
The Continuous Distributed Monitoring Model∗

Graham Cormode
AT&T Labs—Research

graham@research.att.com

ABSTRACT
In the model of continuous distributed monitoring, a
number of observers each see a stream of observations.
Their goal is to work together to compute a function of
the union of their observations. This can be as simple
as counting the total number of observations, or more
complex non-linear functions such as tracking the en-
tropy of the induced distribution. Assuming that it is too
costly to simply centralize all the observations, it be-
comes quite challenging to design solutions which pro-
vide a good approximation to the current answer, while
bounding the communication cost of the observers, and
their other resources such as their space usage. This sur-
vey introduces this model, and describe a selection re-
sults in this setting, from the simple counting problem
to a variety of other functions that have been studied.

1. INTRODUCTION
The model of continuous, distributed monitoring is a

quite natural one, which arose only in the early years of
the 21st century. It abstracts an increasingly common
situation: a number of observers are making observa-
tions, and wish to work together to compute a function
of the combination of all their observations. This ab-
stract description can be applied to a number of settings:
• Network elements within the network of a large ISP
are observing local usage of links, and wish to work to-
gether to compute functions which determine the overall
health of the network.
•Many sensors have been deployed in the field, with the
aim of collecting environmental information, and need
to cooperate to track global changes in this data.
• A large social network monitors the usage of many
compute nodes in data centers spread around the world,
and wants to coordinate this information to track shifts
in usage patterns and detect any unusual events, possibly
indicative of an attack or exploit.

Each of these examples maps naturally onto the out-
∗An earlier version of this survey was published in the Pro-
ceedings of the Workshop on Algorithms and Models for Dis-
tributed Event Processing, 2011

line above: the network elements, sensors and compute
nodes respectively play the part of the observers, who
want to collaborate in the computation.

There are various “trivial” solutions to these prob-
lems. Studying the drawbacks of these helps us to iden-
tify the properties to optimize. A first approach is to
simply have all the observers send all their observations
to a single, centralized location. For cases where the
flow of new observations is sufficiently slow, then in-
deed this is a satisfactory solution. However, in the
above scenarios, this places an intolerable burden on the
underlying network. For example, in the ISP example,
the number of observations may be equivalent to the to-
tal number of packets traveling on a link: generating
this much extra traffic on the network for the purpose
of health monitoring will quickly contribute to the ill-
health of the network!

A second approach is to perform “periodic polling”:
at some fixed interval, say every five minutes, or once
an hour, a central monitor polls each observer for infor-
mation about their observations since the last poll, and
collates these together to get a snapshot of the current
status. Again, in some situations, this will suffice. In-
deed, many network protocols, such as the Simple Net-
work Management Protocol (SNMP) operate on exactly
this basis. Still, often this too is insufficient. Firstly, we
require that the information needed can be summarized
compactly. For example, SNMP allows the reporting
of the total amount of traffic (measured in packets or
bytes) processed by a network element within a given
time window. Quantities like sums and counts of obser-
vations, therefore, fit naturally within this setting. How-
ever, when the objective is a more complex function,
like measuring some non-linear function of all the (dis-
tributed) observations, or detecting when some complex
event has occurred, it is less clear how periodic polling
can operate.

The other limitation of periodic polling is the careful
balance needed in setting the frequency of the polling
event. Set the gap too narrow, and again the network
becomes overloaded with data which may be of limited

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

Figure 1: Continuous Distributed Monitoring model

usefulness. But set the gap too large, and the delay be-
tween an important event occurring and it being detected
by the protocol may become too large.

In continuous distributed monitoring, we aim to ad-
dress all these concerns. The central idea is to incur
minimal communication when there is nothing impor-
tant being observed, but at the same time to enable rapid
(near-instantaneous) updates when necessary.

There has been considerable research effort in this
area since its inception. Progress has been made by con-
sidering sets of fundamental functions, and describing
protocols which provide strong guarantees on the ac-
curacy of the monitoring, while incurring low costs, in
the form of communication required, and computational
overhead and storage needed by the observers.

Outline. The rest of this survey proceeds as follows.
First, we formalize the model, and define the key cost
measures. Then we begin by considering a seemingly
simple problem in this setting, the problem of counting
a fixed number of events, in Section 2. Section 3 con-
siders monitoring the information theoretic concept of
entropy, which varies non-monotonically as the number
of events increase. We then describe a very general ap-
proach to problems in this model via the “geometric ap-
proach”, in Section 4. Section 5 considers how to main-
tain a random sample, of either the entire data, or only a
recent selection. In Section 6, we outline the history of
the model and other results in this area, while Section 7
presents some concluding remarks and open problems.

1.1 Formalizing the model
In total we have k observers (or sites), indexed S1, . . . Sk.

Each observer sees a stream of observations. Typically,
each individual observation is quite simple, but in ag-
gregate these define a complex whole. For example, in a
communication network, each event might be the arrival
of a packet at a router. The description of each event is
quite simple: the destination and payload size, say. But

the overall distribution of traffic to different destinations
observed by multiple routers is very large and complex.

We treat the observations as items A = a1, a2, . . . an,
such that each observation is seen by exactly one ob-
server. There is also a central site, or coordinator, C,
who can communicate directly with each observer. For
simplicity, we do not allow communication between ob-
servers (this can be achieved by sending messages through
the coordinator), and we assume each message has unit
cost. Varying these assumptions leads to different cost
models, some of which are studied in the works de-
scribed in Section 6. The goal of the monitoring is for
the coordinator to continually track some function f(A)
over the complete set of observations.

