
A

Continuous Sampling from Distributed Streams

Graham Cormode, AT&T Labs–Research
S. Muthukrishnan, Rutgers University
Ke Yi, HKUST
Qin Zhang, MADALGO, Aarhus University

A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query
answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly
difficult when the data is shared across multiple distributed sites. The main challenge is to ensure that a sample is drawn
uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data.
At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low for each
participant. In this paper, we present communication-efficient protocols for continuously maintaining a sample (both with
and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams,
and to the sliding window cases of only the W most recent elements, or arrivals within the last w time units. We show that
our protocols are optimal (up to logarithmic factors), not just in terms of the communication used, but also the time and space
costs for each participant.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical algorithms
and problems; H.2.4 [Database management]: Systems—distributed databases

General Terms: Algorithms, theory

Additional Key Words and Phrases: Distributed tracking, random sampling

1. INTRODUCTION
It is increasingly important for data management systems to cope with large quantities of data that
are observed at geographically distributed locations. As data volumes increase (through greater
power of measurement in sensor networks, or increased granularity of measurements in network
monitoring settings), it is no longer practical to collect all the data together in a single location and
perform processing using centralized methods. Further, in many of the motivating settings, various
monitoring queries are lodged which must be answered continuously, based on the total data that has
arrived so far. These additional challenges have led to the formalization of the continuous distributed
streaming model [Cormode et al. 2008]. In this model, defined more precisely below, a number
of distributed peers each observe a high-speed stream of data, and collaborate with a centralized
coordinator node to continuously answer queries over the union of the input streams.

Protocols have been defined in this model for a number of classes of queries, which aim to min-
imize the communication, space and time needed by each participant. However, the protocols pro-
posed so far have overlooked the fundamental problem of maintaining a sample drawn from the
distributed streams. A sample is a powerful tool, since it can be used to approximately answer many
queries. Various statistics over the sample can indicate the current distribution of data, especially if
it is maintained to be drawn only from a recent history of data. In this paper, we present techniques

A preliminary version of the paper was presented at the ACM Symposium on Principles of Database Systems, June 2010.
Most of this work was done while Qin Zhang was a Ph.D. student at the Hong Kong University of Science and Technology
(HKUST).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

Fig. 1. The continuous distributed streaming model.

for maintaining a sample over distributed data streams either with or without replacement, and show
how to adapt them for sliding windows of recent data.

In doing so, we build on the long history of drawing a sample from a single stream of elements.
Random sampling, as a fundamental problem and a basic tool for many applications, had been
studied in the streaming setting long before formal models of data streams were first introduced. The
classical reservoir sampling algorithm [Knuth 1998] (attributed to Waterman) maintains a random
sample of size s without replacement over a stream. It is initialized with the first s elements; when
the i-th element arrives for i > s, with probability 1/i it adds the new element, replacing an element
uniformly chosen from the current sample. It is clear that this algorithm uses optimal O(s) space
and O(1) time per element.

There have been various extensions to the basic reservoir sampling algorithm. Using an appro-
priate distribution, it is possible to determine how many forthcoming elements to “skip” over until
the next sample will be drawn [Vitter 1985; Olken 1997]. It has been generalized to allow weighted
items [Efraimidis and Spirakis 2006]. Gibbons and Matias introduced concise samples and count-
ing samples, to make better use of the space available [Gibbons and Matias 1998]. Distinct samples
aim to draw a sample from the support set of the multi-set of items in a stream, possibly contain-
ing deletions [Gibbons 2001; Frahling et al. 2005]. Priority sampling aims to reduce the variance
on subset-sum queries [Duffield et al. 2003]. There has also been work on sampling from streams
which include deletions [Gemulla et al. 2007; 2008].

More recently, there has been much interest in understanding how to maintain a uniform sample
efficiently over a sliding window [Babcock et al. 2002; Gemulla and Lehner 2008; Braverman et al.
2009]. There are two models for sliding windows: in sequence-based windows, we must maintain
a sample over the last W elements in the stream; in time-based windows, every element arrives at
a particular time (called its timestamp), and we want to maintain a sample over the elements that
have arrived in the time interval [t− w, t] for a window length w, where t denotes the current time.
Time-based windows are usually more useful than sequence-based windows but often require more
complex algorithms and more space and time resources to handle.

Continuous distributed streaming. Many streaming applications [Muthukrishnan 2003] involve
multiple, say k, streams distributed in different locations linked by a network. The goal is to con-
tinuously track some function at a designated coordinator over the combined data received from
all the streams, as opposed to just one. This is shown schematically in Figure 1. For example, con-
sider a collection of routers in a network, each of which processes a high-speed stream of packets.
Maintaining a random sample of the packets from the union of these streams is valuable for many

2

network monitoring tasks where the goal is to detect some global features [Huang et al. 2007].
Beyond network monitoring, similar problems also arise naturally in applications like distributed
databases, telecommunications, web services, sensor networks, and many others.

In this setting, the communication cost is the primary measure of complexity of a tracking algo-
rithm, but its space and time costs are also important to bound. Motivated by the many applications
in networking and databases, there has been a lot of work on designing communication-efficient al-
gorithms for tracking certain functions (including frequent items [Manjhi et al. 2005; Babcock and
Olston 2003; Yi and Zhang 2009; Keralapura et al. 2006], quantiles [Yi and Zhang 2009; Cormode
et al. 2005], frequency moments [Cormode et al. 2008; Cormode and Garofalakis 2005], various
sketches [Cormode et al. 2006; Cormode et al. 2005], entropy [Arackaparambil et al. 2009], and
other non-linear functions [Sharfman et al. 2010; 2006]) over distributed streams. But surprisingly,
the important and fundamental problem of random sampling has not yet been addressed.

Problem definition. We formally define our problem as follows. Let A = (a1, . . . , an) be a se-
quence of elements. The sequence A is observed in an online fashion by k remote sites S1, . . . , Sk

collectively, i.e., ai is observed by exactly one of the sites at time ti, where t1 < t2 < · · · < tn. It
is assumed that ai arrives with its timestamp ti, but the index i, namely its global sequence number,
is unknown to the receiving site. Let A(t) be the set of elements received up until the current time t
from all sites. There is a designated coordinator C who has a two-way communication channel to
each of the k sites and needs to maintain a random sample of size s (with or without replacement)
of A(t) at all times. We also consider two sliding-window versions of the problem. In a sequence-
based window, for a given window size W , the coordinator needs to maintain a random sample over
the last W elements received across all sites; in a time-based window, for a given window duration
w, the coordinator maintains a random sample over the set A(t) \A(t− w) at all times t.

In the above setting, our primary concern is the total communication cost between the coordi-
nator and the k sites. There are no other direct communications allowed between sites; but up to
a factor of 2 this is not a restriction. We assume that communication is instantaneous. Other than
communication we also care about the space/time costs for the coordinator as well as for each site.

Note that the challenge of our problem arises from the combination of distributed data and the
requirement that the sample be maintained continuously. Indeed, if either one is missing, the prob-
lem becomes trivial. In the centralized setting it is the reservoir sampling problem. For one-time
sampling, each site can first report the size of its own data set. Based on these sizes and the size of
the combined data set, the coordinator decides (randomly) how many samples are allocated to each
of the k sites, and then simply asks them to get the samples. The communication cost is O(k + s).
The main obstacle in extending these ideas to the continuous distributed streaming model is that
the current value of i (the total number of elements that have arrived) is not known. In fact, track-
ing i exactly requires every site to notify the coordinator upon the arrival of each element, costing
Θ(n) communication. In the standard streaming model with a single stream, i is trivial to track,
and algorithms in this model can rely on this knowledge. For example, the reservoir sampling al-
gorithm samples the i-th element with probability 1/i. Similarly, the sliding-window algorithms of
[Babcock et al. 2002; Braverman et al. 2009], track exactly how many elements have arrived since a
“landmark” time T . One approach would be to use existing methods to track i approximately [Ker-
alapura et al. 2006; Cormode et al. 2008]. But this does not immediately yield efficient algorithms.
In addition, any sample maintained will be somewhat approximate in nature: some elements will be
more likely to be sampled than others. Such non-uniformity is undesirable, since it is unclear how
this error will impact approximations based on the sample, and how this will propagate in various
applications.

Our results. In this paper, we present algorithms that maintain a true random sample (i.e., no
approximation) over distributed streams, without explicitly tracking i. Our asymptotic bounds are
summarized in Table 1 for sampling without replacement under different settings. We measure the
communication and space costs in terms of words, and assume that each element, as well as any
quantity polynomial in k, s and n can be represented in O(1) words. We also require each com-

3

Table I. Our algorithms’ asymptotic costs for sampling without replacement over distributed streams. In this
paper we define log x = log2 x and logx y = 0 if x ≤ 1. The bounds for time-based windows are higher
than the lower bounds by a log factor; all the other bounds match the lower bounds.

coordinator site
window communication space total time space time (per element)
infinite k logk/s n + s log n s k logk/s n + s log n 1 1

sequence-based ks log W s ks log W 1 1
time-based (k + s) log W s log W (k + s) log W s log W 1

municated message to be at least one-word long. For the two sliding-window cases, the bounds are
for each window where W denotes the number of elements in the window; note that W may vary
from window to window in the time-based case. We do not show the results for sampling-with-
replacement, since the bounds are quite similar, often at most a logarithmic factor worse.

