
Algorithms for Distributed Functional Monitoring

Graham Cormode

AT&T Labs

and

S. Muthukrishnan

Google Inc.

and

Ke Yi

Hong Kong University of Science and Technology

We study what we call functional monitoring problems. We have k players each receiving a
stream of items, and communicating with a central coordinator. Let the multiset of items received
by player i up until time t be Ai(t). The coordinator’s task is to monitor a given function f com-
puted over the union of the inputs ∪iAi(t), continuously at all times t. The goal is to minimize
the number of bits communicated between the players and the coordinator. Of interest is the
approximate version where the coordinator outputs 1 if f ≥ τ and 0 if f ≤ (1− ε)τ . This defines
the (k, f, τ, ε) distributed functional monitoring problem. Functional monitoring problems are
fundamental in distributed systems, in particular sensor networks, where we must minimize com-
munication; they also connect to the well studied streaming model and communication complexity.
Yet few formal bounds are known for functional monitoring.

We give upper and lower bounds for the (k, f, τ, ε) problem for some of the basic f ’s. In
particular, we study the frequency moments Fp for p = 0, 1, 2. For F0 and F1, we obtain monitoring
algorithms with costs almost the same as their one-shot computation algorithms. However, for
F2 the monitoring problem seems much harder. We give a carefully constructed multi-round
algorithm that uses “sketch summaries” at multiple levels of details and solves the (k, F2, τ, ε)
problem with communication Õ(k2/ε + k3/2/ε3). Our algorithmic techniques are likely to be
useful for other functional monitoring problems as well.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms, theory

Additional Key Words and Phrases: Distributed computing, functional monitoring

Ke Yi was supported in part by Hong Kong Direct Allocation Grant (DAG07/08).
A preliminary version of the paper appeared in the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2008.
Authors’ addresses: Graham Cormode, AT&T Labs, Florham Park, NJ; email: gra-
ham@research.att.com. S. Muthukrishnan, Google Inc., New York, NY; email:
muthu@google.com. Ke Yi, HKUST, Clear Water Bay, Hong Kong, China; email: yike@cse.ust.hk
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · G. Cormode et al.

1. INTRODUCTION

We introduce the distributed functional monitoring problem with a simple example,
SUM. Suppose we have two observers, Alice and Bob, who each see arrivals of items
over time. At time t, Alice has a multiset A(t) of items and Bob has B(t). Both
Alice and Bob have an individual two-way communication channel with Carole
so that Carole can monitor C(t) = |A(t)| + |B(t)|. Our goal is to minimize the
total communication with Carole; Alice and Bob do not communicate with each
other, but up to a factor of 2, that is not a limitation. As stated, it is easy to see
that all Alice or Bob can do is to send a bit whenever they each see a new item,
and hence, communicating a total of |A(t)| + |B(t)| bits trivially. Of interests is
a relaxed version of the problem where, given ε, Carole’s new task is to output
0 whenever C(t) ≤ (1 − ε)τ and must output 1 when C(t) ≥ τ for a threshold τ .
Now the problem is nontrivial. For example, here are some possible communication
procedures:

—[Coin Toss] Alice and Bob each flip a (possibly biased) coin upon the arrival of
an item and send Carole one bit whenever the coin turns up heads.

—[Global] Alice and Bob know a rough estimate of ∆ = τ−C(t′) from some prior
time t′, and each send a bit whenever the number of items they have received
exceeds ∆/2. Carole updates Alice and Bob with new estimates from time to
time correspondingly.

—[Local] Alice and Bob each create a model for arrival times of items and commu-
nicate the model parameters to Carole; they send bits to summarize differences
when their current data significantly differs from their models. If the sources are
compressible, this can yield savings.

The question is: What is the (expected) communication cost of these procedures,
and what is the optimal bound?

We study such functional monitoring problems more generally in which (a) there
are k ≥ 2 sites, and (b) we wish to monitor C(t) = f(A1(t)∪· · ·∪Ak(t)) where Ai(t)
is the multiset of items collected at site i by time t, and f is a monotonically non-
decreasing function in time. Note that the function f should depend only on the
union of the multisets Ai(t), and on which sites where the items have been received
or the arrival order. There are two variants: in threshold monitoring, or simply
monitoring, the goal is to determine when C(t) (approximately) exceeds a threshold
τ , as illustrated in the SUM problem above; in value monitoring, often also called
tracking, we want to provide a good approximation to C(t) at all times t. Note that
for a single-valued function f , value monitoring directly solves threshold monitoring,
and running O(1

ε log T) instances of a threshold monitoring algorithm for thresholds
τ = 1, (1 + ε), (1 + ε)2, . . . , T solves value monitoring with relative error 1 + ε,
assuming 1 ≤ f ≤ T . So the two variants differ by at most a factor of O(1

ε log T).
In many applications, the threshold version is more important, so we focus on this
case and we call such a problem (k, f, τ, ε) distributed functional monitoring. Our
interests in these problems come from both applied and foundational concerns.

Applied motivations. (k, f, τ, ε) functional monitoring problems arise immedi-
ately in distributed monitoring systems. For example, in a sensor network, sensors
are distributed to monitor the environment and detect certain events. The straight-
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 3

forward way is to take measurements periodically, send them to a central site, and
use back-end systems to analyze the entire data trace. However, in many modern
sensor networks applications, the sensors are distributed arbitrarily and work with
battery power [Juang et al. 2002; Madden et al. 2005]. They have to conserve their
power for long use as replacement is costly or even impossible. Since radio use is the
biggest source of battery drain, frequently sending all the data from sensors to the
central site will be very energy-inefficient; but reducing the frequency will increase
the response time of event detection. On the other hand, these sensors have some
memory and computing power, so it is possible for the sensors to perform (cheaper)
local computations and be more careful in the usage of radio for communication.
As many events are captured by testing if a certain function exceeds a threshold,
they can be exactly formulated as (k, f, τ, ε) functional monitoring problems.

In this context, various (k, f, τ, ε) functional monitoring problems have been stud-
ied under names like “reactive monitoring” (in networking [Dilman and Raz 2001])
and “distributed triggers” (in databases [Jain et al. 2004]). Prior works have con-
sidered many different functions f [Babcock and Olston 2003; Cormode and Garo-
falakis 2005; Cormode et al. 2006; 2007; Das et al. 2004; Dilman and Raz 2001;
Huang et al. 2007; Jain et al. 2004; Sharfman et al. 2006], and typically each of
these presents algorithms (often variants of Global or Local described earlier)
with correctness guarantees, but no nontrivial communication bounds. Some of
the above works take a distributed streaming approach where in addition to opti-
mizing the bits communicated, the algorithms also optimize the space and time
requirements of each of the sensors.

Foundational motivations. Distributed functional monitoring is a natural com-
bination of two well studied computation models: the k-party communication model
and data streaming. In communication complexity [Yao 1979], the problem is to
study the minimum number of bits needed to compute a given function f of dis-
tributed inputs over k parties. Framed in our setting, the goal is to compute C(t)
for a particular time t. We call it a one-shot problem. It is clear that the monitoring
problem is at least as difficult as the corresponding one-shot problem (cf. Proposi-
tion 1).

The streaming model [Alon et al. 1999] has received much attention in recent
years. Here the goal is to track C(t) for all t but there is only one site (k = 1), and we
are interested in the space complexity of the tracking algorithm, not communication.
There are many functions f that can be computed with a relative ε error in the
streaming model, using poly(1/ε, log n) space: this includes problems such as the
frequency moments, clustering, heavy hitters, quantiles, and so on [Muthukrishnan
2005].

It is well known that if a problem can be solved in the streaming model with
small space, it can also be solved in the communication model with small commu-
nication, with only an extra O(k) factor. This connection has been well exploited to
derive space lower bounds on the former. But it is unclear whether a space-efficient
streaming algorithm also implies a communication-efficient protocol for the cor-
responding distributed functional monitoring problem. In this paper, we provide
some positive evidence on this question by showing that for some problems, the
communication upper bound for a functional monitoring problem is only an O(k)

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · G. Cormode et al.

factor larger than the space bound of the corresponding streaming algorithm, ig-
noring polylogarithmic factors; but for some other problems, a more appreciable
gap remains.

