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Abstract— The notion of heavy hitters—items that make up a
large fraction of the population—has been successfully used in a
variety of applications across sensor and RFID monitoring, net-
work data analysis, event mining, and more. Yet this notion often
fails to capture the semantics we desire when we observe data
in the form of correlated pairs. Here, we are interested in items
that are conditionally frequent: when a particular item is frequent
within the context of its parent item. In this work, we introduce
and formalize the notion of Conditional Heavy Hitters to identify
such items, with applications in network monitoring, and Markov
chain modeling. We introduce several streaming algorithms that
allow us to find conditional heavy hitters efficiently, and provide
analytical results. Different algorithms are successful for different
input characteristics. We perform experimental evaluations to
demonstrate the efficacy of our methods, and to study which
algorithms are most suited for different types of data.

I. INTRODUCTION

Within applications that generate large quantities of data,
it is often important to identify particular entities that are
associated with a large fraction of the data items [1], [2]. For
example, in a network setting, we often want to find which
users are responsible for sending or receiving a large fraction
of the traffic. In monitoring updates to a large database table, it
is important to know which attribute values predominate, for
query planning and approximate query answering purposes.
This notion has been abstracted as the idea of “heavy hitters”
or “frequent items”. There has been much effort spent in
finding algorithms to track these under a variety of scenarios
and data arrival models [3], [4], [5], [6], [7], [8], [9].

However, the concept of heavy hitters can on occasion
be quite a blunt one. Consider again the network health
monitoring scenario. Here, it is well-known that in any mea-
surement, there will be some destinations that are globally
popular (search engines, social networks, video providers);
likewise, so will be certain users (large organizations behind
a single IP address, heavy downloaders and filesharers). As a
result, tracking the heavy hitters within this data is not always
informative, as they reveal only knowledge which is relatively
slow changing, and not actionable. Rather, we would like to
find which are sources or destinations that are significantly
locally popular. That is, find those (source, destination) pairs
where the destination is a heavy hitter amongst the connections

of the same source.
Another application area is in security, in the intrusion

detection domain. Here, a large number of different actions
are observed, and the goal is to sift for unusual patterns of
activity. The canonical approach is based around association
rule and frequent itemset mining. These methods identify
subsets of activities whose joint occurrence frequency exceeds
some given threshold. While popular, this methodology has its
limitations. The enormous search space implied by all possible
combinations of actions typically requires a lengthy off-line
search to identify the patterns of interest. While there are some
on-line algorithms, these still require substantial resources to
track sufficient statistics for the potentially frequent subsets.
As a result, this kind of mining tends to be costly, and to
deliver results significantly after the event.

Essentially, these two approaches (frequent items and fre-
quent itemsets) fall at two ends of the spectrum: the frequent
items approach is not rich enough to identify behavior of inter-
est, while the frequent itemsets are potentially too rich, and too
costly to find. In this work, we propose an intermediate goal,
which teases out more correlations between items than simple
heavy hitters, but is lightweight enough to permit efficient
streaming algorithms. We dub this concept “conditional heavy
hitters”, and work to provide meaningful definitions and a suite
of algorithmic approaches to find them.

Specifically, we model data that can be abstracted as pairs of
items, which we refer to as parent and child items. The central
concept of conditional heavy hitters is to find those parent-
child pairs that are most frequent, relative to the frequency of
the parent. The reason for referring to this as “conditional”
is by analogy to conditional probabilities: essentially, we seek
children whose probability is high, conditioned on the parent.
These should be distinct from the parent-child pairs which
are overall most frequent, since these can be found by using
existing heavy hitter algorithms. While this is a natural goal,
it turns out that there are several ways to formalize this, which
we discuss in more detail in subsequent sections.

Equipped with the concept of conditional heavy hitters, we
can now apply it to a variety of settings:
• In a network monitoring setting, we can look for the

conditional heavy hitters over packets within the network,



where for each packet the source address is considered as
the parent, and the destination address is the child. Then the
conditional heavy hitters identify those destinations which
occur most frequently for their corresponding sources. This
can be useful in identifying local trends, shifts in popularity,
and traffic planning, especially when several sources are
seen to share the same child as a conditional heavy hitter.

• When modeling many real systems and processes, it is
common to use a Markov chain to capture the transition
behavior between states. However, many of the systems
have large numbers of possible states (e.g. modeling traffic
flow in a large city), and so it can be costly to maintain
complete statistics. Instead it suffices if we can just measure
the most important observed transition probabilities from
state to state from a stream of state occupancies. That is,
we identify the large probabilities of moving from one
state to another—these are exactly the conditional heavy
hitters, with the parent being the current state, and the child
being the transition taken. Thus, tracking the conditional
heavy hitters over a long sequence of observations of
state transitions can capture the essential parameters of the
Markov chain.

• Within a database management system or data warehouse,
there are a large number of transactions which affect the
overall data distribution. Such systems commonly keep
statistics on individual attributes, to capture the number
of distinct values, frequent items, and so on. Given the
large number of columns, it is infeasible to keep detailed
statistics on all combinations of columns. However, a suit-
able compromise is to keep some summary statistics on
pairs of columns which commonly co-occur (in join paths,
say). Finding the conditional heavy hitters within such pairs
captures information about the correlations between them,
and can allow improved selectivity estimation.

Contributions. The main contributions of our work include:
• We define the concept of conditional heavy hitters, which

can be applied in a variety of settings;
• We develop and describe several streaming algorithms for

retrieving conditional heavy hitters and analyze their appli-
cability for data with varying characteristics;

• The algorithms developed are evaluated on a mixture of real
and synthetic datasets. We observe that certain algorithms
can retrieve the conditional heavy hitters with high accuracy
while retaining a compact amount of historical information.
We observe that different algorithms achieve the best results
depending on simple characteristics of the data: essentially,
whether the number of conditional heavy hitters is compa-
rable to the number of parents, or whether it is much lower.
The rest of the paper is organized as follows: Section II

describes background and related work for heavy hitters and
frequent itemset mining. In Section III we refine the notion
of conditional heavy hitters to obtain a workable definition. In
Section IV we present and discuss a sequence of algorithms
to find conditional heavy hitters from a stream of data. Our
experimental results are shown in Section V, and we conclude
our discussion in Section VI.