Our algorithms for infinite windows (full streams) and sequence-based windows are optimal si-
multaneously in all the five measures in Table 1 (for sufficiently large n and W), while the algo-
rithms for time-based windows are optimal up to a logarithmic factor. Some bounds are clearly
optimal, such as a site taking constant time to process each new element and the coordinator re-
quiring Ω(s) space, while others are less obvious. We prove the lower bounds after presenting the
algorithms for each case.

In the centralized setting, time-based windows are usually more difficult to handle than sequence-
based windows because the number of active elements can vary dramatically over time. There is
a space lower bound of Ω(s log W) [Gemulla and Lehner 2008] for time-based windows while
sequence-based windows only need space O(s) [Babcock et al. 2002; Braverman et al. 2009]. One
interesting observation from Table 1 is that in the distributed setting, time-based windows turn out to
be easier than sequence-based windows, and there is a quadratic difference (when k ≈ s) in terms
of communication, while the space bounds match those for the centralized case. The fundamental
reason is that it is much harder to determine whether an element ai has “expired” in the sequence-
based case, since we do not have the global sequence number i. Meanwhile, in the time-based
window case, expiration can be determined by comparing an element’s timestamp to the current
time. A formal proof of this hardness is given in Theorem 4.2.

Note that the continuous distributed streaming model degenerates into the standard streaming
model if we set k = 1 and ignore the communication aspect. When restricted to this case, our
algorithms achieve the same bounds as the previous centralized streaming algorithms over infinite-
streams (reservoir sampling), as well as the two sliding-window cases [Babcock et al. 2002; Braver-
man et al. 2009]. So our algorithms generalize previous techniques with the same space/time bounds
while achieving optimal communication. Note however that the space bounds in [Braverman et al.
2009] are worst-case, while ours and those in [Babcock et al. 2002] are probabilistic.

All our algorithms are explained via a simple concept, which we call binary Bernoulli sampling.
We describe this method in Section 2. Then we present our sampling algorithms (with and without
replacement) for the three cases in Table 1 in Section 3, 4, and 5, respectively.

Applications. Our results immediately yield protocols to track a number of interesting functions
in the distributed streaming setting. Some of them improve (for certain parameter ranges) previous
results while others are new.

Tracking the frequent items (a.k.a. the heavy hitters) and quantiles (approximately) over dis-
tributed streams has received a lot of attention [Manjhi et al. 2005; Babcock and Olston 2003;
Cormode et al. 2005; Yi and Zhang 2009; Keralapura et al. 2006]. There is a deterministic algo-
rithm that costs Õ(k/ε) communication1, which is optimal [Yi and Zhang 2009], where ε is the
approximation error. On the other hand, it is well known that a random sample without replacement
of size Õ(1/ε2) can be used to extract these statistics with high probability. Our result immediately
gives a probabilistic algorithm for tracking the heavy hitters and quantiles with communication

1The Õ notation suppresses log factors.

4

Õ(k + 1/ε2), which breaks the deterministic lower bound when k > 1/ε. However, the optimality
of the sampling algorithm does not imply that it is optimal for these two problems; in fact it remains
an open problem to determine the randomized communication complexity for these two problems.

If the elements in the streams are d-dimensional points, for example IP packets in the source-
destination space, then a random sample of size Õ(1/ε2) is an ε-approximation [Vapnik and Cher-
vonenkis 1971] with high probability. Such a sample allows us to approximately count the number
of points in any range from a range space with bounded VC dimensions, such as rectangles, circles,
halfspaces, etc. With our algorithm we can now track all these range-counts with communication
Õ(k + 1/ε2). If one only needs to determine if a range is large enough, that is, contains at least
a ε-fraction of all points, then a random sample of size Õ(1/ε) suffices for this purpose, and is
known as an ε-net [Haussler and Welzl 1987]. Thus our algorithm tracks an ε-net with communi-
cation Õ(k + 1/ε). There are numerous other applications of random samples which we will not
enumerate here.

2. BINARY BERNOULLI SAMPLING
Binary Bernoulli sampling is a way of implementing Bernoulli random sampling which makes
the analysis of the cost of the various sampling protocols more convenient. In its simplest form,
the method associates each element in the input, e, with a (conceptually unbounded) binary string
b(e). The string b(e) is chosen uniformly at random: each bit is independently set to 0 or 1 with
probability 1

2 . From this, we can extract a Bernoulli sample of elements each chosen independently
with probability p = 2−j for any (integer) j: we simply select all those elements whose binary
strings have a prefix of 0j (i.e., the first j bits are all 0).

A key feature of this method is that we do not need to materialize each bit string b(e) immediately.
Instead, it is often sufficient to materialize a prefix of b(e) to determine whether an element in the
input passes some initial filter. By the principle of deferred decisions, more bits of b(e) can be
generated later, to break ties or to accommodate a smaller p, when needed. In what follows, we treat
b(e) as if it is fully defined, with the understanding that if an algorithm accesses b(e)[i] that is not
yet fixed, it sets the value of b(e)[i] as needed by generating a random bit.

One straightforward way of using this idea to maintain a random sample of size s without re-
placement is to keep the s elements with the (lexicographically) smallest b(e)’s. Implementing this
idea over k distributed streams costs communication O(ks log n): the coordinator makes sure that
all the sites know the global s-th smallest b(e), say τ , and a site sends in a newly arrived element e
iff its b(e) is smaller than this threshold; every time τ changes, the coordinator broadcasts the new τ .
Standard analysis shows that τ changes O(s log n) times, hence giving the claimed communication
cost. It is also easy to show that the length of each string |b(e)| that we need is O(log n) with high
probability to break all ties, so it fits in O(1) words. However, this simple way of using binary Ber-
noulli sampling is far from optimal. Below we present protocols that implement this idea in smarter
ways so as to achieve optimal communication.

3. SAMPLING OVER AN INFINITE WINDOW
3.1. Sampling without replacement
We define the protocol ISWoR(s) (for Infinite window Sampling Without Replacement) as follows:
The coordinator ensures that all sites are kept up to date with a current sampling probability p,
which is a power of two. Initially, p is 1, and periodically the coordinator will broadcast to all sites
to reduce p by half. We call the time while p = 2−j the jth round. On receiving an element e, a site
tests the first j bits of b(e), and reports this element to the coordinator if they are all zero.

The coordinator maintains a sampled set of size at least s wherein each element is selected with
probability p (so this set is initialized with the first s elements from all streams). In fact, the coordi-
nator maintains two subsamples in round j, denoted by Tj and Tj+1. On receiving a new element e
sent by a site to add to the sample, the coordinator assigns the element to Tj if the (j + 1)-th bit of

5

b(e) is 1, or to Tj+1 if it is 0. Note that Tj ∪ Tj+1 is a Bernoulli sample with sampling probability
2−j while each of Tj and Tj+1 is a Bernoulli sample with sampling probability 2−(j+1).

The coordinator proceeds until |Tj+1| = s. At this time it sends out a broadcast message to halve
p, and discards Tj . The coordinator then examines bit j + 2 of b(e) for each element e in Tj+1 to
determine whether it remains in Tj+1 (if the bit is 1), or is “promoted” to Tj+2 (if the bit is 0).
Pseudo-code for the protocol as executed by each site and by the coordinator is shown in Algorithm
1 and 2 respectively.

Algorithm 1: ISWoR(s) for site in round j

foreach e do
if the first j bits of b(e) are all zero then send e to Coordinator

Algorithm 2: ISWoR(s) for coordinator in round j

foreach e received do
if b(e)[j + 1] = 0 then

Tj+1 ← Tj+1 ∪ {e}
else Tj ← Tj ∪ {e} ;
if |Tj+1| = s then

foreach e ∈ Tj+1 do
if b(e)[j + 2] = 0 then

Tj+2 ← Tj+2 ∪ {e} ;
Tj+1 ← Tj+1\{e} ;

discard Tj ;
j ← j + 1 and signal all sites to advance to the next round;

At any moment in round j, a sample without replacement of size s can be derived from the active
set of sampled elements via sub-sampling: we take Tj∪Tj+1 (note that |Tj∪Tj+1| ≥ s) and sample
s elements from this set without replacement. In fact, we can incrementally maintain the sample as
new elements are added to Tj ∪ Tj+1 using the reservoir sampling algorithm.

For the case k ≥ 2s, we can use biased random bits to further reduce communication: for any
element e, each bit of b(e) is set to 0 with probability s/k and 1 otherwise. Note that in this case,
Tj ∪ Tj+1 is a Bernoulli sample with sampling probability (s/k)j ; Tj+1 is a sample with sam-
pling probability (s/k)j+1 while Tj is a sample with probability (s/k)j(1 − s/k). The algorithm
otherwise remains the same. Correctness of the algorithm follows immediately. The next theorem
analyzes its costs.

THEOREM 3.1. The protocol ISWoR(s) continuously maintains a sample of size s drawn
without replacement uniformly from all elements in A(t). The amount of communication is
O(k logk/s n + s log n); the coordinator needs O(s) space and O(k logk/s n + s log n) time; each
site needs O(1) space and O(1) time per element. These bounds hold with high probability.