The model. Below we define our computation model more formally, under which
we will analyze the algorithms and derive lower bounds. Let A = (a1, . . . , am) be
a sequence of items, where ai ∈ [n]. The sequence A is observed in order by k ≥ 2
remote sites S1, . . . , Sk collectively, i.e., the item ai is observed by exactly one of
the sites at time ti, where t1 < t2 < · · · < tm. Let A(t) be the multiset of items
received up until time t from all sites, and let f : [n]m → R be the function to
be monitored. There is a designated coordinator C that is responsible for deciding
if f(A(t)) ≥ τ for some given threshold τ . More precisely, for some parameter
0 < ε ≤ 1/4, the coordinator should output 1 if f(A(t)) ≥ τ ; output 0 if f(A(t)) ≤
(1− ε)τ ; and is allowed either answer in-between. If f(A(t)) is non-decreasing, we
can equivalently ask the coordinator to decide a time instance t, at which point an
alarm is raised, such that ta ≤ t ≤ tb, where ta = arg mint{f(A(t)) > (1− ε)τ} and
tb = arg mint{f(A(t)) ≥ τ}. The algorithm terminates when we reach time t. We
also consider probabilistic protocols that may err with some probability δ < 1/2.

We define the manner of communication more precisely as follows. There is a
two-way communication channel between the coordinator C and each of the k sites,
but there is no direct communication between any two sites. Communication can
only be initiated by a site upon the arrival of an element; the coordinator never
initiates communication spontaneously, nor does a site when no element arrives.
Specifically, suppose site Sj receives the item ai at time ti. Based on its local
status, Sj may choose to send a message to C, which in turn may trigger iterative
communication with other sites. We assume that communication is instantaneous.
When all communication finishes, all the sites who have been involved may have
new statuses, getting ready for the next item ai+1 to arrive.

We assume that all parties know the values of τ , ε, and n in advance, but not m.
The cost of an algorithm is measured by the number of bits that are communicated
in total. We assume that the threshold τ is sufficiently large to simplify analysis and
the bounds. Dealing with small τ ’s is mainly technical: we just need to carefully
choose when to use the näıve algorithm that simply sends every single item to the
coordinator.

The following simple observation implies that the monitoring problem is almost
always as hard as the corresponding one-shot problem.

Proposition 1. For any monotone function f , an algorithm for (k, f, τ, ε) func-
tional monitoring that communicates g(k, n,m, τ, ε) bits implies a one-shot algo-
rithm that communicates g(k, n,m, τ, ε) +O(k) bits.

Proof. The site S1 first starts running the monitoring algorithm on its local
stream, while the rest pretend that none of their elements have arrived. When S1

finishes, it sends a special message to the coordinator, which then signals S2 to
start. We continue this process until all k sites have finished, or an alarm is raised
(output changes to 1) in the middle of the process.

Our results. Several works in the database community have considered functional
monitoring problems essentially in the model we described above [Cormode and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 5

Garofalakis 2005; Cormode et al. 2005; Cormode et al. 2007; Keralapura et al.
2006], but the devised solutions typically are heuristics-based [Babcock and Olston
2003; Olston et al. 2003; Sharfman et al. 2006], with no or very large worst-case
bounds on the communication. No lower bounds are known. In this paper, we
take a first step towards a formal study of functional monitoring. In particular, we
focus on the frequency moments, i.e., f = Fp =

∑
im

p
i where mi is the frequency

of item i, and derive both upper and lower bounds for monitoring these functions.
Estimating the frequency moments has become the keystone problem in streaming
algorithms since the seminal paper of Alon et al. [1999]. In particular, the first
three frequency moments (p = 0, 1, 2) have received the most attention. F1 is the
simple SUM problem above, F0 corresponds to the number of distinct items, and
F2 has found many applications in statistics and databases.

—For the (k, F1, τ, ε) problem, we show deterministic bounds of O(k log 1/ε) and
Ω(k log 1

εk)1; and randomized bounds of O(1
ε2 log 1

δ) and Ω(min{k, 1
ε }), where δ is

the algorithm’s probability of failure. Hence, randomization can give significant
asymptotic improvement for large k, and curiously, k is not an inherent factor.
These bounds improve the previous result of O(k/ε · log(τ/k)) in [Keralapura
et al. 2006].

—For the (k, F0, τ, ε) problem, we give a (randomized) upper bound of2 Õ(k/ε2),
which improves upon the previous result of O(k2/ε3 log n log 1

δ) in [Cormode et al.
2006]. We also give a lower bound of Ω(k). It is well known [Alon et al. 1999]
that any deterministic algorithm that solves even the one-shot F0 or F2 problem
has to use Ω(n) communication.

—Our most involved results are for the (k, F2, τ, ε) problem: we present an upper
bound of Õ(k2/ε+(

√
k/ε)3) improving the previous result of Õ(k2/ε4) [Cormode

and Garofalakis 2005]. We also give an Ω(k) lower bound. The algorithm is a
sophisticated variation of Global above, with multiple rounds, using different
“sketch summaries” at multiple levels of accuracy.

Table I summarizes our results. For comparison, we also include the one-shot
costs: observe that for F0 and F1, the cost of monitoring is no higher than the
one-shot computation and close to the lower bounds; but for F2 is there a clear gap
to address.

In this paper, we are mainly interested in the communication cost of the algo-
rithms, and our lower bounds hold even assuming that the remote sites have infinite
computing power. Nevertheless, all our algorithms can be implemented with low
memory and computing costs at the remote sites and the coordinator.

Related results. Since this research was first published, [Cormode et al. 2008],
some other functions have been studied in the distributed functional monitor-
ing/tracking framework in the theory community. In [Arackaparambil et al. 2009],
Arackaparambil et al. considered some functions that are not monotone, such as
the empirical entropy. They demonstrate that monotonicity is not essential for
function monitoring to work well: they show that as more arrivals occur, the en-
tropy cannot change too fast, and so the total monitoring cost can be bounded in

1We use the notation log x = max{log2 x, 1} throughout the paper.
2The Õ notation suppresses logarithmic factors in n, k, m, τ, 1/ε, 1/δ.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · G. Cormode et al.

Moment Lower bound Upper bound

monitoring F0, randomized Ω(k) Õ(k
ε2)

one-shot F0, randomized Ω(k) Õ(k
ε2)

monitoring F1, deterministic Ω(k log 1
εk) O(k log 1

ε)

one-shot F1, deterministic Ω(k log 1
εk) O(k log 1

ε)

monitoring F1, randomized Ω(min{k, 1
ε }) O(min{k log 1

ε ,
1
ε2 log 1

δ })
one-shot F1, randomized Ω(k) O(k log 1

ε
√

k
)

monitoring F2, randomized Ω(k) Õ(k2/ε+ (
√
k/ε)3)

one-shot F2, randomized Ω(k) Õ(k
ε2)

Table I. Summary of the communication complexity for one-shot computation and
monitoring of different frequency moments. The “randomized” bounds are expected
communication bounds for randomized algorithms with failure probability δ < 1/2.

terms of the number of arrivals. They also gave either improved or incomparable
lower bounds for monitoring the frequency moments3. The function f in general
need not be a single-valued function: it can return a set of values, e.g., the set of
heavy hitters and quantiles. Communication-optimal algorithms for tracking these
statistics were given in [Yi and Zhang 2009b]. In the model defined above, items
are only inserted but never deleted. If deletions are allowed, the worst-case bounds
often become large and trivial. Yi and Zhang [2009a] propose to use competitive
analysis in this case, and considered the special case where there is only one site,
but it remains unclear how to properly define the competitive ratio when k ≥ 2.

2. A GENERAL ALGORITHM FOR FP , P ≥ 1

We first present a general algorithm based on each site monitoring only local up-
dates. This gives initial upper bounds, which we improve for specific cases in
subsequent sections.

