
Federated Data Distribution Shift Estimation
Graham Cormode

Meta and University of Warwick

gcormode@meta.com

Daniel Ting

Meta

dting@meta.com

ABSTRACT
As data is increasingly held at the edge of the network, newmethods

are needed to perform analysis over distributed inputs. This has led

to the emergence of the federated model of distributed computation,

which places emphasis on privacy and scalability. A central problem

is to analyze data distributions where the data is spread across a

large number of distributed clients. This supports a number of

tasks within federated learning and federated analytics. We present

techniques to measure the similarity of distributions of data in the

federated model. We define sketches for this task that allow efficient

estimation of the difference between two distributions based on the

total variation distance (𝐿1) metric. These have accuracy and privacy

guarantees, and can be computed incrementally over dynamic data.

Our experimental study shows that these are practical to implement

and provide accurate estimates.

PVLDB Reference Format:
Graham Cormode and Daniel Ting. Federated Data Distribution Shift

Estimation. PVLDB, 18(8): 2399 - 2412, 2025.

doi:10.14778/3742728.3742736

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://figshare.com/s/7a1c725a293d1c5b88a8.

1 INTRODUCTION
The federated model of computation captures the case where many

clients cooperate with a central aggregator to compute over their

distributed data, while preserving the privacy of their information.

Federated computation has beenmost heavily studied in the context

of distributed machine learning (ML) [38], but applies more gener-

ally to any application where many clients hold data for analysis

and modelling [9]. Within this setting, modern data management

systems must address many important tasks: building models for

prediction and inference; tracking statistics and analytics; and per-

forming general computations over the distributed data. These are

all used to inform decision making using past data. It is thus of

particular importance to know when data distributions, and hence

the relevant decisions, may have changed.

Several key distinctions separate the federated setting from tra-

ditional notions of computation. Privacy is paramount, and so the

participating clients only have their own data to operate on. The

scale can vary widely: from a small number of separate institutions

forming a federation to perform a collaborative computation over

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.

doi:10.14778/3742728.3742736

the union of their (sensitive) data, to a vast number of mobile clients,

such as all users of a popular app. Within this scale, heterogeneity is

common: some clients have many examples while others have only

a few. Moreover, the data distributions among clients can vary dras-

tically. Understanding properties of the (global) data distribution by

gathering statistics of the clients’ (local, heterogenous) distributions

is at the heart of many federated tasks in data management.

A key concern in (federated) data analytics and machine learning

is detecting when the data distribution has shifted. For instance,

when a pre-trained ML model is applied to new data, the current

data distribution should be similar to the training distribution.

When this is not the case, the old model’s results can be incor-

rect, and we should trigger some remediation or retraining instead.

This paper addresses this question of detecting when the data dis-

tribution has measurably changed or shifted, formalized as the

problem of quantifying data distribution shift. This could be tack-

led in a number of ways. A parametric model could flag when an

estimated parameter changes by more than a threshold. However,

such approaches depend on whether the model still represents the

data well after distribution shift. Here, we adopt a non-parametric

approach, and focus on total variation distance (𝐷TV) between pairs

of data distributions, a common statistical formulation. Our work

allows data heterogeneity to be quantified, by measuring the extent

to which the distributions held by different clients vary among

each other, or from a reference distribution. We consider discrete

distributions defined by frequencies of different items 𝑖 . Each client

holds a subset of items, which gives a local empirical distribution.

The normalized item frequency gives its empirical probability, 𝑝𝑖 .

We will use a scenario based on tracking popular music as a

running example, since music can be a very personal matter, and

reflective of an individual’s political, sexual, and religious views.

Consider a collection of distributed users who each express their

personal music preferences: some listen exclusively to a few artists,

while others have very wide-ranging tastes. Over this population,

the preferred artists of each user correspond to the items, and

so define a current distribution of popular artists. The task is to

quantify how the support changes between snapshots.

If we could directly inspect the distributions, the task is easy: we

can compare their (empirical) probabilities, and derive a measure of

distance. The problem of measuring distances is more challenging

when the distributions are: Large (i.e., high dimensional, and sup-

ported over a large number of indices); Distributed (i.e., spread out

over a large collection of users); and Private (i.e., the values held

by the users are private, and cannot be shared easily). To address

this (Large, Distributed, Private) challenge, we describe techniques

which provide compact summaries of distributions that can be

merged across distributed observers, and are amenable to privacy

protections. This captures the federated model of computation [9].

Our main tool is to build a “sketch” of each input distribution,

which forms a small representation of it that allows the distance

https://doi.org/10.14778/3742728.3742736
https://figshare.com/s/7a1c725a293d1c5b88a8
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3742728.3742736

to be estimated accurately. By ensuring the sketch can be merged

and is amenable to combine with privacy-preserving distributed

noise addition and secure aggregation, it satisfies the requirements

for federated computation. Our focus is on finding the 𝐿1 distance

between distributions, such as the distance between the current

distribution and a historical distribution from a previous month;

or the distance between values observed on the East coast versus

on the West coast of a large country. The 𝐿1 distance corresponds

to the total variation distance in statistics. Federated computation

of other statistical distances, such as information divergences and

Fréchet distance [32] are also of interest, but are outside the scope

of this paper, and are subject to strong lower bounds for sketch-

ing [2, 29]. The sketch we build can be viewed as a method for

sampling elements from the input distribution where items with

larger contributions to the distance are more likely to be sampled

and where sampling is coordinated across individuals by using

a random hash function. The sketches can be combined with an

addition-like operation, allowing us to build summaries of (the

average of) multiple distributions, or other weighted combinations.

The resulting summaries tackle the challenge of the federated

model: (a) using summaries reduces the large size of the inputs

and communication costs; (b) the summaries can be combined with

arithmetic-like operations to address the distributed nature of the

problem; (c) in addition, these summaries can be constructed quickly

with low overhead on participants, who may use weak devices (mo-

bile devices or wearables). Privacy concerns can be addressed by

(d) performing a secure aggregation of summaries [8, 12, 49], and

(e) adding suitably calibrated noise to mask the true content [24].

The summaries can be understood in the context of federated com-

putation: instead of collecting all of each user’s information, the

summary captures only a small amount of data, which can be further

masked. They also apply data compression: reducing the communi-

cation cost for mobile clients with low bandwidth availability.

1.1 Technical overview and contributions
We now describe the objective and our results in more mathemat-

ical terms. We consider inputs that can be thought of as vectors,

although they may not be presented in this format. That is, given a

set of observations of items from a finite universeU, we represent

them as a vector 𝑥 that records the number of occurrences of each

item. Then, given any input vector 𝑥 , our aim is to estimate ∥𝑥 ∥𝑝
(the 𝐿𝑝 norm of 𝑥), in a way that can be distributed over multiple

participants, and is amenable to privacy. We are most interested

in the case when 𝑥 is formed as the difference of two probability

distributions, 𝑃 and 𝑄 , and 𝑝 = 1. The total variation distance of 𝑃
and𝑄 is given by the 𝐿1 norm of the difference of the two probabil-

ity distributions, as 𝐷TV (𝑃,𝑄) = 1

2
∥𝑃 −𝑄 ∥1. Estimating ∥𝑥 ∥1 for

𝑥 = 1

2
(𝑃 −𝑄) gives us the total variation distance between 𝑃 and

𝑄 . Since ∥𝑃 ∥1, ∥𝑄 ∥1 ≤ 1, we have ∥𝑥 ∥1 =
∑︁
𝑖
1

2
|𝑟𝑖 − 𝑠𝑖 | ≤ 1. In our

music example, 𝑃 and 𝑄 can represent the popularity of artists at

different times, or in different regions. For instance, we could write

𝑝xcx for the probability mass associated with the singer Charli XCX

in distribution 𝑃 , so |𝑥xcx | is her contribution to 𝐷TV. If 𝑝xcx = 0.03

and 𝑞xcx = 0.05, then |𝑥xcx | = 0.01. A key technical notion we use

is 𝐿𝑝 sampling, which samples elements from 𝑥 according to their

contribution to the 𝐿𝑝 norm [19].