PROOF. We first consider the case k < 2s; in this case the communication bound becomes
O(s log n). The correctness of the protocol (that it draws a uniform sample without replacement)
follows from the fact that Tj ∪ Tj+1 is a Bernoulli sample with sampling probability 2−j .

Now we analyze the various costs. For the j-th round, the amount of communication can be
bounded by O(s) with high probability, simply because each element sent to the coordinator is
placed in Tj+1 with probability 1/2, therefore by the Chernoff bound, with probability at least

6

1 − e−s/4, |Tj+1| ≥ s after 4s elements are received in the coordinator side. The broadcast at the
end of the round costs O(k) = O(s) as well.

The total number of rounds as a function of the total number of elements in all streams, n, is
bounded similarly. We show that with high probability, after n elements the protocol has reached
round log(n/s) + 1. First, after the redistribution of elements at the end of round j − 1 (j ≥ 1), it
is easy to see that s ≤ |Tj+1| and, by a Chernoff bound, at the beginning of round j, |Tj+1| ≤ 5s/8
with probability at least 1 − e−Ω(s). Note that each element sent by sites in round log(n/s) + 1
is sampled with probability 2− log(n/s)−1 = s/2n, thus included into Tlog(n/s)+2 with probability
s/4n, so with probability at least 1−e−Ω(s), the number of samples being included into Tlog(n/s)+2

is no more than 3s/8. Therefore the total number of elements in Tlog(n/s)+2 is no more than 5s/8+
3s/8 = s before the protocol ends with high probability.

Thus the total communication cost is O(s log n) with high probability. The coordinator’s time
cost is asymptotically the same as the communication. The other bounds are immediate.

For the case k ≥ 2s, the communication bound becomes O(k logk/s n). The correctness of the
protocol holds by noticing that Tj ∪ Tj+1 is a Bernoulli sample with sampling probability (s/k)j .
We can bound the communication cost using similar arguments: Since each element sent to the co-
ordinator is placed in Tj+1 with probability s/k, after O(k) elements, we will have |Tj+1| ≥ s with
high probability. Similarly, the number of rounds is O(logk/s(n/s)) with high probability and in
each round. Thus the total communication (as well as the coordinator’s time cost) is O(k logk/s n).
The other bounds are mostly straightforward. One difference is that Tj will need to grow much
larger before |Tj+1| reaches s: in expectation, there must be k elements in Tj before there are s in
Tj+1. However, we can still bound the space requirement to O(s): by using reservoir sampling to
maintain the sample extracted from Tj ∪ Tj+1, Tj need not be materialized in full.

The coordinator’s space and the site’s space/time bounds are clearly optimal. We next show that
the communication cost is also optimal, by showing a lower bound on the amount of information
which must be communicated. Note that the coordinator’s time is at least proportional to its com-
munication.

THEOREM 3.2. Any protocol that maintains a sample of size s without replacement over k
distributed streams needs communication Ω(k logk/s n + s log n) in expectation.

PROOF. The (expected) number of elements that will ever appear in the sample is Θ(s log n).
This is because the i-th element should have probability s/i of being sampled (recall that the algo-
rithm has to maintain a uniform sample at each time step), therefore the expected total number of
elements that will ever appear the sample is

∑n
i=1 s/i = Θ(s log n). This also gives a lower bound

on the communication, since these elements have to be sent to the coordinator.
Next we show that Ω(k logk/s n) is also a lower bound (when k ≥ 2s). Suppose the total number

of arrivals so far is m. Consider the next m/s arrivals seen by a site. If this site is the only one
receiving elements since the first m elements, there is a constant probability that at least one of these
m/s new elements appears in the sample, which should be communicated to the coordinator. If the
site is not the only one receiving elements, this knowledge has to be communicated to the site. Either
way some communication should occur. Then we can arrange the input so that each site in turn gets
m/s arrivals. Therefore over the mk/s arrivals, Ω(k) messages should be exchanged in expectation.
Then we update m and repeat this construction. This gives a lower bound of Ω(k logk/s n) over the
whole stream.

3.2. Sampling with replacement
There is a simple reduction from sampling with replacement to sampling without replacement.
Suppose we have a sample S of size s without replacement from a population of size n. A sample
S′ with replacement can be obtained by the following procedure. For j = 1, . . . , s, with probability

7

j′/n we decide that the jth element of S′ is a duplicate of an element already in the sample, where
j′ is the number of distinct elements in S′ so far. In this case, we make the jth element of S′ the
same as an element chosen uniformly at random from the distinct elements of S′. Otherwise, with
probability 1− j′/n, we decide that the jth element of S′ is not a duplicate, and choose it to be the
jth element of S. However, to perform this reduction in our setting requires the exact value of n,
the population size, in order to pick elements with the right probability. As argued previously, this
value is very expensive to track exactly in the distributed streaming model, so we will need separate
algorithms for drawing a sample with replacement in our model.

Another simple solution to sampling with replacement is to run the ISWoR(1) protocol in parallel
s times. Naively extrapolating the above bounds indicates that the cost is Õ(ks). This is far from
optimal, and can be improved as follows.

We define a protocol ISWoR(s) (Infinite window Sampling With Replacement) that uses the idea
of “round sharing”: effectively, it does run a modified version of the ISWoR(1) protocol in parallel s
times; however, the jth round is terminated only when every instance has terminated the jth round.
That is, in round j ≥ 0 for each element e that arrives at a local site, the site generates s binary
strings b1(e), . . . , bs(e). If any of these strings has a prefix of j 0’s, then the element is forwarded
to the coordinator, along with the index (or indices) of the successes.

The coordinator receives a sequence of elements, each tagged with some index i. For each index
i, the coordinator retains a single element as T [i], along with its current binary string b[i]. During
round 0, the first time that an element arrives for a particular index i, the coordinator stores it as
T [i]. Then for each element e received in round j for index i with binary string b(e), the coordinator
ensures that both strings b(e) and b[i] have enough bits generated so that b(e) 6= b[i]. The two strings
are interpreted as integers: if b[i] < b(e), then e is discarded; else, b(e) < b[i], and e replaces T [i],
and b[i] is overwritten with b(e). The jth round terminates when the jth bit of b[i], b[i][j] is 0 for
all i. At this point, the coordinator begins the (j + 1)-th round by informing all sites to sample with
p = 2−j−1. At any moment, the coordinator can obtain a sample of size s with replacement by
reporting T [i] for all i = 1, . . . , s.

Directly implementing the above algorithm for each site requires O(s) time per element, simply
because we have to generate s random binary strings for each element. We next describe how to
reduce this time to O(1 + s/2j) in round j, which becomes O(1) for n sufficiently larger than s.
The number of samples for which each element is selected with probability 2−j is distributed as the
binomial distribution B(s, 2−j). Thus, we can generate a random number X from this distribution,
and then select a set I of X indices uniformly from [s]. For each index i ∈ I , the j bit prefix
of its binary string bi(e) is implicitly set to 0j , and the pair (e, i) is sent to the coordinator. The
resulting distribution of elements and indices sent is identical to that generated by directly generating
s random binary strings for each element and sending those with a 0j as a prefix. The pseudo-code
for the site and coordinator is shown in Algorithm 3 and 4 respectively.

Algorithm 3: ISWR(s) for site in round j

foreach e do
pick X from the binomial distribution B(s, 2−j), and pick a set I of size X uniformly at
random from [s] ;
foreach i ∈ I do

generate bi(e) ;
replace the first j bits of bi(e) with 0j ;
send (e, i) to Coordinator.

8

Algorithm 4: ISWR(s) for coordinator in round j

foreach (e, i) received do
if bi(e) < b[i] then T [i]← e, b[i]← b(e);
if ∀1 ≤ i ≤ s : b[i][j] = 0 then

j ← j + 1;
broadcast new j and go to the next round;

Finally, as for ISWoR(s), in the case k ≥ 2s, we can further reduce the communication cost
by using biased random bits. The next theorem demonstrates the correctness of this protocol, and
analyzes the cost based on how long it takes to complete each round.

THEOREM 3.3. The protocol ISWR(s) continuously maintains a sample of size s with replace-
ment drawn uniformly from A(t). The communication cost is O((k + s log s) log2+k/s n); the co-
ordinator needs O(s) space and O((k + s log s) log2+k/s n) total time; each site needs O(1) space
and O(1+ s

n log s log2+k/s n) time per element amortized. These bounds hold with high probability.

PROOF. For uniformity of the sampling, consider just a single value of i and the corresponding
T [i]. The protocol described carries out the Bernoulli binary sampling procedure to track a single
sampled element. The effect is to select the element from the input whose b(e), interpreted as an
integer, is the least. Each element has an equal chance of attaining the least such string, since nothing
specific to the element or the order in which it arrives influences this process. Therefore T [i] is a
uniform sample over the input.

To analyze the communication cost, observe that each round is essentially a coupon collector
problem. That is, conditioned on an element being selected in round j to be sent to the coordinator,
it is equally likely to have been selected for any of the s samples. A round must have terminated by
the time we have “collected” at least one element for every i. So the round terminates after O(s log s)
elements are received, with high probability. Here, we do not consider that the same element might
be selected for multiple samples, or that the previous round may have already provided elements
with the required prefix to their binary string, since this only helps to reduce the cost.

