
Summarizing and Mining Skewed Data Streams

Graham Cormode∗ S. Muthukrishnan†

Abstract
Many applications generate massive data streams. Sum-
marizing such massive data requires fast, small space algo-
rithms to support post-hoc queries and mining. An important
observation is that such streams are rarely uniform, and real
data sources typically exhibit significant skewness. These
are well modeled by Zipf distributions, which are character-
ized by a parameter, z, that captures the amount of skew.

We present a data stream summary that can answer point
queries with ε accuracy and show that the space needed
is only O(ε−min{1,1/z}). This is the first o(1/ε) space
algorithm for this problem, and we show it is essentially
tight for skewed distributions. We show that the same data
structure can also estimate the L2 norm of the stream in
o(1/ε2) space for z > 1

2 , another improvement over the
existing Ω(1/ε2) methods.

We support our theoretical results with an experimental
study over a large variety of real and synthetic data. We
show that significant skew is present in both textual and
telecommunication data. Our methods give strong accuracy,
significantly better than other methods, and behave exactly
in line with their analytic bounds.
Keywords: data stream analysis, data mining, Zipf distribution,
power laws, heavy hitters, massive data.

1 Introduction
A number of applications—real-time IP traffic analy-
sis, managing web clicks and crawls, sensor readings,
email/SMS/blog and other text sources—are instances of
massive data streams. Here new data arrives very rapidly
and often we do not have the space to store all the data.
Hence, managing such streams needs algorithmic methods
that support fast updates and have a small footprint of space.
See [17] for a detailed motivation for these constraints in
the context of IP traffic analysis. Similar motivation can be
found in high performance web data analysis [25], mining
email streams [40], aggregating sensor data [39], analyzing

∗cormode@bell-labs.com Work completed while author was at
Center for Discrete Mathematics and Computer Science (DIMACS) Rutgers
University, Piscataway NJ. Supported by NSF ITR 0220280 and NSF EIA
02-05116.

†muthu@cs.rutgers.edu Division of Computer and Information
Systems, Rutgers University. Supported by NSF CCR 0087022, NSF ITR
0220280, NSF 0430852 and NSF EIA 02-05116.

financial time series [52], processing high-volume scientific
measurements [30], detecting communities in communica-
tion graphs [7] and others.

There are typically two aspects to analyzing data
streams. The first is summarizing data streams for post-hoc
queries. Data stream methods use a synopsis to summarize
the data stream on the fly. “Synopsis” means a small space
representation of the data stream that can be rapidly updated
as the data stream unravels; typical synopses are samples and
sketches. The second aspect of analyzing data streams is the
type of queries that are supported, whether using synopses or
without. Since many of these data stream applications tend
to be about monitoring data sources say for adverse events
such as intrusion detection, fraudulent communities, etc., an
essential set of problems are of the data mining genre. For
example, how to find heavy hitters or frequent items, large
changes and evolving trends, or perform clustering and sim-
ilarity searching, decision tree classification, regression and
other statistical analyses. See the ensemble of websites for
project descriptions [41, 26, 48, 1, 15, 28, 45], bibliogra-
phies [50], tutorials [20, 34], surveys [5, 24, 44] in addition
to a number of special issues in journals, workshops, etc.

We study both summarization and mining problems
with data streams. Our work here was initiated by our
experience with IP traffic analysis using Gigascope [15],
AT&T’s IP traffic analysis system, as well as our work on
mining text streams [40]. Our observation was that data
streams involved distributions that were not arbitrary, but
rather typically quite skewed. For example, if one studied
the distribution of the IP addresses that used a link of the
backbone network or the distribution of flows or bytes sent
by each IP address, the distribution was zipfian, fractal
or multi-fractal. This has been studied in detail in [33].
Similarly, the word frequencies in natural text is well known
to be zipfian; word frequencies in text streams such as email
or blogs tend to be heavy-tailed [36]. In nature, zipfian
distributions (also known as power laws) abound in citation
distributions to web accesses for different sites, file sizes
transferred over the Internet, etc [8].

Motivated by our experience and the widely-prevalent
evidence of skew in data streams, we study summarization
and mining problems with skewed data streams. We take a
formal approach, focusing on zipfian (more generally, Zipf-
like which we define later and which is quite general) skew
on the domain 1 . . . U . The Zipf distribution is also known

as the Pareto distribution, and is essentially identical to so-
called “power-laws” [2] with transformation of parameters.
We work in well-established data stream algorithm model
and study probabilistic, approximate algorithms, that is al-
gorithms that provide ε approximation with probability of
success at least 1 − δ. As is usual, we study the trade-off
between space used by the synopsis and the time per new
data update versus the quality of estimations given by ε and
δ. Our theoretical contributions are as follows.

1. We present a synopsis that uses space
O(ε−min{1,1/z} ln 1/δ) for (ε, δ) point queries on
z-skewed data streams.

For z > 1, the space used is o(1/ε); this is the
first known o(1/ε) space algorithm known for any
synopsis—sample or sketch based—known for such
problems. This is of interest since the O(1/ε) space
bound has long been taken as the gold-standard target
for data stream algorithm design.

We can use this synopsis for a variety of mining tasks
such as finding heavy-hitters, frequent items for associ-
ation rule mining, finding significant changes from one
time to another, significant differences between differ-
ent streams, estimating wavelet decomposition of data
stream, and so on. In all these cases, our methods
improve the O(1/ε) factor in previously known algo-
rithms to O(ε−min{1,1/z}) for space usage.

2. We prove a matching lower bound, that is, we show that
any (ε, O(1)) algorithm for point queries needs at least
Ω(ε−min{1,1/z}) space.

3. We extend our synopsis to estimate the second fre-
quency moment, ie., the sum of squares of the frequen-
cies of items in the data stream. It is equivalently (the
square of) the L2 norm of the vector of frequencies of
items in the data stream. The space used is O(ε

−4
1+2z)

for 1/2 < ε ≤ 1 and O(ε
−2
1+z) for z > 1.

For z ≥ 1/2, the space used is o(1/ε2); all previ-
ously known algorithms in contrast use at least Ω(1/ε2)
space. Our bound above is additionally interesting be-
cause the synopsis methods for L2 norm are implemen-
tations of the Johnson-Lindenstrauss lemma [29]. The
lemma states that a set of vectors in Euclidean space
can each be replaced by a vector in O(1

ε2)-dimensional
space, and inter-vector distances are preserved up to a
(1±ε) factor with high probability. This dependency on
ε is tight since a lower bound of Ω(1

ε2) has recently been
shown [51] for general distributions. Our results show
that for skewed data, this lower bound can be avoided.