Our contributions. We define summaries that build on the core

notion of 𝐿𝑝 sampling. 𝐿𝑝 sampling lets us preferentially sample

coordinates that are more informative for the norm. We derive

two estimators that accurately estimate the target norm from the

sample. In detail, our contributions are:

•We present new sketch-based techniques for estimating𝐷TV in

the federated setting. These build on prior 𝐿𝑝 samplingworks [5, 13]

but simplify and optimize them for the 𝐿1 case.

• We show how our sketches can be built quickly based on a

statistical technique to only sample a single value instead of 𝑘 ,

resulting in orders of magnitude speed-ups.

•We show for the first time how these sketches can be combined

with privacy models, demonstrating their flexibility.

•We evaluate the utility of the sketches on real and synthetic

data. We see that they obtain very strong accuracy, while being

considerably faster than alternatives from prior work.

2 RELATEDWORK
Federated Computation. Recent years have seen an explosion of

interest in systems implementing federated learning, where an ML

model is trained on labeled examples held by a number of clients

and are not allowed to be directly read by a central server. Progress

typically takes place over many rounds. In each round, the server

broadcasts a current model, and each client proposes a model up-

date based on gradients of model parameters. The client updates

are usually combined by averaging [44]. By sharing updates rather

than raw data points, clients enjoy a baseline level of privacy; on-

going research in federated learning seeks to offer more formal

privacy guarantees, optimize the communication costs, better han-

dle heterogeneous data, and so forth. [38]. Techniques like Secure
Aggregation [12] can ensure the coordinating server only sees the

final aggregation over clients and not individual updates. Outside

of machine learning, there is growing interest in applying the fed-

erated model to other data analysis tasks, building on earlier efforts

in private and distributed systems. The umbrella term ‘federated an-

alytics’ (FA) covers the private collection of statistics on distributed

data, such as building histograms and identifying the most popular

items [16, 54]. Other works in FA have looked at tracking frequency

distributions [20] and range queries [52], among others [9, 25].

Sketches. The notion of data sketches – compact summaries of

data that can be manipulated with arithmetic-like operations – has

been well-studied in the database community for many years [22].

Sketches can estimate the cardinality of sets [26], track the mem-

bership of sets [11], or summarize frequency distributions [17].

Sketches that capture the norm of vectors have been widely used

in nearest neighbor search for over two decades [35], and form the

basis of deployed similarity search systems [36]. Within federated

computation, sketches have been used to reduce the communication

cost and speed up convergence of federated model training [30, 47].

Several sketching techniques have been developed to estimate

the 𝐿1 or 𝐿𝑝 norm of vectors. In particular, Indyk [34] introduced

sketches based on sampling from stable distributions. Brinkman

and Charikar showed that it was not possible to achieve dimension-

ality reduction for 𝐿1 via embedding-based approaches, meaning

that non-embedding based sketches are needed [14]. Li introduced

improved estimators based on the stable distributions technique

with sparsity [40, 41]. For sketches with near-optimal space cost

and fast update time, Nelson and Woodruff proposed a different

hashing-based approach that uses stable distributions [45]. How-

ever, we find that these above-mentioned approaches are not very

well-suited to the federated setting. Specifically, they can be com-

plex to implement and incur large hidden constants as shown by

our evaluation of stable distribution-based sketches in our empirical

study (Section 5). They are also not amenable to providing a privacy

guarantee: the noise added can considerably distort the results.

Our focus is on hashing-based techniques that can be made to

run fast. Ioffe [37] introduced a modified hashing technique that

can be applied to 𝐿1 sketching that ensures that processing each

item takes constant time. Andoni, Krauthgamer and Onak intro-

duced the idea of precision sampling, which uses a reweighting

based on hash values to determine a subset of items with which to

build an estimator [5]. More recently, Braverman, Krauthgamer and

Yang [13] propose a different “alpha sampling”-based technique

for 𝐿𝑝 norms. These two last techniques form the basis of our es-

timators discussed in subsequent sections. Collectively, the prior

work studying sketching techniques for 𝐿1 norms have focused

on theoretical aspects, with little empirical evaluation; we seek to

make them practical to implement at scale and privacy-friendly.

Privacy.Given the sensitivity of data held by clients (e.g., onmobile

devices), there are strong incentives to provide formal privacy guar-

antees for data analysis procedures. The dominant model is the sta-

tistical notion of Differential Privacy [24], which places stipulations

on the output distribution of a randomized procedure. Differential

privacy guarantees have been provided for a large number of tasks,

such as model training via stochastic gradient descent [1], data

mining [27], census table release [3], and gathering statistics on

device usage [23]. Most relevant to this work is interest in privacy

and sketching [53] and counting distinct items [31, 46]. Various

results are known that show that sketches for distinct items [48]

and Euclidean norms [10], and more generally frequency moments

(a closely related objective to 𝐿𝑝 norms) [51] achieve a level of

privacy, under the assumption that the hash functions used are

secret. In our setting, the hash functions are shared among many

participants, and so we seek to achieve privacy by noise addition

instead. Part of our contribution in this paper is in studying the

interaction between privacy and sketches for distance estimation.

3 PRELIMINARIES
3.1 Norms and Sketching
Given a vector 𝑥 of dimension 𝑑 , denote its 𝐿𝑝 norm by ∥𝑥 ∥𝑝 =

(∑︁𝑑
𝑖=1 |𝑥𝑖 |𝑝)1/𝑝 . Throughout, we will be interested in frequency

vectors 𝑥 , where 𝑥𝑖 ≥ 0 denotes the frequency of an input item

𝑖 , and probability vectors 𝑦 such that ∀1 ≤ 𝑖 ≤ 𝑑, 0 ≤ 𝑦𝑖 ≤ 1 and

∥𝑦∥1 = 1. We can easily build a probability vector from a frequency

vector as 𝑦 = 𝑥/∥𝑥 ∥1, and so will not distinguish between these

two notions in what follows. We write 𝑥 tail(𝑡) to denote the vector

𝑥 with the 𝑡 largest entries (in absolute magnitude) removed. We

will often suppress the parameter 𝑡 , and just write 𝑥 tail.

Table 1: Table of notation

Symbol Meaning
∥𝑥 ∥1 𝐿1 norm of vector 𝑥

𝐷TV (𝑃,𝑄) Total variation distance between 𝑃 and 𝑄

𝑓𝑖 frequency of item 𝑖 in the data

𝑥 tail (𝑡) Vector 𝑥 with 𝑡 largest entries removed

𝑆 Sketch transform (represented as a matrix)

𝜓 Sketch error on 𝑣 is bounded by𝜓 ∥𝑣 tail∥1
(𝜖, 𝛿)-approx. Relative error 1 ± 𝜖 with prob. 1 − 𝛿

𝜏 Threshold used by heavy hitters estimator

𝜅 Number of samples used by top-𝑘 estimator

(𝜀,Δ)-privacy Differential privacy with parameters 𝜀, Δ
1(𝑎) Indicator function: 1 if 𝑎 is true, 0 otherwise

𝑤 ⊙ 𝑥 Hadamard product of 𝑥 and 𝑦

�̃� (𝑥) Big-O of 𝑥 times a polylogarithmic factor

Definition 3.1 (Linear sketch). We say that an algorithm computes

a (linear) sketch of a vector 𝑥 if it can be written as 𝑆𝑥 , where 𝑆 is a

linear mapping sampled from an appropriate random distribution.