For the number of rounds, we can use a variant of the analysis of the ISWoR(s) protocol to
bound: the protocol will finish round j when there are O(s log s) events which each occur with
probability 2−j , out of ns trials (since each element is chosen with probability p with s independent
repetitions). A variant of the previous analysis indicates that there is a polynomially small chance of
reaching round log(ns/s log s)+2 = O(log n). Therefore, the total communication cost is bounded
by O((k + s log s) log n), with high probability.

The amortized processing time per element can be broken into the time to determine how many
copies of the element are sampled, plus the total number of sampled elements across all rounds
spread across all elements. This is bounded (whp) by O(1 + 1

ns log s log n): the site has to perform
O(1) work for each of the O(s log s) sampled elements in each of the O(log n) rounds.

For the case k ≥ 2s, the total number of rounds will be reduced to logk/s(n/s). Similar analysis
will give communication cost O((k + s log s) logk/s n) and processing time per element O(1 +
s
n log s logk/s n).

The time cost of the coordinator is constant per element received, and therefore bounded by the
size of the communication, O((k + s log s) log2+k/s n). The space costs of each site and of the
coordinator follow straightforwardly from the protocol description.

4. SAMPLING FROM A SEQUENCE-BASED SLIDING WINDOW
In this and the next section, we consider sampling in a sliding window. We emphasize that the
sliding window is defined on the union of the k streams, not on the individual streams.

9

ISWoR

W

S

Fig. 2. Schematic of SSWoR protocol for s = 4

We first consider how to sample from a sequence-based sliding window, that is, the sample is
uniform from the last W elements received by the whole system. This model becomes particularly
challenging in the distributed setting, due to the need to decide when an element in the sample
expires (is no longer among the W most recent): its expiration is an implicit event defined by the
arrivals of sufficiently many new elements. To this end, we make use of a “threshold monitor-
ing” protocol which can determine, for a given r, when exactly r new elements have arrived. For
completeness we present a simplified protocol to achieve this, based on a more general solution
presented in [Cormode et al. 2008].

Threshold protocol. The Threshold(r) protocol proceeds in O(log r) rounds. The protocol is ini-
tiated by a message from the coordinator to all k sites telling them to begin round 1. The coordinator
should terminate the protocol when exactly r elements have been observed across the k sites. Each
site maintains a counter of elements that have been observed but not reported to the coordinator. In
round j, each site counts each arriving element. When the count reaches (or exceeds) br2−j/kc, the
site announces this fact to the coordinator, and reduces its counter by br2−j/kc. Correspondingly,
the coordinator increases its global counter by br2−j/kc. After the coordinator receives k such mes-
sages, it starts round j + 1 by announcing this to all sites. (Note that a round change can trigger
messages from sites whose counter c is in the range r2−j

2k ≤ c < r2−j

k). The protocol reaches the
final round when the global counter maintained at the coordinator is in the range of [r − O(k), r].
In the final round, each site simply sends a message to the coordinator at every arrival of the ele-
ments to increase the global counter by 1, until exactly r element arrivals have been counted. It is
not difficult to see that each round requires O(k) communication, so the total cost of this protocol
is therefore O(k log r). The protocol correctly identifies exactly the moment when r elements have
arrived across all sites since the protocol was initiated.

4.1. Sliding window sampling without replacement
A simple solution to sampling from a sequence-based sliding window is periodic sampling, that is,
whenever a sampled element expires, the next arriving element is sampled. This trivial predictability
is not acceptable in many applications (see the discussions in e.g. [Babcock et al. 2002; Braverman
et al. 2009]), so usually we require that samples from disjoint windows must be independent.

Instead, we define a new protocol, SSWoR(s) (for Sequence-based window Sampling With-
out Replacement), which makes extensive use of the above Threshold protocol. The coordinator
runs an instance of the protocol to demark every multiple of W arrivals: as soon as an instance of
Threshold(W) terminates, a fresh instance is initiated. Within each such window of W , an instance
of the ISWoR protocol is executed to draw a sample of size s. At the end of a window, the current
sample S drawn by the ISWoR protocol is “frozen”, and a new instance of the protocol is initiated.
Assume for now that the coordinator can determine which elements in S have “expired” (i.e. fall
outside of the window of W most recent elements). To draw a sample of size s without replacement,
the coordinator extracts all elements in S that have not expired. It then uniformly samples without
replacement from the sample provided by the instance of ISWoR on the current window to make
up the shortfall. Note that all these elements are by definition unexpired.

Figure 2 shows a schematic view of the samples stored by the protocol for a sample size of
s = 4. The frozen sample, S, is drawn from a window of W elements. Two elements (shown
in gray) have expired, so a sample of non-expired elements is found by taking the two remaining
samples (shown in black). Two more samples are taken from the 4 samples picked by ISWoR by

10

subsampling uniformly. When the Threshold protocol indicates that the ISWoR instance has seen
W total elements, all the elements in S will have expired, and the new sample is frozen, and forms
the new S. In the next theorem, we show that the sample is drawn uniformly, by adapting an
argument due to Braverman et al. [Braverman et al. 2009]. The cost is bounded by studying the cost
of the parallel invocations of the Threshold protocol.

THEOREM 4.1. The SSWoR(s) protocol continuously maintains a uniform sample of size s
drawn without replacement from the W most recent elements. Samples from disjoint windows are
independent. The communication cost is O(ks log W) per window; the coordinator needs O(s)
space and O(ks log W) time per window; each site needs O(1) space and O(1) time per element.
These bounds hold with high probability.

PROOF. The correctness of the protocol, in that the resulting sample is drawn uniformly, follows
from the results of Braverman et al. [Braverman et al. 2009]. They show that given a uniform
sample without replacement from a window with some expired elements, and a uniform sample
of all subsequent (non-expired) elements, combining the two samples as described above for the
SSWoR protocol results in a sample without replacement that is uniform from the non-expired
elements only. Further, it is also shown that by this method the samples from disjoint windows are
independent. So the bulk of our work is in analyzing the costs of our protocol.

First, observe that the communication cost of running the ISWoR(s) protocol is O((k+s) log W)
per window, so tracking the size of window with Threshold(W) at a cost of O(k log W) is domi-
nated by this. However, the bulk of the cost of the protocol arises from deciding when each sampled
element expires. The straightforward way of doing this is to initialize a separate Threshold(W)
protocol whenever an element is sampled by ISWoR. An instance of the Threshold(W) protocol
for an element e could be terminated prematurely if e is replaced by another element in ISWoR;
else the protocol terminates normally at the time e expires. Since there are O(s) running instances
of the Threshold(W) protocol in the system, this requires O(s) space at each site to maintain their
state. Below we show how to reduce this space cost by running only one instance of the protocol at
any given time.

For every element ai sampled by ISWoR, we contact all k sites to compute its index i. Provided
each site counts how many elements have arrived locally, the index i for an element is the sum of
all these local counts when it is sampled. When a window freezes and S is produced, the sampled
elements in S will start to expire. These s sampled elements are stored in order of their computed in-
dices. Based on these indices, it is possible to compute how many more elements must arrive before
each of them expires one by one. This can be achieved by running a Threshold(r) protocol for ev-
ery sampled element with possibly a different r. Since the order of expiration is known in advance,
it makes more sense to run these instances sequentially rather than in parallel. Thus the communi-
cation cost per window is O(k

∑s
j=1 log rj) = O(ks log W

s) (and so is the coordinator’s running
time), which dominates the other communication costs. All the elements in S must expire before
the next window is frozen, so the coordinator’s space is O(s) and each site’s space is O(1). Each
site spends O(W + s log W

s) time per window, which is O(1 + s
W log W

s) = O(1) per element.

Although the Õ(ks) communication cost may be much more than the infinite-window case, we
show that this is actually the best that can be hoped for with sequence-based windows, by demon-
strating a lower bound for any such protocol.

THEOREM 4.2. Any protocol that maintains a sample of size s without replacement over k dis-
tributed streams for a sequence-based sliding window of size W needs communication Ω(ks log W)
per window in expectation for sufficiently large W .

PROOF. Consider the process when the window slides from the first W elements to the next
W elements. When the first window completes, the algorithm returns s sampled elements. We will
argue that the algorithm has to know the precise time when each of these s elements expire. Suppose
the algorithm only knows that a sampled element e expires in a time interval [t1, t2]. In order to not

11

make a mistake by returning an expired element in the sample, it has to remove e from the sample
with probability one before t1. But if e’s actual expiration time is t2, then the probability that e is
sampled within [t1, t2] is zero, rendering the protocol incorrect.

With s sampled elements in a window of size W , with high probability there will be Ω(s) pairs
of adjacent elements, each of which are at least Ω(W/s) elements apart. This becomes Ω(s) in-
dependent threshold problems with r = Ω(W/s). A lower bound in [Cormode et al. 2008] shows
that any randomized algorithm (with no errors) for the threshold problem with has to communi-
cate Ω(k log r

k) messages in expectation. So the total communication cost is Ω(ks log W
ks), which is

Ω(ks log W) for sufficiently large W .