In this survey, we see several different cases of this
problem. In ‘threshold monitoring’, the goal is to de-
termine whether f(A) is above or below a threshold τ .
For example, we may want to know when the total net-
work traffic in the last hour exceeds a given amount; or
when the entropy of this traffic distribution exceeds a
given bound. In ‘value monitoring’, the goal is to pro-
vide an estimate f̂(A) of f(A), such that the difference
|f̂(A)−f(A)| is bounded. In the network example, this
corresponds to providing an approximate value of the
total network traffic; or of the entropy of the traffic dis-
tribution. In ‘set monitoring’, the goal is to provide a
set of values which satisfy some property. This could be
a uniform sample of the input items, or an approximate
top-k (e.g. the top-k most popular destinations in the
network).

Figure 1 gives a schematic of the model: communica-
tion is between the coordinator and the k different sites.
New observations are made over time, which prompts
more communication between the parties.

1.2 Comparison to Other Models
There are several other models of computation over

data which may be rapidly arriving or distributed. Here,
we identify some common models, and outline the key
differences.

Communication Complexity. The model of commu-
nication complexity focuses on the case where there are
two parties, Alice who holds input x and Bob who holds
input y, and they wish to work together to compute f(x, y)
for some fixed function f [29]. The most important
difference between this model and the continuous dis-
tributed monitoring case is that the inputs x and y are
fixed for communication complexity, whereas in our case,
they are allowed to vary. Moreover, it turns out that
the main focus of communication complexity is pro-
viding lower bounds or impossibility results for vari-
ous functions, whereas in continuous distributed mon-
itoring, there has been most interest in providing proto-
cols with low communication costs. However, the mod-

els are closely related: techniques from communication
complexity have been used to show lower bounds for
problems in continuous distributed monitoring [40, 39].

The Data Streaming Model. In the streaming model, a
single observer sees a large stream of events, and must
keep a sublinear amount of information in order to ap-
proximate a desired function f [32]. This omits the key
feature of the continuous distributed model, the fact that
multiple distributed observers need to compute a func-
tion of all their inputs combined. While each observer
in our model sees a stream of inputs, the model does not
insist that they use sublinear space—rather, the space
used by each observer is an additional property of any
given protocol. However, it is often desirable that the
observers use small space, and techniques from stream
processing are therefore useful to help achieve this.

Distributed Computation. Clearly, the continuous dis-
tributed model is a special case within the general area
of distributed computation. The focus on continually
maintaining a function of evolving input distinguishes
it from the general case. There are other models within
distributed computation, such as the Distributed Streams
Model [20, 21] or the Massive, Unordered Data model [17].
These capture the emphasis on distributed streams of
data, but focus on a one-time computation, rather than
continually tracking a function.

2. THE COUNTDOWN PROBLEM
We begin with a seemingly simple problem which

nevertheless admits some fairly sophisticated solutions.
In the countdown problem, each observer sees some events
(non-overlapping, so each event is seen by only one ob-
server), and we wish to determine when a total of τ
events have been seen. This is an instance of threshold
monitoring. This abstract problem captures many natu-
ral settings: we want to raise an alert when more than
τ unusual network events have been seen; report when
more than 10,000 vehicles have crossed a highway; or
identify the 1,000,000th customer; and so on. A trivial
solution has each observer send a bit for each event they
observe, which uses O(τ) communication. We aim to
considerably improve over this baseline.

A first approach. A smarter approach takes advantage
of the fact that there have to be many events at each
site before the threshold τ can have been reached. A
necessary condition is that at least one of the k sites
must observe τ/k events before the threshold can be
reached. This leads to a relatively simple scheme (de-
rived from [28]): Each site begins with an initial up-
per bound value of τ/k, and begins to observe events.
Whenever its local count ni exceeds this upper bound, it
informs the coordinator, which collects ni from each ob-
server, and the nis are reset to zero. From these, we can

determine the current “slack”: the difference S between
the current countN and the threshold τ , i.e. S = τ−N .
This slack can then be redistributed to the observers, so
each site now enforces an upper bound of S/k on ni.
Each iteration reduces the slack by a factor of (1−1/k).
When the slack (initially τ) reaches k, the observers can
switch to reporting every event. The number of slack
updates is then

log1/(1− 1
k)

(τ
k

)
=

log(τk)

log(1
1− 1

k

)
= O

(
k log

τ

k

)
The total communication isO(k2 log τ/k), since each

update causes communication of O(k).

A quadratic improvement. The step of updating every
node whenever one node reports that it has exceeded
its current local threshold is somewhat wasteful. This
can be improved on by tolerating more updates before
a global communication is triggered. This idea was in-
troduced in [10], and we follow the simplified version
described in [11].

Now the protocol operates over dlog(τ/k)e rounds.
In the jth round, each observer sends a message to the
coordinator when its local count ni reaches b2−jτ/kc,
and then subtracts this amount from ni. So, in the first
round, this bound is bτ/2kc. In the jth round, the coor-
dinator waits until it has received k messages, at which
point the round is terminated, and the coordinator alerts
each site to begin the j + 1th round, causing the bound
to approximately halve. This continues until the bound
reaches 1, when each site reports each event when it
occurs. Observe now that the communication in each
round is more “balanced”: the sites send a total of k
messages, and the coordinator sends k messages (to in-
form each site that the new round has begun). Each
of these messages can be constant size. Thus, the to-
tal communication is O(k log τ/k): a factor k improve-
ment over the prior approach.

