
Time-Decaying Aggregates in Out-of-order Streams

Graham Cormode
AT&T Labs–Research

graham@research.att.com

Flip Korn
AT&T Labs–Research

flip@research.att.com

Srikanta Tirthapura∗

Iowa State University
snt@iastate.edu

ABSTRACT
Processing large data streams is now a major topic in data man-
agement. The data involved can be truly massive, and the required
analyses complex. In a stream of sequential events such as stock
feeds, sensor readings, or IP traffic measurements, data tuples per-
taining to recent events are typically more important than older
ones. This can be formalized via time-decay functions, which as-
sign weights to data based on the age of data. Decay functions
such as sliding windows and exponential decay have been studied
under the assumption of well-ordered arrivals, i.e., data arrives in
non-decreasing order of time stamps. However, data quality issues
are prevalent in massive streams (due to network asynchrony and
delays etc.), and correct arrival order is not guaranteed.

We focus on the computation of decayed aggregates such as
range queries, quantiles, and heavy hitters on out-of-order streams,
where elements do not necessarily arrive in increasing order of
timestamps. Existing techniques such as Exponential Histograms
and Waves are unable to handle out-of-order streams. We give the
first deterministic algorithms for approximating these aggregates
under popular decay functions such as sliding window and polyno-
mial decay. We study the overhead of allowing out-of-order arrivals
when compared to well-ordered arrivals, both analytically and ex-
perimentally. Our experiments confirm that these algorithms can be
applied in practice, and compare the relative performance of differ-
ent approaches for handling out-of-order arrivals.
Categories and Subject Descriptors: E.1 [Data]: Data Structures
General Terms: Algorithms
Keywords: Asynchronous Data Streams, Out-of-order Arrivals

1. INTRODUCTION
The challenge of observing, processing and analyzing massive

streams of data is now a major topic within data management. The
rapid growth in data volumes from applications such as network-
ing, scientific experiments and automated processes continues to
surpass our ability to store and process using traditional means.
∗Supported in part by NSF grant CNS-0520102, as well as by
ICUBE, Iowa State University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

Consequently, a new generation of systems and algorithms has been
developed, under the banner of “data streaming”. Several axioms
are inherent in this world: the value in the data lies not in simple
calculations on specific predetermined subsets but rather in poten-
tially complex aggregates computed over the bulk of it; queries over
the data must be answered quickly, often continuously; and com-
putation for analysis must preferably be done online as the stream
is observed in whatever order it arrives (to alleviate worsening net-
work traffic problems, exploit arbitrage opportunities in financial
markets, etc).

In contrast with a stored database, events in a data stream that
have occurred recently are usually more significant than those in
the distant past. This is typically handled through decay functions
that assign greater weight to more recent elements in the computa-
tion of aggregates. Various models have been proposed for how to
set these weights; for instance, the sliding window model considers
only a set of recent events and ignores older ones [15, 16]. Observe
that in a typical network monitoring scenario, the number of events
within, say, a 24 hour window, can be many millions or even bil-
lions [22, 4]. So the same challenges of data size and volume hold
even if we are computing aggregates over a sliding window. More
generally, one can design arbitrary schemes that allocate weights to
observed data as a function of the “age” of the data. Another pop-
ular decay model is exponential decay, where the weight of data
decreases exponentially with the age—the popularity is due in part
to the relative simplicity of algorithms to implement exponential
decay [12]. In many situations a polynomially decreasing decay
function may be more appropriate [9].

A significant challenge in processing data streams transmitted
across a network is to cope with the network asynchrony, and hence
the imperfect ordering of data within a stream. Often, massive
streams occur as the aggregation of multiple feeds from different
sources. For example, a data stream observed by the “sink” node
in a sensor network is formed by the union of multiple streams,
each stream consisting of the observations generated by an individ-
ual sensor node. The different streams could be arbitrarily inter-
leaved at the sink node (or at the intermediate nodes of the sensor
network), due to the varying delays, retransmissions or intermit-
tent connectivity in sensor networks. So if each sensor observation
is tagged with a timestamp indicating the time of observation, the
data stream observed by the sink may not necessarily be in the or-
der of increasing timestamps, even though the observations due to
an individual sensor node may be in timestamp order. We refer to
such a stream, where data is not ordered according to timestamps,
as an “out-of-order” stream.

In an out-of-order stream, the notion of “recency” is defined us-
ing timestamps of the data, rather than the order of arrival. For
example, in computing aggregates over a sliding window of W re-



cent elements on an out-of-order stream, the elements with the W
greatest timestamps should be considered. In contrast, the usual
definition of a sliding window [15, 16] computes on the suffix (of
size W ) of the most recently received elements.

Various approaches have been suggested to cope with small or-
dering discrepancies within a stream: using buffers to reorder [1],
“punctuation” of the stream to indicate no further events from a par-
ticular time window are expected [27], or load shedding when no
other option is left [4]. However, such approaches may require too
much overhead to put the stream in sorted order, apply to certain
special cases, or lose accuracy guarantees due to dropped tuples,
respectively. Therefore, we need techniques to summarize and an-
alyze massive streaming data that are resilient to data arriving in
arbitrary orders. Moreover, we need general approaches that allow
aggregates under a variety of decay functions to be incorporated
into streaming systems, to automate the handling of different decay
functions from high level specifications.

The main contributions of this paper are as follows:

• We present the first space- and time-efficient algorithms for
summarizing out-of-order streams to answer queries for key
holistic aggregates such as quantiles and heavy-hitters (fre-
quent elements) under different decay functions including
sliding window decay and polynomial decay.

• Our algorithms provide deterministic guarantees on the qual-
ity of answers returned. For example, in the case of quan-
tiles, the summary returns the ε-approximate (weighted) φ-
quantile of the data, which is an element whose (weighted)
relative rank in the data is guaranteed to be between (φ− ε)
and (φ + ε). Similar guarantees are provided for range
queries and heavy hitters. These guarantees hold indepen-
dent of the amount of “disorder” in the streams. The space
taken as well as the time per item are both poly-logarithmic
in the input size.

• We present an experimental evaluation of the algorithms dis-
cussed. We analyze the space used and the processing time
per item. Our experiments show these algorithms can pro-
cess hundreds of thousands of updates per second.

To our knowledge, this is the first work on estimating these
aggregates over polynomial and general decay functions even on
streams with well-ordered arrivals.

Outline. We first review preliminaries in Section 2. We give a solu-
tion for tracking sliding window decay for aggregates in Section 3.
We outline two approaches to general decay functions in Section 4:
one through a reduction to sliding windows, the second using the
structure of the decay function. We give our experimental results
in Section 5, and then discuss extensions.

2. PRELIMINARIES

2.1 Streaming Model

Definition 1. A data stream is an (unbounded) sequence of tu-
ples ei = 〈xi, ti〉, where xi is the identifier of the item (the key)
and ti the timestamp.