We can use this result for a variety of mining tasks.
For example, anomaly detection methods in IP traffic
analysis use the second frequency moment [35]. Also, it

is used as a subroutine in counting subgraphs in massive
web graphs in [6], and for quantiles, histograms and
other statistical descriptors of the data stream [21].

Our synopsis above is a sketch, ie., inner products of
the input distribution with certain random vectors. There are
many known sketches [4, 10, 23, 49, 13]. Here, we adopt the
Count-Min sketch [13] which dominates all other sketches
in terms of space and update time needed to guarantee
ε‖a‖ accuracy. Our main theoretical contribution here is to
analyze estimation methods based on this sketch and prove
improved bounds on space usage without compromising any
of the other parameters, ie., update time and accuracy. Our
algorithms are essentially oblivious of the skew value, z but
our analysis is skew-aware. We can approach this in two
ways: given a desired error bound ε and bound on the skew
z, we can allocate space to the sketch as a function of these
parameters; alternatively, we can allocate a fixed amount of
space for the sketch, and based on the observed skew z, give
tight bounds on the worst case error as a function of z. In
the latter case irrespective of the data distribution, a simple
analysis gives a universal bounds on the error, and using the
skew of the distribution we can give tighter bounds.

Our results give additional evidence that CM sketch is
versatile and suited for a variety of problems under a range
of data distributions. This, coupled with their proven perfor-
mance within the operational AT&T’s IP traffic analysis tool
Gigascope [11] at the rate of OC48 links, makes our meth-
ods for skewed data stream summarization and mining suit-
ably efficient for real-life data stream management systems
in practice.

Our experimental contributions are as follows. We
consider large streams of both real and synthetic data. We
observe that all the real data we consider, from IP network
and phone call data to “blogs” and Shakespeare’s plays,
exhibit significant skew to varying degrees, and our methods
capitalize on this. Not only do they outperform other
methods, but they behave closely in accordance with our
stated bounds. The correlation is sufficiently good that
not only can we compare our method to that predicted by
our theory, but also we can use our results to compute the
skewness of the data with high accuracy. Our conclusion is
that by understanding and building skew into our model of
data streams, we can realize much stronger results, both in
terms of theoretical analysis and practical performance.

1.1 Map.
We give preliminaries in Section 2, then define the CM
Sketch in Section 3. We discuss skewed distributions and
related work in Section 4. Section 5 gives our results for
Point Queries, and Section 6 those for L2 norm estimation.
Our experimental study on a mixture of real and synthetic
data is reported in Section 7.

2 Model and Queries
We consider a vector a, which is presented in an implicit,
incremental fashion. This vector has dimension n, and its
current state at time t is a(t) = [a1(t), . . . ai(t), . . . an(t)].
For convenience, we shall usually drop t and refer only to
the current state of the vector. Initially, a is the zero vector,
0, so ai(0) is 0 for all i. Updates to individual entries of the
vector are presented as a stream of pairs. The tth update is
(it, ct), meaning that

ait(t) = ait(t− 1) + ct

ai′(t) = ai′(t− 1) i′ 6= it

We assume throughout that although values of ai in-
crease and decrease with updates, each ai ≥ 0. Our results
all generalize to the case where ais can be less than 0, with
small factor increases in space, but we omit details of these
extensions for simplicity of exposition.

It is easy to see how this model maps to the motivating
data stream applications. For example, for the IP traffic
case, each new IP packet with source IP address s and size
of the packet p may be seen as updating a[s] ← a[s] + p
to count the total size of flows from source IP address s.
Similarly, in the text streaming application, when new text
input such as email arrives, we can parse it into words and
track word usage frequency in order to track frequent and
recently popular (“bursty”) words, to attribute authorship
based on usage patterns, etc. Here, each new text input
updates many new a[w]’s for different words or phrases w
in the input. See [44] for more examples. We consider two
particular types of queries for summarization and mining.

• Point query. A point query is, given i, to return an es-
timate of ai. Our goal is to give (ε, δ) approximations:
the answer should be correct to within additive error of
ε‖a‖1 with probability at least 1 − δ. We will analyze
the space required as a function of ε and δ required to
achieve this.

• Second Frequency Moment and L2 Norm The L2

norm of a vector, ‖a‖2, is defined as (
∑

i a2
i)

1
2 . The

goal is to estimate this within additive error of ε‖a‖2
(equivalently, with relative error 1 + ε) with probability
at least 1 − δ. The second frequency moment in our
model is the square of the L2 norm, ‖a‖22.

These two queries appear to be abstract, but they have
many concrete applications in a number of mining problems
on data streams. Point queries can be used for estimating
frequent items for association rule mining [42], heavy hit-
ters1 [12], significant differences [10] and significant rel-
ative changes [14], etc. The L2 norm estimation is use-

1The heavy hitters problem is to find all i such that ai ≥ ‖a‖1/k for
some constant k.

ful in anomaly detection [35], counting triangles in mas-
sive web graphs in [6], and for quantiles [23], wavelets [22],
histograms [21] and other statistical descriptors of the data
stream. They are also useful for partitioning data stream
into multiple zones of interest [16]. There is a maturing
theory of data stream algorithms with many such applica-
tions. Rather than list these applications and show the im-
provements obtained by using our methods we focus on these
primary queries and demonstrate the nature of our improve-
ments in depth.

3 The CM Sketch
Many sketches are known [4, 10, 49, 13]. Here, we briefly re-
cap the data structure that is used throughout. The important
property is that, given the parameters of the sketch structure,
the update procedure is the same no matter what the ultimate
query operations are.

The CM sketch is simply an array of counters of width
w and depth d, count[1, 1] . . . count[d, w]. Each entry of the
array is initially zero. Additionally, d hash functions

h1 . . . hd : {1 . . . n} → {1 . . . w}

are chosen uniformly at random from a pairwise-
independent family. Once w and d are chosen, the space
required is fixed as the wd counters and the d hash func-
tions (which can each be represented in O(1) machine
words [43]).

Update and Query Procedure. When an update (it, ct)
arrives, meaning that item ait is updated by a quantity of
ct, then ct is added to one count in each row; the counter is
determined by hj . Formally, we set

∀1 ≤ j ≤ d : count[j, hj(it)]← count[j, hj(it)] + ct

The query procedure is similar: given a query point i,
return min1≤j≤d count[h, hj(i)] as the estimate. In [13],
it was shown that the error for point queries, irrespective
of the distribution, is ε‖a‖1 = e/w‖a‖1 with probability
1 − δ = 1 − e−d. Hence, in order to get ε approximation
with probability 1 − δ for point queries, we need w = e/ε
and d = log(1/δ).