The algorithm proceeds in multiple rounds, based on a generalization of the
Global idea outlined in the introduction. Let ui be the frequency vector (m1, . . . ,mn)
at the beginning of round i. Note that the pth frequency moment, Fp, of ui is ‖ui‖p

p,
where ‖ui‖p denotes the `p norm of ui. In round i, every site keeps a copy of ui

and a threshold ti. Let vij be the frequency vector of recent updates received at
site j during round i. Whenever the impact of vij causes the Fp moment locally to
increase by more than ti (or multiples thereof), the site informs the coordinator.
After the coordinator has received more than k such indications, it ends the round,
collects information about all k vectors vij from sites, computes a new global state
ui+1 and distributes it to all sites.

More precisely, we proceed as follows. Define the round threshold ti = 1
2 (τ −

‖ui‖p
p)k

−p, chosen to divide the current “slack” uniformly between sites. Each site
j receives a set of updates during round i, which we represent as a vector vij .

3In particular, for sufficiently large threshold τ , they show an Ω(k log(1/ε)) lower bound for the
(k, F1, τ, ε) problem, which matches the upper bound we show here.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 7

During round i, whenever b(‖ui + vij‖p
p − ‖ui‖p

p)/tic increases, site j sends a bit
to indicate this (if this quantity increases by more than one, the site sends one bit
for each increase). After the coordinator has received k bits in total, it ends round
i and collects vij (or some compact summary of vij) from each site. It computes
ui+1 = ui +

∑k
j=1 vij , and hence ti+1, and sends (a representation of) both ui+1

and ti+1 to all sites, beginning round i+ 1. The coordinator changes its output to
1 when ‖ui‖p

p ≥ (1− ε/2)τ , and the algorithm terminates.

Theorem 1. At the end of round i, we have ‖ui‖p
p + kti ≤ ‖ui+1‖p

p ≤ 2kpti +
‖ui‖p

p. There can be at most O(kp−1 log 1
ε) rounds.

Proof. We first define the function ψ(x, y) = ‖x + y‖p
p − ‖x‖p

p. ψ is convex in
both its arguments for all p ≥ 1, in the range where x and y are non-negative (have
no negative components). The first inequality is straightforward: each site sends
a bit whenever its local Fp moment increases by ti, i.e., we monitor ψ(ui, vij).
Observe that providing all vectors are non-negative, we have ψ(ui,

∑k
j=1 vij) ≥∑k

j=1 ψ(ui, vij) (this can be seen by analyzing each dimension of each vector in
turn). Thus, we have

‖ui+1‖p
p − ‖ui‖p

p = ‖ui +
k∑

j=1

vij‖p
p − ‖ui‖p

p ≥ kti.

For the second inequality, we have (by Jensen’s inequality on the second argument
of ψ, and monotonicity on the first argument):

‖ui +
k∑

j=1

vij‖p
p − ‖ui‖p

p = ψ(ui,

k∑
j=1

vij)

≤ 1
k

k∑
j=1

ψ(kui, kvij) = kp−1
k∑

j=1

ψ(ui, vij)

= kp−1
k∑

j=1

(‖ui + vij‖p
p − ‖ui‖p

p) < 2kpti.

The last bound follows by observing that we see k messages from the sites, one for
each increase of ‖ui + vij‖p

p − ‖ui‖p
p by ti, so this cannot be larger than 2kti (kti

from changes that have been notified, and up to ti at each of k− 1 sites apart from
the one that triggers the end of the round).

By our choice of ti, we ensure that this upper bound on the current global value
of Fp never exceeds τ during a round, and we terminate the procedure as soon as it
exceeds (1− ε/2)τ . Analyzing the number of rounds, from the lower bound above,
we have

ti+1 =
1
2
(τ − ‖ui+1‖p

p)k
−p ≤ 1

2
(τ − ‖ui‖p

p − kti)k−p

=
1
2
(2kp−1 − 1)tik1−p.

So ti+1 ≤ (1 − k1−p/2)ti ≤ (1 − k1−p/2)it0. Since t0 = τk−p/2, and we terminate
ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · G. Cormode et al.

when ti < ετk−p/4, it is clear that there can be at most O(kp−1 log 1/ε) rounds
before this occurs.

We now consider various special cases of (k, Fp, τ, ε) monitoring depending on
the choice of p:

Case 1: p = 1. For the case p = 1, the above immediately implies a bound of
O(k log 1/ε) messages of counts being exchanged. In fact, we can give a tighter
bound: the coordinator can omit the step of collecting the current vij ’s from each
site, and instead just sends a message to advance to the next stage. The value of ti
is computed simply as 2−1−iτ/k, and the coordinator has to send only a constant
number of bits to each site to signal the end of round i. Thus, we obtain a bound
of O(k log 1/ε) bits.

Case 2: p = 2. When p = 2, in order to concisely convey information about the
vectors vij we make use of sketch summaries of vectors [Alon et al. 1999]. These
sketches have the property that (with probability at least 1 − δ) they allow F2 of
the summarized vector to be estimated with relative error ε, in O(1

ε2 log τ log 1
δ)

bits. We can apply these sketches in the above protocol for p = 2, by replacing
each instance of ui and vij with a sketch of the corresponding vector. Note that we
can easily perform the necessary arithmetic to form a sketch of ui + vij and hence
find (an estimate of) ‖ui + vij‖2

2. In order to account for the inaccuracy introduced
by the approximate sketches, we must carefully set the error parameter ε′ of the
sketches. Since we compare the change in ‖ui + vij‖2

2 to ti, we need the error given
by the sketch—which is ε′‖ui+vij‖2

2 —to be at most a constant fraction of ti, which
can be as small as ετ

2 . Thus we need to set ε′ = O(ε
k2). Putting this all together

gives the total communication cost of Õ(k6/ε2).

Case 3: p > 2. For larger values of p, we can again use sketch-like summaries.
This time, we can make use of the data summary structures of Bhuvanagiri et al.
[2006], since these have the necessary summability properties. Each sketch occupies
space O(p

ε′1+2/pn
1− 2

p (log2 n)(log2 F1) log 1
δ). Since in each round we exchange O(k)

sketches with parameter ε′ = ε/kp, and conclude in at most O(kp−1 log 1/ε) rounds,
the total communication cost is bounded by Õ(p

ε1+2/p k
2p+1n1− 2

p).

3. BOUNDS FOR F1

The general algorithm in the above section yields a deterministic algorithm for
F1 which communicates O(k log 1

ε) bits. This is almost optimal for deterministic
algorithms, as indicated by the following lower bound, which actually follows from
a reduction from the one-shot case. The lower bound for the one-shot case seems
to be folklore, but we include it here for completeness.

Lemma 1. Any deterministic algorithm that solves the F1 one-shot problem has
to communicate Ω(k log 1

εk) bits. This lower bound also holds on the expected cost
for Las Vegas algorithms.

Proof. Let N = {0, 1, . . . , τ}. Let f be the Boolean function on Nk that we
wish to compute, i.e., f(t1, . . . , tk) = 0 if

∑k
j=1 tj ≤ (1− ε)τ , 1 if

∑k
j=1 tj ≥ τ , and

a “∗”, meaning it could be either one or zero, for the rest of the entries. We call the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 9

Cartesian product N1×N2×· · ·×Nk, where N1, . . . , Nk ⊆ N , an f-monochromatic
rectangle if f is constant on it. Let d(f) be the size of the smallest partition of
Nk into disjoint f -monochromatic rectangles. Then the communication cost of
computing f is lower bounded by Ω(log2 d(f)) [Yao 1979].

For simplicity we assume that ετ is an integer. Consider the entries (i1ετ, . . . , ikετ)
in Nk such that

∑k
j=1 ij = 1

ε . The function f has value 1 on these positions, and
the claim is that any two of them cannot be in any f -monochromatic rectangle. To
see this, consider any two different such entries (i1ετ, . . . , ikετ) and (i′1ετ, . . . , i

′
kετ)

and let îj = min{ij , i′j}. If any Cartesian product contains both (i1ετ, . . . , ikετ)
and (i′1ετ, . . . , i

′
kετ), then it must also contain (̂i1ετ, . . . , îkετ). However, since∑k

j=1 îj ≤
1
ε − 1, f must take value 0 at (̂i1ετ, . . . , îkετ).