For example, consider observing a stream of (IP) network pack-
ets. There are several ways to abstract a data stream from this: xi

could be the destination address, and ti the time of observation of
the packet; or, xi could be the concatenation of the source and desti-
nation addresses, and ti be a timestamp encoded in the body of the

packet indicating the time of origin (e.g. by a VoIP application).
We do not discuss the mapping of the raw data to 〈xi, ti〉 tuples
further, but instead assume that such tuples can be easily extracted.
All the methods in this paper can naturally and immediately handle
the case of weighted updates, where each tuple arrives with an as-
sociated weight wi (e.g., the size of a packet in bytes). Effectively,
the algorithms treat all unweighted updates as updates with weight
1, and so can replace this value with an arbitrary weight. For sim-
plicity, we do not explicitly include the weighted case, since the
details are mostly straightforward.

The “current time” is denoted by the variable t. It is assumed that
all times are non-negative integer values. Since there may be out-
of-order arrivals, the timestamp ti is completely decoupled from
the time at which the tuple is observed. Thus it is possible that
i < j, so that ei = 〈xi, ti〉 is received earlier than ej = 〈xj , tj〉,
but ti > tj so that ei is in fact a more recent observation than ej .
Note that it is possible that there are many items in the stream with
the same timestamp, and none for another timestamp.

We distinguish between the timestamp of an item, ti, and the age
of an item: the age of item 〈xi, ti〉 is t−ti. While the age of an item
is constantly changing with the current time, its timestamp remains
the same. To emphasize this difference, we will indicate times with
ti, T etc., and ages with ai, A, etc. There are two potential varia-
tions here: the first where the age of an item is directly computed
from its timestamp, and a second where the age of an item is the
number of items seen with more recent timestamps. This paper fo-
cuses on time-based semantics, since many of the techniques apply
to tuple-based semantics.1

2.2 Decay Functions
A decay function takes the age of an item, and returns the weight

for this item. A function g() is considered a decay function if it
satisfies the following properties:

1. g(0) = 1 and 0 ≤ g(a) ≤ 1 for all a ≥ 0.
2. g is monotone decreasing: if a1 >a2 then g(a1) ≤ g(a2)

Some popular decay functions are:

Sliding Window. The function g(a) = 1 for a < W and g(a) = 0
for a ≥ W captures the popular sliding window semantics that
only considers items whose age is less than W . The parameter W
is called the “window size”.

Exponential Decay. The class of functions g(a) = exp(−λa) for
λ > 0 has been used for many applications in the past. Part of its
popularity stems from the ease with which it can be computed for
sums and counts. This special case is studied in more detail in [12].

Polynomial Decay. For some applications, exponential decay is
too fast, and a slower decay is required [9]. Polynomial decay
is defined by g(a) = (a + 1)−α, for some α > 0 ((a + 1) is
used to ensure g(0) = 1). Equivalently, we can write g(a) =
exp(−α ln(a + 1)).

Many other classes of decay functions are possible including
super-exponential decays (e.g. g(a) = exp(−λa2)) and sub-
polynomial decays (e.g. g(a) = (1 + ln(1 + a))−1). Such func-
tions are typically too abrupt or too gradual for useful applications,
so we do not consider them further, although they fit into our gen-
eral framework. It is easy to verify that all the above functions
satisfy both requirements for decay functions. In this work, we
consider general decay functions with particular focus on sliding
windows and polynomial decay.
1For example, for a sliding window of size W , the algorithms can
be used to find a time t such that the number of items arriving be-
tween t′ and t is (approximately) W , and so reduce tuple-based to
time-based semantics.



2.3 Time-decayed aggregates
To sharpen the focus, we study a few popular aggregates

(namely, range queries, quantiles and heavy hitters), since these are
central to many stream computations. They are well-understood
in the non-decayed case, but less well-studied under arbitrary de-
cay functions, or on out-of-order streams; Section 7 discusses how
the methods in this paper apply more broadly to other aggregates.
We now define the time-decayed aggregates. These definitions are
natural extensions of their undecayed versions.

Definition 2. Given an input stream S = {〈xi, ti〉}, the decayed
weight of each item at time t is g(ai) = g(t − ti). The decayed
count of the stream at time t is D(t) =

P
i g(ai) (referred to as D

when t is implicit).

Our methods will, as a side effect, need to approximate D(t).

Definition 3. The decayed φ-quantile of the stream is the item q
so that

P
{i:xi<q} g(ai) ≤ φD, and

P
{i:xi≤q} g(ai) > φD.

The decayed φ-heavy hitters are the set of items
{p :

P
{i:xi=p} g(ai) ≥ φD}.

For g(a) = 1 for all a (i.e., no decay), these definitions equate
to the standard definitions of quantiles and heavy hitters. With no
decay, the timestamp ti does not affect the result, and so there is
little problem with out-of-order arrivals: the answer is independent
of the input order. It is the presence of time decay which provides
the challenge in handling out-of-order arrivals.

Each item xi is assumed to be an integer in the range [1 . . . U ]. It
is easy to verify that an exact solution to any of the above problems
requires too much space. For example, exactly tracking the decayed
count D in the sliding window decay model requires space linear
in the number of items within the sliding window [15]. Computing
the quantiles exactly even without decay requires space linear in the
input size [23], and likewise for exact tracking of heavy hitters [21].
Therefore, approximation in the answers must be tolerated in order
to make the resource requirements manageable. These are defined
as follows:

Definition 4. For 0 < ε < φ ≤ 1, the ε-approximate decayed
φ-quantiles problem is to find an item q satisfying

(φ− ε)D ≤
P

{i:xi<q} g(ai) ≤ (φ + ε)D.
For 0 < ε < φ ≤ 1, the ε-approximate decayed φ-heavy hitters

problem is to find a set of items HHφ which satisfies
HHφ ⊆ {p :

P
{i:xi=p} g(ai) ≥ (φ− ε)D}

and HHφ ⊇ {q :
P

{i:xi=q} g(ai) ≥ (φ + ε)D}.

Note that these problems can pose significant challenges. In partic-
ular, the answers depend significantly on when the query is posed.

Example. Consider the input stream 〈y, 2〉, 〈x, 3〉, 〈y, 1〉 with
three items; x with a timestamp 3, and two copies of item y, with
timestamps 2 and 1. Assume that all these items have arrived at
time 3, before any query was posed. Consider also a polynomial de-
cay function g(a) = (1 + a)−1. If a decayed φ-heavy hitters query
with φ = 1

2
is posed at time 3, only x should be returned, since x

has decayed weight 1 while y has decayed weight 1
2

+ 1
3

= 5
6

, so
that only x has (decayed) relative weight of 1

2
or greater. But if the

same query is posed at time 4, then y should be returned, since x
has decayed weight 1

2
, while y has decayed weight 1

3
+ 1

4
= 7

12
,

so that only y has (decayed) relative weight of 1
2

or greater.

Thus, even a priori knowledge of the decay function and query
to be posed does not allow a single result to be precomputed and
stored; instead sufficient information must be retained to answer
the query whenever it is posed.

2.4 Semantics of Late Arrivals
A late arriving tuple may require a previously reported answer to

change. However, revising these obsolete answers is problematic
because reconstructing the value of an answer reported in the past
and revising it to the correct answer based on the late arrival would
effectively mean “rewinding” to a previous state of the data struc-
ture; this requires linear space, as formalized in the lemma below.
One could try to estimate such values using the data structure at the
current time, but for very late arrivals the approximation guaran-
tees could be significantly bad (out-of-order arrivals which are only
slightly delayed can be corrected for with better accuracy). There-
fore, when a late tuple arrives, we choose to not correct for any
previous aggregate computations rendered incorrect by it. Instead,
our output model ensures that these late arrivals are accounted for
in any future aggregate computations. At query time, the aim is to
approximate the answer that would be returned if no late tuples are
to be expected; this most honestly reflects the observer’s knowl-
edge.