We are concerned with finding sketches that let us approximate

the 𝐿𝑝 norm of an input vector. Specifically, we seek (𝜖, 𝛿) approxi-
mations that provide an estimate �̂� so that

(1 − 𝜖)∥𝑥 ∥1 ≤ �̂� ≤ (1 + 𝜖)∥𝑥 ∥1 (1)

with probability at least 1 − 𝛿 , where the probability is taken over

the randomness used to draw the sketch mapping 𝑆 . We use the

notation𝑋 = (1±𝜖)𝑌 as shorthand for (1−𝜖)𝑌 ≤ 𝑋 ≤ (1+𝜖)𝑌 . We

say estimators satisfying (1) with constant 𝛿 are “(1±𝜖)-estimators”.

In building our sketches, we make use of frequency sketches, such
as Count-Min sketch [21] and CountSketch [17], which estimate

any 𝑣𝑖 from vector 𝑣 with additive error bounded by 𝜖 ∥𝑣 tail∥1 [22].

3.2 Federated computation model
The sketching-based methods that we present are flexible, and can

be applied in a variety of distributed computational models. We

next specify a concrete model, with the understanding that our

results also apply to other settings.

Definition 3.2 (Federated distribution). Given a set of clients who

each hold a collection of items, let 𝑓𝑖 denote the frequency (count)

of item 𝑖 across the set of clients, and let 𝐹 =
∑︁
𝑖 𝑓𝑖 . The (aggregate)

probability distribution 𝑃 is defined as 𝑝𝑖 = 𝑓𝑖/𝐹 .

Definition 3.3 (Data distribution shift problem.). Given probability
distributions 𝑃 and 𝑄 defined in the federated setting, the data

distribution shift problem is to compute an estimate of𝐷TV (𝑃,𝑄) =
1

2
∥𝑃 −𝑄 ∥1 by building a sketch of each distribution, sketch(𝑃) and

sketch(𝑄), where the sketches can be combined to give the estimate.

A trivial solution to this problem would be to compute the

sketch as a complete description of the corresponding probabil-

ity distribution. In what follows, we will evaluate the suitabil-

ity of a sketch based on (i) the size of the sketch data structure

(ii) the speed with which the sketch can be built from updates

(iii) the accuracy guarantees of the resulting estimator. The data

shift sketches that we build can be combined algebraically, so that

Sketch
Sketch

Sketch
Sketch

Summed
Sketch

Heavy items

Top-k
estimator

HH estimator

Figure 1: Querying the combined sketch.

𝛼 sketch(𝑃) + 𝛽 sketch(𝑄) = sketch(𝛼𝑃 + 𝛽𝑄) (see Section 4.6)

Hence, in what follows, we focus on the task of using sketches to

estimate ∥𝑃 ∥1: this then solves the data distribution shift problem.

3.3 Security and Privacy
We seek both security (protection of the data while in transit) and

privacy (ensuring the output does not leak sensitive information).

Definition 3.4 (Secure Aggregation (SecAgg)). Given a collection

of 𝑛 vectors 𝑥 (𝑗) , their aggregation (summation) is the sum 𝑋 =∑︁𝑛
𝑗=1 𝑥

(𝑗)
. A secure aggregation protocol allows the computation of

𝑋 where each 𝑥 (𝑗) is held by a distinct client 𝑗 , without revealing

any intermediate values to any participant.

There are various alternatives to implement secure aggregation,

such as via multi-party computation [49], communication between

clients and a server [8, 12] or with secure hardware [33].

Definition 3.5 (Differential Privacy, DP). An algorithm𝑀 is said to

be (𝜀,Δ)-differentially private if Pr[𝑀 (𝑥) ∈ 𝑂] ≤ exp(𝜀) Pr[𝑀 (𝑥 ′) ∈
𝑂] + Δ for any possible set of outputs 𝑂 for inputs 𝑥 , 𝑥 ′ that are
neighboring. In this paper, we define neighboring to be inputs that

differ in the occurrence of one element, i.e., ∥𝑥 − 𝑥 ′∥1 ≤ 1.

There aremany standardways to achieve differential privacy [24].

We adopt methods which proceed by noise addition: adding ran-

dom noise sampled from an appropriate distribution (Gaussian or

Laplace) to statistics computed by an algorithm.

The DP definition can be applied at different places in a dis-

tributed system according to the requirements and trust model

adopted. If there is a fully trusted central entity, it can receive all

the data from clients and perform DP noise addition itself. How-

ever, in our federated case we reduce the degree of trust, and focus

on noise added by clients. In the most extreme case when clients

have zero trust in other entities, each client can add noise to its

own message and ensure its privacy before releasing it for (secure)

aggregation: this is called the local model of DP. Since the accuracy

of the result degrades due to many independent noise additions, we

advocate distributed noise generation. Here, each client adds only a

small level of noise, so the accumulation of all (independent) client

noise samples under secure aggregation yields the desired level

of privacy protection without needing to trust the central entity.

This is achieved by Pólya noise [6], Discrete Gaussian noise [4],

or Poisson-Binomial noise [18]. Section 4.7 explains how we can

combine DP noise with our sketching approach.

4 DATA SHIFT SKETCHES
In what follows, we build up the technical basis for our approach,

starting with an overview in Section 4.1. In Section 4.2, we give the

basic notion of 𝐿𝑝 -sampling by reweighting the input vector. We

use this to build two different estimators for estimating data shift, a

heavy hitters (Section 4.3) and a top-𝑘 estimator (Section 4.4). These

make use of the same sketch, but have different properties, yielding

two different algorithms presented in Section 4.5. We discuss how

to implement these methods in the federated setting in Section 4.6,

and how to achieve privacy guarantees in Section 4.7. The technical

details in Sections 4.2, 4.3 and 4.4 are required to build up the

solutions, but can be skipped on an initial read if so desired.

4.1 High-level overview
The core of our methods builds on notions of 𝐿𝑝 sampling [19],

which can be represented as a linear sketch. The starting point is

to build a sketch data structure to represent a vector 𝑥 and which

allows us to sample an index 𝑖 (and the corresponding 𝑥𝑖) with

probability proportional to |𝑥𝑖 |, i.e., index 𝑖’s contribution to the

𝐿1 norm of 𝑥 . From this, we can build estimators for the 𝐿1 norm

based on counting how many samples exceed a threshold value

(the HH estimator), or looking at the weight associated with the

heaviest samples (top-𝑘 estimator). The approach is suitable for the

federated setting, since each client can build a sketch on local data,

and these can be combined to produce a sketch for the summation of

their inputs. Importantly, the resulting sketch immediately applies

to measuring the data shift via total variation distance. The total

variation distance between two distributions is the 𝐿1 norm of a

vector that is the difference of the two distributions. Given sketches

of the two distributions, the distance is measured by negating the

entries in one sketch and adding it (entrywise) to the other, then

applying the estimation methods described below (see Fact 4.11).