4 Skew in Data Stream Distributions
In almost every practical setting, the distribution of fre-
quencies of different items displays some amount of skew.
Throughout, we will use the popular Zipf distribution to
model skewed distributions. The Zipf distribution accurately
captures a large number of natural distributions. It was intro-
duced in the context of linguistics, where it was observed that
the frequency of the ith most commonly used word in a lan-
guage was approximately proportional to 1/i [53]. Zipf dis-
tributions are equivalent to Pareto distributions and power-
laws [2].

Formally, a Zipf distribution with parameter z has the
property that fi, the (relative) frequency of the ith most
frequent item is given by fi = cz

iz , where cz is an appropriate
scaling constant. We will consider distributions over the
range [1 . . . U], where U is the range, or universe size. For
the skewed distributions we consider, we can often allow U
to be∞. cz is determined by z (and U) since for a probability
distribution we must have

∑U
i=1 fi = 1. Given a vector a

whose entries are distributed according to a Zipf distribution,
the count of the ith most frequent item is simply ‖a‖1fi.

Many skewed distributions are well captured by Zipf
distributions with appropriate parameters. Natural phenom-
ena, such as sizes of cities, distribution of income, social
networks and word frequency can all be modeled with Zipf
distributions. Even the number of citations of papers demon-
strates a highly skewed Zipf distribution [47]. More relevant
to our study of large data streams, web page accesses for
different sites have been observed to obey a skewed Zipf dis-
tribution with parameter between 0.65 and 0.8. [9]. The
“depth” to which surfers investigate websites is also captured
by a Zipf distribution, with parameter 1.5 [27]. Files com-
municated over the Internet display Zipf distribution in a va-
riety of ways: transmission times are Zipf with parameter
approximately 1.2; the size of files requested, transmitted,
and available for download are all Zipf with parameters re-
spectively measured as 1.16, 1.06 and 1.06 [8]. FTP traffic
sizes was estimated to have z in the range 0.9 to 1.1. More
strongly, such skewed behavior of requests appears not only
over individual addresses but also when grouped into subnets
or larger networks [33], meaning that the skewed distribution
is self-similar (multi-fractal).

Related work on Mining Skewed Streams. A distinguish-
ing element of our work is to bring the skew of the data into
the analysis of summarizing and mining data whereas much
of the extant work deals with arbitrary distributions (with
some exceptions). For the heavy hitters problem Manku and
Motwani [42] presented the “lossy counting” algorithm that
requires space O(1

ε log ε‖a‖1) to give the same accuracy
bounds as our results in general; but under the assumption
that each new item is drawn from a fixed probability distri-
bution, then the space is (expected) O(1

ε) and the error guar-
anteed. Our results are dual to this, given guaranteed space
bounds and expected error bounds; however, with more in-
formation about the distribution, our bounds are dependent
on skew z, being much better for moderate to large skew, but
never worse. For the top k problem, [10] specifically stud-
ied Zipfian data and showed that for z > 1

2 , O(k
ε2) space

suffices. For large skew, our methods improve this bound
to O(k

ε). Using data skew is not uncommon in database re-
search, but only recently there are examples of data mining
in presence of skew in massive data such as [18] of analyzing
trading anomalies. Our work differs from previous works by
being a systematic algorithmic study of summarization and

mining problems in data streams with skew to give much im-
proved bounds and performance.

Zipf tail bounds. For our analysis, we will divide up
the range of the parameter z into three regions. We refer
to 1

2 < z ≤ 1 as moderate skew, and 1 < z as skewed.
Otherwise, when z ≤ 1

2 , we will say that the distribution has
light skew.

The following facts result from bounding the discrete
distribution by its continuous counterpart.

FACT 4.1. For z > 1, 1− 1
z ≤ cz ≤ z − 1.

FACT 4.2. For z > 1,

czk
1−z

z − 1
≤

U∑
i=k

fi ≤
cz(k − 1)1−z

z − 1

FACT 4.3. For z > 1
2 ,

c2
zk

1−2z

2z − 1
≤

U∑
i=k

f2
i ≤

c2
z(k − 1)1−2z

2z − 1

Our analyses generalize to when the data distribution is
dominated by zipfian or more generally, what we call Zipf-
like distributions: a distribution is Zipf-like with parameter
z > 1 if the tail after k largest items has weight at most
k1−z of the total weight (one could also allow scaling by
a constant, eg, the tail has weight at most ck1−z; such
extensions follow easily). Although we state results in this
paper for zipfian data, with a few more technical details, the
results hold for Zipf-like distributions as well.

5 Point Queries
5.1 Upper Bounds
The crucial insight for giving better bounds for the Count-
Min sketch in the presence of skewed distributions is the
observation that items with large counts can cause our esti-
mates to be poor if they collide with other items in the array
of counters. In a skewed distribution a few items consume a
large fraction of the total count. When estimating the count
of an item, if none of these large items collide with it un-
der the hash functions, then we can argue that the estimates
will be better than the w = 1/ε bound given by the generic
argument in [13].

THEOREM 5.1. For a Zipf distribution with parameter
z, the space required to answer point queries with er-
ror ε‖a‖1 with probability at least 1 − δ is given by
O(ε−min{1,1/z} ln 1/δ).

Proof. For z ≤ 1, the best results follow from analysis
in [13]. For z > 1, we use the same estimation technique to
return an estimate for ai as âi = minj count[hj(i)], but give

a new analysis. The estimate returns ai plus some additional
“error” coming from the counts of items that collide with i
under the hash functions. We split the error in our estimate
into two parts: (i) collisions with some of the largest items
and (ii) noise from the non-heavy items. If the sketch has
width w, then let k = w/3. With constant probability (2

3)
over the choice of hash functions, none of the k heaviest
items collide with the point we are testing in any given row.

The expectation of the estimate for i is

ai +
1
w

U∑
x=k+1,x 6=i

ax ≤ ai + ‖a‖1k1−z/w. (5.1)

This uses Fact 4.2 from Section 4 to bound the weight
of the tail of the Zipf distribution after the k largest items
are removed. Setting k1−z/w = ε/3 and recalling that
w = 3k leads us to choose w = 3k = 3(1

ε)1/z . We can
now apply the Markov inequality to show that the error is
bounded by ε‖a‖1 with probability at least 1− 1

3 −
1
3 = 1

3 .
This applies to each estimate; since we take the minimum of
all the estimates, then this probability is amplified to 1− 2

3

d

over the d separate estimations. �

5.2 Lower Bounds
We now present lower bounds for the space required to
answer point queries, which shows that our analysis above
is asymptotically tight (since [13] shows the CM sketch data
structure gives ε error over general distributions with O(1

ε)
space).