4.2. Sliding window sampling with replacement
We define a SSWR(s) protocol (for Sequence-based window Sampling With Replacement). As in
the infinite window case, the core idea is to run a protocol to sample a single element s times in
parallel. Here, things are somewhat simpler than the ISWR case, because the need to track whether
elements have expired dominates the other costs; as a result, we do not use the round-sharing ap-
proach since it does not generate an asymptotic improvement in this case. Hence, the SSWR(s)
protocol runs s instances of the SSWoR(1) protocol in parallel, which all share the same instance
of Threshold(W) to determine when to freeze the current window and start a new one. The result
is slightly simpler, in that each parallel instance of the protocol retains only a single element in S,
and a single element from the current window, which replaces S when the element expires. It is
straightforward to analyze the correctness and cost of this protocol given the above analysis, so we
state without proof:

THEOREM 4.3. The SSWR(s) protocol continuously maintains a uniform sample of size
s drawn with replacement from the W most recent elements. The communication cost is
O(ks log(W/s)) per window; the coordinator needs O(s) space and O(ks log(W/s)) time per
window; each site needs O(1) space and O(1 + s

n log s log n) time amortized per element. These
bounds hold with high probability.

5. SAMPLING FROM A TIME-BASED SLIDING WINDOW
The case of sampling from a time-based sliding window allows reduced communication bounds.
This is because the coordinator can determine when an element expires from the window directly,
based on the current time and the timestamp of the element. Therefore, it is not necessary to run
any instances of the Threshold protocol, resulting in a much lower cost. This stands in contrast to
the centralized case, where typically time-based windows are more costly to compute over. Nev-
ertheless, the fact that sampling from time-based windows could be less costly does not mean the
problem is easier. In fact the protocols here are more complicated than the previous ones in order to
achieve near-optimal bounds. In the following, we use w to denote the duration of the sliding win-
dow in time, and nt to denote the size of the window ending at time t, i.e., the number of elements
with timestamps in [t− w, t].

Below we first provide a relatively simple protocol for sampling without replacement over a time-
based sliding window, which identifies the key challenges for this model. But this simple solution
requires each site to retain a full history of elements that have arrived in the time window [t−w, t].
Subsequently, we give an improved protocol that removes this requirement.

5.1. A simple time-based protocol
The idea is to maintain a sample of size s′ ≥ s over a partial stream starting from some “landmark”
time T . At time t, as long as there are at least s active elements (namely, in the window [t − w, t])
among the sample of size s′ that we are maintaining, then a sample of size s for the current sliding
window can be obtained by sub-sampling from these elements. When there are fewer than s active
elements left in the sample, we restart the protocol.

12

A good value for s′, on one hand, should be large enough so as to minimize the number of restarts.
On the other hand, it cannot be too large since otherwise maintaining a sample of size s′ will be
expensive. It turns out that setting s′ = c·(s+log nT) (for some constant c) strikes the right balance.

The full-space protocol. In this protocol each site retains all active elements. We first run the
ISWoR(s) protocol until t = w. The protocol at the coordinator side then does the following.

(1) Set T = t, and compute nT by contacting all sites. Restart the ISWoR(s′) protocol to maintain
a sample of size s′ from time T −w. This is possible since each site retains all active elements.

(2) At time t,
(a) If there are fewer than s′ elements in the sample, then the coordinator must have actually

collected all the elements in the window [T − w, t]. From these, we can subsample s el-
ements from the active ones (or just report all active elements if there are fewer than s in
total).

(b) Else, we check if there are at least s active elements in the sample. If so, we subsample from
these elements to pick a sample of size s. Otherwise we go back to step 1.

The correctness of the protocol is straightforward: given two partial streams D1, D2 with D2 ⊆
D1, if S is a uniform random sample in D1, then S ∩D2 is a random sample of D2.

To bound the communication cost we argue that the protocol restarts O(log W) times in a window
with W elements. Consider the first time T in this window when we restart. Recall that we maintain
a random sample of size s′ for the window [T −w, t]. As long as half of the elements in this window
have timestamps in the range [t−w, t], then with high probability we will have at least s unexpired
elements from the s′ sampled elements for some constant c large enough, by a Chernoff bound.
Therefore with high probability, the first restart happens when n1 ≥ W/2 elements arriving after
time T −w expire, causing T to reset. Similarly, we can show that with high probability, the second
restart happens when another n2 ≥ (W − n1)/2 ≥W/4 elements arriving after time T −w expire
(note that the number of elements arriving after time T−w is at least W−n1), and so on. Therefore,
with high probability, the total number of rounds will be O(log W). So the total communication is
O((s + k) log2 W) with high probability.

However, the simple protocol above needs each site to keep all the active elements due to the
restarts. Below we show how to avoid explicit restarts by computing sufficient information so that
there are always enough elements present at different sampling rates to draw a sample. At the same
time, we reduce the space cost to Õ(s) at each site, which will be shown to be near-optimal. The
new protocol below also improves the communication by an O(log W) factor.

5.2. Time-based sampling without replacement
The key challenge in the time-based sliding window setting arises because the element arrivals may
not occur uniformly over time. In particular, later arrivals may be much less frequent than earlier
ones. As a result, any current sample may be dominated by earlier elements. When these elements
expire, there may be insufficiently many later elements sampled to provide a sample of size s.
In the above protocol, this necessitates the “restart” step, to revisit the later elements and redraw a
sufficiently large sample of them. In this section, we provide a protocol which allows the coordinator
to draw a sample of sufficiently many elements from the history without having to resample from
past elements.

We define the TSWoR(s) (Time-based window Sampling Without Replacement) protocol based
on the ISWoR protocol. To keep track of the current window, an instance of the ISWoR(s) protocol
is run. This is terminated after w time units, and a fresh instance is started—we refer to each such
period of w as an “epoch”, and we denote the start point of the most recent epoch as T . In addition,
each site maintains a sample of recent elements at various rates of sampling. These are kept private
to the site until the end of an epoch, at which point the coordinator collects certain information from
the sites about their current samples.

13

Algorithm 5: Update Level-Sampling
foreach e do

l← 0 ;
repeat

l← l + 1 ;
insert e in queue l ;
while queue l has > s elements from levels > l do

delete oldest element from queue l;
until b(e)[l] = 1 ;

Level sampling at sites. For each element e that is observed at a site, the site assigns it to several
“levels” based on b(e): if b(e) has a prefix of l zeroes, it is assigned to all levels 1, . . . , l + 1. Note
that an element is assigned to level l with probability 2−l+1. The site then retains a queue for each
level l consisting of the most recent elements assigned to this level until either (i) at least s are also
assigned to level l + 1, or (ii) all active elements at that level are retained. We call such a structure
a level-sampling (LS) structure. The process to maintain an LS structure is shown in Algorithm 5.

An example is shown in Figure 3 with s = 3. In the figure, circles represent elements that have
been sampled at particular levels, where a hollow circle is sampled at level l and a filled circle is an
element that was also sampled at a higher level. Level 5 has a single element that was sampled with
probability p = 1/32, while level 4 contains three elements, two of which were sampled at level 4,
and the one that was sampled at level 5 (so condition (ii) holds). Level 2 retains only the most recent
elements so that there are s = 3 included which were sampled at levels 3 and above (the three filled
circles at level 2), meeting condition (i). The same is true at level 1.

level 3

level 2

level 4

level 5

level 1

Fig. 3. Example level-sampling data structure for s = 3

Collection of sampled elements. At the end of each epoch, the coordinator aims to collect an LS
structure equivalent to the one resulting if one site had seen the union of all elements. This is done
most efficiently as a k-way merge: starting at the greatest level with any elements sampled, each
site sends the most recent sampled element at level l. The coordinator determines which of these is
the most recent globally, adds this to its queue at level l, and prompts the corresponding site for the
next most recent sampled element at level l. The current level concludes when the coordinator has
either obtained all unexpired elements from all sites at that level, or until at least s elements have
been collected that also belong to level l + 1.

Production of a sample. At any time t, the coordinator can produce a uniform random sample
of size s from the current window of duration w. The coordinator considers the LS structure of
the most recent complete epoch, and identifies the level l which covers the time interval [t − w, T]
and still has at least s non-expired sampled elements: this is guaranteed to exist by definition of
the procedure (except in the extreme case when there are fewer than s non-expired elements from
that epoch, in which case all these elements are retained). It also takes the current set of elements
from the instance of ISWoR which is operating in round j. Then we have a set of elements A from

14

the current epoch [T, t] (Bernoulli) sampled with probability 2−j , and a set of elements B from
[t − w, T] sampled with probability 2−l+1. If j = l − 1 = 0, then it means that we have actually
collected all elements in the window [t−w, t] and sampling will be trivial. Otherwise at least one of
A and B has at least s elements. Letting ` = max(j, l−1), the coordinator selects all those elements
whose b(e) has a prefix of ` 0’s, so these represent a Bernoulli sample with sampling probability
2−`. This results in the set C of at least s elements, from which uniformly selecting s elements gives
the final sample.

We next have to show the correctness of this protocol, and analyze its costs. For correctness, we
show that we can combine the information from fixed windows to obtain a sample of sufficient size,
such that every element in the sample is drawn from the time range [t − w, t], and each element in
this range has the same probability of entering the sample. We then bound the number of elements
collected in the merging step to bound the communication and space of the protocol.