By simple combinatorics, there are
(1

ε +k
k

)
such entries, and we have the lower

bound

Ω(log2 d(f)) = Ω
(

log2

(1
ε + k

k

))
= Ω

(
k log2

1
ε + k

k

)
.

It is not difficult to show that Ω(k) is also a lower bound, so we can write the
overall lower bound as Ω(k log 1

εk).

Theorem 2. Any deterministic algorithm that solves (k, F1, τ, ε) functional mon-
itoring has to communicate Ω(k log 1

εk) bits.

Proof. If 1/ε = ω(k), then the one-shot lower bound is at least ω(k). Thus,
invoking Proposition 1, the one-shot lower bound also becomes a lower bound for
the continuous problem.

If 1/ε = O(k), an Ω(k log 1
εk) = Ω(k) lower bound can be proved by the following

argument. Consider the least difficult case ε = 1/2. We construct the following
inputs. Pick an arbitrary permutation π = (i1, . . . , ik) of {1, . . . , k}. We first send
τ/k elements to Si1 , then τ/k elements to Si2 , . . . , τ/k elements to Sik

. Note
that the coordinator must output 1 at the end on every input. We argue that the
coordinator has to communicate with at least k/2 sites on every input. Suppose for
contradiction that on some permutation π only s < k/2 sites have communicated
with the coordinator when it first outputs 1. Consider the permutation π′ in which
these s sites are the first to receive elements. The same communication would
occur on π′ by the time the first sτ/k elements are sent, and the coordinator would
mistakenly output 1.

If we allow randomized protocols that may err with a certain probability δ, we
can design a sampling based algorithm whose complexity is independent of k. This
is to be contrasted with the one-shot case, where there is an Ω(k) lower bound even
for probabilistic algorithms.

Theorem 3. There is a randomized algorithm for (k, F1, τ, ε) functional moni-
toring with error probability at most δ that communicates O(1

ε2 log 1
δ) bits.

Proof. We present a randomized algorithm derived from a careful implemen-
tation of the Coin Toss idea from the introduction, with error probability 1/3.
By running O(log 1

δ) independent instances and raising an alarm when at least half
ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · G. Cormode et al.

of the instances have raised alarms, we amplify to success probability 1− δ, as re-
quired. Every time a site has received ε2τ/(ck) elements, where c is some constant
to be determined later, it sends a signal to the coordinator with probability 1/k.
The server raises an alarm as soon as it has received c/ε2− c/(2ε) such signals, and
terminates the algorithm. The communication bound is immediate. For correct-
ness, it is sufficient to prove the following: On any sequence A′, the algorithm fails
to output 0 with probability at most 1/6 if F1(A′) ≤ (1 − ε)τ , and fails to output
1 with probability at most 1/6 if F1(A′) ≥ τ . Then for the given input sequence
A, applying this statement on A(ta) and A(tb) proves the theorem (where ta and
tb are as defined in Section 1).

Let X be the number of signals received by the coordinator. Its expectation is
at most

E[X] ≤ 1/k · F1/(ε2τ/(ck)) = cF1/(ε2τ),

and at least

E[X] ≥ 1/k · (F1 − ε2τ)/(ε2τ/(ck)) = cF1/(ε2τ)− c.

Its variance is

Var[X] ≤ (ckF1)/(ε2τ) · (1/k − 1/k2) ≤ cF1/(ε2τ).

If F1 ≤ (1 − ε)τ , then the probability that the coordinator outputs 1 is (by
Chebyshev inequality)

Pr[X ≥ c/ε2 − c/(2ε)] ≤ Pr[X − E[X] ≥ c/(2ε)]

≤ c(1/ε2 − 1/ε)
(c/(2ε))2

≤ 4
c
.

Similarly, if F1 ≥ τ , then the probability that the coordinator does not output 1 is

Pr[X ≤ c/ε2 − c/(2ε)] ≤ Pr[X − E[X] ≤ −c/(2ε) + c]

≤ c/ε2

(−c/(2ε) + c)2
≤ 1
c(1/2− ε)2

≤ 16
c
.

Choosing c = 96 makes both probabilities at most 1/6, as desired.

Therefore, the randomized algorithm is better than the deterministic algorithm
for large k. Combined with the deterministic bound, we obtain the bound in Table I.
In addition, we also have the following lower bound:

Theorem 4. For any ε < 1/4, any probabilistic protocol for (k, F1, τ, ε) func-
tional monitoring that errs with probability smaller than 1/2 has to communicate
Ω(min{k, 1/ε}) bits in expectation.

Proof. Following the Minimax Principle [Yao 1977], it suffices to demonstrate
a probability distribution on the inputs, and show that any deterministic algorithm
that errs with probability at most 1/2 has to communicate expected Ω(min{k, 1/ε})
bits.

Without loss of generality we assume that 1/ε is an integer. Let s = min{k, 1/ε}.
We also assume that k/s = max{1, εk} is an integer. Otherwise, we have k > 1/ε.
In this case we can reduce k to bεkc · 1/ε, affecting k by at most a factor of 2, and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 11

leaving the asymptotic result unchanged. We divide the k sites into s groups, with
each group having k/s sites. Our inputs are constructed as follows. We pick a
permutation π = (i1, . . . , is) of {1, . . . , s} uniformly at random. We first send τ/k
elements to each site in the i1-th group, then send τ/k elements to each site in the
i2-th group, . . . , and finally send τ/k elements to each site in the is-th group. We
claim that the coordinator in any deterministic algorithm has to communicate with
s/2 groups in expectation in order to response correctly with probability at least
1/2. Note that a correct response to any input is to raise an alarm by outputting
1 at the end, and to output 0 while the is-th group has not received elements.

Two inputs π1 and π2 are said to be equivalent if the following two conditions
hold: (1) the deterministic algorithm has the same communication pattern, i.e., the
coordinator communicates with the same set of groups with the same messages in
the same order; and (2) the order of the groups that have ever communicated with
the coordinator is the same in π1 and π2. Accordingly we partition all the s! inputs
into equivalence classes P1, . . . , Pr. Consider a particular class Pi. Suppose that
on a π ∈ Pi, the coordinator communicates with si groups, for some si ≤ s. Note
that any other π′ in which these si groups are in the same order as in π must also
be Pi, regardless of the other s− si groups. Thus there are s!/si! inputs in Pi.

Suppose on all inputs in Pi, the last communication is triggered by group li.
Considering a particular π ∈ Pi, for the algorithm to correctly report the alarm at
the end, li must be the last group in π that we send elements to, because no further
communication is triggered after li. Among all the inputs in Pi, (s−1)!/(si−1)! of
them end with li, namely a fraction of si/s. So the probability that the algorithm
succeeds is at most (

∑r
i=1

si

s |Pi|)/s!, which is required to be at least 1/2. On
the other hand, the expected number of groups communicated is

∑r
i=1 si

|Pi|
s! =

s(
∑r

i=1
si

s |Pi|)/s! ≥ s/2.

4. BOUNDS FOR F0

We know that the F1 problem can be solved deterministically and exactly (by
setting ε = 1/τ) by communicating O(k log τ) bits. For any p 6= 1, the same
arguments of Proposition 3.7 and 3.8 in [Alon et al. 1999] apply to show that both
randomness (Monte Carlo) and approximation are necessary for the Fp problem in
order to get solutions with communication cost better than Ω(n) for any k ≥ 2. So
for the rest of the paper we only consider probabilistic protocols that err with some
probability δ.