II. RELATED WORK

The notions of heavy hitters and frequent itemsets have been
heavily studied in the database and data mining literature.
Interest in finding the heavy hitters in streams of data goes
back to the early eighties [4], [10], where simple algorithms
based on tracking items and counts were developed. Thanks
to the interest in algorithms for streams of data, improved
methods were developed over the course of the last decade.
These included variants of methods which track items and
corresponding estimated counts [11], [3], [5], and randomized
“sketch” methods, capable of handling negative weights [8],
[9]. These methods can all provide the guarantee that given a
parameter ε, they can find all items in a stream of length n
which occur more than εn times, while maintaining a summary
of size O(1/ε). Equivalently, they estimate the frequency of
any given item with additive error εn. For further details and
empirical comparison of methods, see the surveys [1], [2].

The heavy hitters are a special case of frequent itemsets:
they are the frequent 1-itemsets. Further, all larger frequent
itemsets consist of subsets of the heavy hitters. There has been
much work to find frequent itemsets (and their variations) in
the off-line setting, often starting from the A priori [12] and
FP-Tree algorithms [13]. These concepts have been adapted
to work over streams of data, generating algorithms such
as FUP [14], and FP-stream [15]. A limitation of finding
frequent itemsets is that the number of possibly frequent
itemsets can become very large, meaning that the algorithm
either has to track information about many candidates, or else
aggressively prune the retained data, and risk missing out
on some frequent itemsets. In formalizing conditional heavy
hitters, one aim is to form a compromise between heavy hitters
(which are simple and for which space/accuracy tradeoffs can
be provided) and frequent itemsets (which are much more
complex, for which no tight space guarantees are provided).
Additional background on itemset mining in streams is given
by Yu and Chi [16].

Several other variations of heavy hitters on streams have
been proposed in the literature. Where the stream is time-
varying, it is sometimes of interest to monitor only the heavy
hitters within a recent time window, or with some other
time-decay [17], [18], [19]. The ‘distinct heavy hitters’ are
found over pairs of items (a, b), as those items a associated
with a large number of distinct values b [20]. The notion
of hierarchical heavy hitters says that when items fall in a
hierarchy (or combination of hierarchies), it is interesting to
find nodes in the hierarchy that are heavy from aggregating
their descendants [23]. Lastly, correlated aggregates consider
streams of tuples, and ask for aggregates on some attributes,
for the subset of tuples that meet some other conditions [24].
In this regard, our concept of conditional heavy hitters can be
seen as a generalized version of a kind of correlated aggregate,
albeit one that has not been studied previously.

Most related is the work of Lahiri and Tirthapura [21]
which considers the problem of ‘correlated heavy hitters’ over
a stream of tuples (a, b). Here, (a, b) is a correlated heavy



hitter if a is a simple heavy hitter (frequency exceeds ψ) in
a sequence of single-dimensional records and b is a heavy
hitter in the subset of tuples where a appears. However, as we
discuss below, this definition may miss interesting correlations,
since it restricts the a records to be heavy hitters.

Our notion of conditional heavy hitters is related to models
of (temporal) correlation in data, as captured by Markov
chains. That is, given a sequence of items, the kth order
transition probabilities are defined as the (marginal) probability
of seeing each character, given the history of the k prior
characters. In our terminology, setting the child as the new
character and the parent as the concatenation of the k previous
characters means that finding the conditional heavy hitters
maps on to finding the high transition probabilities in this
Markov chain. The importance of considering correlations
has been recently motivated within several domains [22], [27].
There has been much prior work on capturing correlations in
data via different Markov-style models, such as homogeneous
Markov chains of high order, hidden Markov Models [25],
Bayesian networks [26] and others [27], [28]. However, fitting
these increasingly complex models requires a lot of CPU
and I/O time and multiple passes over the data, and hence
it is infeasible to estimate them in a streaming setting. For
example, the simple Mixture Transition Distribution [29] aims
to approximate the transition probabilities with a smaller
number of parameters, but requires multiple iterations over the
data to do so. By focusing on the conditional heavy hitters,
we also identify a small number of parameters to describe the
distribution, but can recover these efficiently in a single pass
over the data.

III. PRELIMINARIES

To allow our definition to be generally applicable, we
assume that the input can be modeled as a stream of pairs
of (parent, child) values (p, c).

Definition 1 (Frequencies): Given a stream of (parent,
child) pairs whose ith element is (pi, ci), the frequency of
a parent p, fp, is defined as

fp = |{i : pi = p}|.

The frequency of a (parent, child) pair, fp,c, is defined as

fp,c = |{i : pi = p ∧ ci = c}|.
From these frequencies, we can define (empirical) probabil-

ities associated with items and pairs.
Definition 2 (Probabilities): Given a stream of n (parent,

child) pairs, the empirical probability of a parent p, Pr[p], is
defined as Pr[p] = fp/n. The joint probability of a parent-
child pair, Pr[p, c], is defined as Pr[p, c] = fp,c/n. The
conditional probability of a child given a parent, Pr[c|p], is
defined as

Pr[c|p] =
Pr[p, c]

Pr[p]
=
fp,c
fp

.

We can now define a first notion of conditional heavy hitters.
Definition 3 (Conditional Heavy Hitter): We say that a pair

(p, c) is a conditional heavy hitter with respect to a threshold
0 < φ < 1 if Pr[c|p] ≥ φ.

This definition has the advantage of clarity and simplicity.
However, on further consideration, there are some drawbacks
associated with this formulation. Firstly, observe that when
a parent is rare, it is more likely to generate conditional
heavy hitters. As a clear example, consider the case of a
parent p that occurs only once in the stream. Then we have
fp,c = fp = 1 for the associated child c, and so Pr[c|p] = 1,
making it automatically a conditional heavy hitter. While
this is a valid application of the definition—the (empirical)
conditional probability of this child truly is 1—we might still
object that this is not a particularly significant association,
due to the limited support of this item. Second, for related
reasons, the total number of conditional heavy hitters meeting
this definition can be large. Specifically, in an extreme case
a given parent p can have Θ(1/φ) distinct children which
are all conditional heavy hitters. So if there are |P | distinct
parents, there can be a total of Θ(|P |/φ) distinct conditional
heavy hitters—a very large amount—many of which may be
infrequent and uninformative.