THEOREM 5.1. The protocol TSWoR(s) maintains a random sample of size s without re-
placement from all elements with timestamps in the range [t − w, t]. The communication cost is
O((k + s) log W) per window (where W is the number of elements within it); the coordinator
needs O(s log W) space and O((k+s) log W) time per window; each site needs O(s log W) space
and O(1) time per element. These bounds hold with high probability.

PROOF. For the correctness, we claim that the result of the sampling process is to draw a Ber-
noulli sample C of size at least min(s, nt) so that each element in C is from the range [t−w, t], and
every element in this range is selected into C with equal probability. Having established this, the
fact that the resulting sample is a uniform sample without replacement of size min(s, nt) follows
easily.

To see this uniformity, consider the two epochs with unexpired elements. First, each element
in the current epoch (by definition, unexpired) is Bernoulli sampled by the ISWoR(s) protocol
running round j with probability 2−j . Meanwhile, each (unexpired) element in the previous epoch
that is retained at level l is also the result of Bernoulli sampling with sampling probability 2−l+1,
irrespective of which site it was observed at. The coordinator picks the level l where at least s
non-expired elements are retained. Such a level is guaranteed to exist based on the definition of the
LS structure: consider a level l whose earliest element is expired, and where the earliest element
retained at level l−1 is not expired. By the requirements on l−1, it must contain at least s elements
which are present at level l, and these are unexpired. So there are at least s unexpired elements
stored at level l. The subsampling procedure then reduces the probability of sampling of whichever
set (A or B) is at the higher probability, so the result set C is drawn with the same probability 2−`.
So the probability of any unexpired element from any site to reach C is the same, 2−`.

For the communication cost, we have to analyze the number of elements at each level in the LS
structure stored by the coordinator. If the coordinator collects s′ elements from sites to fill level l, the
communication cost is O(k+s′) to do the k-way merge. We argue that the total number of elements
collected at level l is bounded with high probability. The elements stored in the LS structure at level
l all have 0l as a prefix of b(e). The elements that are sampled to level l have b(e)[l + 1] = 1,
whereas the elements also sampled to higher levels have b(e)[l + 1] = 0. So the probability that
an element is sampled to level l, conditioned on the fact that it is sampled to level l or higher is
1/2. Hence the number of elements at level l is bounded by O(s), with high probability. Likewise,
over the W elements in the epoch [T − w, T], with high probability the highest level reached is
O(log W). Therefore the communication cost of collecting the sampled elements to the coordinator
at time T is O((k + s) log W), which is also the coordinator’s running time in this epoch.

By the same argument, the amount of space required by each site to store its LS data structure is
also bounded by O((k + s) log W). Processing each element at a site requires determining which
level it belongs at in the LS structure, and possibly pruning some old elements, as well as running
the ISWoR protocol on it. The total time spent is amortized to a constant per element.

15

Optimality. Since sampling from time-based window is more general than the infinite-window
case, so the communication lower bound of Theorem 3.2 also applies here with n = W , namely,
Ω(k logk/s W + s log W). Note that when k = O(s), the upper and lower bounds match; when
k = ω(s), there is a gap of O(log(k/s)) between the upper and lower bounds. In fact, if we use
biased random bits as in the ISWoR protocol for the case k ≥ 2s, we could achieve the optimal
O(k logk/s W) communication bound, too. However, this will increase the space of each site to
O(k logk/s W).

A space bound of Ω(s log W) follows from [Gemulla and Lehner 2008] since our model is more
general than the centralized setting. However it is unclear if all the participants (coordinator and
each site) need to pay this much space; all our previous protocols only needed O(1) space on each
remote site while only the coordinator needs Õ(s) space. Below we argue that this is not possible
for time-based windows by providing a lower bound on the communication.

THEOREM 5.2. Any protocol that maintains a sample of size s over k distributed streams for a
time-based sliding window requires that each of at least k/2 sites must store at least s/2 elements,
unless the protocol incurs a communication cost of Ω(W).

PROOF. We generate inputs as follows. We first send s elements to site S1. By the sampling
requirement S1 needs to send all of them to the coordinator as sampled elements. Then we send the
next s elements to S2. Assume S2 does not have space to store s/2 elements. If S2 sends fewer than
s/2 elements to the coordinator, then some of the s elements must have been discarded. Then we
stop generating further elements until these s elements received by S2 are the only active ones in the
sliding window. This will cause a failure in the sampling protocol. Otherwise we continue sending
s elements to S3, S4, . . . , Sk, one by one. By the same argument, for any site that does not have
s/2 space, it has to send at least s/2 elements to the coordinator. If there are more than k/2 such
sites, then a constant fraction of the elements have been transmitted. Finally we can use the same
construction in a round-robin fashion to cause Ω(W) communication in each window.

5.3. Time-based sampling with replacement
A naive solution to drawing a sample with replacement for a time-based sliding window is to execute
the TSWoR(1) protocol s times in parallel. This is certainly correct, but would be costly, requiring
Õ(ks) communication. Instead, we show below how to achieve (almost) the same result by more
careful use of communication.

The protocol. We use again the notion of epochs to define the TSWR(s) (Time-based window
Sampling With Replacement) protocol. For the current epoch, the ISWR(s) protocol is used to
maintain a sample at the coordinator of active elements in the range [T, t]. For the previous epoch,
each site maintains s independent copies of the LS structure. For i = 1, . . . , s, each element has
a random bit string bi(e), which determines the ith LS structure: e is sampled to level l if the first
l− 1 bits of bi(e) are all zero, and the queue at level l keeps the most recent sampled elements until
(i) it sees an element also sampled to level l + 1, or (ii) no more active elements are sampled to this
level.

At the end of the epoch, the coordinator needs to build the s LS structures on the union of the
streams. Simply building each of these in turn would cost Õ(ks) communication. Instead, the coor-
dinator merges all of them in parallel: for each level l, it first obtains the most recent element from
each site across all s instances of the LS structure. It then does a k-way merge to find the second,
third, . . . , most recent elements on level l across all s instances, until it has obtained the necessary
samples for each of the s instances, i.e., until condition (i) or (ii) holds on the union of the streams
for every LS instance.

To form the ith sample at time t, the coordinator extracts all samples from the appropriate level
of the merged LS structure as Bi, at level l (note that Bi may contain more than one sampled
element). It also extracts the ith sample from the ISWR(s) protocol from round j, along with its

16

associated binary string b[i], as A. For each element in Bi, we also have its binary string bi(e). We
then interpret the binary strings as integers, and pick the element e with the smallest bi(e) as the ith
sampled element (ties are broken by examining longer prefixes of the bit strings and drawing more
random bits as needed). The correctness is shown in the next theorem based on the correctness
of protocols in the infinite window case. The communication cost, and hence the running time, is
bounded by arguing that the number of elements needed in total from all sites is tightly bounded.

THEOREM 5.3. The protocol TSWR(s) draws a uniform sample of size s with replace-
ment from all elements with timestamps in the range [t − w, t]. The communication cost is
O((k+s log s) log W), and so is the coordinator’s running time. Each site needs O(s log W) space
and O(s) time per element. These bounds hold with high probability.

PROOF. For the communication cost, since the cost of running ISWR(s) is O((k +
s log s) log W), we focus on the merging procedure. For each level l, we consider all those ele-
ments that were kept by any site on level l by any of the s instances. Walking backwards from T ,
we encounter each of these elements in turn, and the coordinator can stop collecting elements after
it has received one element for each i at level l + 1. Each element collected is equally likely to be
for any of the s instances, and has probability 1

2 to appear at level l + 1. So, by appealing to the
coupon collector’s problem, the coordinator only needs to collect O(s log s) elements until the level
can be terminated, with high probability. Thus the communication cost of the merging for each level
is O(k + s log s). As there are O(log W) levels with high probability, the communication bound
follows. Since each instance of the LS structure needs O(log W) space and O(1) time per element
to maintain, the site’s space and time bounds are O(s log W) and O(s), respectively.

To see that the samples are drawn uniformly, we adapt the argument of Theorem 3.3. For a
particular value of i, the element drawn as the sample is the e in the time range [t − w, t] with the
lowest bi(e). By interrogating the stored LS structure, the coordinator recovers a set of elements
with 0l as a prefix of bi(e), and guarantees that there are no other unexpired elements from that
epoch with the same prefix. From the instance of ISWR(s), the coordinator recovers e with 0j as a
prefix of bi(e), and guarantees that there is no other e from the same epoch with a lower bi(e). The
remainder of the process combines these two sets of elements to find the element from [t − w, t]
with the smallest bi(e) is recovered as the ith sample.

5.4. Processing time for time-based sampling with replacement
The per-element processing time at each site in the above TSWR(s) protocol is O(s) because we
have to maintain s LS structures. This can be quite expensive when s is large. In this section we
show how it can be reduced to O(1) for W sufficiently larger than s. The idea is to delay detailed
sampling at most LS instances, and only fully materialize the LS structure at the end of the epoch.
By this point, many elements which would potentially have been sampled to low levels can be
pruned away, so the space usage remains bounded. More precisely, for each arriving element e, we
first decide the greatest level lmax(e) it reaches across the s LS instances, and store it at all levels
1, . . . , lmax(e) in just one LS instance chosen uniformly at random from the s instances. Note that
lmax(e) follows the distribution Pr[lmax(e) = j] = (1−2−j−1)s− (1−2−j)s. In the full sampling
case, this element is also sampled to various levels in the other s−1 LS instances. We will postpone
this sampling to the end of the epoch. Meanwhile, based on the arrival of other elements, we can also
determine when this element expires (whp) from all other LS instances, and thus prune it entirely
without ever having materialized its presence in these instances. This will be sufficient to reduce the
time costs.