Prior work solved the (k, F0, τ, ε) monitoring problem using a sketch data struc-
ture to estimate the number of distinct items [Cormode et al. 2006]. The algorithm
proceeded with each site holding a copy of a global sketch, and updating this
sketch with their distinct items. When the estimated number of distinct items had
increased by a 1 + ε

2k factor, the new sketch would be shared with all sites, at a
cost of O(k

ε2 log 1
δ) in communication. Therefore, the number of rounds is bounded

by O(log1+ε/2k(1/ε)), which gives a total communication cost of O(k2

ε3 log 1
ε log 1

δ).
We can improve significantly on this cost, partly by directly addressing the thresh-
old monitoring base, but also by using a greater understanding of the sketch data
structure. The algorithms in [Cormode et al. 2006] always sends entire sketches.
By being more “sketch-aware”, and opening up the structure of the sketch, we can

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · G. Cormode et al.

reduce the amount of information that is sent. In particular, we generalize the
sketch of [Bar-Yossef et al. 2002] in a distributed fashion. The basic idea is that,
since this F0 sketch changes “monotonically”, i.e., once an entry is added, it will
never be removed, we can communicate to the coordinator every addition to all the
sketches maintained by the individual sites, and bound the cost in terms of the size
of a single sketch.

Theorem 5. There is a randomized algorithm for the (k, F0, τ, ε) functional
monitoring problem with error probability at most δ that communicates O(k(log n+
1
ε2 log 1

ε) log 1
δ) bits.

Proof. Below we present an algorithm with error probability 1/3. Again, this
probability can be driven down to δ by running O(log 1

δ) independent copies of the
algorithm.

Define t as the integer such that 48/ε2 ≤ τ/2t < 96/ε2. The coordinator first
picks two random pairwise independent hash functions f : [n] → [n] and g : [n] →
[6 · (96/ε2)2], and send them to all the remote sites. This incurs a communication
cost of O(k(log n+log 1

ε)) = O(k log n) bits. Next, each of the remote sites evaluates
f(ai) for every incoming element ai, and tests if the last t bits of f(ai) are all zeros.
If so it evaluates g(ai). There is a local buffer that contains all the g() values
for such elements. If g(ai) is not in the buffer, we add g(ai) into the buffer, and
then send it to the coordinator. The coordinator also keeps a buffer of all the
unique g() values it has received, and outputs 1 whenever the number of elements
in the buffer exceeds (1 − ε/2)τ/2t. Since each g() value takes O(log 1

ε) bits, the
coordinator receives at most O(1

ε2 log 1
ε) bits from each site, over the k sites, giving

the communication bound stated above.
We next prove the correctness of the algorithm. It is sufficient to prove the

following: On any sequence A′, the algorithm outputs 1 with probability at most
1/6 if F0(A′) ≤ (1− ε)τ , and outputs 0 with probability at most 1/6 if F0(A′) ≥ τ .

One source of error is g having collisions between the elements it is evaluated on.
Since g should be evaluated on at most 96/ε2 elements, the probability that g has
collisions is at most 1/12. From now on we assume that g has no collisions, and
will add 1/12 to the final error probability.

Let X be the number of distinct elements in A′ that have zeros in their last t
bits of the f() value. We know [Bar-Yossef et al. 2002] that E[X] = F0/2t and
Var[X] ≤ F0/2t.

If F0 ≤ (1− ε)τ , then the algorithm outputs 1 with probability

Pr[X >(1− ε/2)τ/2t] ≤ Pr[X − E[X] > ετ/2t+1]

≤ 4 ·Var[X]
(ετ/2t)2

≤ 4F0/2t

(ετ/2t)2
≤ 4F0

ε2τ · 48/ε2
≤ 1

12
.

When F0 reaches τ , the probability of outputting 0 is

Pr[X ≤ (1− ε/2)τ/2t] ≤ Pr[X − E[X] ≤ −ετ/2t+1]

≤ 4 ·Var[X]
(ετ/2t)2

≤ 1
12
.

Thus, the total error probability in either case is at most 1/6, as desired.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 13

Unlike the F1 case where there is a randomized algorithm whose communication
complexity is independent of k, we show below that this is not the case for F0. To
obtain a lower bound for randomized algorithms we invoke Yao’s Minimax Prin-
ciple [Yao 1977], which requires us to construct a probability distribution on the
inputs, and show that any deterministic algorithm has to communicate a certain
number of bits in expectation (w.r.t the distribution of the inputs). For this purpose
we can model any deterministic monitoring algorithm as follows. Each remote site
Si maintains a set of an arbitrary number of triggering conditions. Each trigger-
ing condition is a frequency vector (m1, . . . ,mn) ∈ [m]n. The site Si will initiate
communication when and only when the frequency vector of the elements it has
received so far is one triggering condition. The communication may in turn lead
to communication between the coordinator and other remote sites. After all the
communication is completed, those sites that have communicated with the coordi-
nator are allowed to change their sets of triggering conditions arbitrarily. We will
show that the constructed inputs will trigger communication at least Ω(k) times.
An implicit assumption in this model is that only the current state matters but not
how the state is reached. For instance if (0, 1, 1, 0, . . . , 0) is a trigger condition, the
site will trigger communication no matter if a “2” is observed before a “3” or the
other way round. However, this assumption is not an issue in our proof, as in our
construction of the inputs, there is at most one way to reach any state vector.

Theorem 6. For any ε ≤ 1/4, n ≥ k2, any probabilistic protocol for (k, F0, τ, ε)
functional monitoring that errs with probability smaller than 1/2 has to communi-
cate Ω(k) bits in expectation.

Proof. Following the Minimax Principle [Yao 1977], it suffices to demonstrate
a probability distribution on the inputs, and show that any deterministic algorithm
that errs with probability at most 1/8 has to communicate Ω(k) bits in expectation.

For simplicity, we will use τ = k in the proof. Similar constructions work for
larger τ ’s. The inputs are constructed as follows. We first pick an integer r between
1 and k/2 uniformly at random. We then proceed in r rounds. In the first round,
we randomly pick an element from {1, . . . , k} and send it to all the sites; the order
is irrelevant (for concreteness, say in the order S1, . . . , Sk). In the second round,
we do the same thing except that the element is now chosen from {k + 1, . . . , 2k}.
We continue this process until in the r-th round, we uniformly randomly send a
different element from {(r−1)k+1, . . . , rk} to each of the k sites. We denote by Ir
the set of inputs that end in r rounds. It can be easily verified that for any input
in Ir, the algorithm can correctly terminate during and only during the r-th round.
It is helpful to think of the input construction as follows. At first, with probability
p = 1

k/2 , we (a) pick a different element randomly and send it to each of the k sites;
otherwise, we (b) pick one random element and send it to all the sites. In case (a)
we terminate the construction, and in case (b), we proceed to the next round. In
the second round, we do the same except that the probability of choosing case (a)
is p = 1

k/2−1 . We continue the process in this fashion for a maximum of k/2 rounds,
using p = 1

k/2−i+1 in the i-th round.
Since the algorithm is correct with probability at least 7/8, there are s ≥ k/4

values of r: r1 ≤ r2 ≤ · · · ≤ rs, such that the algorithm is correct with probability
ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · G. Cormode et al.

at least 3/4 within Irj
for each of j = 1, . . . , s. Note that for any deterministic

algorithm, these rj ’s are fixed. For any 1 ≤ j ≤ s − 1, consider the triggering
conditions just before the rj-th round. Note that these triggering conditions may
depend on the elements received in the first rj − 1 rounds. So let us consider a
particular history H of the first rj − 1 rounds in which case (b) is always chosen.
There are krj−1 such histories, and each happens with equal probability. Let zi,` = 1
if Si will trigger communication when the next element it receives is `, and zi,` = 0
otherwise. We claim that for at least half of these histories, the following condition
must hold.

k∑
i=1

rjk∑
`=(rj−1)k+1

zi,` ≥
k

2
. (1)

Indeed, we will show in the following that if (1) does not hold for a history
H, then conditioned on the input being in Irj

and having H as its history, the
probability that the algorithm errs is at least 1/2. If this were the case for more
than half of the histories, then the error probability would be more than 1/4 for
Irj

, contradicting the previous assumption.
To prove that if (1) does not hold for H, the algorithm is very likely to fail in

the next round if r = rj , consider a random input in Irj
with history H. Recall

that a randomly selected element from {(rj − 1)k + 1, . . . , rjk} is given to each of
the k sites. The coordinator can output 1 only if some site triggers communication,
whose probability is at most (by the union bound)

k∑
i=1

∑rjk

`=(rj−1)k+1 zi,`

k

 ≤ 1
2
.