LEMMA 1. Correcting previously reported answers requires
Ω(N) space, where N the number of items in the stream.

PROOF SKETCH. Consider answering a sliding window sum
over a small sliding window of size, say, W = 1 time step. Cor-
recting a previously reported answer with less than ε = 1

2
relative

error given an out-of-order arrival with timestamp t means recov-
ering whether there was an arrival during time t or not. This can be
used to encode a bitstring of length N , and therefore Ω(N) bits are
required (even allowing randomization). Similar reductions show
the hardness for other aggregate queries and decay models.

3. SLIDING WINDOW
In this section we show a deterministic summary which allows us

to answer queries for both quantiles and heavy hitters under sliding
windows, where updates may arrive out-of-order.

3.1 Approximate Window Count
We first introduce a data structure which solves the simpler prob-

lem of tracking the decayed count of items within a sliding window
as they arrive in an arbitrary order. This question has been studied
in prior work explicitly [26, 7] and implicitly [11]. Our solution
here meets the best existing space bounds for this problem [11, 7],
and does so using a relatively simple construction which can sub-
sequently be extended to answer other aggregates.

Given window size w (specified at query time) and a stream
〈xi, ti〉, the aim is to approximate Dw(t) = |{i : t − ti < w}|
with ε relative error. The analysis assumes that each ti is an integer
in the range [0 . . . W − 1], and analyzes the space complexity as a
function of W . Equivalently, W is an upper bound on the window
size w. For simplicity, assume that W is a power of 2—this does
not lose any generality since W only has to be an upper bound on
w. The solution makes use of the q-digest data structure due to
Shrivastava et al. [25] which has the following main properties:

q-digest. Given a parameter 0 < ε < 1, the q-digest summarizes
the frequency distribution fi of a multiset defined by a stream of
N items drawn from the domain [0 . . . W − 1]. The q-digest can
be used to estimate the rank of an item q, which is defined as the
number of items dominated by q, that is, r(q) =

P
i<q fi. The data

structure maintains an appropriately defined set of dyadic ranges
⊆ [0 . . . W − 1] and their associated counts. A dyadic range is a
range of the form [i2j . . . (i + 1)2j − 1] for non-negative integers
i, j; i.e. its length is a power of two and it begins at a multiple
of its length. It is easy to see that an arbitrary range of integers



q-digest with (r, c(r)) values of: ([0, 7], 7), ([0, 3], 3),
([4, 7], 6), ([2, 3], 4), ([4, 5], 5), (2, 3), (3, 2), (5, 12).

(a) q-digest with W = 8, ε = 1
2

and N = 42, so εN
log W

= 7.

2

Time t0 q−digests

exact setτ ττ 13 0τ

(b) Data structure for sliding window range queries

Figure 1: Data Structure Illustrations

[a . . . b] can be uniquely partitioned into at most 2 log(b−a) dyadic
ranges, with at most 2 dyadic ranges of each length. Based on
a parameter γ = εN

log2 W
, our realization of the q-digest has the

following properties:

• Each range r has an associated count c(r) ≤ γ unless r
represents a single item.

• Given a range r, denote its parent range as par(r), and
its left and right child ranges as left(r) and right(r)
respectively. For every (r, c(r)) pair, we have that

c(par(r)) + c(left(par(r))) + c(right(par(r))) ≥ γ.

• If the range r is present in the data structure, then the range
par(r) is also present in the data structure.

Given query point q ∈ [0 . . . W − 1], the estimate the rank of q,
denoted by r̂(q), is the sum of the counts of all ranges to the left
of q, i.e. r̂(q) =

P
{r=[l,h]:h<q} c(r). The estimate of the rank

satisfies: r̂(q) ≤ r(q) ≤ r̂(q) + εN . Similarly, given a query point
q the estimate of fq , the frequency of item q is f̂q = r̂(q+1)−r̂(q),
so that f̂q − εN ≤ fq ≤ f̂q + εN .

It is shown in [25, 11] that the q-digest can be maintained in
space O( log W

ε
). Updates to a q-digest can be performed in time

O(log log W ) by binary searching the O(log W ) dyadic ranges
containing the new item to find the appropriate place to record
its count. In pseudocode, we will refer to this as the QDINSERT
routine. Periodically, the data structure can be pruned to ensure it
meets its space bounds, by calling a QDCOMPRESS routine. An
example q-digest is shown in Figure 1(a).

Sliding Window Count Algorithm. Our solution to the sliding
window count problem uses multiple instances of the q-digest data
structure. Let the “right rank” of a timestamp τ , denoted by rr(τ)
be defined as the number of input elements whose timestamps are
greater than τ . Given a window size w ≤ W at query time, the
sliding window count problem asks to estimate rr(t−w) with rel-
ative error ε.

THEOREM 1. There is a data structure to approximate the
sliding window count Dw(t) with relative error no more than
ε using space O( log W

ε
log ( εN

log W
)). The time taken to up-

date the data structure upon the arrival of a new element is
O(log( εN

log W
) log log W ), and a query for the count can be an-

swered in time O(log log (εN) + log W
ε

).

PROOF. Define α = 9
ε
log W . The algorithm maintains many

data structures Q0, Q1, . . . , QJ (J defined below); see Figure 1(b).
Data structure Q0 simply buffers the α elements with the most re-
cent timestamps (ties broken arbitrarily). For j > 0, Qj is a q-
digest that summarizes the (roughly) 2j × α most recent elements

of the stream. As j increases, more elements are summarized by
Qj , so the absolute error of estimates provided by Qj can increase
since, if rr(t−w) is large, then to estimate rr(t−w) it suffices to
use Qj where j is large to stay within the relative error bound.

This use of the q-digest differs from the way it is employed in
previous work [25] in the following way: while in [25], the upper
bound on the count of a node in the q-digest, γ, increases with the
number of elements being summarized, here in Qj , γ(j) is set to
2j . The maximum number of ranges within Qj is bounded by α.
Clearly, as more elements are added into Qj , the number of ranges
in Qj can increase beyond α so some ranges must be discarded. In-
formally, the α “most recent” ranges in Qj are retained, and the rest
discarded. More formally, periodically, a SWCOMPRESS routine is
called which sorts the ranges within Qj according to increasing or-
der of right endpoints; ties are broken by putting smaller ranges
first (this corresponds to a post-order traversal of the tree implic-
itly represented by the q-digest). The α rightmost elements in this
sorted order are retained in Qj .

Each q-digest Qj , j > 0 tracks the minimum time τj , such that
all elements with timestamps greater than τj are properly summa-
rized by Qj . More precisely, τj is initialized to −1; anytime a
range [l, h] is discarded from Qj , τj is set to max{τj , h}. Also,
τ0 is defined to be the greatest timestamp of an element discarded
from Q0, and −1 if Q0 has not discarded any element so far.