A natural way to avoid these issues is to place an additional
constraint on the frequency of the parent, thus limiting the
number of parents which can contribute to conditional heavy
hitters. One solution would be to additionally require that
Pr[p] > ψ for (p, c) to form a conditional heavy hitter
(similar to [21]). Certainly, this has the desired effect: the
number of conditional heavy hitters can now be at most
Ω(1/φψ), and parents with very small count can no longer
contribute conditional heavy hitters. However, we argue that
this definition is overly restrictive: it restricts attention to
only those parents who are ψ-heavy hitters, and so misses
those pairs which may have a significant correlation despite
a lower total frequency. Other formulations, such as requiring
Pr[(p, c)] > φψ have similar drawbacks. Consequently, we set
up a different requirement as our goal.

Definition 4 (Popular conditional heavy hitter): A pair
(p, c) is a popular conditional heavy hitter if it is a conditional
heavy hitter with respect to φ, and it ranks among the top-τ
of the conditional heavy hitters, ordered by fp,c.

This says that we seek parent-child pairs that are conditional
heavy hitters, with a preference to those that have a higher
occurrence within the observed data. In realistic data sets, we
may expect that there will be many conditional heavy hitters
with large fp,c values, which will ensure that we avoid the
trivial case of fp,c = fp = 1. Consequently, this represents
a workable definition, that avoids this unwanted case, while
also avoiding ruling out interesting cases.

Given this definition, it is not possible to provide algorithms
which guarantee to always find exactly those items counted as
popular conditional heavy hitters while also using small space,
as shown by the following lemma:

Lemma 1: Any (randomized) one-pass algorithm which
promises to find all popular conditional heavy hitters must use
Ω(min(n, |P |)) space, where n is the length of the stream, and
|P | is the number of distinct parents.

Proof: Consider a stream of items, x1, x2, . . . xn, and
suppose we have an algorithm which finds popular conditional



TABLE I
MAIN CHARACTERISTICS OF THE PROPOSED ALGORITHMS

Algorithm Parents Summary structure Eviction order
GlobalHH all global parent-child frequency
ParentHH all local parent-child frequency
CondHH all global conditional probability
FamilyHH partial global parent-child frequency
SparseHH partial global conditional probability

heavy hitters. From this stream, we generate a new stream
of parent-child pairs, (x1, 0), (x2, 0), . . . (xn, 0). Then each
distinct pair is a conditional heavy hitter: P [0|p] = 1. Thus,
the algorithm must find the top-τ most frequently occurring
parents. But observe that these correspond exactly to the top-
τ most frequently occurring items in the original stream. It
has been shown that accurately solving this problem requires
space Ω(min(n,U)) over a set of U possible items, even just
to find the most frequent item [30], which gives the claimed
lower bound.

In some cases, |P | is not so large, and so we can look
for algorithms which use this much space. In other cases, |P |
may be very large, and this amount of space is impractical.
However, this bound should not cause us to abandon hope of
finding methods which are effective in practice. The kinds
of sequences which are used to construct the worst-case
examples in the lower-bounds are very artificial, where all
items occur only once or twice within the data, forcing any
correct algorithm to keep enough information to distinguish
which items occur more than once. Realistic data is more
varied, and so there is more evidence spread throughout the
stream to help identify the conditional heavy hitters.

Our goal will be to design algorithms which allow us
to estimate the conditional probability of parent-child pairs
accurately. That is, the goal is find an estimate P̂r[c|p] that
accurately estimates Pr[c|p]. From this, we will be able to
find candidate conditional heavy hitters. Our experimental
study evaluates the ability of these algorithms to find such
conditional heavy hitters.

IV. ALGORITHMS FOR CONDITIONAL HEAVY HITTERS

In this section, we describe a variety of algorithms to help us
identify the conditional heavy hitters within a stream of data.
These are summarized in Table I. We begin with algorithms
for the traditional heavy hitters problem, and adapt these to
identify those which are conditional heavy hitters.

A. GlobalHH Algorithm

Our first algorithm aims to identify all parent-child pairs
that occur frequently, so that we can extract the subset that
are conditional heavy hitters. For this task, we make use of
existing algorithms to find the heavy hitters from a stream of
items. The SpaceSaving algorithm due to Metwally et al. [5]
has been widely used for this problem. Given an amount
of space s, it guarantees to find all items in a stream of
length n which occur more than n/s times (and, moreover,
to provide an estimate of their frequency which is accurate up

to an n/s additive error). For streams which obey a frequency
distribution that follows a long-tail distribution, formalized as
a Zipfian distribution, it further guarantees to provide accurate
recovery of the head of the distribution. The algorithm behaves
very well in practice, finding accurate estimates of frequencies
of items across a variety of data sets [1], [2]: it exhibits the
most stable behavior among all heavy hitter algorithms.

The algorithm works as follows: it maintains a collection
SS of k items and associated counts. For simplicity, assume
that the structure is initialized with k arbitrary items with
count 0. For each item x seen in the stream, if it is currently
stored in the collection, the associated count f̂x is incremented.
Otherwise, we find the item with the current smallest count in
the collection, and replace it with the new item, then increment
its count. At any time, we can estimate the frequency of any
item x with the associated count in the collection f̂x if the
item is stored, and 0 otherwise.

We adapt this algorithm to help us find conditional heavy
hitters. Given each (p, c) pair in the stream, we insert it into
the SS structure. We also separately maintain information on
the frequency of each parent. In this first algorithm, we assume
that there is sufficient space to store information on all parents,
and so we have fp exactly. To identify the popular conditional
heavy hitters, we step through all items in the SS structure
in order of count. For each stored (p, c) pair, we compute its
estimated f̂p,c value, and test whether f̂p,c/fp > φ, then output
it if so. We stop when we have output τ estimated conditional
heavy hitters, or when the SS data structure is exhausted. We
refer to this algorithm as the GlobalHH algorithm, since it is
based on finding the parent-child pairs which are global heavy
hitters.

Lemma 2: Given space O(s+|P |), the GlobalHH algorithm
guarantees that each candidate (p, c) pair output will have
Pr[c|p] ≤ P̂r[c|p] ≤ Pr[c|p] + 1

sPr[p] . When the distribution
of (p, c) pairs follows a Zipfian distribution with parameter
z > 1, the error bound is improved to 1

sz Pr[p] .
Proof: Since the fp values are found exactly, the un-

certainty in the estimated conditional probability, P̂r[c|p] is
due to the error from the SS algorithm. This guarantees that
our estimate of fp,c is an overestimate by at most n/s for
arbitrary streams. We output f̂p,c/fp, which overestimates by
at most n

sfp
= 1

sPr[p] . Therefore, we have the bound stated.
This guarantees to overestimate the conditional probability,
and so will ensure good recall. Alternately, we could provide
an underestimate of the conditional probability by using a
lower bound on the estimate of fp,c. In this case, we ensure
good precision, but do not guarantee recall. For streams with
Zipfian frequency distribution, the error bound is tightened to
ns−z [5], improving the error bound to 1

sz Pr[p] as claimed.