To obtain an accurate result, we need to extract multiple samples

from the data structure, and repeat the procedure hundreds or

thousands of times. Doing this explicitly would be burdensome,

due to the time cost of the independent repetitions. Instead, we will

present a “faster” version of the sampling procedure that allows

the same accuracy level to be met with the cost of only a single

modified execution of the algorithm. In what follows, we develop

this by first describing the ‘basic’ (slow) estimator, then show the

final ‘faster’ version with equivalent or better accuracy. We follow

this path for the two estimators (top-𝑘 and HH), which both operate

on the same data structure summarizing the input 𝑥 .

4.2 𝐿𝑝 sampling
The 𝐿𝑝 sampling approach draws a random weight vector𝑤 , and

computes the reweighted vector 𝑣 = 𝑤⊙𝑥 where ⊙ is the Hadamard

product, so that 𝑣𝑖 = 𝑤𝑖𝑥𝑖 [19]. This allows us to approximate ∥𝑥 ∥𝑝
from properties of 𝑣 . To be of practical use, we use a hash function

to define the weight vector𝑤 to obtain a compact representation

that allows any entry to be accessed quickly without requiring us

to store𝑤 explicitly. In what follows we also discuss how to store 𝑣

in a summary data structure that is much smaller than 𝑑 , so that

the entire representation is the composition of a number of linear

transformations, and so forms a linear sketch (Definition 3.1).

To instantiate the 𝐿𝑝 sampling method for parameter 𝑝 , we ran-
domly pick the vector𝑤 so that𝑤𝑖 ∼ 1/(𝑈 [0, 1])1/𝑝 . That is, entries
are drawn as the reciprocal of uniform random values in the range

[0, 1], raised to the power 1/𝑝 . We can then examine the sampling

probability for an item when we take the items with highest weight.

From this, we have for a suitably large threshold 𝜏 , that the proba-

bility the absolute value of 𝑣𝑖 exceeds 𝜏 is proportional to the 𝑝’th

power of the original weight 𝑥𝑖 , as follows:

Fact 4.1. Pr[|𝑣𝑖 | ≥ 𝜏] =
(︂
|𝑥𝑖 |
𝜏

)︂𝑝
Proof.

Pr[|𝑣𝑖 | ≥ 𝜏] = Pr[|𝑥𝑖 |𝑤𝑖 ≥ 𝜏] = Pr

[︃
|𝑥𝑖 |

(𝑈 [0, 1])1/𝑝
≥ 𝜏

]︃
(2)

= Pr

[︃(︃
|𝑥𝑖 |
𝜏

)︃𝑝
≥ 𝑈 [0, 1]

]︃
=

(︃
|𝑥𝑖 |
𝜏

)︃𝑝
□

This property holds provided 𝜏 > |𝑥𝑖 |. The probability is over the
randomness associated with the choice of𝑤 . In our music example,

suppose we sample𝑤xcx = 3.2, and have 𝑥xcx = −0.01. For 𝜏 = 10,

we find |𝑥xcx |𝑤xcx = 0.032, so xcx does not pass the threshold.

Fact 4.1 states that picking large entries of 𝑣𝑖 is the same as sam-

pling an index 𝑖 with probability proportional to its contribution

to the 𝐿𝑝 norm of the vector 𝑥 . This is a key step for the subse-

quent estimators. Small sketches of 𝑣 enable us to do this efficiently.

Importantly, because 𝑣 is a linear transformation of 𝑥 , 𝑣 can be

computed incrementally and additively. Updates Δ𝑖 to the input

vector 𝑥 generate a corresponding update 𝑣 ′
𝑖
= 𝑣𝑖 + Δ𝑖𝑤𝑖 which is

processed by the frequency sketch. To ensure the update is efficient

and every update to index 𝑖 will retrieve the same value𝑤𝑖 ,𝑤𝑖 is

defined using a random hash function and not stored explicitly. The

size of the frequency sketch is a function of an accuracy parameter,

𝜖 , and independent of the dimension of the input, 𝑑 . Although we

will treat the entries of𝑤 as independent draws for the purposes of

analysis, the proof will still hold when the hash is drawn from a

pairwise-independent family. From here on, we focus on the case

𝑝 = 1, which captures the 𝐿1 distance (total variation distance).

4.3 Heavy hitters-based estimator
Our first estimator is based closely on adapting precision sam-

pling [5], but is simplified and streamlined due to our focus on

estimating distances between distributions. We build a frequency

sketch of size𝑂 (1/𝜓) of the vector 𝑣 , so that we can estimate any 𝑣𝑖

by 𝑣𝑖 with error ±𝜓 ∥𝑣 tail∥1. Recall that 𝑣 tail is the vector 𝑣 with the 𝑡
largest entries removed, for a parameter 𝑡 we will define later. This

is equivalent (after rescaling) to finding an estimate �̂�𝑖 of 𝑥𝑖 with

additive error 𝜓 ∥𝑣 tail∥1/𝑤𝑖 . We will later bound ∥𝑣 tail∥1 in terms

of ∥𝑥 ∥1 and other parameters, and choose𝜓 so that𝜓 ∥𝑣 tail∥1 ≤ 1.

Hence, we can obtain |�̂�𝑖 − 𝑥𝑖 | ≤ 1/𝑤𝑖 .

4.3.1 Basic HH Estimator. The basic estimator counts the number

of 𝑣𝑖 values greater than a threshold 𝜏 that we will determine below.

That is, we define the estimator 𝑋 = 𝜏 · |{𝑖 : |𝑣𝑖 | > 𝜏}|. For our
running example, if we set 𝜏 = 10 and there are 6 artists whose

(estimated) 𝑣𝑖 value is above 𝜏 , then the estimator is 6𝜏 = 60.

Lemma 4.2. The expectation of the estimator𝑋 is (1±𝜖)∥𝑥 ∥1, and
the variance is at most 2𝜏 ∥𝑥 ∥1.

Proof. To analyze 𝑋 , we apply the sampling approach of (2),

and consider the probability that |𝑣𝑖 | ≥ 𝜏 . That is, we sample 𝑖 if

�̂�𝑖𝑤𝑖 ≥ 𝜏 . Provided the sketch parameter𝜓 is set so that (�̂�𝑖 −𝑥𝑖) ≤

Algorithm 1 Update the data structure for item 𝑖 with weight𝑤

Input Item 𝑖 with associated weight𝑤

1: 𝑢𝑖 ← Sample(𝑈 [0, 1]) by hashing 𝑖

2: 𝑊𝑖 ← 1/(1 − 𝑢1/𝑘
𝑖
) ⊲ For fast estimators (Sections 4.3.3, 4.4.3)

3: 𝑠 ← 𝑤 ∗𝑊𝑖 ⊲ Scaled weight

4: Sketch.Update(𝑖, 𝑠)
5: 𝑣𝑖 ← Sketch.Query(𝑖) ⊲ 𝑣𝑖 is (estimated) weight of 𝑖

6: FixedSizeHeap.Update(𝑖, |𝑣𝑖 |) ⊲ Track the 𝑘 largest weights

1/𝑤𝑖 , this can be written as 𝑤𝑖 |𝑥𝑖 | ± 1 ≥ 𝜏 , i.e., 𝑤𝑖 |𝑥𝑖 | ≥ 𝜏 ± 1. In
other words, using �̂�𝑖 gives a very similar result as if we used 𝑥𝑖 .

To re-express this proximity, we choose a value of 𝜏 large enough

so that 𝜏 ± 1 ⊆ 𝜏/(1 ± 𝜖),1 for some accuracy parameter 0 < 𝜖 ≤ 1.

