sketches of size

8Kb. The results are shown in the right hand chart of Fig. 6

as we varied the probability from 0.1 to 0.9. Here, it was not

possible to compare to existing approximation methods,

since no other method is able to find the Hamming distance

between streams.
The performance of sketching mostly show high fidelity.

For sketches generated using Stable Distributions, the

answers are all within 7 percent of the true answer, and

the trend is for the quality to improve as the size of the

Hamming distance between the streams increases. This is

because the worst performance of sketches for this problem

is observed when the number of different items is low

(when the norm is low). This is shown more clearly with the

alternate method of generating values, which achieves quite

poor accuracy when the difference is smallest, but has high

accuracy when the difference increases. This suggests that

this method of generating values is of most use when the

difference is expected to be reasonably large. For consistent

accuracy, the slower method of drawing values is needed.
Union of Multiple Data Streams. Finally, we tested the

stated properties of summing sketches to merge data

streams. We again used real network data, and for each

experiment we split a stream of 100,000 values into a

number of pieces. A sketch for each piece was computed

separately, and then these sketches combined and com-

pared against the result found when a single sketch was

computed. The results found confirm the result of

Theorem 6 completely: Perhaps remarkably, no matter

how many pieces the stream is split into (2, 5, 10, 20, 50, or

100), the final result is exactly the same. In this case, the

norm was approximated as 18745.07, an error of 3.96

percent from the real value. We might have been concerned

that round off errors from floating point arithmetic could

cause discrepancies between the answers, but this turns out

not to be the case.
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7 CONCLUDING REMARKS

We have proposed the computation of the Hamming norm
of a stream as a basic operation of interest. Computing the
Hamming norm of a single stream is a generalization of the
problem of maintenance of the number of distinct values in
a database under insertions and deletions, which is of
fundamental interest. The Hamming norm of two (or more)
streams gives the size of their union or the number of places
where they differ, depending on whether the norm is
computed on the sum of the streams or the difference,
respectively. Both these estimations are of great interest as
well. In spite of its importance, no algorithms were
previously known for computing the Hamming Norm.

We presented a novel and efficient algorithm for
computing the “l0 sketch” for any data stream such that
its Hamming norm can be estimated to an arbitrarily small
factor using only the sketches. The sketches are very small
in size and can be computed in a distributed manner. They
can be added to obtain the sketch of the merged stream or
subtracted to obtain the sketch of the “difference stream.”
Their size and accuracy does not depend upon the data
distribution. Our experiments with real network flow data
demonstrate the powerful accuracy of our algorithm, which
outperformed existing methods (where applicable) signifi-
cantly, and is comparable in terms of speed.

Our Hamming norm estimation technique is more
general than is needed in the applications described. For
example, we could allow entries in the implicit vector to
become nonintegral. Also, our solution will work even if
some entries become negative which can occur in certain
situations, such as when finding the difference of two or
more streams. It can be applied to generalizations of the
Hamming norm problem, such as finding the Dominance
Norm of multiple streams [13]. New applications may arise
in the future where these features will find greater use.

The “sketch” we compute for estimating Hamming
norms is suitable for indexing. That is, once we have
computed the short “sketches” for data streams, we can
cluster, perform similarity and other proximity searches on
the streams using only the sketches. This is a powerful
feature which will be desirable in emerging stream
databases.
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