For any τ ≥ τj , an estimate r̂r(τ) of rr(τ) is found from Qj as
the sum of the counts in all ranges [l, h] in Qj such that l > τ . That
is, r̂r(τ) :=

P
{r:(r=[l,h]∈Qj)∧(l>τ)} c(r).

Accuracy. r̂(τ) overestimates r(τ), since it counts all updates
more recent than τ , and some that are older. But the error in the
estimate r̂(τ) can only arise through ranges r in Qj that contain τ
(i.e. r neither falls completely to the left or completely to the right
of r in Qj). Since there are at most log W ranges that contain τ , the
error in estimation is no more than γ(j) log W . Thus if τ ≥ τj ,
then:

rr(τ) ≤ r̂r(τ) ≤ rr(τ) + γ(j) log W (1)

It also follows that if Qj is “full”, i.e. the number of ranges in
Qj is the maximum possible, then rr(τj) ≥ α

3
γ(j)− γ(j) log W ,

from the second QD property and the log W ranges that can contain
τj . Using ε < 1 and the settings of α and γ(j), it follows that:

rr(τj) >
2j+1

ε
log W (2)

Given window size w, the algorithm estimates rr (t− w) as fol-
lows. Let ` ≥ 0 be the smallest integer such that τ` ≤ t− w. The
algorithm returns r̂r`(t−w) using Q`. The accuracy guarantee can
be shown as follows. If ` = 0, then the algorithm has returned the
exact answer. Otherwise, from (1):



Algorithm 3.1: SWUPDATE(t)

Input: time stamp t
Q0 ← Q0 ∪ {t}
if |Q0| > α

then

8>>><>>>:
T ← min t ∈ Q0

delete T from Q0

for j = 1 to J
do if T > τj

then QDINSERT(Qj , T )

Algorithm 3.2: SWCOMPRESS()

for j ← 1 to J

do

8>>><>>>:
recompute τj

for each (r, c(r)) ∈ Qj

do if max(r) ≤ τj

then delete (r, c(r)) from Qj

QDCOMPRESS(Qj)

Algorithm 3.3: SWQUERY(w)

Input: window size w
if t− w ≥ τ0

then return (|{τ ∈ Q0|τ > t− w}|)

else


` = arg mini(τi ≤ t− w)
return (r̂r`(t− w))

Figure 2: Pseudocode for Sliding Window Count

0 ≤ r̂r`(t− w)− rr(t− w) ≤ 2` log W .
Also, since τ`−1 ≥ t − w, and Q`−1 must be “full” (since oth-

erwise τ`−1 would be −1) we have from (2) that
rr(t− w) ≥ rr(τ`−1) > 2`

ε
log W .

Thus the relative error

|r̂r`(t− w)− rr(t− w)|
rr(t− w)

≤ 2` log W

2`ε−1 log W
≤ ε

Pseudocode in Figure 2 shows the routines for inserting a new
time stamp(SWUPDATE), compressing to ensure the space bounds
(SWCOMPRESS), and answering a count query (SQQUERY).

Space and Time Complexity. The total space required depends on
the total number of q-digests used. Due to the doubling of the count
threshold each level, the largest q-digest that needed is QJ for J

given by 2J

ε
log W ≥ N , yielding J = dlog (εN) − log log W e.

Thus the total space complexity is O( log W
ε

log ( εN
log W

)). Each new
arrival requires updating in the worst case all J q-digests, each of
which takes time O(log log W ), giving a worst case time bound
of O(log( εN

log W
) log log W ) for the update. The query time is

the time required to find the right Q`, which can be done in time
O(log J) = O(log log (εN)) via a binary search on the τjs fol-
lowed by summing the counts in the appropriate buckets of Q`,
which can be done in time O( log W

ε
), for a total query time com-

plexity of O(log log (εN) + log W
ε

). Each time the Compress rou-
tine is called, it takes time linear in the size of the data structure.
Therefore, by running compress after every O( log W

ε
) updates, the

amortized cost of the compress is O(log( εN
log W

)), while the space
bounds are as stated above.

3.2 Range Queries, Quantiles, Heavy Hitters
To extend this approach to aggregates such as quantiles and

heavy hitters, it suffices to use the same general structure as the
algorithm for the count, but instead of just keeping counts within
each q-digest, more details are kept on each time range. We pro-
ceed in two steps, first by solving a particular range query problem,
and then reducing our aggregates of interest to such range queries.

Definition 5. A sliding window range query is defined as fol-
lows. Consider a stream of 〈xi, ti〉 tuples, and let r(w, x) =
|{i|xi ≤ x, t − ti ≤ w}|. The approximate sliding window range
query problem, given (w, x) with 0 ≤ w < W, 0 ≤ x < U , is to
return an estimate r̂(w, x) such that |r̂(w, x)−r(w, x)| ≤ εDw(t),
where Dw(t) = |{i : t− ti < w}|.

This problem statement is crucial for the subsequent reduc-
tions. It is convenient to think of these as range queries over

two-dimensional (item, time) pairs which arrive in a stream. Ob-
serve that the required approximation quality is εDw(t), rather than
εr(w, x). Estimating r(w, x) with approximation error εr(w, x) is
not possible in small space, since the problem of maintaining the
maximum of elements within a sliding window, which is known to
require space linear in the size of the stream [15], can be reduced
to the estimation of r(w, x) with a relative error of ε. This corre-
sponds to the requirements in Definition 4 for approximate quan-
tiles and heavy hitters. The approximation guarantee required here
is stronger than that required in prior work on range queries in data
streams (i.e. additive error of εN [17]) so a modified approach is
needed.

Our algorithm for range queries combines the structure for ap-
proximate sliding window counts with an extra layer of data struc-
tures for range queries. The algorithm maintains J q-digests
Q0, Q1, . . . , QJ , much as in the sliding window count case above.
Each of these orders data along the “time” dimension—we call
these the “time-wise” q-digests. Within Qj , j > 0 the thresh-
old γ(j) = 2j−1. Within each range r ∈ Qj another q-digest
which summarizes data along the value-dimension is kept. These
are called the “value-wise” q-digests. This approach of consid-
ering each dimension in turn is fairly standard, and similar algo-
rithms with different accuracy guarantees are given in [17]. So we
only briefly describe two alternate realizations of this idea which
provide the guarantees required in Definition 5 in slightly different
bounds.