THEOREM 5.2. The space required to answer point queries
correctly with any constant probability and error at most
ε‖a‖1 is Ω(ε−1) over general distributions, and Ω(ε−1/z)
for Zipf distributions with parameter z, assuming n =
Ω(ε−min{1,1/z}).

Proof. Our proof relies on a reduction to the Index problem
in communication complexity. There are two players, A
and B. A holds a bitstring of length n, and is allowed to
send a message to B who wishes to compute the ith bit
of the bitstring. Since B is not allowed to communicate
with A, then any protocol to solve this problem, even
probabilistically, requires Ω(n) bits of communication [37].
We will reduce to this problem by encoding a bitstring
in such a way that if we could answer point queries with
sufficient accuracy, we could recover bits from the bitstring.
This is sufficient to show a lower bound on the size of the
data structure required to answer such queries.

For general distributions, we take a bitstring B[1 . . . 1
2ε]

of length n = 1
2ε bits, and create a set of counts. We set

ai = 2 if B[i] = 1. Otherwise, we set ai = 0 otherwise,
and add 2 to a0. Now, observe that whatever the value of B,
‖a‖1 = 1/ε. If we can answer point queries with accuracy
ε‖a‖1 = 1, then we can test any ai and determine the value

of B[i] by reporting 1 if the estimated value of ai is above
εN , and 0 otherwise. Therefore, the space used must be at
least Ω(1

ε) bits.
The same idea applies when we restrict ourselves to

Zipf distributions. However, the counts must follow the Zipf
pattern. We again encode a bitstring B, this time using the k
largest counts from the Zipf distribution. Now we set a2i =
fiN (for some suitably large value of N) if B[i] = 1, else
we set a2i+1 = fiN if B[i] = 0. This time, we can recover
the first k bits of B provided that fk ≥ 2ε: if fk is less than
this, then the error in approximation does not allow us to
distinguish this value from zero. Using the bounds on fi for
skewed Zipf distributions, we have fk = cz

kz ≥ 2ε. To get the
best lower bound, we choose k as large as possible subject to
these constraints, Solving for k, we find k = cz

2
1/z 1

ε

1/z . The
term cz

2
1/z is bounded below by (z − 1)/2 for 1 < z ≤ 2,

and may be treated as a constant. Thus, k is fixed as c 1
ε

1/z

bits of B for some constant c. This results in the stated space
bounds by again appealing to the Index problem. �

5.3 An example application: Top-k items
As mentioned earlier, supporting point queries post-hoc on
data stream synopsis has many applications. Here, we focus
on describing one of them.

A common query for a variety of management and
analysis settings is to find the top-k: for example, find the top
100 users of bandwidth on a network, or find the top 10 new
terms in a message stream. Such queries can be answered
by point queries, by tracking the most frequent items that are
seen as the stream unravels. We need to choose the parameter
ε appropriately: too large, and we will not be able to answer
the query with sufficient accuracy, and the results may be
unreliable. When the distribution is skewed, we can apply
our above results and give very tight bounds.

To give the correct answer, we need to bound the error
by εak (where, here, we use ak to denote the frequency of
the kth most frequent item in a) instead of ε‖a‖1. Using
the above analysis for the expectation of the error in the
estimation of any frequency from equation (5.1), we set the
expected error equal to εak:

‖a‖1k1−z

w
=

ε‖a‖1k−z

2

and so w = O(k
ε) for z > 1. This improves the results

in [10], which showed that for z > 1
2 , O(k

ε2) space suffices
with a Count sketch. In both cases, occurrences of z cancel,
so there is no dependency on z provided the distribution is
skewed with z > 1. We can set the space based on k and
ε without needing to know z exactly. Further, using a CM
Sketch, one can simulate the sketch of [10] by computing
(count[j, 2i]− count[j, 2i− 1]) for all 1 ≤ j ≤ d, 1 ≤ i ≤
w/2. The converse is not possible.

6 Second Frequency Moment Estimation
The second frequency moment, and the closely related L2

norm, have been the focus of much study in the data stream
community. The work of Alon, Matias and Szegedy [4]
spurred interest in the data stream model of computation.
One of their results was an efficient algorithm to compute
the second frequency moment of a stream of values in space
O(1

ε2). As was observed by the authors of [19], the same
algorithm also allowed the L2 difference of two streams
to be computed in a very general model. The algorithm
can also be viewed as a streaming implementation of the
Johnson-Lindenstrauss lemma [29] with limited randomness
and bounded space. The lemma states that a set of vectors in
Euclidean space can each be replaced by a vector in O(1

ε2)-
dimensional space, and inter-vector distances are preserved
up to a (1±ε) factor with high probability. This dependency
on ε is essentially tight in terms of the dependency on ε for
general distributions: a lower bound of Ω(1

ε2) has recently
been shown [51]. This is problematic for applications that
require a very fine quality approximation, say ε = 1%
or 0.1% error, since the dependency on ε−2 means a high
space cost. Here, we show how the CM sketch can be
used to approximate this heavily studied quantity with strong
guarantees of accuracy, and how, for skewed distributions,
the Ω(ε−2) space bounds can be beaten for the first time.

6.1 Skewed Data
We describe the estimation procedure for the L2 norm; to
estimate the second frequency moment, we return the square
of this value. When the distribution is skewed (z > 1),
there are a few items with high frequency, and so a simple
method to approximate the norm suffices. That is, we simply
compute our estimate of the L2 norm as

min
j

(
∑

k

count[j, k]2)1/2

which is minimum of the L2 norm of the rows of the sketch.
We refer to this method as CM+.

THEOREM 6.1. This procedure estimates the L2 norm of
streams with Zipf skewness parameter > 1, with error
bounded by ε‖a‖2 where ε = O(w

−(1+z)
2), with probability

at least 1− δ = 1− 3
4

−d
.

Proof. Let m = w1/2. Then, with constant probability, in
any row the largest m items fall in different buckets within
the CM sketch. This follows from the pairwise independence
of the hash functions used.