B. ParentHH Algorithm

Our second algorithm takes a parent-centric view of the
problem. Again, making the assumption that it is feasible
to retain information about each distinct parent observed,
we consider the case of keeping information about the set
of children associated with each parent. That is, we keep a



separate instance of the SS structure for each distinct parent.
Clearly, this can use a lot of space, but will allow very
accurate recovery of conditional heavy hitters. We call this the
ParentHH algorithm, since it retains heavy hitter information
for each parent.

Specifically, for each parent p observed, we maintain an
instance of the SS structure of size s/|P | for just those
children c that arrive as part of a pair for that p. For each
pair (p, c) that arrives, we insert c into SSp, the structure for
that parent. To recover the estimated conditional heavy hitters,
we consider each parent in turn, and find f̂p,c for each child
c stored in SSP . We consider these values in sorted order of
f̂p,c, and output (p, c) as an estimated conditional heavy hitter
if f̂p,c/fp ≥ φ, and at most τ such pairs have been output.

Lemma 3: Given space O(min(s, n)) (for s > |P |), the
ParentHH algorithm guarantees that each candidate (p, c) pair
output will have

Pr[c|p] ≤ P̂r[c|p] ≤ Pr[c|p] +
|P |
s
.

Proof: From the SSp structure, we obtain an estimate
of fp,c which has error proportional to the number of items
passed to the structure, which is just fp, the number of
occurrences of p. So the amount by which f̂p,c overestimates
is at most fp|P |/s. When we estimate P̂r[c|p], the error is
(fp|P |/s)/fp = |P |/s. The space bound follows immediately:
it is bounded by n, since each item in the stream can increase
the number of tuples stored by at most a constant amount.
Using this overestimate favors recall, at the cost of precision.
It is possible to instead use an underestimate of fp,c, by
subtracting an appropriate amount. In this case, we obtain good
precision, but without guarantees on recall.

Clearly, this algorithm provides accurate estimated condi-
tional probabilities, but at a cost: we devote up to s/|P | space
for each parent, which seems excessive for parents that turn
out to be relatively infrequent (and hence their children are
unlikely to appear as true conditional heavy hitters).

C. CondHH algorithm

Our third algorithm also keeps a summary structure similar
to the previous algorithms, but with a different goal. Instead
of using the absolute frequency to determine which items to
retain detailed information for, we instead use their (estimated)
conditional probability. Since this aligns with the overall goal,
it may lead to more accurate behavior.

In the CondHH algorithm, we keep a collection of (p, c)
pairs in a data structure we refer to as CSS, along with a
count for each, intended to serve as an estimate of fp,c. The
algorithm proceeds similarly to the GlobalHH case: for each
(p, c) pair that arrives, we see if it is stored in CSS, and if so,
we increase its associated count. If it is not stored, then we
will eject some (p, c) pair from CSS, and replace it with the
new pair. Under the GlobalHH semantics, we would apply the
SS algorithm, and eject the pair with the least frequency. But
in the CondHH algorithm, we attempt to find the pair with the
lowest conditional probability, i.e. with the smallest value of
P̂r[c|p] = f̂p,c/fp. In our algorithm, we also keep track of the

maximum value of f̂p,c of any child of p that has been deleted
so far, as mp. When we remove a pair (p′, c′) from the data
structure, we update mp′ if needed, and insert the new pair
(p, c) with estimated count f̂p,c = mp. To find conditional
heavy hitters, we use the estimated counts as in the previous
algorithms.

Directly implementing this algorithm could be slow, due
to the need to find the item with the lowest P̂r[c|p] on each
ejection. However, this can be made fast by keeping the data
in an appropriate data structure. Specifically, we can index the
stored parent-child pairs in a two-level data structure. For each
parent, we keep its children stored in sorted ascending order of
f̂p,c. This can be maintained efficiently using data structures
based on doubly-linked lists as described in [5]. Then the
parents are stored in sorted order of minc(f̂p,c)/fp, i.e. the
estimated conditional probability of their least frequent child,
via a standard data structure such as a heap. This structure
means that we can quickly find the parent-child pair with the
smallest overall estimated conditional probability, based on the
observation that for each parent we only need to consider the
probability of its least frequent child.

Whenever a child frequency is increased, we can quickly
update the estimated f̂p,c, and ensure that the sortedness condi-
tion on the children is maintained. This update also affects fp,
and so may also require us to move the parent around to restore
the heap property on minc(f̂p,c)/fp. Likewise, whenever a
child of p is removed from this structure (because it is chosen
for ejection), its successor in the sorted order of f̂p,c becomes
the new least frequent child of p, which may also require
restoring the heap property. At the same time we can update
mp. Thus, implementing this algorithm requires a constant
number of pointer operations and heap operations per update,
and so can be done quickly.

Lemma 4: The CondHH algorithm guarantees that each
candidate (p, c) pair output will have

Pr[c|p] ≤ P̂r[c|p] ≤ Pr[c|p] +
mp

fp
.

Proof: For each parent p, mp is an upper bound on
the maximum value of f̂p,c of a (p, c) pair that has been
deleted. Inductively, this is also an upper bound on any fp,c
deleted (p, c) pair: this is true initially when mp = fp,c = 0
for all (p, c) pairs, and is maintained by every operation.
Therefore, we have that whenever any new pair is inserted with
f̂p,c = mp, we have that 0 ≤ fp,c ≤ f̂p,c = mp, and hence
(while it remains in the data structure) 0 ≤ f̂p,c − fp,c ≤ mp.
Consequently we have 0 ≤ P̂r[c|p] − Pr[c|p] ≤ mp/fp.
As with the previous algorithms, this tends to overestimate
the true conditional probability, leading to higher recall, but
weaker precision. This can be reversed by manipulating the
estimate of f̂p,c, by subtracting mp, to obtain a lower bound
on fp,c and hence Pr[c|p].

Note that in general this bound might not be very strong:
we may see cases where mp = fp, and so we do not obtain
a useful guarantee. However, in practice we expect to obtain
useful guarantees for the popular conditional heavy hitters.