At the end of the epoch, for each original element e that is still kept in the LS instance where it
was first inserted when it arrived (we describe later how elements are kept), we insert copies of it to
the other s− 1 LS structures. We call these the delayed copies of e. For each of these LS structures,
we decide its level via

Pr[l(e) = l|lmax(e)] = 2−l/(1− 2−lmax(e)) = 2lmax(e)−l/(2lmax(e) − 1),

17

which fixes the prefix of its binary string. After inserting a delayed copy into an LS structure, old
elements are removed based on conditions (i) and (ii) defined above in Section 5.3.

In order to bound the space used, we prune elements as time goes on. An element e can be safely
pruned when none of the final configurations of the s LS instances at the end of the window could
possibly contain e’s delayed copies. Recall that the level a delayed copy of e reaches in an LS
instance cannot exceed lmax(e), so if this LS instance already contains an original element e′ with
lmax(e′) > lmax(e) and a later timestamp, then e (or its delayed copy) would have been removed
in this LS instance at the end of the epoch. Thus e can be pruned when every LS instance contains
such an e′. Checking each of the s LS instances one by one would be slow. Instead we keep all
the original elements in one queue, each tagged with its lmax(e) and the index of the LS instance
where it belongs to as an original element. After every bs log s log W c arrivals we perform a batched
pruning as follows. We scan the queue starting from the most recent element. For each level l, we
keep an array of s bits, initialized to all zeros. When we see an element e from the ith LS instances
with lmax(e) > l, we set the ith bit to 1. When all s bits are 1 we can prune all elements e with
lmax(e) = l with older timestamps. The next theorem analyzes the time and space costs of this
modified process.

THEOREM 5.4. In the modified protocol for TSWR(s), each site needs O(1 + s2

W log s log W)
time per element amortized. The space at each site is O(s log s log W). The other bounds are the
same as in Theorem 5.3.

PROOF. We first bound the space used at each site, showing that with high probability, after each
batched pruning, only O(s log s log W) elements are left. Since as argued before there are O(log W)
levels with high probability, it suffices to argue that for each l, there are O(s log s) elements with
lmax(e) = l across all s LS instances.

When we perform the pruning, a level l will not accommodate more elements with lmax(e) = l
when we see an element from each of the s LS instances with lmax(e) > l. By the coupon collector
bound, with high probability this happens after seeing O(s log s) elements at level l. One can verify
that Pr[lmax(e) > l] ≥ 1

2 Pr[lmax(e) = l], by considering the function

f(s) = Pr[lmax(e) > l]− 1
2

Pr[lmax(e) = l] = (1−(1−2−j−1)s)− 1
2
((1−2−j−1)s−(1−2−j)s),

and seeing that its derivative f ′(s) > 0 so f(s) ≥ f(1) > 0. Thus when we see O(s log s) elements
with lmax(e) > l with high probability there are at most O(s log s) elements with lmax(e) = l, by
a Chernoff bound. This shows that there are O(s log s) elements with lmax(e) = l, hence a total of
O(s log s log W). This is the number of elements after each pruning. Since the pruning is performed
after every O(s log s log W) elements, the total space required is bounded by O(s log s log W).

Next we bound the amortized processing time per element. During a batched pruning, recall that
we keep an array of s bits for each l and declares the level “full” when all s bits are one. By the
coupon collector problem we need to see O(s log s) elements before this happens. After a level is
full we no longer need to update this array, except pruning elements with lmax(e) = l. Thus the total
time spent for a batched pruning is O(s log s log W), namely O(1) per element amortized. At the
end of the epoch, the cost of sampling from all the O(s log s log W) remaining delayed elements is
O(s2 log s log W) (whp). Combining the ISWR part, the amortized processing time per element is
O(1 + s2

W log s log W).

6. EXPERIMENTAL STUDY
To better understand the real-world costs of the protocols we have described, we perform a brief
experimental study. The goal of this study is to compare the empirical behavior with the theoret-
ical bounds obtained above, which hold with high probability, and to give some intuition into the
absolute values of the costs for different input parameters. We focus on the ISWoR and TSWoR
protocols, and study their communication cost using both synthetic and real data sets. We postpone

18

0 1 2 3 4 5 6 7 8 9 10 11
9

10

11

12

13

14

log2(cost)

log2 s
n = 8000000, k = 128

15

0 1 2 3 4 5 6 7 8 9 10 11

12

13

log2(cost)

log2 k
n = 8000000, s = 128

14

11
0 1 2 3 4 5 6

3

4

5

cost ×103

log2(n/106)
s = 128, k = 128

practice

theory

Fig. 4. ISWoR on synthetic data

study of sequence-based algorithms, due to their increased cost, and because they are arguably less
intuitive than time-based windows. We highlight sampling without replacement, since this repre-
sents the core problem (sampling with replacement is based on sampling without replacement as a
special case).

To compare the empirical behavior to the theoretical bounds, we also plot the (asymptotic) worst-
case function. Note that our analysis does not expose the exact constants of proportionality inside
the big-Oh notation: instead, we pick some small constants (which will be specified for each figure)
for illustration purposes. Our results show that with this setting, the practical performance of the
protocols closely follows what the theory predicts.

Experimental environment. We implemented a simulator which reads the streams for each site,
and computes the messages sent to and from the coordinator. We used a mixture of real and synthetic
data. The real data set is obtained from the 1998 World Cup web server request traces, available at
the Internet Traffic Archive. We used the part 1 trace from day 46, which contains 7× 106 records.
Each record is associated with a timestamp and a “server id”, which we used to designate the site
receiving the record.

To generate synthetic data, we allocated data elements uniformly to one of k sites, and picked
the interval between each successive element uniformly in the range 1 to 8 time units (note that the
sampling protocols are indifferent to other data about the elements in the streams). In all cases, we
measure the communication cost in terms of the number of messages sent; note that all protocols
use messages of constant size.

Experimental Results. In Figure 4 we report the communication cost for the protocol ISWoR on
synthetic data sets with different parameter settings. For the leftmost plot, we fixed the total number
of elements at n = 8×106, and a sample size of s = 128, while varied the number of sites k from 21

to 211. The y-axis shows the communication cost as the base-2 logarithm of the number of messages
exchanged during the whole protocol. Recall that our analysis of the ISWoR protocol sets the cost
as O(k logk/s n+s log n). When k < s, this cost is O(s log n): there are O(log n) rounds, and each
round terminates with a message to all k sites when the coordinator has received O(s) elements.
Therefore, the dependence on k is relatively weak in this range. But when k > s, the dominating
term becomes O(k logk/s n), and indeed we see an increase in cost which is sublinear in k (as k
doubles, the cost less than doubles). The overall cost is small compared to the data size: even with
k = 211 ≈ 2000 sites, the total number of messages is only ≈ 16000. We use the more accurate
formula 2 × (k logmax{k/s,2}(n/s) + s log(n/s)) to plot the corresponding theoretical curve. For
illustration purposes, we simply set the multiplicative constant hidden inside the big-O notation to
be 2. It is striking how well these two curves are matched, both in shape, but also in absolute value.
They both exhibit the same kink, which occurs when k/s = 2, i.e. when k = 28, as the base of

19

0 1 2 3 4 5 6 7 8 9 10 11
12

13

14

15

16

17

log2(cost)

log2 k

0 1 2 3 4 5 6 7 8 9 10 11
12

13

14

15

16

17

log2(cost)

log2 s
w = 800000, k = 128w = 800000, s = 128

practice

theory

0 1 2 3 4 5 6

cost ×103

log2(w/105)
s = 128, k = 128

9

10

11

12

13

Fig. 5. TSWoR on synthetic data

0 1 2 3 4 5 6 7 8 9 10 11
9

10

11

12

13

14

log2(cost)

log2 s
ISWoR, n = 7000000, k = 128

15

0 1 2 3 4 5 6 7 8 9 10 11
12

13

14

15

16

17

0

log2(cost)

log2 s
TSWoR, w = 320000, k = 128

0 1 2 3 4 5 6

cost ×103

log2(w/104)
TSWoR, s = 128, k = 128

7

8

9

10

practice

theory

6

11

Fig. 6. Experiments with ISWoR and TSWoR on Real data

the logarithm switches, and the remainder of the growth is dominated by the second term in the
formula.

In the middle plot we fixed n = 8× 106 and k = 128 while the sample size s was varied from 21

to 211. The parameter s has the most effect on the cost when s > k, and the trend approaches linear
increase in s as s grows. The same formula is used to plot the theoretical curve.

In the rightmost plot of Figure 4, we fixed k = s = 128 and varied n from 106 to 64× 106. The
communication cost is observed to increase linearly with log n, and requires only 5,000 messages
to continuously maintain a sample of 128 elements across 128 sites (compared to the 64 × 106

messages required to centralize the data). Note that in the the rightmost plot, the y-axis is plotted
on a linear, rather than logarithmic, scale. This demonstrates that the protocol scales well to large
quantities of data. For the theoretical curve, we use (k logmax{k/s,2}(n/s) + s log(n/s) + 500),
where the multiplicative and additive constants are chosen to make comparison easier.