Eager merge algorithm. The value-wise q-digests within Qj are
maintained with γ(j) = 2j−1

log U
. Each value-wise q-digest for a

timestamp range r summarizes the value distribution of all tuples
whose timestamps fall within r—note that since the timestamp
ranges within Qj may overlap, a single element may be present
in multiple (up to log W ) value-wise q-digests within Qj . Similar
to the count algorithm, Qj also maintains a threshold τj , which is
updated exactly as in the count algorithm.
Estimation: To estimate r(w, x), our algorithm uses Q` where `
is the smallest integer such that τ` ≤ t − w. Within Q`, it finds
at most log W value-wise q-digests to query based on a dyadic de-
composition of the range (t − w, t], and each of these is queried
for the rank of x. Finally, the estimate r̂(w, x) is the sum of these
results.
Accuracy: The error of the estimate has two components. Firstly,
within the time-wise q-digest Q` error of up to 2`−1 log W is in-
curred since the number of elements within the timestamp range
may be undercounted by up to 2`−1 log W . Next, within each
value-wise q-digest, error of up to 2`−1

log U
log U = 2`−1 is in-

curred. Since as many as log W value-wise q-digests may be



used, the total error due to the value-wise q-digests is bounded by
2`−1 log W . Hence the total error in the estimate is bounded by
2 · 2`−1 log W = 2` log W . Choosing α = 3

ε
log W ranges within

each each Qj , and using a similar argument to the count algorithm,
gives Dw ≥ rr(τ`−1) > 2` log W

ε
. Thus the error in the estimate of

r(w, x) is no more than εDw, as required.
Space and Time Complexity: Note that the sum of counts
of all nodes within all value-wise q-digests within Qj is
O(log W rr(τj)) = O( 1

ε
2j log2 W ), since each element maybe

included in no more than log W value-wise q-digests within Qj .
Consider any triple of (parent, left child, right child) ranges
within a value-wise q-digest. The total count of these triples
must be at least 2j−1

log U
, implying that this fraction of the to-

tal count requires O(1) space. Thus, the total space taken to
store Qj is O(log2 W log U/ε). As analyzed before, there are
O(log( εN

log W
)) different time-wise q-digests, leading to a total

space complexity of O( 1
ε
log(εN/ log W ) log2 W log U). Con-

sider the time to update each Qj : this requires the insertion
of the element into no more than log W value-wise q-digests;
each such insertion takes time O(log log U) and hence the to-
tal time to insert into all Qjs is O(log( εN

log W
) log W (log log U))

= O(log(εN) log W (log log U)).

Defer Merge algorithm. The defer merge version uses a simi-
lar idea, of time-wise q-digests Qj , each node of which contains a
value-wise q-digest. It uses the same number and arrangement of
time-wise q-digests, but a different arrangment of value-wise struc-
tures. Instead of inserting each update in all value-wise q-digests
that summarize time ranges in which it falls, it is inserted in only
one, corresponding to the node in the time-wise structure whose
count is incremented due to insertion. The pruning condition for
the value-wise q-digest is based on εn/2 log U , where n = c(r)
is the number of items counted by the time-wise q-digest in the
range. In other words, each value-wise q-digest is just a “standard”
q-digest which summarizes the values inserted into it, and so takes
space O( log U

ε
).

Estimation: To answer queries r(w, q), τ` is found based on w and
query Q` as before. All value-wise summaries within Q` which
correspond to items arriving within the time window (t− w, t] are
merged together (this merging is deferred to query time, as opposed
to the above “eager merge” approach, which computes the result of
this merging at insertion time). The query x is then posed to the
resulting q-digest.
Accuracy: Again, error 2`−1 log W is incurred from uncertainty in
Q`. By the properties of merging q-digests, the error in this query
is bounded by ε

2
Dw. Summing these two components gives the

required total error bound of εDw.
Space and Time Complexity: The space required is bounded
by taking the number of value-wise q-digests for each Qj ,
O( log W

ε
) and multiplying by the size of each, O( log U

ε
), over

the J = log εN − log log W levels. The overall bound is
O( 1

ε2
log U log W log( εN

log W
)) (thus trading off a factor of log W

for one of 1
ε

compared to the above eager-merge version). Each
insertion, requires an insertion into the time-wise q-digest for each
Qj , and then into the value-wise q-digest, in time O(log log U +
log log W ). The amortized cost of compressing can be made O(1)
by the same argument as above. The overall amortized cost per
update is O(log( εN

log W
)(log log W + log log U)).

Summarizing these two variant approaches, we conclude:

THEOREM 2. Sliding window range queries can be approxi-
mated in space O( 1

ε
log U log W log( εN

log W
)min(log W, 1

ε
)) and

time O(log( εN
log W

) log W log log U) per update. Queries take time
linear in the space used.

3.3 Reduction to Range Queries
We now show that answering heavy hitters and quantiles queries

in a sliding window can be reduced to range queries, and that ap-
proximate answers to range queries yield good approximations for
quantiles and heavy hitters. For a maximum window size W , the
data structure for range queries is created with accuracy parameter
ε
2

. To answer a query for the approximate φ-quantile, an approxi-
mation D̂w of Dw is first computed using the time-wise q-digests,
through the results of Theorem 1. Then the smallest x such that
r̂(w, x) ≥ φD̂w is found by binary search. Observe that such an
x satisfies the requirements for being an approximate φ-quantile:
|D̂w −Dw| ≤ ε

2
Dw, and |r̂(w, x) − r(w, x)| ≤ ε

2
Dw. Combin-

ing these gives the required bounds from Definition 4.
One way to answer φ-heavy hitter queries is by posing quantiles

queries for φ′-quantiles, for φ′ = ε, 2ε, 3ε . . . 1. All items that
repeatedly occur as φ

ε
(or more) consecutive quantiles are reported.

Note that if any item has frequency at least (φ + ε)Dw, it will
surely be reported. Also, any item which has frequency less than
(φ− ε)Dw will surely not be reported.

COROLLARY 1. Approximate sliding window quantile and
heavy hitters with out-of-order arrivals can be answered in the
same update and space bounds as Theorem 2.

This lets window size w ≤ W to be specified at query time; if
instead it is fixed to W tuples and only the q-digest for the appro-
priate τj is kept, a factor of O(log( εN

log W
)) is saved in the bounds.

4. POLYNOMIAL AND GENERAL DECAY
We describe two methods to handle decay functions other than

sliding window decay, in particular, polynomial decay. The first
method applies to any decay function by reducing a query for
decayed sums/counts to multiple window queries (à la [9]); we
describe how to execute this reduction efficiently. The second
method, “Value-Division”, is potentially more efficient, and, al-
though less general, applies to a broad class of “smooth” decay
functions (defined formally below) which includes polynomial de-
cay. We focus the discussion on polynomial decay for ease of ex-
position.

4.1 Reduction to Multiple Sliding Windows
We first outline a generic approach for decayed aggregates by re-

duction to multiple queries over our proposed sliding window sum-
mary. This is based on the observations in [9] for computing de-
cayed sums and counts. Consider an arbitrary decay function g(a).
The (decayed) rank of any item x can be written as the sum

g(0)r(0, x) +
Pt

j=1(g(j)− g(j − 1))r(j, x),
This shows that in the space bounds given by Theorem 2 arbitrary
decay functions can be applied, due to inherent discretization of the
decay function at each timestep. Because the rank of x in window j
is approximated with error εDj , summing all counts preserves the
relative error:Pt

j=1(g(t− j)− g(t− j + 1))εDj = εD.
Note that this algorithm as stated is not time efficient due to the

current need for multiple queries. Yet it is straightforward to extend
it to run more quickly, by more cleverly maintaining the contents of
the data structure. It is not necessary to query all possible time val-
ues, since the data structure only stores explicit information about
a limited number of time stamps, and queries about sliding win-
dows with other timestamps will give the same answers as queries
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Figure 3: Choice of boundaries in value-division approach

on some timestamp stored in the data structure. Thus the sum need
only be evaluated at timestamps stored in the data structure, rather
than all possible timestamps.