We compute the (squared) error in the jth estimator as
Xj =

∑
i count[j, i]2 − ‖a‖22. Consider the expectation of

this quantity when the above condition holds, that is, when
the m largest counts are in m distinct buckets:

E(Xj) =
U∑

i=1

a2
i +

U∑
i=1

U∑
j=1,j 6=i

aiajPr[h(i) = h(j)]− ‖a‖22

≤ ‖a‖22 +
1
w

(
U∑

i=1

U∑
j=1,j 6=i

aiaj −
m∑

i=1

m∑
j=1,j 6=i

aiaj)− ‖a‖22

≤ ‖a‖
2
1

w
(2

m∑
i=1

fi

U∑
j=m+1

fj + (
U∑

i=m+1

fi)2)

≤ 2
‖a‖21

w
(

U∑
i=1

fi

U∑
j=m+1

fj)

≤ 2‖a‖21czm
1−z

w(z − 1)
≤ 2‖a‖22cz(2z − 1)

c2
z(z − 1)

w
−(1+z)

2

This makes use of the Facts 4.2 and 4.3 to bound the sum
of the tail of the distribution and to relate the L1 norm to the
L2 norm. Note that, since ai = ‖a‖1fi and ‖a‖22 =

∑
i a2

i ,
we can write ‖a‖22 = ‖a‖21

∑
i f2

i . We can substitute this
inequality, and then use the lower bound of Fact 4.3 to
rewrite

∑
i f2

i in terms of z and cz . We set the expected
squared error equal to ε‖a‖22/2, which gives w = O(ε

−2
1+z).

We treat the terms polynomial in z as effectively constant.
We then apply the Markov inequality, so with proba-

bility 3
4 , Xj < 2ε‖a‖22. This implies that ‖a‖22 ≤ Xj ≤

(1 + ε)2‖a‖22. Taking the square root of all terms in this
inequality bounds the L2 norm of a. For each row the prob-
ability of this failing to hold is no more than 3

4 : 1
2 for the

m items not falling in different counters, 1
4 from the Markov

inequality. Taking the minimum of these estimates amplifies
the probability of success to 1− 3

4

d. �

6.2 Moderate Skew
For the moderate skew (z < 1), and unskewed cases, we
use the CM Sketch data structure to effectively simulate the
sketch proposed by Alon Matias and Szegedy [4]. This
shows the flexibility of the CM Sketch. In order for the re-
sults to be provable, we need to strengthen the hash func-
tions used, from pairwise independent to 4-wise indepen-
dent2. Apart from this change, the data structure is con-
structed and maintained in the same way as before.

Again, let m = w1/2; it remains the case that the m
largest items will not collide, although these contribute a
smaller amount to the L2 norm. Now, compute the estimate
(denoted CM−) of the L2 norm for each row by taking the
square root of

Yj =
∑w/2

k=1(count[j, 2k]− count[j, 2k − 1])2.

2In [4], the authors argue that in practice, pairwise or other hash
functions will often suffice.

THEOREM 6.2. With constant probability,

(1− ε)‖a‖22 ≤ Yj ≤ (1 + ε)‖a|22

for ε = w
−(1+2z)

4 .

Proof. We will define some functions derived from the hash
functions, h, in order to simplify the notation and clarify the
analysis. We define gj(x) = +1 if hj(x) ≡ 0 mod 2, and
−1 otherwise. We also define h′j(x) = dhj(x)/2e.

First, we will show that in expectation, E(Yj) = ‖a‖22.
Observe that
E(Yj) =

∑
x,y axaygj(x)gj(y)Pr[h′j(x) = h′j(y)]

=
∑

x a2
x = ‖a‖22

using the pairwise independence of the function g (which
follows from the pairwise independence of h). Secondly, we
compute the variance of Yj as
Var(Yj) = E(Y 2

j)− E(Yj)2

= (
∑w/2

i=1 (
∑

x,h′j(x)=i axgj(x))2)2 − ‖a‖4

≤
∑

v,x,y,z 4gj(v)gj(x)gj(y)gj(z)avaxayaz

∗ Pr[h′j(v) = h′j(x) = h′j(y) = h′j(z)]
= 4

∑U
x=1

∑U
y=1,y 6=x a2

xa2
yPr[h′j(x) = h′j(y)]

= 4
w

∑U
x=1

∑U
y=1,y 6=x a2

xa2
y

This uses the 4-wise independence of the function h
to imply 4-wise independence of g, and hence to show
that products of 4 or fewer independent terms in g have
expectation zero.

We again argue that, with probability at least 1
2 , the

m = w1/2 largest counts fall into different buckets. Consider
the distribution of counts in the CM sketch only for such
settings where this event occurs. For such distributions, then
Var(Yj) is bounded as:

Var(Yj) ≤ 4‖a‖41
w (2

∑m
i=1 f2

i

∑U
j=m+1 f2

j

+ (
∑U

i=m+1 f2
i)2)

≤ 4‖a‖21
w (2

∑U
i=1 f2

i

∑U
j=m+1 f2

j)
≤ 8‖a‖42m1−2z/w = 8‖a‖42w

−1−2z
2

Setting this equal to ε2‖a‖42 lets us apply the Chebyshev
bound. This shows that Pr[|Yj − ‖a‖22| > 2ε‖a‖22] < 1

4

provided we have ε2 ≥ 8w
−(1+2z)

2 . We can take the median
of O(ln 1

δ) independent repetitions of the estimator Yj and
apply Chernoff bounds in usual way to amplify this constant
probability of success to 1 − δ. The space required is
O(ε

−4
1+2z ln 1

δ) for z > 1
2 . �

6.3 Light Skew Case and Summary
For the case where z ≤ 1

2 , we observe that by simply taking
the variance of the CM− estimator over all distributions, then
it is directly bounded as Var(Yj) ≤ 8‖a‖42/w. Following
the Chebyshev and Chernoff arguments results in space
bounds of O(1

ε2). This matches the space requirements
for the previously best known algorithms for L2 estimation
of [4, 13, 49] up to small constant factors. Observe that

the update time is the same as the usual cost for updating
a CM Sketch, which is O(d) = O(ln 1

δ). Here we give
much improved dependency on ε on space used for skewed
distributions, as summarized in the table below.

Value of z z ≤ 1
2

1
2 < z ≤ 1 1 < z

Space required O(ε−2) O(ε
−4

1+2z) O(ε
−2
1+z)

7 Experimental Study
We carried out an extensive experimental analysis of the
Count Min sketch for point estimation and L2 estimation.
We made use of the public implementations of the data struc-
ture available from http://www.cs.rutgers.edu/
∼muthu/massdal-code-index.html as well as the
Count sketch [10] for comparison. The Count sketch can
also be used to answer point queries, and has a similar struc-
ture to the Count-Min sketch, being based around an array of
counters. So in all experiments, the two methods were given
exactly the same amount of space, in each case arranged as
an array of counters with the same dimensions. This should
give a fair comparison between the two methods. We refer
to the Count-Min sketch as “CM”, and the Count sketch as
“CCFC” (after the initials of its creators) for brevity. We
considered synthetic datasets generated from Zipf distribu-
tions with known values of z, so that we could compare the
behavior of the algorithm with that predicted by our analy-
sis. We also considered various real data sets, two data sets
in each category, text and network data.

