Summary Data Structures for Massive Data

Graham Cormode

Department of Computer Science, University of Warwick
graham@cormode. org

Abstract. Prompted by the need to compute holistic properties of in-
creasingly large data sets, the notion of the “summary” data structure
has emerged in recent years as an important concept. Summary struc-
tures can be built over large, distributed data, and provide guaranteed
performance for a variety of data summarization tasks. Various types
of summaries are known: summaries based on random sampling; sum-
maries formed as linear sketches of the input data; and other summaries
designed for a specific problem at hand.

1 Introduction

It is widely acknowledged in the business and scientific communities that “big
data” holds both tremendous promise, and substantial challenges [10]. There
is much potential for extracting useful intelligence and actionable information
from the large quantities of data generated and captured by modern information
processing systems. A chief problem presented by this scenario is the scale in
terms of the so-called “three V’s”: volume, variety, and velocity. That is, big
data challenges involve not only the sheer volume of the data, but the fact that
it can represent a complex variety of entities and interactions between them, and
new observations arrive, often across multiple locations, at high velocity.

Such sources of big data are becoming increasingly common, while the re-
sources to deal with big data (chiefly, processor speed, fast memory and slower
disk) are growing at a slower pace. The consequence of this trend is that we need
more effort directed towards capturing and processing data in many critical ap-
plications. Careful planning and scalable architectures are needed to fulfill the
requirements of analysis and information extraction on big data.

Some examples of applications that generate big data include:

Physical Data. The growing development of sensors and sensor deployments
have led to settings where measurements of the physical world are available
at very high dimensionality and at a great rate. Scientific measurements are the
cutting edge of this trend. Astronomy data gathered from modern telescopes can
easily generate terabytes of data in a single night. Aggregating large quantities of
astronomical data provides a substantial big data challenge to support the study
and discovery of new phenomena. Big data from particle physics experiments
is also enormous: each experiment can generate many terabytes of readings,
which can dwarf what is economically feasible to store for later comparison and
investigation.

Medical Data. Tt is increasingly feasible to sequence entire genomes. A single
human genome is not so large—it can be represented in under a gigabyte—
but considering the entire genetic data of a large population represents a big
data challenge. This may be accompanied by increasing growth in other forms
of medical data, based on monitoring multiple vital signs for many patients
at fine granularity. Collectively, this leads to the area of data-driven medicine,
seeking better understanding of disease, and leading to new treatments and
interventions, personalized for each individual patient.

Activity Data. Human activity data is increasingly being captured and stored.
Online social networks record not just friendship relations but interactions, mes-
sages, photos and interests. Location data is also more available, due to mobile
devices which can obtain GPS information. Other electronic activities, such as
patterns of website visits, email messages and phone calls can be collected and
analyzed. Collectively, this provides ever-larger collections of activity informa-
tion. Service providers who can collect this data seek to make sense of it in order
to identify patterns of behavior or signals of behavioral change, and opportuni-
ties for advertising and marketing.

Business Data. Businesses are increasingly able to capture more and complex
data about their customers. Online stores can track millions of customers as they
explore their site, and seek patterns in purchasing and interest, with the aim of
providing better service, and anticipating future needs. The detail level of data
is getting finer and finer. Previously, data would be limited to just the items
purchased, but now extends to more detailed shopping and comparison activity,
tracking the whole path to purchase.

Across all of these disparate settings, certain common themes emerge. The
data in question is large, and growing. The applications seek to extract patterns,
trends or descriptions of the data. Scalability and timeliness of response are vital
in many of these applications.

In response to these needs, new computational paradigms are being adopted
to deal with the challenge of big data. Large scale distributed computation is
a central piece: the scope of the computation can exceed what is feasible on a
single machine, and so clusters of machines work together in parallel. On top of
these architectures, parallel algorithms are designed that can take the complex
task and break it into independent pieces suitable for distribution over multiple
machines.