Using the reductions in Section 3.3, quantiles and heavy hitters
can also be found using the same data structure. Note that these
are very strong results: not only can item arrivals be handled in
completely arbitrary orders, but also any arbitrary decay function
can be applied efficiently, and this decay function can be specified
at query time, after the input stream has been seen—and all these
results hold deterministically. Combining these gives:

THEOREM 3. Decayed range sum, heavy hitter and quantile
queries can be answered on out-of-order arrivals in the bounds
stated in Theorem 2. Queries take time linear in the data structure
size, i.e. O

`
1
ε
log U log W log εN min(log W, 1

ε
)
´
.

4.2 Value-Division
The above algorithm is quite general, but the space bounds and

time cost may be improved by using an alternate approach. We
generalize the technique of Cohen and Strauss for decayed sums
and counts [9] to apply to quantiles and heavy hitters. In fact, these
results apply to a broad range of aggregates, comprising any aggre-
gate which has a summary such that two summaries can be merged
to get a summary of the union of the inputs, and scaling a sum-
mary obtains a summary of the linearly scaled input. This incorpo-
rates most “sketch” algorithms, as well as simple aggregates such
as sums and counts. We refer to these as “linear summaries”. The
technique allows us to approximate decayed aggregates based on
tracking a set of “value divisions” or boundaries.

Smooth Decay Functions. If decay function g is continuous, then
let ġ(x) denote the derivative of g at age x.

Definition 6. A decay function g is defined to be smooth (or
“smoothly decaying”) if, for all a, A > 0,

ġ(a)g(a + A) ≤ ġ(a + A)g(a).

Note that sliding window decay is not smooth since it is not con-
tinuous. Polynomial decay is smooth, as is exponential decay (the
definition holds with equality).

Value divisions. Given a smooth decay function g, define the set
of boundaries on ages, bi, so that g(bi) = (1 + θ)−i for θ chosen
later. The value division keeps a small number of summaries of
the input. Each summary sj corresponds to items drawn from the
input within a range of ages. These ranges fully partition the time

from 0 to t, so no intervals overlap. Thus summary sj summarizes
all items with timestamps between times tj and tj+1. Figure 3
illustrates the decay function g(a) = (1 + a)−1/2, so for θ = 1,
boundaries are at b1 = 3 (g(b1) = 1

2
), b2 = 15 (g(b2) = 1

4
), and

b3 = 63 (g(b3) = 1
8

).
The boundaries define the summary time intervals: for all bound-

aries bi at time t, at most one summary sj is permitted such that
(t− bi+1) < tj+1 < tj < (t− bi).

To maintain this, if there is a pair of adjacent summaries j, j + 1
such that

(t− bi+1) < tj+2 < tj < (t− bi)
(i.e. both summaries fall between adjacent boundaries), summaries
sj and sj+1 are merged to summarize the range tj to tj+2.

Note that the time ranges of the summaries, and the way in which
they are merged, depends only on the time and the boundaries, and
not on any features of the arrival stream. This naturally accom-
modates out-of-order arrivals (when a new arrival tuple 〈xi, ti〉 has
a ti value that precedes other tj values already seen). Since the
summaries partition the time domain, the item is included in the
unique summary which covers ti. This works because the choice
of boundaries is independent of the arrivals.

THEOREM 4. Given a linear summary algorithm, a (1 + θ)
accurate answers to (polynomial) decay queries can be found by
storing O(log1+θ g(t)) summaries. Updates take amortized time
O(log g(t)).

PROOF. We first show that an accurate summary can be built
by combining stored summaries, and then show a bound on the
number of summaries stored.

Observe that for any summary sj whose age interval falls be-
tween two adjacent boundaries bi and bi+1:

bi ≤ t− tj ≤ t− tj+1 ≤ bi+1,
and so

g(bi) ≥ g(t− tj) ≥ g(t− tj+1) ≥ g(bi+1) = g(bi)/(1 + θ)
(by the fact that g is monotone decreasing). The monotonicity of
g also ensures that the g value of every item summarized by sj is
between g(t− tj+1) and g(t− tj), which are within a 1 + θ factor
of each other. Thus, treating each item in sj as if it arrived at time
tj only affects the result by a factor of at most (1 + θ).

The same is true for any summary which straddles any boundary
bi (i.e. (t − tj+1) ≥ bi ≥ (t − tj)). At some earlier time, sj fell
between two adjacent boundaries: by induction, either this is true
from when sj is created as a summary of a single time instant; or
else, sj is formed as the merge of two summaries and the resultant
summary fell between two boundaries. Either way, it follows that,
at the time of formation g(t − tj+1)/g(t − tj) ≤ (1 + θ). If
g is smoothly decaying, this remains true for all times T > t. Let
a = (t−tj+1) and A = (tj−tj+1), and analyze d

da
g(a)/g(a+A):

this is non-increasing if
g(a + A)ġ(a)− g(a)ġ(a + A) ≤ 0,

by standard differentiation and the chain rule. But this is precisely
the condition that g is smoothly decaying, which shows that treating
all items summarized by one summary as if they all arrived at the
same time tj only affects the result by a factor of at most (1 + θ).

In order to answer queries, we use a similar idea to that in the
general approach above. For each summary, take the age of the
most recent item summarized, a, and linearly scale the summary
by g(a), and merge all the scaled summaries together. The query is
answered by probing this scaled and merged summary. Correctness
follows by observing that since the range of ages of items in the
summary is bounded by a (1 + θ) factor, the error introduced by
treating all items as the same age is at most this much.

The number of summaries stored is bounded in terms of the du-



ration of the data (or based on a cut off point W beyond which
g(a > W ) = 0). At any instant, each summary either falls be-
tween two boundaries, or crosses a boundary. There is at most one
summary falling between each boundary, which we associate with
the boundary to its left; therefore the number of summaries stored
is equal to twice the number of boundaries which have input items
older than them. The final such boundary, bk, therefore satisfies
g(t) ≥ bk = (1 + θ)−k, since the oldest item has age at most t.
Thus, k = − ln(g(t))/ ln(1 + θ), and hence the number of sum-
maries is O( 1

θ
ln( 1

g(t)
)).

Example: Decayed Quantiles with polynomial decay. We
demonstrate the result when applied to computing time-decayed
quantiles with polynomial decay, i.e. g(a) = exp(−α ln(1 + a)).
Using the q-digest again, regular quantiles can be answered with
error β using a summary of size O( log U

β
), where U denotes the

size of the domain from which the quantiles are drawn. The data
structure is a linear summary [12], and so can be used with polyno-
mial decay. The total space required is therefore O( 1

θ
ln(1/g(t)) ·

log U
β

) = O( α
θβ

log U log t) for polynomial decay. The total ap-
proximation error is, in the worst case, (θ + β)D. In order to guar-
antee overall error of εD, set θ + β = ε; the space is minimized
by θ = β = ε/2, giving O( log U

ε2
log t) overall. The time cost is

O(log t) amortized per update.
The space used is comparable to the general bound for arbitrary

decay functions by reduction to sliding window queries. Both al-
gorithms have terms in O( 1

ε
log U log W ), the value division ap-

proach has another O( 1
ε
) factor whereas the sliding window ap-

proach has an O(min( 1
ε
, log W ) log εN) factor. So asymptoti-

cally the space bounds are better for value division in the case that
1
ε
≤ log W , and should be competitive for other values.