7.1 Synthetic Data
We made our synthetic data sets by using standard routines to
draw values from a Zipf distribution with specified parameter
z. Each experiment consisted of drawing 107 items from a
domain of size n = 106 and computing the L2 norm and all
point queries over this domain. In evaluating the quality of
our algorithms, we computed the exact solutions to all these
queries, and so could compute the error in each result. For
L2 norms, we computed the fractional error as the difference
between the estimated and actual value, scaled by the actual
value. For simplicity, we worked with F2 = L2

2. For
point queries, we computed the difference between the actual
value and the estimate, and scaled by the number of items.
We computed the maximum error observed, and the 99.9th
percentile of the error (that is, sort the observed errors, and
take the one whose rank is 999

1000N). Since our algorithms
give guaranteed bounds with a small probability of failure,
this should test how well these bounds are met.

The first results are shown in Figure 1. These show the
effect of fixing the space s for algorithms, but varying the
skewness parameter of the input. Our theory predicts that
the performance of the Count-Min sketch should be ε ∝ 1/s
for z < 1, and ε ∝ 1/sz for z > 1. We observe that this
seems to be borne out in Figure 1(a): the error is roughly flat

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

99.9% Error on Zipf data with 27KB space

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Zipf parameter

99
.9

%
ile

 e
rr

o
r

CM

CCFC

Maximum Error on Zipf data with 27KB space

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Zipf parameter

O
b

se
rv

ed
 e

rr
o

r

CM

CCFC

(a) (b)

Figure 1: Testing point estimation on synthetic data

Point Queries from Zipf(1.2)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 10 100 1000Size / KB

99
.9

%
ile

 e
rr

o
r

fr
ac

ti
o

n CM

CCFC

x^-1.2

Max Error on Point Queries from Zipf(1.6)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

M
ax

 E
rr

or

CM

CCFC

x^-1.6

(a) (b)

Figure 2: Testing space dependency of point estimation on synthetic data

for 0.5 < z < 1, and then falls off smoothly for larger z. We
see that for z > 1 then the observed error is better for CM
than for CCFC, justifying our analysis of the performance
of these algorithms for skewed data sets. For distributions
with skew z ≥ 2, the observed error is sufficiently small to
be negligible. A similar pattern of behavior is seen when we
take the maximum observed error, in Figure 1(b). The main
observation is that for skewed data, the largest error from the
CCFC approach can become very high compared to that of
CM, which is not much greater than in the previous case.3

Our theory predicts that, as space s increases, the error
ε should decrease as s−z . We show this to be the case
in Figure 2. We plot the observed error when we fix the
Zipf parameter, and increase the space for the sketch from

3We do not know why the CCFC algorithm appears to have a “bell-
curve”-like behavior as z increases. This may be of interest for future
analysis.

1KB to 1MB. Plotting observed error vs. space on a log-
log plot should reveal a straight line with slope equal to
−z. This is seen clearly in Figure 2(a), where we have
plotted a line y ∝ x−1.2 for comparison. Note that this
is a logarithmic scale plot, so the separation between the
two lines is quite significant: CCFC consistently has about
twice as much error. It appears to show a similar x−1.2

dependency on size. Although the maximum error is much
more variable, the same behavior occurs for z = 1.6
(Figure 2(b)), where CCFC has on average 10 times the error
of CM, an order of magnitude worse. Several data mining
problems need to manipulate item counts by summing and
subtracting estimated values, so often this very fine accuracy
is required, hence the need to get as good quality estimates
as possible in small space.

For F2 estimation, the results are less clearcut. We
have two methods to use the Count-Min sketch in order to
estimate the second frequency moment. The first, CM+,

F2 Estimation with space 27KB

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.50 0.75 1.00 1.25 1.50 1.75 2.00

Zipf parameter

O
b

se
rv

ed
 E

rr
o

r CM+

CM-

Error in F2 Estimation on Zipf(1.6)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100Size of sketch / KB

O
b

se
rv

ed
 e

rr
o

r

CM+

CM-

x^-1.05

(a) (b)

Figure 3: Testing space L2 estimation on synthetic data

99.9 percentile error of Point Queries on Blogs Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 10 100 1000Space / KB

O
b

se
rv

ed
 E

rr
o

r

CM

CCFC

F2 Estimation on Shakespeare

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100 1000Space / KB

O
bs

er
ve

d
E

rr
or

CM+

CM-

(a) (b)

Figure 4: Results of experiments on text data

which has the best analytic results for z > 1, is to sum the
squares of the counters. The second, CM−, sums the squares
of the differences of adjacent counters. In our experiments
on synthetic data, illustrated in Figure 3, we were not able
to observe a clear difference between the two approaches.
As we increased z while keeping the space fixed, we saw
that both methods seem to give about the same error. In
Figure 3 (a), over the different values of z, CM+ gets lower
error more often than CM−, but there is no clear trend.
Figure 3 (b) shows the effect of increasing the size of the
sketch for data with z = 1.6. Our theory predicts that
the error of CM− should behave as s−

1+2z
4 = s−1.05, and

CM+ as s−
1+z
2 = s−1.3. We have plotted the first of these

on the same graph, since on this data set we can see this
behavior for CM−. The results for CM+ are much less
clear here, however when we examine real data sets we shall
see the algorithms performing very closely in line with their
predicted behavior.

7.2 Text Data
Zipf’s law was first proposed in the context of linguistics,
based on the observation that the frequency of the ith most
frequent word in written text seemed to be roughly propor-
tional to 1/i [53]. So it is fitting that we test our methods
on mining textual data. We considered two data sources of
seemingly very different nature. First, we used the complete
plays of Shakespeare. This consists of 5MB of data, totaling
approximately 1 million words. As a data source, it is quite
‘clean’, since words are spelled consistently throughout, and
has been checked by many editors. Our second source of
data consisted of a large amount text harvested from we-
blogs (“blogs”), totaling 1.5GB. This totaled over 100 mil-
lion words from a large number of different authors, written
in colloquial English (and some other languages mixed in),
with no editing, in inconsistent styles and many errors left
uncorrected. We did not attempt to clean this data, but ran
our algorithms on it directly.

Max Error on Telephone Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

O
b

se
rv

ed
 E

rr
o

r

CCFC

CM

F2 Estimation on IP Request Data

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000Size / KB

O
b

se
rv

ed
 E

rr
o

r

CM+

CM-

(a) (b)

Figure 5: Results of experiments on network data

We show some of the results in Figure 4. We do not
show all results for space reasons, but they are similar to
those we present. On the log-log plot in Figure 4 (a) we
can see a very clear linear gradient with slope approximately
-1.2. This suggests that the Blog data is well-modeled by
a Zipf distribution with parameter 1.2. We took the word
frequencies from this data, and plotted those on a log-log
chart, then computed the line of best fit; its slope was
indeed approximately 1.2.4 For the Shakespeare dataset,
we measured z as 1.2—1.3, implying that Shakespeare had
similar relative frequencies of word usage as a Blog writer.
In both cases, we see significant accuracy gains using CM
Sketch over CCFC.