D. FamilyHH Algorithm

All the algorithms proposed above make the assumption
that we can track detailed information for each parent (such
as fp, heavy hitter children for each p, etc.). However, this
assumption is not always reasonable. For example, in the
network traffic example in Section I, the number of parents
is equal to the number of possible children (both are equal to
the number of IP addresses, which is 232 under IPv4). In some
cases the number of parents actually observed in the data will
be small enough to track exactly. But in general, we should
also provide algorithms for when this is not so.

Our next algorithm generalizes GlobalHH, and so keeps
sparse information about both parents and children by main-
taining just the heavy hitter parents, and the heavy hitter
parent-child pairs. So instead of tracking fp, we will instead
use f̂p, an approximate version of the frequency. The resulting
FamilyHH algorithms uses two separate instances of the SS
data structure, using space t and s respectively. To identify the
candidate conditional heavy hitters, we pass through the heavy
hitter parent-child pairs in order of (estimated) frequency, and
from each find P̂r[c|p] = f̂p,c/f̂p. The space for this algorithm
is bounded by O(t+ s).

Lemma 5: The FamilyHH algorithm guarantees that each
candidate (p, c) pair output will have

P̂r[c|p] = Pr[c|p]± 1/(min(s, t) Pr[p]).
Proof: From the properties of the heavy hitters algorithm,

we have that fp ≤ f̂p ≤ fp+n/t and fp,c ≤ f̂p,c ≤ fp,c+n/s.
Consequently, we have

P̂r[c|p] =
f̂p,c

f̂p
≤ fp,c + n/s

fp
= Pr[c|p] +

1

sPr[p]

P̂r[c|p] =
f̂p,c

f̂p
≥ fp,c
fp + n/t

=
Pr[c|p]

1 + n/(fpt)

≥ Pr[c|p](1− n

fpt
) = Pr[c|p]− Pr[c|p]

tPr[p]

≥ Pr[c|p]− 1

tPr[p]

Based on this analysis, we choose to set t = s, so that the
error bound is Pr[c|p]± 1/(sPr[p]).

This estimate may sometimes overestimate, and sometimes
underestimate, depending on the errors of the component
estimates. We can make it always overestimate or always
underestimate by scaling these values appropriately.

E. SparseHH Algorithm

Our final, most involved, algorithm also keeps only ap-
proximate information on the set of parents. We call this the
SparseHH algorithm, as it keeps only sparse information on the
parents. For the parent-child pairs, we make use of the CSS
structure from the CondHH algorithm, which attempts to retain
those pairs with the highest conditional probability. However,
now that we are retaining only a subset of the parents, we need
to modify this slightly. We will aim to maintain frequency
information on only those parents that have an active child

in the data structure. Now, when we come to insert a new
parent-child pair p, c into CSS, we must decide what bound
on the frequency to use. We suggest some possibilities for this
“reintroduction strategy”:
• Global. Maintain a global value m on the max (estimated)

frequency of any (p, c) pair that has been deleted so far.
• Ancestor. If there is some reason to believe that parents with

similar labels (e.g. in a hierarchy) have similar frequency,
then we can maintain a small number g of different groups
of parents, and retain for each the maximum frequency of
any (p, c) deleted that came from that group. For example,
if the p values are drawn from a hierarchy, we can choose a
high level in the hierarchy, and create groups based on this.

• Hash Partition. For other cases, we can create a random
partitioning of parents into g groups based on a hash
function, and maintain the maximum frequency of any (p, c)
pair belonging to that group. In the case of a single group,
this becomes equivalent to the global strategy.

• Bloom Filter. We can keep a compact summary of items
deleted with high values of f̂p,c, say, in the form of a Bloom
Filter [31]. That is, when we delete a pair with frequency
f̂p,c, we compute an index from this as i = dlogb f̂p,ce
for a parameter b (for concreteness, consider b = 2). Then
we insert (p, c) into a Bloom Filter indexed by i. When a
new pair (p, c) is inserted into the data structure, we scan
through the Bloom Filters, testing if (p, c) is present in each.
If the test indicates it is in the ith Bloom Filter, then we
instantiate f̂p,c = bi. Note that Bloom Filters may lead to
false positives: in this case, we will result in an overestimate
of the frequency. This may lead to false positives in the
estimated conditional heavy hitters, but will ensure that we
do not underestimate the conditional probability of any pair.
Depending on the circumstances, any of these reintroduction

strategies may be better, and indeed, we can run multiple of
these in parallel, and choose the one that gives the smallest
estimated value of f̂p,c each time. There are several other
implementation choices for SparseHH:
• Different reintroduction strategies may offer either upper

or lower bounds on estimated counts; upper bounds favor
recall, while lower bounds favor precision.

• We divide the memory available to the algorithm into two
pieces: the memory used for the main tracking of counts
(which in turn is split into information kept for parents and
for approximate (p, c) frequencies); and the memory used
for estimating counts when an item is introduced into the
structure. We use a parameter ρ to describe this split: a
ρ fraction of the available memory is given to the main
structure, and 1− ρ to the reintroduction structure.
We compare these choices empirically in Section V.

F. Discussion

We have proposed a variety of algorithms. They fall into two
main classes: those that keep some information about each
parent (GlobalHH, ParentHH, and CondHH); and those that
do not (FamilyHH and SparseHH). Each algorithm aims to
accurately approximate the conditional probability of pairs,



based on different priorities for what information to retain
given limited space. Among these, we are most interested
in the behavior of CondHH and SparseHH, since these most
directly capture the nature of conditional heavy hitters by
focusing on the (estimated) conditional probability of items.
Meanwhile, GlobalHH, ParentHH and FamilyHH are based
on the raw frequencies of items. A priori, it is unclear
which algorithm will perform best for the task of retrieving
conditional heavy hitters from a stream, so we will compare
them empirically to determine the relative performance.

V. EXPERIMENTAL RESULTS

All our experiments were conducted on a single 2.67GHz
core of a Linux server with a large total amount of available
memory. In evaluating the quality of our algorithms for
recovering conditional heavy hitters, we make use of several
measures of accuracy:
• The Precision and Recall of the recovered conditional heavy

hitter pairs relative to the “true” set that are greater than a
threshold Pr[c|p] ≥ φ (Definition 3);

• The Precision of the top-τ popular conditional probabilities
(Definition 4)1;

• The Average Precision for the popular conditional proba-
bilities, where the average is taken over all top-r sets of
popular conditional heavy hitters, for r = 1, 2, ..., τ .