It also follows immediately that protocol is correct: in
any round, the total “unreported” count is at most

kbτ2−j/kc ≤ τ/2j ,
while the “reported” count is at most

j−1∑
i=1

kbτ2−i/kc ≤ τ
j−1∑
i=1

2−i ≤ τ(1− 2−j).

Hence, the total count never exceeds τ until the final
round, when every event is reported directly.

Approximate Countdown. We can improve on the cost
of this protocol if we are prepared to tolerate some im-
precision in the result. Specifically, we consider pro-
tocols which approximate the answer. To approximate,
we introduce a parameter ε, and ask that the coordina-
tor can determine that the true count is below (1 − ε)τ

or above τ ; when the true count is in between, then the
coordinator can indicate either state.

The protocol is almost identical, but now we termi-
nate when the bound on the unreported count reaches
ετ . The number of rounds is reduced to log 1/ε. This
removes τ from the bounds, and makes the total cost of
the protocol O(k log 1/ε) communication.

Countdown lower bounds. We might ask if we can im-
prove further on this result. For deterministic solutions,
the answer is no: this bound is tight. This was shown
formally in [10]. The intuition is natural: consider the
perspective of a single observer, who witnesses a num-
ber of events. When this number is substantial enough,
it could be part of a global trend, and so must be reported
in case they push the total count above the threshold τ .
At the same time, it might just be a local phenomenon,
in which case any communication does not change the
overall answer. Since the observer cannot distinguish
these two cases unless it receives a message from the
coordinator, then it is forced to communicate. Based on
this argument, it is possible to show that the total amount
of communication is at least Ω(k log τ/k).

Randomized Countdown Protocol. We can give tighter
bounds if we allow both randomization and approxima-
tion. Allowing randomization means that we let the pro-
tocol have a small probability of giving an erroneous
answer at some point in its operation.

The randomized protocol operates as follows, based
on a constant c determined by the analysis. Each site ob-
serves events, and after collecting a “bundle” ε2τ/(ck)
of observations, it decides whether to send a message to
the coordinator. With probability 1/k it sends a mes-
sage, but with probability 1 − 1/k, it stays silent. The
coordinator declares that enough events have been seen
once it has received c(1/ε2 − 1/2ε) messages. The idea
here is that there will be enough opportunities to send
messages that with high probability the coordinator will
not declare too early or too late. We omit a full analysis
here: it can be shown that the amount of communication
from sites is O(1/ε2), and the coordinator is unlikely
to declare that the threshold τ has been passed before
the true count reaches (1 − ε)τ . Note that this omits
the cost to initiate and terminate the protocol, which in-
volves alerting all k sites.

Non-monotonic counts. The approaches outlined for
the countdown problem rely critically on the fact that
the function being monitored was monotonic: the num-
ber of events kept increasing. The non-monotone case
is more complex. In general, the count might increase
and decrease a lot while close to zero, forcing a lot of
communication even for approximate, randomized pro-
tocols. However, in cases when there is some random-
ness in the update streams — for example, when they

follow a random walk, or the arrivals are randomly per-
muted — then stronger guarantees can be provided [31].

3. MONITORING ENTROPY
We next consider monitoring the entropy function from

Information Theory. Consider the case where the ob-
servers are now witnessing events in the form of arrivals
of different items. These arrivals generate an empiri-
cal probability distribution (recording the relative pro-
portion of each different item observed), which we can
compute the entropy of.

Entropy. Suppose that fi denotes the number of occur-
rences of item i observed across the whole system, and
m denotes the total number of items (so m =

∑
i fi).

Then the empirical probability of i is just fi/m, and the
entropy H of the distribution is given by

H =
∑
i

fi
m

log
m

fi

The entropy H is an important metric on the distribu-
tion: if all fis are about equal, then the entropy is high,
while if most fis are small and only one is significant,
then the entropy is low. It has been argued that changes
in entropy are an important indicator of changes in be-
havior in distributed systems and networks [30].

Entropy Protocol Outline. Arackaparambil et al. de-
sign a protocol to monitor entropy in the continuous dis-
tributed monitoring model [2]. Specifically, they design
an approximate protocol, which determines whether the
current entropyH is above a given boundary τ , or below
(1 − ε)τ . The overall protocol is quite straightforward:
the key step is an invocation of an approximate proto-
col for the countdown problem from Section 2. The
protocol proceeds in a number of rounds. In the first
round, each site sends every item it receives directly to
the coordinator, until some constant number (say, 100)
of items have been observed across all sites. This is be-
cause the entropy can change quickly in this initial stage.
In each subsequent round i, the coordinator computes a
parameter τi, and runs an instance of the approximate
countdown protocol for threshold τi, with a constant ap-
proximation factor ε = 1

2 . When this protocol termi-
nates, the coordinator contacts each site, which sends a
description of its current distribution. The coordinator
combines these to estimate the current entropy, and uses
this to compute the parameter τi+1 for the next round.