Extensibility: Decay Domination. We have so far assumed that
the decay function is known a priori, since g(a) is used to set the
boundary values. However, observe that if boundaries are created
based on g(a) = (1 + a)−2, they are located at a = 1, (1 +

θ)1/2, (1 + θ), (1 + θ)3/2 . . .. This is a superset of the boundaries
that would have been created for g′(a) = (1 + a)−1 (that is, a =
1, (1 + θ), (1 + θ)2) . . .), and so it can be shown that the data
structure used for g(a) can also be used for g′(a). More strongly:

LEMMA 2. Given the results of running the value-division al-
gorithm with boundaries bi based on decay function g and parame-
ter θ, at query time, a (1+θ′) accurate answer can be found for any
smooth decay function g′, provided ∀i.g(bi)/g(bi+1) ≤ (1 + θ′).

Thus, boundaries can be set based on a particular function g and
θ value, a new function g′ can be specified that is “weaker” than
g (decays less quickly), getting a guarantee with a θ′ that is better
than the original θ. Equally, a g′ can be specified that is stronger
than g (decays faster), and a result obtained with larger θ′: creating
boundaries based on θ and g(a) = (1+a)−α gives boundaries that
are valid for g′(a) = (1 + a)−2α with θ′ = 2θ + θ2.

5. EXPERIMENTS
While the asymptotic complexities derived in the preceding sec-

tions give an indication of the relative efficiency of the algorithms,
in this section we evaluate their space usage and performance in
practice. We compare polynomial and sliding window decay func-
tions to the cost of aggregate computations with no decay function
(which can ignore timestamp and hence arrival order).

5.1 Experimental Setup
We implemented our core methods based on q-digests under a

variety of decay functions, and measured the space usage and pro-
cessing time to better understand their relative performance. For
comparability, our methods used the same underlying implemen-
tations of q-digests, in C. We report space usage in terms of the
number of nodes stored in the data structures since the nodes of the
respective data structures are roughly the same size: 12 bytes per
node in our implementation (input 〈xi, ti〉 pairs are 8-12 bytes).
For the sliding window algorithms, we compared the eager merge
and defer merge strategies. On our data sets the defer-merge ap-
proach was often more efficient in both time and space, so we re-
port these results only.

We show results on two different network data streams. The
first consists of 5 million records of IP flow data aggregated at an
ISP router using Cisco NetFlow, projected onto (begin_time,
num_octets) but sorted on end_time; consequently there is
moderate disorder on the arrivals. The second data set is 5 million
records of Web log data collected during the 1998 Football World
Cup (http://ita.ee.lbl.gov/), projected onto (time,
num_bytes). Additional out-of-order arrivals were introduced
to it by including data from multiple subsequent days with the only
the time of day used: consequently the timestamps “loop” several
times. All experiments were run on a 2.8GHz Pentium Linux ma-
chine with 2 GB main memory.

5.2 Space Usage
To understand how the polynomial degree α affects space usage

of polynomial decay in practice, we plot space at different values
of α using the value division approach with total error ε fixed at
0.1 in Figure 4(a). As indicated by our asymptotic analysis, the
relationship is close to linear. We chose a reasonable degree of
α = 2 and compared the value division approach with the sliding
window approach (with W = 220), both of which can be used to
maintain streaming aggregates with polynomial decay. Figure 4(b)
plots space against ε for these two approaches. It shows that the
value division approach can be significantly more space-efficient
than sliding windows, especially with small values of ε (results us-
ing the flow data are shown).

Recall that for both data sets, the total input size is 5 million
items. Thus, for moderate values of ε, the space used by our
approximate algorithms (especially value-division) is significantly
less than that of the input, sometimes by an order of magnitude or
more. As ε decreases, the space rises sharply, especially for the
sliding window algorithms. In the worst case, the size exceeds that
of the input, since each input item is represented in multiple time-
wise q-digests Qj . Here, the value-division approach (not shown)
is guaranteed to use fewer nodes that the number of input tuples,
and so is a competitive alternative.

5.3 Performance
Figure 4(c) compares the time (in seconds) taken to update the

data structure for the polynomial and sliding window decay func-
tions as well as the q-digest (no-decay) as a baseline, at increasing
timestamps using World Cup data. With flow data (not shown), the
curve ordering was the same but the smaller amount of disorder en-
abled the value division approach to achieve performance closer to
that of no decay. Figure 4(d) shows how these times vary with ε.
There is little variation in these times, in accordance with our anal-
ysis which shows a weak dependence on ε in the running times. A
small exception is for value division on polynomial decay. In fact,
this is more due to our non-optimal implementation: to insert a new
item, the code searches through the time ranges of the summaries in
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order from the most recent. (For small ε, there are more summaries
to search through.) An implementation with a dynamic index on
the timestamps would improve the time cost. Similarly, on highly
out-of-order data, the running time increased due to inserting into
more levels in the sliding window algorithms.

Overall, our methods seem suited to high-speed data stream sys-
tems, since they are capable of processing up to a hundred thousand
items per second on an off-the-shelf system. The extra flexibility
and sophistication that sliding windows provide is obtainable, at a
premium (constant factors in time and space in our experiments).

6. RELATED WORK
There has been considerable recent research on computing de-

cayed aggregates over data streams. However, this work typically
does not address out-of-order arrivals. The first algorithms for
providing guaranteed accurate answers to aggregates using sliding
window decay are the Exponential Histograms (EH) [15] and De-
terministic Waves [16]. Both algorithms track counts and sums in
sliding windows by keeping O( 1

ε
log εN) counters. The EH ap-

proach can also work for aggregates that satisfy a certain set of
conditions, and in particular that randomized “sketch summaries”
(such as the AMS sketch [2] and Count-Min sketch [13]) can re-
place the counters. However, this approach blows up the space as
a function of accuracy ε: keeping O( 1

ε
log εN) sketches of size

Ω( 1
ε2

) gives a total space bound of Ω( 1
ε3

), which is impractical
for most values of ε. Recently, Smooth Histograms (SH) [6] have
been proposed to improve exponential histograms by taking advan-
tage of properties of the aggregate function. But importantly, EH,
SH and Waves do not allow for out-of-order arrivals: the algorithms
rely explicitly on packing together fixed numbers of items into each

bucket of a histogram. Out-of-order arrivals overflow old buckets,
so that the space and accuracy guarantees no longer hold.

There is much work on complex aggregates in the sliding win-
dow decay model—these usually do not tolerate out-of-order ar-
rivals. Qiao et al. [24] describe heuristics for tracking histograms,
in contrast to the guarantees we provide. Babcock et al. [5] study
tracking variance and k-median clustering, which cannot be solved
using EH. Arasu and Manku [3] and Lee and Ting [19] have
given improved bounds for quantiles and heavy hitters, respec-
tively. They rely on specific properties of the chosen aggregate,
and exclude the possibility of late arrivals for similar reasons to
the EH case: they perform careful time bucketing assuming that no
subsequent items which belong in the same bucket will be seen.