A central challenge within any such system is how to compute and represent
complex features of big data in a way that can be processed by many single
machines in parallel. One answer is to be able to build and manipulate a compact
summary of a large amount of data. This notion of a small summary is the subject
of study of this article. The idea of a summary is a natural and familiar one. It
should represent something large and complex in a compact fashion. Inevitably,
a summary must dispense with some of the detail and nuance of the object
which it is summarizing. However, it should also preserve some key features of
the object in an accurate fashion.

There is no single summary which accurately captures all properties of a data
set, even approximately. Thus, at the heart of the study of small summaries
are the questions of what should be preserved? and how accurately can it be
preserved?. The answer to the first question determines which of many different
possible summary types may be appropriate, or indeed whether any compact
summary even exists. The answer to the second question can determine the size
and processing cost of working with the summary in question.

Another important question about summaries for big data is how they can
be constructed and maintained as new data arrives. Given that it is typically
not feasible to load all the data into memory on one machine, then we need
summaries which can be constructed incrementally. That is, we seek summaries
that can be built by observing each data item in turn, and updating the partial
summary. Or, more strongly, we seek summaries such that summaries of different
subsets of data built on different machines can be combined together to obtain
a single summary that accurately represents the full data set.

Note that the notion of summarization is distinct from traditional ideas of
compression. Lossless compression is concerned with identifying regularity and
redundancy in datasets to provide a more compact exact representation of the
data. This is done for the purpose of archiving, or reducing transmission time.
However, in general, there is no guarantee of significant size reduction from com-
pression. The compressed form is also typically difficult to utilize, and decom-
pression is required in order to work with the data. In contrast, summarization is
intended to provide a very significant reduction in the size of the data (sometimes
several orders of magnitude), but does not promise to reconstruct the original
data, only to capture certain key properties. Lossy compression methods fall in
between, as they can provide guaranteed size reductions. They also aim to allow
an approximate reconstruction of the original data with only small loss of fidelity
based on some measure of loss: typically, human perception of multimedia data,
such as audio or video. Summarization aims to provide only small loss of fidelity,
but on other dimensions; summaries do not necessarily provide a way to make
even an approximate reconstruction of the original input.

As a first example of summarization, consider a data set consisting of a
large collection of temperature readings over time. A suitable summary might
be to keep the sum of all the temperatures seen, and the count. From this
summary, we can extract the average temperature. This summary is easy to
update incrementally, and can also be combined with a corresponding summary
by computing the overall sum and count. A different summary retains only the
maximum and minimum temperature observed so far. From this, we can extract
the range of temperatures observed. This too is straightforward to maintain
under updates, and to merge across multiple subsets. However, neither summary
is good at retrieving the median temperature, or some other properties of the
statistical distribution of temperatures. Instead, more complex summaries and
maintenance procedures are required.

2 Operations on Summaries

While different summaries capture different functions and properties of the data,
we abstract a set of four basic operations that summaries should support. These
basic operations are INITIALIZE, UPDATE, MERGE and QUERY.

INITIALIZE. The INITIALIZE operation for a summary is to initialize a new in-
stance of the summary. Typically, this is quite simple, just creating empty data
structures for the summary to use. For summaries that use randomization, this
can also involve drawing the random values that will be used throughout the
operation of the summary.

UPDATE. The UPDATE operation takes a new data item, and updates the sum-
mary to reflect this. The time to do this UPDATE should be quite fast, since we
want to process a large input. Ideally, this is faster than reading the whole sum-
mary. Since UPDATE takes a single item at a time, the summary can process a
stream of items one at a time, and only retain the current state of the summary
at each step.

MERGE. When faced with a large amount of data to summarize, we would like
to distribute the computation over multiple machines. Performing a sequence of
UPDATE operations does not guarantee that we can parallelize the action of the
summary, so we also need the ability to MERGE together a pair of summaries to
obtain a summary of the union of their inputs. This is possible in the majority
of cases, although a few summaries only provide an UPDATE operation and not
a MERGE. MERGE is often a generalization of UPDATE: applying MERGE when
one of the input summaries consists of just a single item will reduce to the
UPDATE operation. In general a MERGE operation is slower than UPDATE, since
it requires reading through both summaries in full.