The analysis relies on a basic property of the entropy
function: the change in entropy between two points is
bounded in terms of the number of new observations.
Specifically, if the number of observations at the first
point is m, and there are n new arrivals, the change
in entropy is at most n

m log(2m) [2]. Thus, since we
know the entropy at the end of round i, and we wish

to know if it changes by at most ετ/2 (the minimum
change needed to change the output of the coordinator),
we can set τi+1 = ετm

2 log(2m) , where m is the total num-
ber of observations made at the end of round i. Given
an upper bound N on the total number of observations,
we can ensure that mi, the total number of observations
at the end of round i, satisfies

mi+1 = mi + τi+1 = mi

(
1 + ετ

2 log(2mi)

)
≥ mi

(
1 + ετ

2 log(2N)

)
and hence the number of rounds to reachN observations
is O(1

ετ log2N) (provided logN ≥ τε).
The communication cost in each round is O(kD),

where D is an upper bound on the number of distinct
items observed at each of the k sites. When D becomes
large, we can instead communicate compact sketches of
the distribution, which allow us to estimate a function
(in this case, entropy) of the combination of the inputs.
There are randomized sketches which provide (1 ± ε)
approximation of the entropy using a data structure of
size Õ(1

ε2), where the Õ notation suppresses logarith-
mic factors [18, 22].

Lower bounds for entropy monitoring. Lower bounds
for this problem can be generating by defining a set of
possible inputs chosen so that any individual site cannot
tell which case it is in, and so is forced to communicate
to resolve this uncertainty. This leads to a deterministic
lower bound of Ω(kε−1/2 log(εN/k)) and a randomized
lower bound of Ω(ε−1/2 log(εN/k)) [2]. Note that the
above protocol is essentially deterministic, and so the
stronger bound applies to this case. Recently, Woodruff
and Zhang showed stronger lower bounds of Ω(k/ε2)
for entropy when the input may include arrivals and de-
partures of items [39].

4. THE GEOMETRIC APPROACH
The two results discussed so far considered specific

problems (countdown and entropy), and provided tai-
lored protocols based on exploiting specific properties
of each function. It is natural to ask whether there are
general purpose techniques for generating protocols in
this model. The “geometric approach”, due to Sharf-
man, Schuster and Keren aims to do exactly this [35].
The basic idea is to take any desired function, f , and
break down the testing of whether f(x) > τ or f(x) ≤
τ into conditions which can be checked locally, even
though x represents the global state of the system. The
central result relies on a neat geometric fact, that the area
of a convex hull of a set of points can be fully covered
by a set of spheres, one sphere incident on each point.

4.1 Formal Description

Figure 2: Current estimate e (central red dot), drift
vectors ∆vi (arrows out of e), convex hull (dotted
outline) and enclosing balls

Preliminaries. Each stream observed at each site is as-
sumed to define a current d dimensional vector vi. In the
countdown case, each vi was simply the local count; in
the entropy case it was the local frequency distribution.
With each site we associate a weight λi such that these
weights sum to 1, i.e.

∑k
i=1 λi = 1. These weights

might reflect the number of observations at each site, so
in this case λi = ni/

∑k
i=1 ni. Or they may simply be

uniform, i.e. λi = 1/k for all i. Initially, assume that
these weights are fixed and known to all nodes.

The weighted combination of all local vectors vi gives
the global vector v =

∑k
i=1 λivi. The instance of the

threshold monitoring problem is then to determine whether
f(v) ≤ τ or f(v) > τ , for a fixed function f and thresh-
old τ . For example, we can map the countdown problem
into this setting: here, we set λi = 1/k, each vi is the
single dimensional quantity 〈ni〉 (number of event ob-
servations at site i), and f(v) = ‖v‖1. We set τ here to
be 1/k times the desired threshold. In other words, v is
the mean of the event counts at each site, and we want
to alert when this mean exceeds a threshold that implies
that the total count is above the global threshold.

Protocol Description. At any moment during the pro-
tocol, each site has previously informed the coordinator
of some prior state of its local vector, v′i. So the coor-
dinator knows v′i, but not the current state vi. Based on
this knowledge, the coordinator has an estimated global
vector e =

∑k
i=1 λivi. Clearly, if the local vectors vi

move too far from their last reported value v′i, it is pos-
sible that the τ threshold may be violated. Therefore,
each site monitors its drift from its last reported value,
as ∆vi = vi − v′i. Thus we can write the current global
vector, v, in terms of the current estimate e and the drift
vectors:

v =

k∑
i=1

λivi =

k∑
i=1

λi(e+ ∆vi) = e+

k∑
i=1

λi∆vi

Observe that this is a convex combination of drift vec-

tors. Therefore, the current global vector v is guaranteed
to lie somewhere within the convex hull of the drift vec-
tors vi around e. Figure 2 shows an example in d = 2
dimensions, with five drift vectors emanating from an
estimate e, and their convex hull. The current value must
lie somewhere within this shaded region.

To transform the global condition into a local one, we
place a ball on each local drift vector, of radius 1

2‖∆vi‖2
and centered at e+ 1

2∆vi. This is illustrated in Figure 2.
It can be shown that the union of all these balls entirely
covers the convex hull of drift vectors [35]. Thus, we
reduce the problem of monitoring the global vector to
the local problem of each site monitoring the ball of its
drift vector.

Specifically, given the function f , we can partition the
space into two sets: X , which is those points x for which
f(x) ≤ τ , and X̄ , which is those for which f(x) > τ .
The basic protocol is now quite simple: each site mon-
itors its drift vector ∆vi, and checks with each new ob-
servation if the ball given by e + 1

2∆vi is monochro-
matic, i.e. all points in the ball fall in the same set (X or
X̄). If this is not the case, then the site communicates to
the coordinator. The coordinator then collects the cur-
rent vectors vi from each site to compute a new estimate
e, which resets all drift vectors to 0. From the above dis-
cussion of convex hulls, it is clear that when all balls are
monochromatic in the same set (X or X̄), then v must
also be in the same set, and so the coordinator knows the
correct state.