Therefore we conclude that for any rj , (1) must hold for at least half of its
histories. Now consider the case that the input π belongs to some Ir such that
r > rj . This happens with probability 1−rj/(k/2). We next compute the expected
number of messages that π triggers in the rj-th round. Suppose that (1) holds and π
sends ` to all the sites. Note that

∑k
i=1 zi,` sites will be triggered, unless they receive

a message from the coordinator telling them to change their triggering conditions.
So at least

∑k
i=1 zi,` messages need to be transmitted. Thus, the expected number

of messages that π triggers in the rj-th round is

1
2
·

rjk∑
`=(rj−1)k+1

(
1
k
·

k∑
i=1

zi,`

)
≥ 1

4
. (2)

Summing up (2) over all rj , the total expected number of messages is at least∑s
j=1

(
1− rj

k/2

)
· 1

4 = Ω(k).

5. BOUNDS FOR F2

In the following, we present an F2 monitoring algorithm that combines the multi-
round framework of our general monitoring algorithm and the AMS sketch [Alon
et al. 1999], giving a total communication cost of Õ(k2/ε+k3/2/ε3). Prior work for
this problem monitored a local sketch of the value distribution, and sent a sketch of
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 15

size Õ(1
ε2) every time this grew by a 1+ ε2

4k factor [Cormode and Garofalakis 2005].
The total number of communications per site is Õ(k

ε2), giving a total communication
cost over all k sites that is bounded by Õ(k2

ε4). Thus our results strictly improve
on this bound. Our algorithm consists of two phases. At the end of the first
phase, we make sure that the value of F2 is between 3

4τ and τ ; while in the second
phase, we more carefully monitor F2 until it is in the range ((1 − ε)τ, τ). Each
phase is divided into multiple rounds. In the second phase, each round is further
divided into multiple sub-rounds to allow for more careful monitoring with minimal
communication. We use sketches such that with probability at least 1 − δ, they
estimate F2 of the sketched vector within 1±ε using O(1

ε2 log n log 1
δ) bits [Alon et al.

1999]. For now, we assume that all sketch estimates are within their approximation
guarantees; later we discuss how to set δ to ensure small probability of failure over
the entire computation.

Algorithm. We proceed in multiple rounds, which are in turn divided into sub-
rounds. Let ui be the frequency vector of the union of the streams at the beginning
of the ith round. We use ‖ui‖ to denote the `2 norm of ui, and the F2 of ui can
be simplified as ‖ui‖2 = u2

i . Let û2
i be an approximation of u2

i . In round i, we use
a local threshold ti = (τ−û2

i)2

64k2τ . Let vij` be the local frequency vector of updates
received at site j during subround ` of round i, and let wi` =

∑k
j=1 vij` be the

total increment of the frequency vectors in subround ` of round i. During each
(sub)round, each site j continuously monitors its v2

ij`, and sends a bit to the server
whenever bv2

ij`/tic increases.

Phase one. In phase one, there is only one subround per round. At the beginning
of round i, the server computes a 5

4 -overestimate û2
i of the current u2

i , i.e., u2
i ≤ û2

i ≤
5
4u

2
i . This can be done by collecting sketches from all sites with a communication

cost of O(k log n). Initially û2
1 = u2

1 = 0. When the server has received k bits in
total from sites, it ends the round by computing a new estimate û2

i+1 for u2
i+1. If

û2
i+1 ≥ 15

16τ , then we must have u2
i+1 ≥ û2

i+1/
5
4 ≥

3
4τ , so we proceed to the second

phase. Otherwise the server computes the new ti+1, broadcasts it to all sites, and
proceeds to the next round of phase one.

Analysis of phase one. The following lemma guarantees that the algorithm will
never need to terminate during phase one.

Lemma 2. At the end of round i in phase one, u2
i+1 < τ .

Proof. Assuming pessimistically that all sites are just below the threshold of
sending the next bit, once the server has received k bits, by the Cauchy-Schwartz

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · G. Cormode et al.

inequality, we have w2
i` = (

∑k
j=1 vij`)2 ≤ k

∑k
j=1 v

2
ij` < 2k2ti. Therefore,

u2
i+1 = (ui + wi`)2 = u2

i + 2uiwi` + w2
i`

≤ u2
i + 2‖ui‖ · ‖wi`‖+ w2

i`

< u2
i + 2‖ui‖

√
2k2ti + 2k2ti

≤ u2
i +

√
2

4
‖ui‖

τ − û2
i√

τ
+

(τ − û2
i)

2

32τ

≤ u2
i +

√
2

4
‖ui‖

τ − u2
i√

τ
+

(τ − u2
i)

2

32τ

= u2
i +

(√
2‖ui‖
4
√
τ

+
1
32

− u2
i

32τ

)
(τ − u2

i).

Since ‖ui‖√
τ
≤ 1,

(
− u2

i

32τ +
√

2‖ui‖
4
√

τ
+ 1

32

)
is always less than 1, and we have u2

i+1 <

τ .

The communication cost in each round is O(k log n) bits, and we bound the
number of rounds:

Lemma 3. There are O(k) rounds in phase one.

Proof. We can bound the number of rounds by showing that sufficient progress
can be made in each round. In each round, we know w2

i` = (
∑k

j=1 vij`)2 ≥∑k
j=1 v

2
ij` ≥ kti, thus

u2
i+1 = (ui + wi`)2 ≥ u2

i + w2
i` ≥ u2

i + kti

= u2
i +

(τ − ûi)2

64kτ
≥ u2

i +
(τ − 15

16τ)
2

64kτ
= u2

i + Θ(τ/k).

So the total number of rounds in this phase is O(k).

The communication cost of phase one is thus bound by O(k2 log n). It would be
possible to continue the first phase by using more accurate estimates û2

i until u2
i

reaches (1−ε)τ , but this would result in a communication cost of Õ(k2/ε3). Instead,
the use of subrounds in the second phase gives an improved bound.

Phase two. In the second phase, the server computes a (1+ε/3)-overestimate û2
i at

the start of each round by collecting sketches from the sites with a communication
cost of O(k/ε2 log n). The server keeps an upper bound û2

i,` on u2
i,`, the frequency

vector at the beginning of the `-th sub-round in round i.
As above, during each sub-round, each site j continuously monitors its v2

ij`,
and sends a bit to the server whenever bv2

ij`/tic increases. When the server has
collected k bits in total, it ends the sub-round. Then, it asks each site j to send a
(1 ± 1

2)-approximate sketch for v2
ij`. The server computes an estimate w̃2

i` for w2
i`

by combining these sketches. Note that w̃2
i` ∈ (1± 1

2)w2
i`. The server computes the

new upper bound û2
i,`+1 for u2

i,`+1 as

û2
i,`+1 = û2

i,` + 2
√

2‖ûi,`‖ · ‖w̃i`‖+ 2w̃2
i`. (3)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 17

Indeed, since

u2
i,`+1 = (ui,` + wi`)2 ≤ u2

i,` + 2‖ui,`‖ · ‖wi`‖+ w2
i`,

and u2
i,` ≤ û2

i,`, w
2
i` ≤ 2w̃2

i`, we have u2
i,`+1 ≤ û2

i,`+1. Then the server checks if

û2
i,`+1 + 3k‖ûi,`+1‖

√
ti < τ. (4)

If (4) holds, the server starts sub-round ` + 1. The local threshold ti remains the
same. If (4) does not hold, the whole round ends, and the server computes a new
û2

i+1 for u2
i+1. If û2

i+1 ≥ (1− 2
3ε)τ , the server changes its output to 1 and terminates

the algorithm. Otherwise, it computes the new ti+1, sends it to all sites, and starts
the next round.