QUERY. At various points we want to use the summary to learn something about
the data that is summarized. We abstract this as QUERY, with the understand-
ing that the meaning of QUERY depends on the summary: different summaries
capture different properties of the data. In some cases, QUERY takes parameters,
while for other summaries, there is a single QUERY operation. Some summaries
can be used to answer several different types of query. In this presentation, we
pick one primary query to answer with the QUERY operation.

3 Three Examples of Summaries

This section describes three examples of different constructions of summaries,
and some of their applications and uses. The aim of the presentation is to con-
vey the basic ideas; for further details the interested reader is directed to more
detailed surveys [8, 18].

3.1 Samples

The notion of random sampling is a familiar and convenient one. Given a large
number of data items, we randomly pick a subset, so that the probability of any
subset being picked as the sample is uniform. Then, we can estimate the answer
to a query by evaluating the query over the sample, and scaling appropriately.
For certain queries, strong error guarantees are known for this process.

Working with a sample of size k can fit neatly into the summary framework.
To INITIALIZE a sample, we create an empty set. To UPDATE a sample, we
determine (randomly) whether to include the new item in the sample, and to
MERGE two samples, we will determine which subset of items to maintain. One
natural way to accomplish these steps is to maintain the “weight” of each sample,
as the number of input items represented by the sample. To MERGE two samples
of weight n;, and no respectively, we pick items from the first with probability
n1/(ny + na), and from the second with probability ns/(n1 + ns). An UPDATE
operation is then a MERGE where one of the input samples has size 1. Lastly,
to QUERY a sample to estimate the fraction of input items satisfying a property
P, we can report the fraction of items in the sample satisfying P.

Tools such as the Chernoff-Hoeffding inequality [16] can be brought to bear
to analyze the accuracy of answering a query from samples. First, we observe
that the result of a combination of MERGE and UPDATE operations generates a
uniform random sample of size k — the probability of any item being included
in the sample is uniform, and independent of the inclusion probabilities of other
items. Then we can consider the random variable corresponding to the fraction
of items in the sample that satisfy property P. Let X; be the random variable
indicating if the ith sampled item satisfies P: we have Pr[X; = 1] = p, where p is
the global proportion we are trying to estimate. Applying the Chernoff-Hoeffding
inequality, we have

K
1
PI"H% > X —pl > €] < 2exp(—2%k)
i=1

Consequently, setting the sample size k = O(Ei2 In1/9) is sufficient to ensure that
the error is at most € with probability at least 1 — 4.

Samples: pros and cons. Due to their flexibility and simplicity, samples have
been used in a variety of applications. For example, many routers in the internet
sample information about flows for network traffic monitoring [17]. It is often
convenient to work with samples, since we just have to apply the desired com-
putation on the sample instead of on the full data (in contrast, other summaries
require different, complex procedures to be performed on the summary data).
However, they have some limitations. Samples do not work well for problems not
based on raw counts — for example, samples are not helpful for estimating the
number of distinct items [5]. The accuracy bounds in terms of O(1/€2) can be
high in some applications where ¢ is very small. In some cases, other summary
techniques achieve a smaller cost, proportional to O(1/¢), which can make a big
difference in practice.

3.2 Sketches

The term ‘sketches’ refers generally to a class of summary that can be expressed
as a linear transformation of the input data. That is, if we can express the input
as a vector, then the sketch is the result of multiplying the vector by some
matrix S. We are most interested in cases where this matrix S has a compact,
implicit representation, so that we do not have to explicitly store it in full. A
simple example is the Count-Min sketch, which summarizes a large vector so
that individual entries of the vector can be estimated [9]. Entries of the vector
are mapped down to a smaller domain by a hash function, and the sum of entries
mapping to each location are maintained; this is repeated for a small number of
different hash functions with the same range.