In Figure 5 we report the experiment results of the TSWoR protocol on the synthetic data sets,
while varying k, s, and the window length w, respectively. The general trends are all very similar
to the ISWoR protocol. There is close to linear growth in k, for k larger than s, and linear growth
in s, for s larger than k. The dependence on log W (the logarithm of the actual number of elements
arriving in each window; in our experiments W ≈ w/4.5 ≈ 178000) is also linear. The main
difference is that the costs are all a constant factor higher than in the infinite window case. This is
due to the cost of performing the k-way merges to build the level-sampling structures at the end of
each epoch.

The corresponding theoretical curves in the leftmost and the middle plots are plotted by the more
accurate formula 2 × (k logmax{k/s,2}(n/s) + s log(n/s)) + 2 × (2k + s) log W . The first term

20

is the cost of ISWoR and the second term is the merging cost of k level-sampling data structures
(constants are again chosen for clarity of the figure). Recall that in the level-sampling data structure
we do not use biased random bits as in ISWoR since otherwise the space cost of each site will
increase. For the rightmost plot, we use the formula (k logmax{k/s,2}(n/s) + s log(n/s)) + (2k +
s) log W + 2000.

Figure 6 shows the results of our experiments on the real data set derived from the 1998 world
cup logs. These plots show similar dependencies as for the synthetic case: (sub)linear growth in
communication cost as a function of s for both the infinite and time-based window cases (leftmost
and middle plots), and logarithmic dependence on the data size (rightmost plot). We argue that
this is because the protocols depend very weakly if at all on the instance of the data, and can be
well characterized in terms of the coarse parameters of the instance (n, k, s and the actual number
of elements handled by the protocol). The behavior in practice again matched that predicted by
the analysis. One may notice that the slopes of the theoretical curve and the practical curve differ
slightly in the rightmost plot. This is because in the real data, a majority of data elements were sent
to only a few sites, while in the theoretical curves we still assume that data elements were allocated
uniformly to all sites, which results in a more pessimistic bound on communication cost.

Lastly, we observe that the implemented protocols are very time efficient. For example, our sim-
ulator only takes a few seconds to process the World Cup data set (with 7 million records) on a
commodity desktop PC, while simulating the actions of all the sites as well as the coordinator.

7. CONCLUSION AND OPEN PROBLEMS
In this paper we have generalized classical reservoir sampling algorithms to the case where we want
to continuously maintain a random sample over multiple distributed streams. To minimize commu-
nication, we needed new techniques and analysis since those for a single stream rely on information
(the current total number of elements) that is inherently hard to maintain in the distributed setting.

At the end of Section 1, we mentioned a number of applications of random sampling. Random
sampling indeed solves these problems, but it is unclear if it always gives the best solution. On a
single stream, better algorithms are known that either do not use random sampling at all (e.g., the
heavy hitter [Metwally et al. 2006] and quantile problem [Greenwald and Khanna 2001]), or use
some more sophisticated sampling algorithms (e.g., ε-approximations in bounded VC dimensions
[Chazelle 2000]). While some of these problems have been studied in this distributed streaming
setting, only their deterministic complexity has been understood [Yi and Zhang 2009]. It remains
open to see how randomization can help reduce communication for these problems in this model.

Finally, all our analyses assume worst-case scenarios, in that they works for any arrival distri-
bution of elements. In some cases, a prior distribution is known. It seems plausible that this could
be used to give tighter bounds, provided that the true arrival distribution is close to the prior dis-
tribution. Such problems have been dubbed stochastic streaming, but few results are known in this
setting [Muthukrishnan 2009].

REFERENCES
ARACKAPARAMBIL, C., BRODY, J., AND CHAKRABARTI, A. 2009. Functional monitoring without monotonicity. In Inter-

national Colloquium on Automata, Languages and Programming (ICALP).
BABCOCK, B., DATAR, M., AND MOTWANI, R. 2002. Sampling from a moving window over streaming data. In ACM-SIAM

Symposium on Discrete Algorithms. 633–634.
BABCOCK, B. AND OLSTON, C. 2003. Distributed top-k monitoring. In ACM SIGMOD International Conference on Man-

agement of Data.
BRAVERMAN, V., OSTROVSKY, R., AND ZANIOLO, C. 2009. Optimal sampling from sliding windows. In ACM Principles

of Database Systems.
CHAZELLE, B. 2000. The Discrepancy Method. Cambridge University Press.
CORMODE, G. AND GAROFALAKIS, M. 2005. Sketching streams through the net: Distributed approximate query tracking.

In International Conference on Very Large Data Bases.

21

CORMODE, G., GAROFALAKIS, M., MUTHUKRISHNAN, S., AND RASTOGI, R. 2005. Holistic aggregates in a networked
world: Distributed tracking of approximate quantiles. In ACM SIGMOD International Conference on Management of
Data.

CORMODE, G., MUTHUKRISHNAN, S., AND YI, K. 2008. Algorithms for distributed, functional monitoring. In ACM-SIAM
Symposium on Discrete Algorithms.

CORMODE, G., MUTHUKRISHNAN, S., AND ZHUANG, W. 2006. What’s different: Distributed, continuous monitoring of
duplicate resilient aggregates on data streams. In IEEE International Conference on Data Engineering.

DUFFIELD, N., LUND, C., AND THORUP, M. 2003. Estimating flow distributions from sampled flow statistics. In Proceed-
ings of ACM SIGCOMM.

EFRAIMIDIS, P. S. AND SPIRAKIS, P. G. 2006. Weighted random sampling with a reservoir. Inf. Process. Lett. 97, 181–185.
FRAHLING, G., INDYK, P., AND SOHLER, C. 2005. Sampling in dynamic data streams and applications. In Symposium on

Computational Geometry.
GEMULLA, R. AND LEHNER, W. 2008. Sampling time-based sliding windows in bounded space. In ACM SIGMOD Inter-

national Conference on Management of Data. 379–392.
GEMULLA, R., LEHNER, W., AND HAAS, P. J. 2007. Maintaining Bernoulli samples over evolving multisets. In ACM

Principles of Database Systems. 93–102.
GEMULLA, R., LEHNER, W., AND HAAS, P. J. 2008. Maintaining bounded-size sample synopses of evolving datasets.

VLDB Journal 17, 2, 173–202.
GIBBONS, P. 2001. Distinct sampling for highly-accurate answers to distinct values queries and event reports. In Interna-

tional Conference on Very Large Data Bases. 541–550.
GIBBONS, P. AND MATIAS, Y. 1998. New sampling-based summary statistics for improving approximate query answers.

In ACM SIGMOD International Conference on Management of Data. 331–342.
GREENWALD, M. AND KHANNA, S. 2001. Space-efficient online computation of quantile summaries. In ACM SIGMOD

International Conference on Management of Data.
HAUSSLER, D. AND WELZL, E. 1987. Epsilon-nets and simplex range queries. Discrete and Computational Geometry 2,

127–151.
HUANG, L., NGUYEN, X., GAROFALAKIS, M., HELLERSTEIN, J., JOSEPH, A. D., JORDAN, M., AND TAFT, N. 2007.

Communication-efficient online detection of network-wide anomalies. In IEEE INFOCOMM.
KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J. 2006. Communication-efficient distributed monitoring of

thresholded counts. In ACM SIGMOD International Conference on Management of Data.
KNUTH, D. E. 1998. The Art of Computer Programming, Vol 2, Seminumerical Algorithms 2nd Ed. Addison-Wesley.
MANJHI, A., SHKAPENYUK, V., DHAMDHERE, K., AND OLSTON, C. 2005. Finding (recently) frequent items in distributed

data streams. In IEEE International Conference on Data Engineering. 767–778.
METWALLY, A., AGRAWAL, D., AND ABBADI, A. E. 2006. An integrated efficient solution for computing frequent and

top-k elements in data streams. ACM Transactions on Database Systems 31, 3, 1095–1133.
MUTHUKRISHNAN, S. 2003. Data streams: Algorithms and applications. In ACM-SIAM Symposium on Discrete Algorithms.
MUTHUKRISHNAN, S. 2009. Stochastic data streams. In Mathematical Foundations of Computer Science.
OLKEN, F. 1997. Random sampling from databases. Ph.D. thesis, Berkeley.
SHARFMAN, I., SCHUSTER, A., AND KEREN, D. 2006. A geometric approach to monitoring threshold functions over

distributed data streams. In ACM SIGMOD International Conference on Management of Data.
SHARFMAN, I., SCHUSTER, A., AND KEREN, D. 2010. Shape sensitive geometric monitoring. In ACM Principles of

Database Systems.
VAPNIK, V. N. AND CHERVONENKIS, A. Y. 1971. On the uniform convergence of relative frequencies of events to their

probabilities. Theory of Probability and its Applications 16, 264–280.
VITTER, J. S. 1985. Random sampling with a reservoir. ACM Transactions on Mathematical Software 11, 1, 37–57.
YI, K. AND ZHANG, Q. 2009. Optimal tracking of distributed heavy hitters and quantiles. In ACM Principles of Database

Systems. 167–174.

22