Analysis of phase two. Below we assume ε < 1
4 . We first prove correctness. The

second phase of the algorithm never raises a false alarm, since if û2
i+1 ≥ (1− 2

3ε)τ ,
then u2

i+1 ≥ û2
i+1/(1 + ε/3) > (1 − ε)τ . The following lemma implies that the

algorithm will never miss an alarm either.

Lemma 4. For any round i, at the end of the `-th sub-round, u2
i,`+1 < τ .

Proof. Since the algorithm did not terminate at the end of the (`− 1)-th sub-
round, by the condition of (4) we have û2

i,`+3k‖ûi,`‖
√
ti < τ . At the end of the `-th

sub-round when the server has collected k bits, assuming pessimistically that all
sites are just below the threshold of sending the next bit, by the Cauchy-Schwartz
inequality, we have w2

i` = (
∑k

j=1 vij`)2 ≤ k
∑k

j=1 v
2
ij` ≤ 2k2ti. Since

2k2ti =
2(τ − û2

i)
2

64τ
≤ 1

128
(τ − û2

i),

and k‖ui,`‖
√
ti = ‖ui,`‖

τ − û2
i

8
√
τ

≥
√

3
16

(τ − û2
i),

we have 2k2ti ≤ 1
8
√

3
k‖ui,`‖

√
ti. Thus,

u2
i,`+1 = (ui,` + wi`)2 ≤ u2

i,` + 2‖ui,`‖ · ‖wi`‖+ w2
i`

≤ u2
i,` + 2‖ui,`‖

√
2k2ti + 2k2ti

≤ u2
i,` + (2

√
2 +

1
8
√

3
)k‖ui,`‖

√
ti

< û2
i,` + 3k‖ûi,`‖

√
ti < τ.

Now we proceed to the analysis of the algorithm’s communication complexity. It
is clear that the cost of a sub-round is O(k log n) bits, since each (1± 1

2)-approximate
sketch for vij` has O(log n) bits. Apart from the sub-round communication cost,
each round has an additional O(k

ε2 log n) cost to compute ûi. All the other costs,
e.g., the bits signaling the start and end of a sub-round, broadcasting ti, etc.,
are asymptotically dominated by these costs. Therefore, the problem reduces to
bounding the number of rounds and sub-rounds.

Lemma 5. In any round, the number of sub-rounds is O(
√
k).

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · G. Cormode et al.

Proof. At the end of the `-th sub-round, the server has received k bits, so w2
i` ≥∑k

j=1 v
2
ij` ≥ kti. Since w̃2

i` is a (1± 1
2)-estimate of w2

i`, we have w̃2
i` ≥ 1

2w
2
i` ≥ kti/2.

According to (3),

û2
i,`+1 ≥ û2

i,` + 2
√

2‖ûi,`‖ · ‖w̃‖

≥ û2
i,` + 2

√
2‖ûi,`‖ ·

√
kti
2

= û2
i,` +

1
4
‖ûi,`‖ ·

τ − û2
i√

kτ

≥ û2
i,` +

1
4
·
√

3
2

· 1√
k

(τ − û2
i) = û2

i,` +
√

3
8
√
k

(τ − û2
i).

For any `, if the `-th sub-round starts, by (4) we have û2
i,` + 3k‖ûi,`‖

√
ti < τ , or

τ > û2
i,` +

3
8
· ‖ûi,`‖

τ − û2
i√

τ
> û2

i,` +
3
8
·
√

3
2

(τ − û2
i).

Rearranging, û2
i,` < τ − 3

√
3

16
(τ − û2

i).

As û2
i,1 = û2

i , there are at most
(
τ − 3

√
3

16 (τ − û2
i)− û2

i

)
/
(√

3
8
√

k
· (τ − û2

i)
)
< 4

√
k

sub-rounds in phase two.

Lemma 6. The total number of rounds is O(
√
k/ε).

Proof. Focus on one round, say round i. Suppose there are s < 4
√
k sub-rounds

in this round. For any `, we have w2
i` < τ/4; else the subround would have ended

earlier. So w̃2
i` < 3τ/8. We first show how the upper bound ûi,` increases in each

sub-round. From (3), û2
i,`+1 is at most

û2
i,` + 2

√
2
√
τ · ‖w̃i`‖+ 2

√
3τ/8 · ‖w̃i`‖ < û2

i,` + 5
√
τ · ‖w̃i`‖,

so û2
i,s+1 ≤ û2

i,1 + 5
√
τ
∑s

`=1 ‖w̃i`‖. (5)

We know that ûi,s+1 violates (4), so

τ ≤ û2
i,s+1 + 3k‖ûi,s+1‖

√
ti ≤ û2

i,s+1 +
3
8
‖ûi,s+1‖

τ − û2
i√

τ

< û2
i,s+1 +

3
8
(τ − û2

i).

Substituting into (5), together with ûi,1 ≤ (1 + ε/3)u2
i , we have

∑s
`=1 ‖w̃i`‖ >

τ− 3
8 (τ−u2

i)−(1+ 1
3 ε)u2

i

5
√

τ
= 1

8 ·
τ−(1+ 8

15 ε)u2
i√

τ
. (6)

Next, we lower bound u2
i+1 = u2

i,s+1, to show that we must have made progress
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 19

by the end of this round. Since u2
i,`+1 = (ui,` + wi`)2 ≥ u2

i,` + w2
i`, we have

u2
i+1 ≥ u2

i +
s∑

`=1

w2
i`

≥ u2
i +

1
2

s∑
`=1

w̃2
i` ≥ u2

i +
1
2s

(
s∑

`=1

‖w̃i`‖)2 (Cauchy-Schwarz inequality)

> u2
i +

1
64sτ

(τ − (1 +
8
15
ε)u2

i)
2 (by (6))

> u2
i +

1
256

√
k · τ

(τ − (1 +
8
15
ε)u2

i)
2 (Lemma 5)

Initially we have u2
1 ≥ 3

4τ , and the algorithm terminates as soon as u2
i exceeds

(1 − 2
3ε)τ . For a = 3, 4, . . . , log 3

2ε (assuming w.l.o.g. that 3
2ε is a power of 2), we

bound the number of rounds for u2
i to increase from (1−2−a+1)τ to (1−2−a)τ , as:

τ(1− 2−a − (1− 2−a+1))
1

256
√

k·τ (τ − (1 + 8
15ε)(1− 2−a)τ)2

+ 1

<
2−aτ

1
256

√
k·τ (2−a

5 τ)2
+ 1 = 2a252 · 256

√
k + 1.

Summing over all a, we obtain that the total number of rounds is O(
√
k/ε).

Combining Lemma 5 and 6, we know that there are a total of O(k/ε) sub-rounds
and O(

√
k/ε) rounds. Thus phase two incurs a communication cost of O((k2/ε +

k3/2/ε3) log n). Recall that the cost of phase one is O(k2 log n). So far we have
assumed that all the estimates are always within the claimed approximation ranges.
Since we have in total computed O(poly(k/ε)) estimates, by running O(log k

εδ)
independent repetitions and taking the median for each estimate, we can guarantee
an overall error probability of no more than δ by the union bound. Thus, we
conclude with the following.

Theorem 7. The (k, F2, τ, ε) functional monitoring problem can be solved by an
algorithm with a communication cost of O((k2/ε + k3/2/ε3) log n log k

εδ) bits and
succeeds with probability at least 1− δ.

Lastly, we comment that as a byproduct of the previous algorithm, the coordi-
nator receives a sketch which summarizes the distribution. This sketch can then be
used to approximate inner-product queries, wavelet and histogram decompositions
etc., with bounds which follow from prior work on sketches. See [Cormode and
Garofalakis 2005] for more details of such applications.

F2 lower bound. Similar to the F0 case, we prove an Ω(k) lower bound for
monitoring F2.

Theorem 8. For any ε ≤ 1/4, n ≥ k2, any probabilistic protocol for (k, F2, τ, ε)
functional monitoring that errs with probability smaller than 1/2 has to communi-
cate Ω(k) bits in expectation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · G. Cormode et al.

Proof. For simplicity, we will use τ = k2 in the proof. Similar constructions
work for larger τ ’s.