Using the terminology of summaries, to INITIALIZE a Count-Min sketch, we
first determine the parameters: d, the number of hash functions to apply, and
w, the range of the hash functions. We then create an array C of size d x w
to summarize the data, and pick d hash functions h;. To UPDATE the sketch
with a positive increment of u to vector location ¢, we map ¢ into C' by the hash
functions, and compute C[j, h;(i)] < C[j, h;(i)] + u for all 1 < j < d. This is a
linear update function. To MERGE two sketches that share the same parameters
(d,w and h;), we sum the two arrays. Lastly, to QUERY the estimated value
of a location 4, we find min; C[j, h;(i)], the smallest value in the array of the
locations where location ¢ was mapped to: assuming positive weights for all item,
this indicates the estimate with the least error from colliding items.

From this description it is reasonably straightforward to see that the sketch
is a linear transform of its input vector x, so it is the same, irrespective of the
ordering of the UPDATE and MERGE operations. It is less immediate to see why
the sketch should be accurate, given that w is typically chosen to be much smaller
than the size of the vector being summarized. The intuition behind the sketch is
that the hash functions work to spread out the different items, so on average the
error in the estimates cannot be too high. Then the use of different hash functions
ensures that the chance of getting an estimate that is much more inaccurate
than average is quite small. In particular, in any given row, the estimate for 7 is
expected to have error proportional to ||z||1 /w, where ||z||; denotes the L; norm
of the input vector x. Consequently, there is constant probability (%) that the
error is at most 2||z|; /w, by the Markov inequality. Taking the minimum of d
repetitions amplifies this to a probability of 2~¢. Equivalently, to guarantee an
error of at most ¢||z||; with probability 1 — J, we set the parameters to w = 2/e
and d = log, 1/4.

Sketches: pros and cons. Sketch techniques have been used widely for log data
analysis in large systems, such as Sawzall [19] and CMON [22]. Their linearity of-
fers extra flexibility: it means that we can obtain a sketch of the sums, differences
and scaled versions of inputs by applying the corresponding transformation to
the sketch data structure. This makes them useful for applying linear forecasting
models to large data [7]. They have also been used as the basis for building ma-
chine learning models over very large feature domains [23]. Sketch constructions

are known for a variety of input types, including count distinct and set sizes [11],
set membership [4], vector operations such as dot-product [3] and matrix com-
putations [6]. However, they have their limitations: some sketch structures can
be large and very slow to update, limiting their practicality. Sketch ideas do
not naturally apply to settings with unbounded domains, such as sets of strings.
Lastly, they do not support arbitrary complex operations: one sketch addresses
only one or two defined problems, and its is hard to compose sketches to address
complex aggregates.

3.3 Special-Purpose Summaries

Other summaries take the form of various special-purpose structures, which
capture various aspects of the data. The properties of these vary instance by
instance, and require special analysis to accompany their implementation. How-
ever, they can offer very good performance in terms of their space and time
costs.

A simple example is the MG summary, named for the initials of its inventors.
This was originally proposed in the context of streams of data [15], and later
generalized to allow merging of summaries [1] for summarizing a collection of
weights. The MG summary stores a collection of pairs: items drawn from the
input x and associated weights w,. To INITIALIZE an empty MG summary,
we create an empty set of tuples, with space for k pairs. The MERGE of two
MG summaries takes two summaries constructed using the same parameter k.
We first merge the component tuples in the natural way. If x is stored in both
summaries, its merged weight is the sum of the weights in each input summary. If
x is stored in only one of the summaries, it is also placed in the merged summary
with the same weight. We then sort the tuples by weight, and find the & + 1st
largest weight, wy41. This weight is subtracted from all tuples, and only those
with positive weight are retained. At most k£ tuples can now have weight above
zero: the tuple with k + 1st largest weight, and all tuples with smaller weight,
will now have weight 0 or below, and so can be discarded from the summary. The
UPDATE procedure is the special case of MERGE where one of the summaries
contains just a single item. To QUERY for the estimated weight of an item x, we
look up whether x is stored in the summary. If so, QUERY reports the associated
weight w, as the estimate, otherwise the weight is assumed to be 0.