This is satisfied, for example, by choosing 𝜏 = 1+𝜖
𝜖 ≤ 2/𝜖 . Then we

can write the sampling condition as𝑤𝑖 |𝑥𝑖 | (1±𝜖) ≥ 𝜏 . Our estimator

𝑋 counts 𝜏 towards the estimate for every index 𝑖 where 𝑣𝑖 is such

that |𝑣𝑖 | ≥ 𝜏 . Based on (2), we have that

E[𝑋] =
𝑑∑︂
𝑖=1

𝜏 Pr[|𝑣𝑖 | ≥ 𝜏] = 𝜏

𝑑∑︂
𝑖=1

(1 ± 𝜖) |𝑥𝑖 |
𝜏

= (1 ± 𝜖)
𝑑∑︂
𝑖=1

|𝑥𝑖 | = (1 ± 𝜖)∥𝑥 ∥1 (3)

Var[𝑋] ≤
∑︂
𝑖

𝜏2 Pr[|𝑣𝑖 | ≥ 𝜏] = 𝜏2
∑︂
𝑖

(1 ± 𝜖) |𝑥𝑖 |
𝜏

≤ 2𝜏 ∥𝑥 ∥1 (4)

□

4.3.2 Accurate HH Estimator. The variance of a single estimate is

quite large, so the standard way to reduce error is to take the mean

of 𝑘 independent repetitions of𝑋 . That is, we use 𝑘 randomly drawn

weight vectors𝑤 (𝑗) . This gives a new estimator 𝑌 = 1

𝑘

∑︁𝑘
𝑗=1 𝑋

(𝑗)
.

Corollary 4.3. Averaging 𝑘 = 𝑂 (𝜖−3) independent copies of 𝑋
gives a (1 ± 𝜖) estimate of ∥𝑥 ∥1 with probability at least 3

4
.

Proof. It follows immediately that 𝑋 and 𝑌 have the same

expectation (E[𝑌] = E[𝑋] ⊆ (1 ± 𝜖)∥𝑥 ∥1), and 𝑌 ’s variance is

Var[𝑌] = 1

𝑘
Var[𝑋] ≤ 2𝜏

∥𝑥 ∥1
𝑘

. Applying Chebyshev’s inequality,

Pr[|𝑌 − E[𝑌] | ≥ 𝛿] ≤ Var[𝑌]
𝛿2

≤ 1

𝑘𝛿2
2𝜏 ∥𝑥 ∥1 ≤

4

𝑘𝜖𝛿2

where we use ∥𝑥 ∥1 ≤ 1 and 𝜏 ≤ 2/𝜖 . We can make this probability

of a poor estimate at most a constant, say
1

4
, by setting 𝑘 ≥ 16

𝜖𝛿2
.

For our guarantee, we choose 𝜖 = 𝛿 , which sets 𝑘 = 𝑂 (𝜖−3). □

The success probability can be further amplified using standard

techniques (taking the median of 𝑂 (log 1/𝛿 ′) repetitions of the
overall procedure) to 1 − 𝛿 ′. However, this construction may be

slow in practice, so we next present a faster accurate estimator.

4.3.3 Fast HH Estimator. Naively, taking the mean of 𝑘 repetitions

would incur a slowdown by a factor 𝑘 , as we would need to compute

vectors 𝑣 (1) . . . 𝑣 (𝑘) , based on weights𝑤 (1) . . .𝑤 (𝑘) . The key idea is
to use a single sample to simulate the effect of all these 𝑘 repetitions

at once. This concept is used in prior work on sampling [5, 50] –

here, we apply it to 𝐿1 estimation.

1
Recall that 𝑥 ± 𝑦 is shorthand for the range [𝑥 − 𝑦, 𝑥 + 𝑦] so 𝑥 ± 𝑦 ⊆ 𝑤 ± 𝑧 means

that 𝑤 − 𝑧 ≤ 𝑥 − 𝑦 and 𝑥 + 𝑦 ≤ 𝑤 + 𝑧.

Algorithm 2 Fast heavy hitters estimation procedure

Input Parameter 𝜖 , Heap and Sketch

Output HH estimate for the 𝐿1 of the processed input

1: 𝜏 ← 2/𝜖 ; 𝐿 ← 0 ⊲ Initialize values

2: for all items 𝑖 in Heap do
3: 𝑣𝑖 ← Sketch.Query(𝑖)
4: if 𝑣𝑖 > 𝜏 then 𝐿 ← 𝐿 + 𝜏 (1 + 𝑘−1

𝑘
· �̂�𝑖/𝜏−1
𝑊𝑖−1) ⊲ Via eqn. (6)

5: return (𝐿)

Lemma 4.4. The information needed to build the estimator 𝑌 can
be gathered using 𝑂 (1) time to process each update.

Proof. We analyze what information is needed to build the esti-

mator 𝑌 , and argue that we can represent this with a single sample,

deferring other sampling decisions until estimation time. We note

that for each index 𝑖 , it suffices to track only the contribution from

the largest weight𝑊𝑖 = max
𝑘
𝑗=1

𝑤
(𝑗)
𝑖

. That is, we represent the

whole set {𝑤 (1)
𝑖

,𝑤
(2)
𝑖

. . .𝑤
(𝑘)
𝑖
} by just storing information on𝑊𝑖 .

The max of 𝑘 uniform random variables is distributed as𝑈 [0, 1]1/𝑘 ,
and so the min of 𝑘 is (symmetrically) distributed as (1−𝑈 [0, 1]1/𝑘).
Hence, we directly sample𝑊𝑖 ∼ 1/(1 −𝑈 [0, 1]1/𝑘), and use this to

update the sketch in time 𝑂 (1), as shown in Algorithm 1.

To complete the proof, we use the information stored about𝑊𝑖

to reconstruct the information needed at query time to build the

estimator 𝑌 . Recall that our estimator 𝑌 is built by computing

𝑌 = 1

𝑘

∑︁
𝑗 𝑋
(𝑗) = 1

𝑘

∑︁
𝑗 𝜏 |{(𝑖, 𝑗) : 𝑣

(𝑗)
𝑖
≥ 𝜏}|. (5)

We can write the contribution to the sum from item 𝑖 as

𝑌𝑖 =
1

𝑘

∑︁
𝑗 𝑋
(𝑗)
𝑖

= 1

𝑘

∑︁
𝑗 1(𝑣

(𝑗)
𝑖
≥ 𝜏) .

Observe that for an index 𝑖 , if we know𝑊𝑖 , there is enough informa-

tion to sample the other 𝑘 − 1 weights for 𝑖 , by conditioning on the

value of𝑊𝑖 : sample 𝑘 − 1 other values, conditioned on the fact that

they are smaller than𝑊𝑖 , by picking uniform random values for

𝑢
(𝑗)
𝑖

that are in the range (1/𝑊𝑖 , 1]. More directly, since we need the

count of the number of cases that cross the threshold 𝜏 , we can work

with the expectation instead. See [5] for an argument that using

the expectation of such a random variable only serves to decrease

the variance. Conditioned on𝑊𝑖 , we count the number of the other

𝑘 − 1 samples that exceed 𝜏 . Working in the space of the uniform

random values 𝑢
(𝑗)
𝑖

, the smallest of these corresponds to𝑊𝑖 , and

the remaining values are distributed uniformly over (1/𝑊𝑖 , 1]. The
condition �̂�𝑖𝑤

(𝑗)
𝑖
≥ 𝜏 maps onto 𝑢

(𝑗)
𝑖
≤ �̂�𝑖/𝜏 . Hence, the probabil-

ity for each sample of being picked is
�̂�𝑖/𝜏−1/𝑊𝑖

1−1/𝑊𝑖
=

�̂�𝑖𝑊𝑖/𝜏−1
𝑊𝑖−1 . The

contribution to the mean from each of the 𝑘 − 1 samples that meet

this criterion is
1

𝑘
, so the expected contribution is

𝑘−1
𝑘

�̂�𝑖𝑊𝑖/𝜏−1
𝑊𝑖−1 .