The linear behavior of the CM+ estimation in Fig-
ure 4 (b) is quite striking. For sketch sizes 10KB—1MB, we
measured a dependency of ε as s−1.15. This implies a corre-
sponding value of z = 1.3. The same trend is not obvious for
the CM− approach, but a best fit line gives the dependency
ε ∝ s−0.85, which corresponds to z = 1.2. Recall that in
both cases, we use the same sketch as the basis of the both es-
timation procedures (as well as for point queries). These re-
sults show us that using the CM− estimation technique (sum
of squares of differences) gives better results than the CM+

approach (sum of squares). If the data is very skewed, or
very fine accuracy is required, then CM+ should be used,
since asymptotically it has better bounds, but for this kind
of data the CM− method is preferable. The important fea-
ture is that we can make the sketch oblivious to the nature
of the data, and only at query time decide which estimation
technique to use, based on the observed skew.

4 In order to get a good fit of real data to a Zipf distribution, one typically
has to drop the first few readings, and not fit the entire tail. Based on
different sections of this chart, we measured Zipf parameters in the range
1.15 to 1.30, and so we conclude that 1.2 is within the bounds of uncertainty.

7.3 Network Data
We considered two types of data drawn from communication
networks: a data set of 1.9 million phone calls, where we
tracked the called exchange (a range of 1 million values); and
a data set of Internet requests to 32-bit IP addresses, taken
from the Internet Traffic Archive [38], LBL-CONN7 [46],
totaling 800,000 requests. The maximum error on the phone
call data is plotted in Figure 5 (a). Although it is a little
fuzzier than the corresponding 99.9% error plot, the linear
dependency on the log-log plot can be easily seen. The slope
of the CM line is -1.16, predicting a skewness parameter
of 1.16, while the slope of the CCFC line is around -0.8.
Again, there is an order of magnitude improvement in the
accuracy of CM over CCFC. For the Internet data, the error
in point queries implies a skew of z = 1.3. This means that
the slope for F2 estimation should be 1.15, which is indeed
what we measure on Figure 5 (b) for sketches between 10KB
and 1MB using CM+ for estimation. The slope of the CM−

line is less steep, about -0.9 as predicted, although again
the observed error is less throughout most of the region of
interest.

7.4 Timing Results
Since the update procedure is essentially the same for every
update, the time cost is not much affected by the nature
of the data. We conducted experiments on 1GHz and
2.4GHz processor machines, and observed similar update
performance on each (since the algorithm is essentially
bound by cache/memory access times), of about 2–3 million
updates per second. By comparison, the implementation of
the CCFC Count Sketch achieves a somewhat slower rate
(40–50% slower), since it requires additional computation
of a second hash function for ever update. Greater speed can
be achieved by taking advantage of the natural parallelism
inherent in sketch data structures.

8 Conclusions
We have defined the problem of summarizing and mining
data streams when these streams exhibit a skewed distribu-
tion. We have given practical algorithms for key post-hoc
analysis problems with strong theoretical bounds of o(1/ε)
and o(1/ε2) where previously known results that did not ex-
ploit skew used space Ω(1/ε) and Ω(1/ε2) respectively. In
experiments, we have shown our CM sketch data structure
to be a practical and flexible summary: not only does it out-
perform other methods for point queries and give accurate
estimates for L2 estimation, but it does this based on a sim-
ple update procedure. This approach can be employed with-
out a priori knowledge of the distribution or skewness of the
data: given fixed space, we can then bound the approxima-
tion quality based on the observed skew.

The two queries that we considered are fundamental
to top-k items, change detection, approximate quantiles,
anomaly detection and so on. Many other summarization
and mining tasks can also benefit from the insight that data
is rarely uniform, and realistic data is frequently highly
skewed. For example, we remark that our methods in this
paper will give estimates for inner-product queries between
data streams as well in a straightforward way as an extension
of [13]. This has applications to join size estimation in
databases [3], to principal component analysis [31] and
sparse correlation matrix estimation [32], but we do not
elaborate further on this here. Likewise, the fact that skew is
frequently seen at multiple levels of aggregation [33] means
that our analysis can be immediately applied to hierarchical
computations, such as computing range sums, estimating
quantiles and so on (see [13] for these computations using
CM sketch). With appropriate analysis and testing, methods
that capitalize on data skew could improve our understanding
of existing algorithms, inspire new methods, and move some
tasks previously thought unachievable into the practical.

Acknowledgments We thank Yinmeng Zhang for some
useful discussions, and the referees for their suggestions.

References

[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin,
A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. Zdonik. Aurora: a data stream management system. In
Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 666–666, 2003.

[2] L. Adamic. Zipf, power-law, pareto - a ranking tu-
torial. http://www.hpl.hp.com/research/idl/
papers/ranking/, 2000.

[3] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking
join and self-join sizes in limited storage. In Proceedings of
the Eighteenth ACM Symposium on Principles of Database
Systems, pages 10–20, 1999.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, pages 20–29, 1996. Journal version in Journal of
Computer and System Sciences, 58:137–147, 1999.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings of
ACM Principles of Database Systems, pages 1–16, 2002.

[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions
in streaming algorithms, with an application to counting
triangles in graphs. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 623–632,
2002.

[7] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace.
Discovering hidden groups in communication networks. In
2nd NSF/NIJ Symposium on Intelligence and Security Infor-
matics, pages 126–137, 2004.

[8] A. Bestavros, M. Crovella, and T. Taqqu. Heavy-Tailed
Probability Distributions in the World Wide Web, pages 3–25.
Birkhäuser, 1999.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. In INFOCOM, pages 126–134, 1999.

[10] M. Charikar, K. Chen, and M. Farach-Colton. Finding fre-
quent items in data streams. In Procedings of the Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), pages 693–703, 2002.

[11] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson,
O. Spatscheck, and D. Srivastava. Holistic UDAFs at stream-
ing speeds. In Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 35–46, 2004.

[12] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking most frequent items dynamically. In Proceed-
ings of ACM Principles of Database Systems, pages 296–306,
2003.

[13] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. In Latin
American Informatics, pages 29–38, 2004.

[14] G. Cormode and S. Muthukrishnan. What’s new: Finding sig-
nificant differences in network data streams. In Proceedings
of IEEE Infocom, 2004.

[15] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 647–651, 2003.

[16] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In Pro-
ceedings of the 2002 ACM Sigmod International Conference
on Management of Data, pages 61–72, 2002.