4.2 Extensions to the Geometric Approach
There are several extensions and variations of this ba-

sic geometric monitoring scheme which are able to re-
duce the cost, and avoid some bad cases.

Local Resolution via slack. Whenever a local drift vec-
tor creates a non-monotone ball, it causes communica-
tion with all sites, to collect their current vectors and
distribute the new estimate. This global communica-
tion can be be postponed by the coordinator, who can
introduce additional “slack”, in the form of offset vec-
tors. That is, the coordinator can contact a small num-
ber of sites, and allocate a set of vectors δi chosen so
that the balls for ∆vi + δi are now monochromatic, and∑k
i=1 δi = 0. This idea is discussed in detail in [35];

similar concepts arose earlier, e.g. in work on tracking
top-k of frequency distributions [3].

Approximate Thresholds. The version of the protocol
described is for an exact version. We can reduce the
cost by relaxing this requirement, and introducing an ε
tolerance around τ . Applying this, when f(v) < τ , we
define the sets X and X̄ as before, but when we are
above the threshold, we define the sets based on f(x) <
(1 − ε)τ . This gives more room for the balls to grow,

and prevents constant communication when the current
value of f(v) is close to τ .

Affine Transformations and Reference Vectors. The
use of spherical balls is a natural one, but it is not the
only choice. In [36], the authors observe that one can
perform any affine transformation on the input, without
changing the region covered by the convex hull. In some
cases, the resulting ellipsoids can more tightly conform
to the convex hull than spheres would. In the same work,
the authors discuss replacing the estimate ewith a differ-
ence reference vector. This can reduce communication
by providing a larger “safe area” for the drift vectors to
occupy.

Making Predictions. The concept of “prediction” was
introduced by Cormode, Garofalakis, Muthukrishnan and
Rastogi [9]. The idea is that if items are continually ar-
riving at approximately even rates, then each site can
share a simple prediction model of where its distribution
will be at any given point in time, rather than relying on
a static historical snapshot. Recent work has combined
this idea with the geometric approach, and shown that
this can be very effective in reducing the cost of moni-
toring [19].

5. SAMPLING
So far we have concentrated on the case of thresh-

old monitoring: tracking which side of a threshold τ a
given function f is on. This is actually quite a general
task. For example, we might instead want to monitor the
value of f , so that we always have an approximation to
its value (value monitoring). But this can be modeled as
multiple instances of the threshold monitoring task, for
thresholds 1, (1 + ε), (1 + ε)2 Tracking all these in
parallel can be done by running O(1

ε log T) instances of
the threshold monitoring solution in parallel, where T is
maximum value of the function. Although this 1/ε fac-
tor is large enough to make it worthwhile designing new
solutions for value monitoring problems, the techniques
and approaches that have been used for value monitor-
ing and threshold monitoring are quite similar.

There are some other monitoring tasks which do not
fit either the threshold monitoring or value monitoring
paradigms, and instead require us to track the members
of a set (set monitoring). For example, we might want
to extract information such as which are the k most fre-
quently observed items across all the event streams [3].
In this section, we describe a basic task: to draw a uni-
form sample from the different event streams, based on
the results from [11, 38]. We describe two variations:
where we want to sample over all the events ever ob-
served (the infinite window case), and where we want
a sample only over the more recent events (the sliding
window case).

5.1 Infinite Window
Recall the set-up: we have k distributed sites, each

of which is observing events occurring at arbitrary and
varying rates. We wish to compute a sample of size s
of these events. First, we consider drawing a sample
without replacement. The basic idea is to sample across
all sites with the same probability p. All sampled items
are sent to the coordinator to form a collection, from
which s items can be extracted uniformly. Periodically,
the coordinator may tell a site to reduce its local p value,
and will also prune its collection. We want to bound the
resources taken for this process, in terms of the amount
of communication, and space needed by the participants.

A simple protocol is as follows [38]: each site imain-
tains a local pi, initially 1. For each item that arrives at
a site, a random value 0 ≤ u ≤ 1 is choosen. If u ≤ pi,
the item is forwarded to the coordinator, which returns
an updated p value to use as the new pi. The coordina-
tor maintains a set of k items and their corresponding u
values, and when a site sends a new item, the coordina-
tor returns the current k’th smallest u value it has seen
so far. The correctness of this process follows imme-
diately from the description: the coordinator correctly
maintains the k items achieving the k smallest (random)
u values across the input, which gives a uniform random
sample.

The analysis is a little more involved, but can be done
by relating the cost of this simple protocol to a slightly
more complex one that keeps a fixed sampling rate p
across all sites, which is periodically decreased by a
constant factor [11, 38]. The communication cost can
then be bounded (with high probability) asO(k logk/s n+
s log n). One can show a matching lower bound by ar-
guing that this many different items should appear in a
random sample over the course of the protocol [11].

The protocol can also be extended to sample with re-
placement. A trivial solution just runs the above proto-
col with s = 1 in parallel s times over. However, this
blows up the costs by a factor of s. Instead, it is possible
to take this idea, but to keep all instances of the protocol
sampling at the same rate, thus reducing the commu-
nication from the coordinator. Analyzing this process
allows us to argue that communication of this protocol
is bounded by O((k + s log s) log n).