A. Data analysis and Experimental setup

We applied the above algorithms for several real and artifi-
cial datasets, namely (1) simulated Markov chains, to estimate
the largest elements of the matrix of transition probabilities;
(2) requests made to the World Cup 1998 Web site to detect
conditional Heavy Hitters between clientID and objectID of
the requests; (3) GPS trajectories of taxis in San Francisco to
detect the most probable position of the vehicle taking into
account two previous positions. We describe the datasets in
more detail in the following sections. φ was chosen in each
case according to the characteristics of the data in order to have
reasonable number of conditional heavy hitters. We distinguish
between cases where the data is sparse—few parents have
conditional heavy hitter children—and dense—most parents
have conditional heavy hitter children.

Markov chain artificial data. As discussed in the Introduc-
tion, one application of finding the conditional heavy hitters is
to model the transition probabilities of a Markov chain. The
goal is then to estimate the entries in this transition probability
matrix, by finding the large values (and assuming the rest to be
uniform). To model a Markov chain of order k, we concatenate
the k most recent observations together to form a parent,
and take the next observation as the corresponding child. In
general, given an alphabet A, it is not feasible to track all the
|A|k+1 transition probabilities exactly, due to the high resource
costs to do so. Hence, we instead use our algorithms to find
and estimate the highest and the most important elements of

1Note that when restricting output to have size exactly τ , precision and
recall are identical, so we do not duplicate this measurement.

transition probability matrix. In our experiments we use an
alphabet size |A| = 103 and model a Markov chain of order
k = 2. This means there are one million parents and one
billion possible parent-child pairs.

We use two types of generation process for the data. The
first case generates “dense” sequences so that each parent
(P ) has exactly one “heavy” child (Ch) with conditional
probability chosen (randomly) to be greater than 0.6. The rest
of the probability mass is uniformly distributed among the
other possible edges. More formally, ∀P ∈ A×A, ∃Ch ∈ A,
such that Pr[Ch|P ] ≥ 0.6 while Pr[Ci|P ] = 1−Pr[Ch|P ]

|A|−1 ,
where Ci ∈ A, Ci 6= Ch. In this setting, there are 1 million
conditional heavy hitters out of 1 billion possibilities.

The second generation process produces a “sparse” se-
quence with a predefined number of conditional heavy hitters
that is smaller than the number of parents. We identify a subset
of parents to have one or more heavy children. We determine
the number of heavy children nc for a “heavy” parent by
picking nc from a truncated normal distribution with mean
3 and standard deviation 2. In our experiments we created
a total of 200K conditional heavy hitters, so on average,
only 1 in 15 parents has conditional heavy hitter children.
Each “heavy” parent shares a total transition probability equal
to 0.8 among its conditional heavy hitter children. The rest
of the probability mass 0.2 is divided uniformly among the
other edges. More formally, if a parent P is chosen to be
heavy, then we pick nc children C at random, and set their
transition probabilities Pr[c ∈ C|P ] = 0.8/nc, while for the
others Pr[c 6∈ C|P ] = 0.2/(|A| − nc). We set the number
of conditional heavy hitters to recover as the true number of
conditional heavy hitters, i.e. 200K.

Taxicab GPS data. The Taxicab data consists of about 20
million GPS points for a fleet of taxis, collected over the
course of a month, obtained from cabspotting.org. To
go from the fine-grain GPS locations to streams of values,
we performed preprocessing to clip the data to a bounded
region and coarsen to a grid. The region of the measurements
is restricted to a rectangle in the area of San Francisco, with
latitude in the range [37.6...37.835], which covers 26km and
longitude in the range [−122.52... − 122.35], which covers
15km. This clipping was performed to remove a few incorrect
readings which were far outside this region.

This space was partitioned into 10,000 rectangles using
a 100 × 100 grid. Given the readings within this grid, we
proceeded to define trajectories from the data as a sequence
of grid cells occupied by the same cab. We considered a
new trajectory to begin if there was a gap of more than
30 minutes between successive observations. Following this
definition, we extracted 54,308 trajectories. We model the
trajectory data as a second order Markov chain, on the grounds
that knowing the previous two steps is likely to be indicative
of where the next step will take us. A first order model
would only have the previous location, and so would not
capture in what direction the vehicle was traveling. This model
generates around 160,000 distinct parents and a million distinct
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Fig. 1. Descriptive statistics for WorldCup’98 data.

parent-child pairs; our experiments with finer grids (omitted
for brevity) had even higher dimensionality. With a default
φ value of 0.8, we observed 63,721 conditional heavy hitters.
This means that about 2 out of every 5 parents have conditional
heavy hitter children, so we consider this a dense data set.

Worldcup’98 data. The Worldcup data2 contains information
about the requests made to the World Cup Web site during the
1998 tournament. Each request contains a ClientID (a unique
integer identifier for the client that issued the request) and an
ObjectID (a unique integer identifier for the requested URL).
We are interested in finding conditional heavy hitters between
ClientID and ObjectID pairs, where ClientID is treated as the
parent, and ObjectID as the child. That is, we are interested in
detecting (ClientID, ObjectID) pairs where the requested child
is particularly popular for that user.

We used data from day 41 to day 46 of the competition. The
total number of records in this period is around 105 million;
the number of distinct parent-child pairs is around 59 million;
and the number of distinct parents is 540K. In this data we
look for the conditional heavy hitters that have a probability
of occurrence greater then φ = 0.25. The total number of such
conditional heavy hitters is in excess of fifty thousand. About
1 in 10 parents has a conditional heavy hitter child, making
this data relatively sparse.

The frequency distributions are skewed: there are many
parents and parent-child pairs that are found only once or
a small number of times in the dataset (Figure 1(a) and
Figure 1(b)). Although most of the parent-child pairs occur
once—52 million out of the 59 million distinct pairs—still,
there are many pairs that occur a greater number of times.
The distribution of probabilities of conditional heavy hitters is
shown in Figure 1(c), and shows that there is sufficient prob-
ability mass associated with higher conditional probabilities.