[17] C. Estan and G. Varghese. Data streaming in computer net-
works. In Proceedings of Workshop on Management and Pro-
cessing of Data Streams, http://www.research.att.
com/conf/mpds2003/schedule/estanV.ps, 2003.

[18] W. Fei, P. S. Yu, and H. Wang. Mining extremely skewed
trading anomalies. In International Conference on Extending
Database Technology, pages 801–810, 2004.

[19] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan.
An approximate L1-difference algorithm for massive data

http://www.hpl.hp.com/research/idl/papers/ranking/
http://www.hpl.hp.com/research/idl/papers/ranking/
http://www.research.att.com/conf/mpds2003/schedule/estanV.ps
http://www.research.att.com/conf/mpds2003/schedule/estanV.ps

streams. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 501–511, 1999.

[20] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: You only get one look. In Proceedings
of ACM SIGMOD International Conference on Management
of Data, 2002.

[21] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan,
and M. Strauss. Fast, small-space algorithms for approximate
histogram maintenance. In Proceedings of the 34th ACM
Symposium on Theory of Computing, pages 389–398, 2002.

[22] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for approx-
imate aggregate queries. In Proceedings of the International
Conference on Very Large Data Bases, pages 79–88, 2001.
Journal version in IEEE Transactions on Knowledge and Data
Engineering, 15(3):541–554, 2003.

[23] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. In Proceedings of the International Conference on
Very Large Data Bases, pages 454–465, 2002.

[24] L. Golab and M. T. Özsu. Issues in data stream management.
SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 32(2):5–14, June 2003.

[25] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing
on data streams. Technical Report SRC 1998-011, DEC
Systems Research Centre, 1998.

[26] The himalaya project. http://www.cs.cornell.
edu/database/himalaya/Himalaya.htm.

[27] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose. Strong
regularities in world wide web surfing. Science, pages 95–97,
April 1998.

[28] IBM Research — stream data mining. http:
//www.research.ibm.com/compsci/project
spotlight/kdd/.

[29] W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz
mapping into Hilbert space. Contemporary Mathematics,
26:189–206, 1984.

[30] NASA jet propulsion laboratory. http:
//www7.nationalacademies.org/bms/
BravermannasPDF.pdf.

[31] H. Kargupta and V. Puttagunta. An efficient randomized
algorithm for distributed principal component analysis for
heterogenous data. In Workshop on high performance data
mining at SIAM Intl Conf on Data mining, 2004.

[32] H. Kargupta and V. Puttagunta. Onboard vehicle data stream
monitoring and fast computation of sparse correlation matri-
ces. In Workshop on data mining in resource constrained en-
vironments at SIAM Intl Conf on Data mining, 2004.

[33] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed
structure of addresses in IP traffic. In ACM SIGCOMM
Internet Measurement Workshop, pages 253–266, 2002.

[34] N. Koudas and D. Srivastava. Data stream query processing:
A tutorial. In Proceedings of the International Conference on
Very Large Data Bases, page 1149, 2003.

[35] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based change detection: Methods, evaluation and applica-
tions. In Proceedings of the ACM SIGCOMM conference on
Internet measurement, pages 234–247, 2003.

[36] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. In Proceedings of the WWW
Conference, pages 568–576, 2003.

[37] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge University Press, 1997.

[38] Internet traffic archive. http://ita.ee.lbl.gov/.
[39] S. Madden and M. J. Franklin. Fjording the stream: An archi-

tecture for queries over streaming sensor data. In Proceedings
of 18th International Conference on Data Engineering, pages
555–566, 2002.

[40] D. Madigan. DIMACS working group on monitor-
ing message streams. http://stat.rutgers.edu/
∼madigan/mms/, 2003.

[41] MAIDS : Mining alarming incidents in data streams. http:
//maids.ncsa.uiuc.edu/.

[42] G.S. Manku and R. Motwani. Approximate frequency counts
over data streams. In Proceedings of the International Con-
ference on Very Large Data Bases, pages 346–357, 2002.

[43] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[44] S. Muthukrishnan. Data streams: Algorithms and applica-
tions. In Proceedings of the 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2003.

[45] Ohio State CSE — algorithms for mining data streams.
http://www.cse.ohio-state.edu/∼agrawal/
Research new/mining.htm.

[46] V. Paxson. Empirically derived analytic models of wide-area
TCP connections. IEEE ACM Transactions on Networking,
2(4):316–336, 1994.

[47] S. Redner. How popular is your paper? An empirical study of
the citation distribution. The European Physical Journal B,
pages 131–134, 1998.

[48] Stanford stream data manager. http://www-db.
stanford.edu/stream/sqr.

[49] M. Thorup and Y. Zhang. Tabulation based 4-universal
hashing with applications to second moment estimation. In
Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 615–624, 2004.

[50] H. Wang. Bibliography on mining data streams. http://
wis.cs.ucla.edu/∼hxwang/stream/bib.html.

[51] D. Woodruff. Optimal space lower bounds for all frequency
moments. In Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 167–175, 2004.

[52] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of
thousands of data streams in real time. In Proceedings of the
International Conference on Very Large Data Bases, pages
358–369, 2002.

[53] G. Zipf. Human Behavior and the Principle of Least Effort:
An Introduction to Human Ecology. Addison Wesley, 1949.

http://www.cs.cornell.edu/database/himalaya/Himalaya.htm
http://www.cs.cornell.edu/database/himalaya/Himalaya.htm
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www.research.ibm.com/compsci/project_spotlight/kdd/
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://www7.nationalacademies.org/bms/BravermannasPDF.pdf
http://ita.ee.lbl.gov/
http://stat.rutgers.edu/~madigan/mms/
http://stat.rutgers.edu/~madigan/mms/
http://maids.ncsa.uiuc.edu/
http://maids.ncsa.uiuc.edu/
http://www.cse.ohio-state.edu/~agrawal/Research_new/mining.htm
http://www.cse.ohio-state.edu/~agrawal/Research_new/mining.htm
http://www-db.stanford.edu/stream/sqr
http://www-db.stanford.edu/stream/sqr
http://wis.cs.ucla.edu/~hxwang/stream/bib.html
http://wis.cs.ucla.edu/~hxwang/stream/bib.html

	Introduction
	Map.

	Model and Queries
	The CM Sketch
	Skew in Data Stream Distributions
	Point Queries
	Upper Bounds
	Lower Bounds
	An example application: Top-k items

	Second Frequency Moment Estimation
	Skewed Data
	Moderate Skew
	Light Skew Case and Summary

	Experimental Study
	Synthetic Data
	Text Data
	Network Data
	Timing Results

	Conclusions