This lets us compute the estimator (also shown in Algorithm 2) as

𝑌𝑖 =

{︄
𝜏
𝑘

(︂
1 + (𝑘 − 1) �̂�𝑖𝑊𝑖/𝜏−1

𝑊𝑖−1

)︂
if𝑊𝑖 |�̂�𝑖 | ≥ 𝜏

0 otherwise

(6)

□

4.3.4 Bound on ∥𝑣 tail∥1. Next, in order to set the sketch parameter

𝜓 , we analyze and bound the magnitude of 𝑣 tail.

Fact 4.5. With constant probability, ∥𝑣 tail∥1 = 𝑂 (𝑘).

Proof. The value of ∥𝑣 tail∥1 is determined by the 𝑛 values of𝑊𝑖

that are sampled to make 𝑣 , where as before𝑊𝑖 = max𝑗 1/𝑢 (𝑗)𝑖
.

First, observe that there cannot be too many very large values

in 𝑣 (𝑗) . Set a threshold 𝜃 = 10∥𝑥 ∥1. Then, Pr[𝑣 (𝑗)𝑖
> 𝜃] = |𝑥𝑖 |/𝜃

(using (2)), so the expected number of entries in 𝑣 (𝑗) that exceed 𝜃 is

bounded by

∑︁
𝑖, 𝑗 |𝑥𝑖 |/𝜃 = 𝑘 ∥𝑥 ∥1/𝜃 = 𝑘/10. By Markov’s inequality,

there are at most 𝑘 such large values with probability at least 0.9.

Now consider the norm of the ‘tail’ of the vector after removing

entries with weight more than 𝜃 . Let 𝑉𝜃 =
∑︁
𝑖, 𝑗 :𝑣

(𝑗)
𝑖
≤𝜃 (𝑣

(𝑗)
𝑖
)2. Then

E[𝑉𝜃] = E
[︃ ∑︂
𝑖, 𝑗 :𝑣

(𝑗)
𝑖
≤𝜃

𝑥2𝑖 (𝑤
(𝑗)
𝑖
)2
]︃

= 𝑘
∑︂
𝑖

𝑥2𝑖

∫ 𝜃/ |𝑥𝑖 |

1

𝑦2 Pr[𝑤 (𝑗)
𝑖

= 𝑦] 𝑑𝑦

= 𝑘
∑︂
𝑖

𝑥2𝑖

∫ 𝜃/ |𝑥𝑖 |

1

1 𝑑𝑦

≤ 𝑘
∑︂
𝑖

𝑥2𝑖 (𝜃/|𝑥𝑖 |) = 𝑘𝜃 ∥𝑥 ∥1 = 10𝑘 ∥𝑥 ∥2
1

By Markov’s inequality, we have that Pr[𝑉𝜃 > 100𝑘 ∥𝑥 ∥2
1
] ≤ 1

10
.

Define the vector 𝑣 tail as the vector 𝑣 with the 𝑘 largest elements

removed. By the above argument, with constant probability,

∥𝑣 tail∥1 ≤ ∥𝑣 tail∥22 =
∑︂

𝑖:max𝑗 𝑣
(𝑗)
𝑖
≤𝜃

max

𝑗
(𝑣 (𝑗)
𝑖
)2

≤ 𝑉𝜃 = 𝑂 (𝑘 ∥𝑥 ∥2
1
) = 𝑂 (𝑘) . □

4.3.5 Space and time cost. We bound the size of the sketches

needed. Frequency sketches of size �̃� (1/𝜓) offer an error guar-

antee of at most𝜓 ∥𝑣 tail∥1. Our error bound sets this equal to 1, so

rearranging, the space bound is �̃� (∥𝑣 tail∥1) = �̃� (𝑘) for the sketches.
When 𝑘 = 𝑂 (𝜖−3), the total space is �̃� (𝜖−3). Thus,

Theorem 4.6. The Fast HH-based estimator builds sketches of size
�̃� (𝜖−3), and takes time 𝑂 (1) to process each update. These sketches
allow us to form a (1 ± 𝜖) estimate for the 𝐿1 norm.

4.4 Top-𝑘-based estimator
Our second estimator uses the same basic data structure as that

for the fast HH estimator, but instead of counting the number of

estimates above a threshold, it finds the 𝑘’th largest weight. The

basic version of this estimator corresponds to the approach of [13]

for the 𝐿1 norm, which we then modify and further adapt to be

faster. We first analyze the behavior based on the exact vectors 𝑣 (𝑗) .

4.4.1 Basic top-𝑘 Estimator. As above, consider an estimator based

on vectors 𝑣 (𝑗) , formed as the product of inputs 𝑥 with 𝑘 weight

vectors𝑤 (𝑗) , each entry of which is sampled as 1/(𝑈 [0, 1]). Nowwe

define our estimate𝑍 to be the𝑘/2’th largest entry across all the 𝑣 (𝑗)
vectors, scaled by 1/2. In our running music example, if𝑤xcx = 3.2

and 𝑥xcx = −0.01 (as before) then we have |𝑥xcx |𝑤xcx = 0.032. If

it happens that this is the 𝑘/2th largest entry, then we estimate

∥𝑥 ∥1 = 0.016.

Lemma 4.7. With probability at least 4

5
, we have that 𝑍 ∈ (1 ±

𝜖)∥𝑥 ∥1 for 𝑘 at least 30𝜖2.

Proof. To analyse 𝑍 , observe that it will be a good estimate if

there are not more than 𝑘/2 entries across the 𝑣 (𝑗) vectors that
are higher than 2(1 + 𝜖)∥𝑥 ∥1, and not fewer than 𝑘/2 entries that
are larger than 2(1 − 𝜖)∥𝑥 ∥1. Consider entries that are higher than
2𝑐 ∥𝑥 ∥1 for 𝑐 that is close to 1, and let 𝑍𝑐 denote the number of such

entries. By (2), we have that Pr[|𝑣𝑖 | ≥ 2𝑐 ∥𝑥 ∥1] = |𝑥𝑖 |
2𝑐 ∥𝑥 ∥1 . Then,

E[𝑍𝑐] =
𝑛∑︂
𝑖=1

𝑘∑︂
𝑗=1

1

2𝑐

|𝑥𝑖 |
∥𝑥 ∥1

=
𝑘

2𝑐
and Var[𝑍𝑐] ≤ E[𝑍𝑐] =

𝑘

2𝑐
.