B. Comparison with simple and correlated heavy hitters.

Our first set of experiments demonstrate that our definition
of conditional heavy hitters is distinct from the traditional
definition of heavy hitters and correlated heavy hitters, and
therefore we do need a new approach to recovering them.
For this study, we computed the exact set of the k most
significant heavy hitters, correlated heavy hitters (setting the
parameter to detect a heavy hitter as ψ = 0.00001) [21] and

2http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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Fig. 2. Jaccard distance for top-k conditional (CondHH) and simple (HH)
or correlated(CorrHH) heavy hitters

conditional heavy hitters (for φ = 0.25), and computed the
Jaccard distances between conditional and simple heavy hitters
and conditional and correlated heavy hitters. Jaccard distance
between two sets A and B is 1− |A∩B||A∪B| . The distance is 0 if
A = B, and is 1 if the two sets are completely disjoint.

The results of this comparison on the WorldCup data are
shown in Figure 2. The plot is broken into two pieces to aid
readability: Figure 2(a) shows the distance for k up to 400,
while Figure 2(b) shows the results as k grows up to 9000.
From these plots we see that the distances between the two sets
does not decrease below 0.6. In the low range (Figure 2(a)), the
average distance between conditional and simple heavy hitters
is 0.94, and it approaches 1 as k increases. This indicates that
the two definitions are truly describing distinct phenomena,
due to the high distance between the sets. The average distance
between conditional and correlated heavy hitters in the low
range is 0.8 and it approaches 0.84 as k increases. Though
these two definitions are more similar than the previous case,
they still describe two different phenomena as the distance
between the sets is high. We note in passing that the results of
conditional and correlated heavy hitters become increasingly
similar as the parameters φ, ψ approach zero.

C. Parameter setting for SparseHH

The SparseHH algorithm has several parameters and choices
that affect its performance. Here, we investigate how to set
these parameters before comparing with other algorithms.

Choice of reintroduction strategy. We compare the different
choices of reintroduction strategy: hash partitioning, ancestor,
and Bloom Filter. Figure 3 shows the accuracy over the
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Fig. 3. SparseHH accuracy for conditional heavy hitter recovery on Worldcup data under different reintroduction strategies.
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(d) Favor recall, ρ = 0.9.

Fig. 4. Accuracy on sparse synthetic data using SparseHH.

Worldcup data, where we set τ = 100 and φ = 0.25 to define
the (popular) conditional heavy hitters.

Here, the ratio of memory allocated to the main structure,
ρ, was set to 0.9, with the remainder used to help reintroduce
items to the data structure. We observe that the hash partition-
ing strategy performs the best across all metrics (Figure 3(a)).
The ancestor strategy can obtain good results, but only when
a larger total amount of memory is made available (Figure
3(b)). The Bloom Filter strategy, while achieving high recall,
always has very poor precision (Figure 3(c)). Based on this and
other results, we adopt the Hash partitioning strategy as the
method of choice for SparseHH: while the Ancestor method
is sometimes competitive, this can be seen as a special case
of the Hash partition method with a structured choice of hash
function, so we do not further distinguish these methods.

Choice of memory ratio. As noted in Section IV-E, we can
adjust the estimated counts in the algorithm to give either
upper or lower bounds, and hence to favor precision or to
favor recall. We compared the impacts of this choice in our
experiments, shown in Figure 4 for the sparse synthetic data.
We set φ = 0.05, sufficient to distinguish the conditional
heavy hitters from the other pairs. In the plots, we pick a
representative selection of parameter settings, as we vary the
ratio ρ that governs the division of memory between the main
and reintroduction structures, and whether the algorithm favors
precision or recall. Across these, we first observe that this
choice does indeed behave as advertised: favoring precision
obtains near perfect precision, while favoring recall allows
recall to grow as total memory increases. However, when
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Fig. 5. Precision (blue diamonds) and Recall (red squares) of SparseHH
variations on sparse synthetic data as ρ varies.

we favor precision, recall tends to improve as we allocate
more memory (Figures 4(a) and 4(b)), while favoring recall
tends to cause precision to drop off as more memory is used
(Figures 4(c) and 4(d)).

To investigate this further, we fix the available memory,
and vary the ratio ρ. The results on the same data are shown
in Figure 5. We observe that when we favor precision, the
precision is always near perfect (Figure 5(a)). The benefit of
giving more memory to the main structure outweighs the loss
from reducing space for the reintroduction strategy, so a large
ρ value gives the best recall. Contrarily, favoring recall has
generally good recall, but gets the best precision when almost
all of the memory is turned over to the reintroduction strategy
(Figure 5(b)). Still, it is hard to obtain both good recall and
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Fig. 6. Precision and Recall on the WorldCup data.
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Fig. 7. Accuracy as φ varies on Worldcup data

good precision from this strategy: although we see some good
behavior for very small values of ρ here, this was not stable
across other datasets. Consequently, we conclude that it is
preferable to favor precision, and adopt this with ρ = 0.9
as the default in all other experiments.

D. Performance on sparse data

We now compare all the proposed algorithms, initially on
sparse data, and subsequently on more dense data.

World Cup Data. We present results for recovering (ClientID,
ObjectID) conditional heavy hitters from the (relatively sparse)
Worldcup data. In other experiments, we also looked for cor-
relations on other attribute combinations, such as (ServerID,
ObjectID). The results there were broadly similar, and so are
omitted for brevity.

Figure 6 shows results on precision and recall for recov-
ering the conditional heavy hitters for this data. Here, the
CondHH and SparseHH (using Hash partition reintroduction)
methods perform the best for both precision and recall. These
two algorithms both make use of an eviction strategy that
picks the parent-child pair with the lowest (estimated) con-
ditional probability to be deleted from the main structure.
This observation suggests that such a pruning strategy can
be effective at retaining the most promising pairs in memory.
For this data, the number of parents is not so large, and
so it is feasible to retain information on all parents. Thus,
CondHH is not penalized for this choice here, although we
see examples later where there are too many parent items
to track effectively. These methods also achieved high top-
τ precision, over 0.8, indicating over 80% agreement between
the top 100 reported conditional heavy hitters and the true
most popular heavy hitters. On this data, we observe that other
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Fig. 8. Accuracy on sparse synthetic data as memory varies

approaches suggested—GlobalHH FamilyHH and ParentHH
(omitted from the plots)—are unable to provide useful results:
although they provide accuracy guarantees as a function of
the space available, it turns out that these guarantees do not
become useful until much more memory is available. In this
case, the successful algorithms (CondHH and SparseHH) are
able to achieve near-perfect precision and recall using less than
10% of the memory required to represent the data exactly.