We follow the same framework as in the proof of Theorem 6, with the following
differences.

The inputs are constructed as follows. As before, we proceed in r rounds, where
r is between 1 and k/2. At first, with probability p = 1

k/2 , we (a) pick one random
element and send it to all the sites; otherwise, we (b) pick a different element ran-
domly and send it to each of the k sites. In case (a) we terminate the construction,
and in case (b), we proceed to the next round. In the second round, we do the
same except that the probability of choosing case (a) is p = 1

k/2−1 . We continue
this process in this fashion for a maximum of k/2 rounds, using p = 1

k/2−i+1 in the
i-th round. We denote by Ir the set of inputs that end in r rounds. It can be easily
verified that for any input in Ir, the algorithm can correctly terminate during and
only during the r-th round.

Arguing as before, we conclude that for any rj , (1) holds for at least half of its
histories. Now consider the case that the input π belongs to some Ir such that
r > rj . This happens with probability 1 − rj/(k/2). When (1) holds and π sends
`1 to S1, `2 to S2, etc., the number of messages that will be triggered is at least
z1,`1 + · · · + zk,`k

. Thus the expected number of messages that π triggers in the
rj-th round is at least (where summation is over all permutations `1, . . . , `k)

1
2
·
∑ 1

k!
(z1,`1 + · · ·+ zk,`k

) =
1
2
· 1
k!

((k − 1)!z1,1 + (k − 1)!z1,2 + · · ·+ (k − 1)!zk,k)

≥ 1
4
. (7)

Summing (7) over all rj , the total expected number of messages is at least∑s
j=1

(
1− rj

k/2

)
· 1

4 = Ω(k).

6. CONCLUSION AND OPEN PROBLEMS

For functional monitoring problems (k, f, τ, ε), we observe that for some functions,
the communication cost is close to or the same as the cost for one-time computation
of f , and that in some cases the cost can be less than the number of participants,
k. Our results for F2 make careful use of compact sketch summaries, switching
between different levels of approximation quality to minimize the overall cost. These
algorithms are more generally useful, since they immediately apply to monitoring
L2 and L2

2 of arbitrary non-negative vectors, which is at the heart of many practical
computations such as join size, wavelet and histogram representations, geometric
problems, etc. [Cormode and Garofalakis 2005; Indyk 2004].

The immediate open question is to close the gap in the F2 case: can a better
lower bound than Ω(k) be shown, or do there exist Õ(k · poly(1/ε)) solutions?
More broadly, there are many interesting directions to pursue. It remains open
fully understanding the cost for monitoring other functions (or classes of functions),
for example, statistics such as rolling average, information gain, variance; geometric
descriptors such as coreset, ε-net and ε-approximation; various clusterings. It would
be of interest to demonstrate a functional monitoring problem that is strictly harder
than its one-shot version (ignoring polylogarithmic factors).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Distributed Functional Monitoring · 21

In some situations, it may be appropriate to use other measures of the cost,
for example, the maximum cost per site rather than the total cost; or giving a
competitive analysis relative to the best appropriately defined “off-line” adversary.
There are also several variants of the basic model to consider, for example, the
difference between one-way and two-way communication between the sites and the
coordinator, the power of having a broadcast channel from the coordinator to all the
sites, and the difference between having sliding windows and unbounded windows
at the sites. As mentioned earlier, since the first published version [Cormode et al.
2008] of this paper there has already been subsequent research [Arackaparambil
et al. 2009; Yi and Zhang 2009a; 2009b] which extends the scope of this work in
various ways. We hope that ultimately, this line of study will lead to a new theory
of continuous communication complexity.

Acknowledgments. We thank the anonymous reviewers for many helpful com-
ments that have improved the presentation, and for identifying a hole in the proof
of Theorem 4 in an earlier draft.

REFERENCES

Alon, N., Matias, Y., and Szegedy, M. 1999. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58, 137–147.

Arackaparambil, C., Brody, J., and Chakrabarti, A. 2009. Functional monitoring without
monotonicity. In Proc. International Colloquium on Automata, Languages, and Programming.

Babcock, B. and Olston, C. 2003. Distributed top-k monitoring. In Proc. ACM SIGMOD
International Conference on Management of Data.

Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., and Trevisan, L. 2002. Counting
distinct elements in a data stream. In RANDOM.

Bhuvanagiri, L., Ganguly, S., Kesh, D., and Saha, C. 2006. Simpler algorithm for estimating
frequency moments of data streams. In Proc. ACM-SIAM Symposium on Discrete Algorithms.

Cormode, G. and Garofalakis, M. 2005. Sketching streams through the net: Distributed
approximate query tracking. In Proc. International Conference on Very Large Databases.

Cormode, G., Garofalakis, M., Muthukrishnan, S., and Rastogi, R. 2005. Holistic aggre-
gates in a networked world: Distributed tracking of approximate quantiles. In Proc. ACM
SIGMOD International Conference on Management of Data.

Cormode, G., Muthukrishnan, S., and Yi, K. 2008. Algorithms for distributed functional
monitoring. In Proc. ACM-SIAM Symposium on Discrete Algorithms.

Cormode, G., Muthukrishnan, S., and Zhuang, W. 2006. What’s different: Distributed, contin-
uous monitoring of duplicate resilient aggregates on data streams. In Proc. IEEE International
Conference on Data Engineering.

Cormode, G., Muthukrishnan, S., and Zhuang, W. 2007. Conquering the divide: Continu-
ous clustering of distributed data streams. In Proc. IEEE International Conference on Data
Engineering.

Das, A., Ganguly, S., Garofalakis, M., and Rastogi, R. 2004. Distributed set-expression
cardinality estimation. In Proc. International Conference on Very Large Databases.

Dilman, M. and Raz, D. 2001. Efficient reactive monitoring. In IEEE INFOCOM.

Huang, L., Nguyen, X., Garofalakis, M., Hellerstein, J., Joseph, A. D., Jordan, M., and
Taft, N. 2007. Communication-efficient online detection of network-wide anomalies. In IEEE
INFOCOM.

Indyk, P. 2004. Algorithms for dynamic geometric problems over data streams. In Proc. ACM
Symposium on Theory of Computation.

Jain, A., Hellerstein, J., Ratnasamy, S., and Wetherall, D. 2004. A wakeup call for internet
monitoring systems: The case for distributed triggers. In Proceedings of the 3rd Workshop on
Hot Topics in Networks (Hotnets).

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · G. Cormode et al.

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., and Rubenstein, D. 2002. Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiments with zebranet.
In ASPLOS-X.

Keralapura, R., Cormode, G., and Ramamirtham, J. 2006. Communication-efficient dis-
tributed monitoring of thresholded counts. In Proc. ACM SIGMOD International Conference
on Management of Data.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2005. TinyDB: an acquisitional
query processing system for sensor networks. ACM Transactions on Database Systems 30, 1,
122–173.

Muthukrishnan, S. 2005. Data Streams: Algorithms and Applications. Now Publishers.

Olston, C., Jiang, J., and Widom, J. 2003. Adaptive filters for continuous queries over dis-
tributed data streams. In Proc. ACM SIGMOD International Conference on Management of
Data.

Sharfman, I., Schuster, A., and Keren, D. 2006. A geometric approach to monitoring threshold
functions over distribtuted data streams. In Proc. ACM SIGMOD International Conference
on Management of Data.

Yao, A. C. 1977. Probabilistic computations: Towards a unified measure of complexity. In Proc.
IEEE Symposium on Foundations of Computer Science.

Yao, A. C. 1979. Some complexity questions related to distributive computing. In Proc. ACM
Symposium on Theory of Computation.

Yi, K. and Zhang, Q. 2009a. Multi-dimensional online tracking. In Proc. ACM-SIAM Symposium
on Discrete Algorithms.

Yi, K. and Zhang, Q. 2009b. Optimal tracking of distributed heavy hitters and quantiles. In
Proc. ACM Symposium on Principles of Database Systems.

ACM Journal Name, Vol. V, No. N, Month 20YY.