By Chebyshev’s ineq., Pr[|𝑍𝑐 − E[𝑍𝑐] | ≥ 𝑡] ≤ Var[𝑍]
𝑡2

≤ 𝑘

2𝑐𝑡2

(7)

We use this to analyze Pr[𝑍1+𝜖 > 𝑘/2], since for 𝑐 > 1,

Pr

[︂
𝑍𝑐 − 𝑘

2𝑐 > 𝑘
2
− 𝑘

2𝑐

]︂
≤ Pr

[︂
𝑍𝑐 − E[𝑍𝑐] > 𝑘

2

𝑐−1
𝑐

]︂
≤ 4𝑘𝑐2

2𝑐𝑘2 (𝑐 − 1)2
=

2𝑐

𝑘 (𝑐 − 1)2
(8)

For 𝑐 = (1 + 𝜖), this yields a probability of
2(1+𝜖)
𝑘𝜖2

≤ 4/𝑘𝜖2.
Similarly, for Pr[𝑍1−𝜖 < 𝑘/2], we have for 𝑐 < 1,

Pr

[︂
𝑘
2𝑐 − 𝑍𝑐 > 𝑘

2𝑐 −
𝑘
2

]︂
≤ Pr

[︂
E[𝑍𝑐] − 𝑍𝑐 > 𝑘

2

1−𝑐
𝑐

]︂
≤ 4𝑘𝑐2

2𝑐𝑘2 (𝑐 − 1)2
=

2𝑐

𝑘 (𝑐 − 1)2
(9)

Substituting 𝑐 = (1 − 𝜖), this probability is
2(1−𝜖)
𝑘𝜖2

≤ 2/𝑘𝜖2.
Summing both these probabilities yields 6/𝑘𝜖2. Hence, if we set

𝑘 ≥ 30/𝜖2, this bound on the estimate being good is at least
4

5
. □

4.4.2 Smoothed top-𝑘 Estimator. We propose a smoothed version

of the estimator, using a range of 𝜅 entries around the 𝑘/2’th largest.

Lemma 4.8. Let 𝑍 ′ be the estimate formed by picking any item
whose rank is between 𝑘/2 and (1 + 𝜖/2)𝑘/2 in the sorted order,
for 𝑘 = 𝑂 (1/𝜖2). Then, with constant probability, 𝑍 ′ is a (1 ± 𝜖)-
approximation of ∥𝑥 ∥1.

Proof. We consider the entries between 𝑘/2 and (1 + 𝜖/2)𝑘/2
in the sorted order, and modify the above argument to consider the

probability that there are not fewer than (1 + 𝜖/2)𝑘/2 entries that
are larger than 2(1−𝜖)∥𝑥 ∥1. Adapting (9), we obtain for 𝑐 = (1−𝜖)

Pr

[︂
𝑘
2𝑐 − 𝑍𝑐 > 𝑘

2𝑐 −
(1+ 𝜖

2
)𝑘

2

]︂
≤ Pr

[︂
E[𝑍𝑐] − 𝑍𝑐 >

𝑘 (1−(1+ 𝜖
2
)𝑐)

2𝑐

]︂
≤ 2𝑐

𝑘 (1 − 𝑐 (1 + 𝜖/2))2
=

2(1 − 𝜖)
𝑘 (𝜖/2(1 + 𝜖))2

=
8(1 − 𝜖)

𝑘𝜖2 (1 + 𝜖)2
≤ 8

𝑘𝜖2

This ensures there areΩ(𝜖𝑘) = Ω(
√
𝑘) items in the target range. □

This result gives some additional flexibility in picking an esti-

mator: we can pick any of the items in this window, or take the

mean of multiple items in the window, and still obtain an accurate

estimate. In our experiments, we take the mean of the items in the

range [𝑘/2, 𝑘/2 + 𝜅], where 𝜅 denotes the size of this window.

Algorithm 3 Fast top-𝑘 estimation procedure

Input Parameter 𝑘 , Heap and Sketch

Output Top-𝑘 estimate for the 𝐿1 of the processed input

1: 𝑀 ← [] ⊲ Initialize empty list

2: for all items 𝑖 in Heap do
3: 𝑣𝑖 ← Sketch.Query(𝑖)
4: �̂�𝑖 ← 𝑣𝑖/𝑊𝑖 ⊲ Extract estimated 𝑥𝑖 , via Section 4.2

5: M.Append(�̂�𝑖)

6: for 𝑗 ∈ [𝑘 − 1] do
7: M.Append(�̂�𝑖 ((𝑊𝑖 − 1)𝑈 [0, 1] + 1)/𝑊𝑖) ⊲ Via eqn. (10)

8: return (M.SortDecreasing())[𝑘/2]

4.4.3 Fast top-𝑘 Estimator. Naively implementing the estimator 𝑍

requires us to repeat the process 𝑘 times in parallel for each update.

As for the heavy-hitters based estimator, we reduce update cost by

computing the largest weight𝑊𝑖 only, using Algorithm 1 again.

Lemma 4.9. The information needed to build our estimator 𝑍 ′ can
be gathered using 𝑂 (1) time to process each update.

Proof. As in Lemma 4.4, themaxweight𝑊𝑖 ∼ 1/(1−𝑈 [0, 1]1/𝑘),
so we can track 𝑥𝑖𝑊𝑖 via sketches. At query time, identify the

𝑘/2 largest values of 𝑥𝑖𝑊𝑖 . For each of these 𝑖 , compute 𝑢
(𝑗)
𝑖

for

𝑗 = 2 . . . 𝑘 , conditioned on 𝑢
(𝑗)
𝑖

> 𝑢
(1)
𝑖

, where 𝑢
(1)
𝑖

= 1/𝑊𝑖 . That is,

𝑢
(𝑗)
𝑖
∼ 𝑈 [1/𝑊𝑖 , 1] ∼ 1

𝑊𝑖
+𝑈 [0, 1] (1− 1

𝑊𝑖
) ∼ (1+(𝑊𝑖−1)𝑈 [0,1])

𝑊𝑖
(10)

The estimator is built by “backfilling” the values that would have

been inserted in the naive estimator, by finding �̂�𝑖 = (𝑥𝑖𝑊𝑖)/𝑊𝑖 =

𝑣𝑖/𝑊𝑖 , and making a list with all �̂�𝑖𝑢
(𝑗)
𝑖

values inserted (Algo-

rithm 3). The top-𝑘 estimate 𝑍 ′ is applied to the reconstituted

list of values. The correctness follows by invoking the principle of

deferred decisions to sampling of 𝑢
(𝑗)
𝑖

at query time. □

4.4.4 Top-𝑘 estimate using approximate weights and sketches. The
discussion so far assumes that the top-𝑘 estimator uses rescaled

values of the exact weights. To implement the estimator in the fed-

erated setting, it must instead use frequency sketches to summarize

the weight values. This means the estimator takes an approximate

value for the 𝑘th largest entry of 𝑣 , requiring an updated proof.

Theorem 4.10. The top-𝑘 estimator builds sketches of size �̃� (𝜖−3),
and takes time 𝑂 (1) to process each update. These sketches allow us
to form a (1 ± 𝜖) estimate for the 𝐿1 norm.

Proof. First, assume that for every entry in vector 𝑣 , the fre-

quency sketch estimates 𝑣 such that |𝑣 − 𝑣 | ≤ 𝜖 ′, for some 𝜖 ′.
Observe that the ℓ ’th largest value from 𝑣 is close to the ℓ ’th largest

value from 𝑣 , for any ℓ . Assume for convenience that the values

are re-indexed so that 𝑣1 > 𝑣2 > 𝑣3 Now consider 𝑣ℓ . There

are at most ℓ entries in 𝑣 such that 𝑣𝑖 ≥ 𝑣ℓ , so 𝑣ℓ cannot be more

than 𝑣ℓ + 𝜖 ′ (since 𝑣ℓ being the ℓ’th largest implies that there are ℓ

entries in 𝑣 that are as big as 𝑣ℓ). Similarly, 𝑣ℓ cannot be less than

𝑣ℓ − 𝜖 ′, since there are no more than ℓ entries that are as big as 𝑣ℓ
in 𝑣 . Hence, |𝑣ℓ − 𝑣ℓ | ≤ 𝜖 ′.