Comparing the approximate answer given by QUERY, and the true weight of
x (the sum of all weights associated with x in the input), the approximate answer
is never more than the true answer. This is because the weight associated with
z in the summary is the sum of all weights for = in the input, less the various
decreases due to MERGE and UPDATE operations. The MG summary also ensures
that this estimated weight is not more than eW below the true answer, where
W is the sum of all input weights.

Special-purpose summaries: pros and cons. Summaries such as the MG summary
have been used for quite a wide variety of purposes, such as web clickstream min-
ing [14]. They tend to work very well for their target domain but, as indicated

by their name, do not obviously generalize to other problems. Other special-
purpose summaries include summaries for order statistics of distributions, such
as the Greenwald-Khanna summary [12], and the g-digest [21]; e-approximations
and e-nets for geometric data [13]; and summaries for graph distances and con-
nectivity [2].

4 Summaries Summary

As noted in the preceding discussion, there are numerous, growing applications
for summary data structures, from scaling up machine learning and data mining,
to applications in privacy and security (e.g. [20]). For more information, see
various tutorials and surveys [8]. Many directions for further research are open.

Natural questions surround improving on the current summaries, either in
terms of their parameters (reducing the space and update time), or extending
their generality (allowing them to be applied in more general update models).
While summaries for computing over data that can be thought of in terms of
vectors are by now quite well-understood, the situation for other forms of data
— in particular, matrices and graphs — is less complete. New styles of summary
are required in the context of verification of computation: these are summaries
that allow a “verifier” to check the computation performed by a more powerful
“prover” on a stream of data. A list of specific open problems is maintained at
http://sublinear.info/.

References

1. P. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable
summaries. In ACM Principles of Database Systems, 2012.

2. K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear
measurements. In ACM-SIAM Symposium on Discrete Algorithms, 2012.

3. N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes
in limited storage. In ACM Principles of Database Systems, pages 10-20, 1999.

4. B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7):422-426, July 1970.

5. M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards estimation
error guarantees for distinct values. In ACM Principles of Database Systems, pages
268-279, 2000.

6. K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming
model. In ACM Symposium on Theory of Computing, pages 205-214, 2009.

7. G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In International Conference on Very Large Data
Bases, 2005.

8. G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synposes for Massive
Data: Samples, Histograms, Wavelets and Sketches. Foundations and Trends in
Databases. NOW publishers, 2012.

9. G. Cormode and S. Muthukrishnan. An improved data stream summary: The
Count-Min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

K. Cukier. Data, data everywhere. The FEconomist, Feb. 2010.

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for database ap-
plications. Journal of Computer and System Sciences, 31:182—209, 1985.

M. Greenwald and S. Khanna. Space-efficient online computation of quantile sum-
maries. In ACM SIGMOD International Conference on Management of Data,
2001.

S. Har-Peled and S. Mazumdar. Coresets for k-means and k-median clustering and
their applications. In ACM Symposium on Theory of Computing, pages 291-300,
2004.

A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of frequent and
top-k elements in data streams. In International Conference on Database Theory,
2005.

J. Misra and D. Gries. Finding repeated elements. Science of Computer Program-
ming, 2:143-152, 1982.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

Cisco NetFlow. More details at http://www.cisco.com/warp/public/732/Tech/
netflow/.

F. Olken. Random Sampling from Databases. PhD thesis, Berkeley, 1997.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel
analysis with sawzall. Dynamic Grids and Worldwide Computing, 13(4):277-298,
2005.

S. Schechter, C. Herley, and M. Mitzenmacher. Popularity is everything: A new
approach to protecting passwords from statistical-guessing attacks. In Proceedings
of HotNets, 2010.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:
New aggregation techniques for sensor networks. In ACM SenSys, 2004.

K. To, T. Ye, and S. Bhattacharyya. CMON: A general purpose continuous IP
backbone traffic analysis platform. Technical Report RR04-ATL-110309, Sprint
ATL, 2004.

K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and J. Attenberg. Fea-
ture hashing for large scale multitask learning. In International Conference on
Machine Learning (ICML), 2009.