Algorithms with approximation guarantees for out-of-order, or
asynchronous, stream aggregates were designed by Tirthapura et
al. [26], who gave randomized algorithms for estimating the slid-
ing window count, and a randomized O( 1

ε2
log W ) space algorithm

for approximate sliding window quantiles. Here, we show that ran-
domness is unnecessary, and the problems can be solved determin-
istically with similar bounds. Recently, Busch and Tirthapura [7]
gave a deterministic algorithm for the asynchronous sliding win-
dow count problem that uses O( 1

ε
log W log N) space; here we

tighten this to O( 1
ε
log W log εN). [7] did not consider quantiles

and heavy-hitter queries, as we do in this work, and further, they fo-
cused solely on sliding window decay. Other approaches in the data
stream literature for dealing with out-of-order arrivals are heuristic,
involving buffering [1], load shedding [4], and punctuations [27].

Exponential decay has attracted interest due to its simplicity.
For simple counts, exponential decay is virtually folklore, so for
methods based on counts that are linear functions of the input,
such as randomized sketches, the ability to apply exponential decay



and out-of-order arrivals follows almost immediately. We recently
showed how to maintaining aggregates using data structures tai-
lored to exponential decay in [12]; these techniques easily allow
out-of-order arrivals.

The work of Cohen and Strauss [9] gave strong motivations for
looking at decay functions other than sliding window and expo-
nential decay. They introduced Cascaded Exponential Histograms
(CEH) and Weight-Based Merging Histograms (WBMH) for com-
puting counts and sums under these decays (subsequently, some
improvements from O(log n log log n) to O(log n) for WBMH
have been proposed by Kopelowitz and Porat [18]). Taking inspi-
ration from these, we extend to more general holistic aggregates,
and out-of-order arrivals. We observe that for many problems, our
results are the first in the asynchronous model. The price paid for
allowing out-of-order arrivals is asymptotically small compared to
the in-order case: typically, a logarithmic factor of overhead.

7. EXTENSIONS
We briefly note some extensions to our techniques:

• System issues. Our methods are quite general and apply to any
aggregate which has a summary such that two summaries can be
merged to generate a summary of the union of the inputs; or scaled
to obtain a summary of the linearly scaled input. There are re-
ferred to as “linear summaries”. This incorporates most “sketch”
algorithms since they are typically based on maintaining arrays of
counts or sums [2, 13]. Streaming systems support user-defined de-
cayed aggregate functions (UDAFs) by requiring the user to spec-
ify a small number of subroutines [10, 8]. Additionally supporting
decay (e.g., via a DECAY BY clause) requires only a few extra rou-
tines such as Scale and Merge, for the DSMS to multiply the
summary by a scalar when needed and merge two summaries when
needed, respectively; the logic for when to scale and merge can be
handled by the streaming system. Depending on which underly-
ing approach is used (sliding windows versus value-division), the
supplied decay function can be quite general and, in some cases,
supplied at query time. We have shown both analytically and ex-
perimentally that performance depends on which approach is used;
thus, the system can optimize, given user requirements.
• Distributed observations. In the distributed setting, separate
observers see independent streams and must summarize the union
of the input. In the sliding window case, summaries can be merged
and compressed, to obtain the same space bounds as the centralized
case (unlike EH/Waves [15, 16]). In the value-division approach
summaries can be merged accurately, but the space is not bounded.
• Duplications and Deletions. Data quality issues mean that
streams may contain duplicate arrivals which should be counted
once, or retractions of prior updates. For duplicates, replacing
counters with “approximate count distinct sketches” will suppress
duplicates [14]. This blows up the space; alternate approaches are
based on the technique of “distinct sampling” [16, 26]. Deletions
can be handled by replacing q-digests with randomized sketches
which can tolerate deletions, such as the Count-Min sketch [13].

8. SUMMARY
We considered the problem of computing aggregates under de-

cay functions over out-of-order streams. We showed a variety of
solutions for different classes of decay functions which are all fully
deterministic, with precise space and time guarantees. Experimen-
tally, we saw that it is possible to process large streams accurately at
high throughput (hundreds of thousands of updates per second) for
sliding window and polynomial decay. It is open to improve these
results, especially those for sliding windows. Our methods give a

framework for a variety of aggregates. Some of the approaches,
such as value-division, can be applied to arbitrary summaries satis-
fying certain properties (in this case, ability to scale and merge the
summary). It remains to fully understand which aggregates can be
accurately approximated under this challenging model of decay.

9. REFERENCES
[1] D. Abadi et al. Aurora: a data stream management system. In

SIGMOD, 2003.
[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of

approximating the frequency moments. JCSS: Journal of Computer
and System Sciences, 58:137–147, 1999.

[3] A. Arasu and G. S. Manku. Approximate counts and quantiles over
sliding windows. In PODS, 2004.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In PODS, 2002.

[5] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining
variance and k-medians over data stream windows. In PODS, 2003.

[6] V. Braverman and R. Ostrovsky Smooth Histograms for Sliding
Windows. In FOCS, 2007.

[7] C. Busch and S. Tirthapura. A deterministic algorithm for
summarizing asynchronous streams over a sliding window. In
STACS, 2007.

[8] S. Cohen. User-defined aggregate functions: bridging theory and
practice. In SIGMOD, 2006.

[9] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. In PODS, 2003.

[10] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson, O. Spatscheck,
and D. Srivastava. Holistic UDAFs at streaming speeds. In SIGMOD,
2004.

[11] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space-
and time-efficient deterministic algorithms for biased quantiles over
data streams. In PODS, 2006.

[12] G. Cormode, F. Korn, and S. Tirthapura. Exponentially Decayed
Aggregates on Data Streams. In ICDE, 2008.

[13] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. Journal of
Algorithms, 55(1):58–75, 2005.

[14] G. Cormode and S. Muthukrishnan. Space efficient mining of
multigraph streams. In PODS, 2005.

[15] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. In SODA, 2002.

[16] P. Gibbons and S. Tirthapura. Distributed streams algorithms for
sliding windows. Theory of Computing Systems, 37:457–478, 2004.

[17] J. Hershberger, N. Shrivastava, S. Suri, and C. Toth. Adaptive spatial
partitioning for multidimensional data streams. In ISAAC, 2004.

[18] T. Kopelowitz and E. Porat. Improved Algorithms for Polynomial
Time-Decay and Time-Decay with Additive error. In ICTCS, 2005.

[19] L.K. Lee and H.F. Ting. A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In PODS,
2006.

[20] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding
(recently) frequent items in distributed data streams. In ICDE, 2005.

[21] J. Misra and D. Gries. Finding repeated elements. Science of
Computer Programming, 2:143–152, 1982.

[22] S. Muthukrishnan. Data streams: Algorithms and applications. In
SODA, 2003.

[23] J. I. Munro and M. Paterson. Selection and sorting with limited
storage. Theor. Comput. Sci., 12:315–323, 1980.

[24] L. Qiao, D. Agrawal, and A. El Abbadi. Supporting sliding window
queries for continuous data streams. In SSDBM, 2003.

[25] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and
beyond: New aggregation techniques for sensor networks. In ACM
SenSys, 2004.

[26] S. Tirthapura, C. Busch, and B. Xu. Sketching asycnhronous streams
over sliding windows. In PODC, 2006.

[27] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in countinuous data streams. IEEE TKDE,
15(3):555–568, May 2003.