5.2 Sliding Windows
A natural variation of continuous distributed moni-

toring problems is when we do not want to track events
across an unbounded history, but rather to see only the
impact of recent events. For example, in a network we
may only want to include events which have happened
within the last hour; in a sensor network, we may only
want to track a window of 1 million recent events, and
so on. A naive solution would just be to pick a fixed

interval—say, 1 hour—and restart the protocol afresh at
multiples of this interval. This has the benefit of simplic-
ity, but means that we re-enter a ‘start-up’ phase every
time the protocol restarts, and so we lose information
and history around this time. Instead, we describe an
approach that is almost as simple as this naive solution,
but which provides a sample of an exact sliding window.

A Tale of Two Windows. The key insight needed to
generate the solution is due to Braverman, Ostrovsky
and Zaniolo [4], who observed that any sliding window
can be decomposed into two pieces, relative to a fixed
point in time: a growing window as new items arrive af-
ter the fixed point, and a shrinking or expiring window
of items from before the fixed point. Suppose we want
to maintain a sample of items drawn from the last W
global arrivals. To draw a sample uniform from these
W , we want to take all unexpired sampled items from
the expiring window, and make up the shortfall by sam-
pling from those in the growing window. A simple prob-
ability calculation shows that this does indeed provide
us a uniform sample from the most recent W arrivals.

To implement this idea, we can run an instance of
the countdown protocol to count off every W arrivals.
We can also run an instance of the above sliding win-
dow protocol for drawing a sample beginning at every
multiple of W arrivals, which we halt when W fur-
ther items have arrived. The only additional information
needed is that the coordinator needs to know when an
item sampled in the expiring window has expired. This
can be done by starting a fresh instance of the count-
down problem for every sampled item (and terminat-
ing this when the item is ejected from the coordinator’s
collection). This gives the coordinator exactly what is
needed to perform the above sampling process: drawing
unexpired items from the expiring window, and making
up the shortfall from the growing window. The cost of
this protocol now grows as O(ks log(W/s)) per win-
dow, but this is unavoidable: [11] shows that any proto-
col for this problem must incur Ω(ks log(W/ks)) cost.

6. OTHER RELATED WORK
The idea of continuous distributed monitoring is a

natural one, and as such it has arisen independently in
different areas, under different labels. An early form
was as ‘Reactive Monitoring’ in the networking world.
Here, Dilman and Raz introduced a problem that was
essentially a variant of the countdown problem, and pro-
vided some solutions based on distributing slack amongst
the observers [16]. The notion of testing whether a func-
tion had exceeded a global threshold appeared under the
name of “distributed triggers”, and was motivated by
Jain et al. in a workshop paper [26].

The continuous distributed model has attracted most
attention in the data management community. Early work

by Olston, Jiang and Widom focused on tracking a func-
tion over single values which could vary up and down,
such as monitoring their sum [34]. Here, some uncer-
tainty can be tolerated, so they introduce a natural “fil-
ter” approach, which assigns a local filter to each site so
that if the current value is within the filter, it does not
need to be reported. When a site’s value falls outside
its filter, the current value is reported, and the filter is
re-centered on this value. Over time, some filters can
be widened and others narrowed so that the total uncer-
tainty remains bounded, but more slack is allocated to
values that are less stable.

A similar approach was used by Babcock and Olston
to report the top-k items from a distribution [3]. Again,
some tolerance for approximate answers is necessary to
avoid communicating every change. The central idea
is to choose a set of “adjustment factors” for each item
at each site, so that the local distribution after adjust-
ment appears identical to the global distribution. Each
site monitors its (adjusted) distribution, and reports if
the local (adjusted) top-k changes. In this case, a costly
‘rebalancing’ stage is invoked.

The use of “predictions” was applied to complex func-
tions such as join sizes (or equivalently, the inner prod-
uct of large vectors) by Cormode and Garofalakis [7].
Here, the idea was to operate predominantly in “sketch
space”: a random linear transformation of the input down
to low-dimensional vectors. Due to the linearity of the
sketch transformation, a prediction based on linear or
quadratic growth in different dimensions could be cap-
tured by a sketch of the (first order or second order) dif-
ference between past values, which in turn is the appro-
priate difference of sketches. Violations of predictions
can be detected by testing the deviation between the ac-
tual and predicted sketches.

Huang et al. worked on tracking spectral properties of
distributed data, where each time step adds a new row to
a matrix of observations from different observers. The
quantity of interest to be monitored here was the resid-
ual energy of the signal after removing the projections
along the principal components [25]. Other work stud-
ied anomaly detection, where an anomaly occurs when
the number of events exceeds an expected rate, over any
historical window [24]. This can be seen as a variant
of the countdown problem where there is a background
process which depletes the number of observed events
at a uniform rate. A different approach to this problem
is due to Jain et al. [27], who consider optimizing slack
allocation within a hierarchical network topology, and
robustness within a dynamic network (nodes dying, or
new nodes joining).

Many other specific functions have been studied in
this model, including monitoring the cardinality of set
expressions [15] tracking the (large) number of distinct

elements observed [12], tracking clusterings of points in
a metric space [13], sparse approximation of signals [33],
and conditional entropy [1].

The continuous distributed model has also been stud-
ied from a more theoretical perspective. [10] revisited
various fundamental functions: F0 (number of distinct
elements), F1 (count/countdown) and F2 (self-join size
or Euclidean norm), and gave the first or improved worst-
case bounds for these problems, as well as the first lower
bounds. Woodruff and Zhang provided strong lower
bounds for a variety of such foundational problems, based
on the hardness of a number of primitive problems in
communication complexity [39].