Figure 7 shows the accuracy of CondHH and SparseHH as
we vary φ, the threshold for defining a conditional heavy hitter.
We see that for large φ values and moderate memory (30MB),
CondHH is preferable, and achieves near-perfect precision and
recall. As φ is decreased, there are more conditional heavy
hitters to recover, and when memory is constrained to only
5MB (the dashed lines), recall necessarily falls: the algorithms
are unable to retain information about all conditional heavy
hitters. However, in the low φ, low memory setting, SparseHH
is able to maintain higher precision, while the precision of
CondHH falls off.

Sparse Synthetic Data. We now compare all the algorithms
on the truly sparse synthetic data, for a stream of length 108.
This data has a much smaller number of conditional heavy
hitters compared to the number of parent items. Consequently,
we expect the algorithms which try to keep information on all
parents to perform poorly here, since this will occupy most of
their available resources.

This conjecture is confirmed in Figure 8: only SparseHH is
able to obtain both good precision and good recall for the range
of memory provided. It also has accuracy as measured by top-
τ precision and average precision up to τ : both around 0.9
(plots omitted for space reasons). Among the other algorithms,
CondHH shows the best improvement in recall as more
memory is made available, with GlobalHH and FamilyHH
improving more slowly (Figure 8(b)). The ParentHH algorithm
can only produce results when enough memory is available to
keep a (very small) summary structure for each parent—in this
case, above 72MB. Interestingly, the precision performance of
all algorithms apart from SparseHH is very poor: much more
memory is needed before these can achieve good precision
(Figure 8(a)). This is in part because even the highest amount
of memory shown in Figure 8 represents less than 5% of the
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Fig. 9. Time cost of algorithms on sparse synthetic data as memory varies

space to record the exact statistics for the given data. In terms
of the original application, of approximating the Markov chain
transition matrix, the results are also strong: the L1 difference
between the distributions is about 0.01, where 0 would be
perfect recovery, and 1 represents the worst case. We conclude
that over sparse data, the SparseHH algorithm has the best
performance and is the method of choice.

In terms of the time cost of the algorithms, Figure 9 shows
that there is little systematic variation as a function of the
size of the summary structure. The simpler GlobalHH and
ParentHH algorithms are the faster ones, but all algorithms
have performance measured in the hundreds of thousands of
updates per second to process 108 items.

E. Performance on dense data

Dense synthetic data. In the dense synthetic data, each parent
has at least one child that is a conditional heavy hitter. We
generate a stream of data from the 2nd order Markov chain
of different lengths, between 107 and 1010 observations. We
allocate an amount of space equivalent to twice the number
of possible parent items, and evaluate their accuracy in terms
of precision and recall on streams of varying lengths. With
the threshold φ = 0.5, Figure 10 shows the average time and
accuracy achieved over 10 independently chosen streams. The
observed standard deviation over these repetitions was very
low, around 10−3 for all precision and recall computations.

The results show that the GlobalHH algorithm performs
poorly, with only moderate precision and recall on this rela-
tively “easy” data set (Figures 10(a) and 10(b)). The ParentHH
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Fig. 11. Accuracy on Taxicab data as memory varies

algorithm has near perfect recall, and precision improves as the
stream gets longer (and so the signal becomes easier to detect).
However, again, the CondHH algorithm has the best accuracy,
getting near perfect precision and recall throughout. The
SparseHH algorithm had identical results to CondHH on this
data. On closer inspection of the data structures, we observed
that this was because SparseHH has sufficient memory to
keep frequency information on all parents. Consequently, it
can store the same information as CondHH and so finds the
same estimated frequencies. For similar reasons FamilyHH
kept the same information as GlobalHH and so is omitted from
the plots. In terms of scalability, all algorithms are similar.
Figure 10(c) shows that the CondHH algorithm is slightly
slower in our implementation, due to the more involved data
structure maintenance process. However, the difference is not
substantial, and could be improved by a more engineered
solution. Even here, the throughput is nearly half a million
updates per second on a single core.

Taxicab data. The Taxicab data is quite dense: many parents
have a conditional heavy hitter child. Figure 11 provides
precision and recall results on this data for φ = 0.8. As in
other experiments, GlobalHH does not provide useful recovery
of conditional heavy hitters with such low memory. SparseHH
achieves good precision, but CondHH has enough memory to
obtain perfect precision (Figure 11(a)). The story is similar
for recall: SparseHH improves as more memory is available,
but is consistently dominated by CondHH, until SparseHH is
given enough memory to store all parents. Moreover, for the
top-τ precision the results for CondHH were much stronger,
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approaching 1, while SparseHH achieved only 0.25.
To better understand the relative behavior of these two

competitive algorithms, Figure 12 shows the case as we vary
φ, the threshold for conditional heavy hitters, while holding
the total memory constant at 4MB. As φ decreases, there
are more pairs passing the threshold, and so the problem
becomes harder. The precision of SparseHH tends to remain
constant, while there is a more notable dip in the precision
of CondHH. Interestingly, adjusting the memory available for
the reintroduction strategy of SparseHH by adjusting ρ has
a marked effect: putting more memory to this end improves
precision, but reduces recall. We conclude that for dense data,
CondHH is the method of choice, provided we can afford to
store all parents.

VI. CONCLUDING REMARKS

In this paper, we have introduced the notion of conditional
heavy hitters as a useful concept that is distinct from prior
notions of heavy hitters and frequent itemsets. We introduced
a sequence of algorithms that build on existing techniques, but
target the new definition. Our empirical study demonstrated
that among these, it is those that most directly target the
new definition, by preferentially retaining items with high
(estimated) conditional probability and pruning those with low
conditional probability, that perform the best. Specifically, the
SparseHH algorithm, which keeps an approximate summary
of both the parent-child pairs as well as the parent items, gen-
erally performs the best across a range of sparse datasets and
parameter settings. In particular, it achieves high precision and
recall on the set of conditional heavy hitters while retaining
only 5-10% of the space of storing exact statistics. When the
data is more dense and there is sufficient memory, CondHH
is the preferred method. If we do not know the nature of the
data in the advance, we can simply run SparseHH, since it
will keep information on parents exactly while there is room,
and so behave more like CondHH. Future work will identify
further applications for conditional heavy hitters, and evaluate
their efficacy in those settings. Our algorithms are defined in
the streaming model, which captures the challenging case of
high-speed arrival of data. As the scale of data increases, it will
become necessary to adapt these algorithms to a distributed
setting, where multiple streams are observed, and the collected
summaries can be combined to give a summary of the union
of all the input data.
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