Yi and Zhang proposed improved bounds for tracking
quantiles and heavy hitters [40]. Specifically, they show
how both problems can be solved with total communica-
tion O(k/ε log n) to provide ε-approximate results over
streams of total length n. Chan et al. study the same
problems in the context of time-based sliding windows,
where only recent events are counted [5]. Cormode and
Yi observed that the ‘two window’ approach used for
sampling can also be applied to simplify the analysis,
and achieve improved bounds [14].

7. CONCLUDING REMARKS
This survey has aimed to give a flavour of the line of

work in continuous distributed monitoring, by highlight-
ing a few problems and approaches, and identifying the
breadth of other related work. For a different perspec-
tive (with, admittedly, a similar authorial tone), there are
surveys and tutorials [8, 6].

Since those prior surveys, there has certainly been
progress made in this area. In particular, additional prob-
lems have been studied; more robust bounds—both up-
per and lower bounds—have been proved on the com-
munication costs, as well as other costs such as space;
variant models have been introduced, such as sliding
windows and the online-tracking model; and a broader
set of researchers have worked on related problems (see,
for example, the LIFT project, lift-eu.org/).

At the same time, many questions posed previously
have yet to be fully addressed. Next, I outline two quite
different directions for this area that are capable of gen-
erating interesting and important results.

Systems for Continuous Distributed Monitoring. While
there has been considerable progress on developing pro-
tocols and techniques for continuous distributed moni-
toring, these have yet to translate to practical implemen-
tations. There have been several prototype studies of
protocols in the works introducing them, which have in-
dicated the potential for orders of magnitude savings in
the amount of communication incurred. However, as far
as I am aware, these have not translated to widespread
adoption of these ideas, or incorporation into standard

protocols. Moreover, these trials have tended to be in
simulated environments on recorded data streams, rather
than “live” tests. Possibly the lack of uptake of these
methods is due to a lack of urgency for the problems
considered. While orders of magnitude saving may be
possible, if the overhead of centralization, or the delay
of polling is considered acceptable, then there is no re-
quirement to implement a more complex monitoring so-
lution. In other words, attention needs to focus on set-
tings where the naive solutions do place an intolerable
burden on the network. One interesting example arises
in Massively Multi-player Online Role Playing Games
(MMORPGs). Here, it has been argued that distributed
monitoring of quantities (such as the health scores of
players and enemies) would benefit from smarter solu-
tions [23].

In terms of open problems, the basic challenge is to
first develop libraries of code, and then evolve these
into general purpose systems, so that they can be eas-
ily adopted by programmers and data owners. Or, there
should exist systems for distributed monitoring which
are as accessible and general purpose as traditional cen-
tralized database management systems. It remains to
determine what classes of functions such tools should
support. Should they be based on a collection of “typi-
cal” functions (such as the countdown and entropy mon-
itoring problems), or adopt the more generic geometric
monitoring approach? Should there be a general pur-
pose, high level query language for flexibly specifying
monitoring problems?

A Deeper Theory of Continuous Distributed Moni-
toring. In recent years, there have been theoretical re-
sults shown for problems in continuous distributed mon-
itoring. For the first time, strong upper bounds on the
amount of communication of certain protocols have been
shown, when previously only heuristic results were known.
In some cases these are complemented by lower bounds,
sometimes matching or almost matching. Nevertheless,
it seems that a richer notion of continuous communica-
tion complexity is called for.

There are several powerful results in the literature which
could potentially be extended. The famed Slepian-Wolf
theorem [37] captures the case where there are corre-
lated sources. They can encode their outputs to allow
correct decoding, while using a total amount of com-
munication proportional to the joint entropy. We can
cast this “distributed source coding” as a special case
of continuous distributed monitoring, where the target
is the streams. Then, what we seek is a generalization
of Slepian-Wolf, that will capture a function of multiple
inputs, rather than just the identity function. This could
also take advantage of correlations over time as well as
space.

Acknowledgments.
I thank S. Muthukrishnan and Ke Yi for many comments
and suggestions.

8. REFERENCES
[1] C. Arackaparambil, S. Bratus, J. Brody, and

A. Shubina. Distributed monitoring of conditional
entropy for anomaly detection in streams. In
IPDPS Workshops, 2010.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti.
Functional monitoring without monotonicity. In
International Colloquium on Automata,
Languages and Programming (ICALP), 2009.

[3] B. Babcock and C. Olston. Distributed top-k
monitoring. In ACM SIGMOD International
Conference on Management of Data, 2003.

[4] V. Braverman, R. Ostrovsky, and C. Zaniolo.
Optimal sampling from sliding windows. In ACM
Principles of Database Systems, 2009.

[5] H.-L. Chan, T.-W. Lam, L.-K. Lee, and H.-F.
Ting. Continuous monitoring of distributed data
streams over a time-based sliding window. In
Symposium on Theoretical Aspects of Computer
Science (STACS), 2010.

[6] G. Cormode and M. Garofalakis. Efficient
strategies for continuous distributed tracking
tasks. IEEE Data Engineering Bulletin,
28(1):33–39, March 2005.

[7] G. Cormode and M. Garofalakis. Sketching
streams through the net: Distributed approximate
query tracking. In International Conference on
Very Large Data Bases, 2005.

[8] G. Cormode and M. Garofalakis. Streaming in a
connected world: Querying and tracking
distributed data streams. In ACM SIGMOD
International Conference on Management of
Data, 2007.

[9] G. Cormode, M. Garofalakis, S. Muthukrishnan,
and R. Rastogi. Holistic aggregates in a networked
world: Distributed tracking of approximate
quantiles. In ACM SIGMOD International
Conference on Management of Data, 2005.

[10] G. Cormode, S. Muthukrishnan, and K. Yi.
Algorithms for distributed, functional monitoring.
In ACM-SIAM Symposium on Discrete
Algorithms, 2008.

[11] G. Cormode, S. Muthukrishnan, K. Yi, and
Q. Zhang. Continuous sampling from distributed
streams. J. ACM, 59(2):25, 2012.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang.
What’s different: Distributed, continuous
monitoring of duplicate resilient aggregates on
data streams. In IEEE International Conference
on Data Engineering, 2006.

[13] G. Cormode, S. Muthukrishnan, and W. Zhuang.
Conquering the divide: Continuous clustering of
distributed data streams. In IEEE International
Conference on Data Engineering, 2007.

[14] G. Cormode and K. Yi. Tracking distributed
aggregates over time-based sliding windows. In
ACM Conference on Principles of Distributed
Computing (PODC), 2011.

[15] A. Das, S. Ganguly, M. Garofalakis, and
R. Rastogi. Distributed set-expression cardinality
estimation. In International Conference on Very
Large Data Bases, 2004.

[16] M. Dilman and D. Raz. Efficient reactive
monitoring. In IEEE INFOCOMM, 2001.

[17] J. Feldman, S. Muthukrishnan, A. Sidiropoulos,
C. Stein, and Z. Svitkina. On distributing
symmetric streaming computations. In ACM-
SIAM Symposium on Discrete Algorithms, 2008.

[18] S. Ganguly and B. Lakshminath. Estimating
entropy over data streams. In European
Symposium on Algorithms (ESA), 2006.

[19] N. Giatrakos, A. Deligiannakis, M. N.
Garofalakis, I. Sharfman, and A. Schuster.
Prediction-based geometric monitoring over
distributed data streams. In ACM SIGMOD
International Conference on Management of
Data, pages 265–276, 2012.

[20] P. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In ACM
Symposium on Parallel Algorithms and
Architectures (SPAA), pages 281–290, 2001.

[21] P. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In ACM
Symposium on Parallel Algorithms and
Architectures (SPAA), 2002.

[22] N. J. A. Harvey, J. Nelson, and K. Onak.
Sketching and streaming entropy via
approximation theory. In IEEE Conference on
Foundations of Computer Science, 2008.

[23] K. Heffner and G. Malecha. Design and
implementation of generalized functional
monitoring, 2009.
http://www.people.fas.harvard.
edu/˜gmalecha/proj/funkymon.pdf,

[24] L. Huang, M. N. Garofalakis, A. D. Joseph, and
N. Taft. Communication-efficient tracking of
distributed cumulative triggers. In ICDCS, 2007.

[25] L. Huang, X. Nguyen, M. Garofalakis,
J. Hellerstein, A. D. Joseph, M. Jordan, and
N. Taft. Communication-efficient online detection
of network-wide anomalies. In IEEE
INFOCOMM, 2007.

[26] A. Jain, J. Hellerstein, S. Ratnasamy, and
D. Wetherall. A wakeup call for internet

monitoring systems: The case for distributed
triggers. In Proceedings of the 3rd Workshop on
Hot Topics in Networks (Hotnets), 2004.

[27] N. Jain, M. Dahlin, Y. Zhang, D. Kit, P. Mahajan,
and P. Yalagandula. STAR: Self-tuning
aggregation for scalable monitoring. In
International Conference on Very Large Data
Bases, 2007.

[28] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring
of thresholded counts. In ACM SIGMOD
International Conference on Management of
Data, 2006.

[29] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[30] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In
ACM SIGCOMM, 2005.

[31] Z. Liu, B. Radunovic, and M. Vojnovic.
Continuous distributed counting for
non-monotonic streams. In ACM Principles of
Database Systems, pages 307–318, 2012.

[32] S. Muthukrishnan. Data streams: Algorithms and
applications. In ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[33] S. Muthukrishnan. Some algorithmic problems
and results in compressed sensing. In Allerton
Conference, 2006.

[34] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data
streams. In ACM SIGMOD International
Conference on Management of Data, 2003.

[35] I. Sharfman, A. Schuster, and D. Keren. A
geometric approach to monitoring threshold
functions over distributed data streams. In ACM
SIGMOD International Conference on
Management of Data, 2006.

[36] I. Sharfman, A. Schuster, and D. Keren. Shape
sensitive geometric monitoring. In ACM
Principles of Database Systems, 2008.

[37] D. Slepian and J. Wolf. Noiseless coding of
correlated information sources. IEEE
Transactions on on Information Theory,
19:471–480, 1973.

[38] S. Tirthapura and D. P. Woodruff. Optimal
random sampling from distributed streams
revisited. In DISC, 2011.

[39] D. P. Woodruff and Q. Zhang. Tight bounds for
distributed functional monitoring. In ACM
Symposium on Theory of Computing, pages
941–960, 2012.

[40] K. Yi and Q. Zhang. Optimal tracking of
distributed heavy hitters and quantiles. In ACM
Principles of Database Systems, 2009.