Combining this with our estimator, the frequency sketch param-

eters must be set so that the first assumption is met, i.e., all entries

of 𝑣 have error proportional to 𝜖 . By a standard analysis, sketches

of size 𝑠 obtain an error bound of ∥𝑣 tail∥1/𝑠 [22]. Using Lemma 4.5

above, ∥𝑣 tail∥1 = 𝑂 (𝑘) (with constant probability) means that the

sketch size is set to �̃� (𝑘/𝜖). Since we set 𝑘 = 𝑂 (1/𝜖2), the total
space is �̃� (1/𝜖3) to obtain additive error of 𝜖 for ∥𝑥 ∥1. □

Comparing Theorem 4.10 with Theorem 4.6, we see that the

space and update costs for these two estimators are the same. Im-

portantly, both estimators use the same sketch: while the estimation

algorithms differ, the sketching procedure is the same for both. This

is shown schematically in Figure 1. Hence, we compare the accuracy

of estimates built using these two methods in our experiments.

4.5 Pseudocode and Algorithmic Summary
Algorithm 1 lists out the pseudocode for updating the information

needed for the two (fast) estimators. It uses a frequency Sketch data

structure to summarize weights, and a (fixed-size) Heap to track

the items with the largest weights. For each update 𝑖 that arrives,

Lines 1-2 compute𝑊𝑖 (based on hash functions on 𝑖 , to ensure that

𝑊𝑖 is the same every time an update to 𝑥𝑖 arrives), and Lines 4-6

update the sketch and heap based on the updated contribution to

𝑣 . The heap is used to make queries faster: as items are updated, it

keeps track of the 𝑘 heaviest (estimated) weights seen so far. This

avoids probing the estimated weights of all possible items at query

time. The size of this heap is bounded by 𝑘 in both cases. The HH

estimator needs to recall only those items larger than the absolute

value 𝜏 = 2/𝜖 . Recall that we showed the bound that ∥𝑣 tail∥1 =

𝑂 (𝑘 ∥𝑥 ∥2
1
) with constant probability. Consequently, the number of

items above this threshold is at most 𝑘 +𝑂 (𝑘𝜖 ∥𝑥 ∥2
1
) = 𝑂 (𝑘), using

that ∥𝑥 ∥1 ≤ 1 in our setting. Hence, keeping a heap of fixed size

𝐻 = 𝑂 (𝑘) will allow us to track the heavy items. Meanwhile, the

top-𝑘-based estimator just needs to track the 𝐻 = 𝑂 (𝑘) largest
estimated 𝑣𝑖 values in order to have the information necessary to

build the final estimator. In both cases, we can maintain these 𝑣𝑖
values in a maxheap, truncated to hold 𝐻 values. Every time we

perform an update to item 𝑥 , we can test its current estimated value

in the current sketch, and add it to the heap (or update its weight

in the heap) if necessary (Algorithm 1, line 6).

The estimators are computed directly from the information

stored in Sketch and Heap, following the mathematical definitions

in Section 4.3 and 4.4. These are spelled out in Algorithms 2 and 3,

respectively. These assume access to𝑊𝑖 on demand, by applying

the same hashing procedure as in Algorithm 1 lines 1-2.

4.6 Distributed Computation
When the methods are applied to distributed data, as is the case

in the federated setting, it is necessary to combine information

from multiple, distributed computational entities. If each entity

has kept a sketch of their (scaled) inputs, along with a heap of the

current heavy items, they are merged in a straightforward way.

The sketches are added, entrywise, and scaled appropriately (e.g.,

if uniformly combining𝑚 sketches, we weight each sketch by
1

𝑚).

For 𝐷TV, we subtract the sketches, entrywise.

Fact 4.11. The sketched information can be combined linearly.

Proof. Recall that we can write the derived vector 𝑣 = 𝑤 ⊙ 𝑥 ,
where𝑤 is the weight vector, and 𝑥 is the input vector (Section 4.2).

The frequency sketch is a linear map 𝑆 applied to 𝑣 (Definition 3.1).

Hence, the overall sketch is 𝑆𝑤 ⊙ 𝑥 . Given vectors 𝑥 and 𝑦, and

scalars 𝛼 and 𝛽 , it follows by linearity that

𝛼 (𝑆𝑤 ⊙ 𝑥) + 𝛽 (𝑆𝑤 ⊙ 𝑦) = (𝑆𝑤 ⊙ 𝛼𝑥) + (𝑆𝑤 ⊙ 𝛽𝑦)
= 𝑆 (𝑤 ⊙ 𝛼𝑥 +𝑤 ⊙ 𝛽𝑦) = 𝑆𝑤 ⊙ (𝛼𝑥 + 𝛽𝑦) .

In other words, we can algebraically combine the sketches to obtain

the exact sketch of the correspondingly manipulated inputs. □

To combine the heaps, the union of all items from each individual

heap are extracted. The combined sketch is used to estimate each

of their combined weights, which are used to insert into a fresh

fixed-size heap. A challenge arises when some items may have

negative weight (corresponding to finding the difference between

two distributions): this could mean that the true aggregate weight of

the item becomes much smaller. The consequence is that items with

smaller weight might have been overlooked for inclusion in the

new heap, but should still count towards the estimate. For the heavy

hitters approach, this is not a concern. Items contribute towards the

estimator only if their weight is above a fixed (data independent)

threshold, so the addition or removal of other items does not affect

whether they cross this threshold. For the top-𝑘 estimator, we can

observe that, if we are satisfied with an additive approximation of

the 𝐿1 distance, then we can safely overlook all items whose weight

is less than some low threshold. Similar to the above argument

for the heap size, dropping items whose weight is less than 𝛾 in

absolute magnitude will only cause the estimate to be off by at most

𝛾 . Hence, we just need ensure all items with magnitude above 𝛾 are

retained, of which there are at most 𝑂 (𝑘/𝛾). Thus, in summary,

Corollary 4.12. The HH and top-𝑘 estimators can be built over
federated distributions (Definition 3.2) with the same guarantees as
Theorems 4.6 and 4.10, respectively.

4.7 Privacy and Security
We show how to achieve privacy and security guarantees. First, we

show how to achieve our main result, of differential privacy protec-

tion based on client noise addition. Then, to show the flexibility of

our approach, we show how our approach performs when security

is needed but differential privacy is relaxed.

4.7.1 Main result: Differential Privacy via local or distributed noise.
Ourmethod enables a differential privacy guarantee in the federated

setting by having the clients add noise to their data before it is

processed into a sketch. We first describe the process for local

differential privacy (LDP) at the item level (Section 3.3). That is, we

assume that the client’s input is a histogram of items observed by

that client, and the noise is added to introduce sufficient uncertainty

about the presence or absence of a particular item in the client’s

input such as a particular artist in our running example. In other

words, if 𝑋 denotes the client’s histogram of item counts, input

histograms 𝑋 and 𝑋 ′ are neighboring if ∥𝑋 − 𝑋 ′∥1 ≤ 1.

To achieve (𝜀,Δ)-differential privacy each client first adds inde-

pendent noise to each count in their histogram using the “stability-

based histograms” technique [7]. Importantly, this uses a truncated

noise distribution which has finite support – for example, a sym-

metric geometric distribution with parameter exp(𝜀), truncated so

that the residual probability mass is at most Δ. This ensures that

the expected noise is a constant, and is of bounded magnitude 𝑇 .

A threshold is applied to the noisy histogram, so that counts with

noisy weight 𝑇 or less are removed. This means that any input

items with true count 0 cannot be included in the thresholded out-

put. This lets us work with arbitrarily large domains of input items

without introducing arbitrarily large amounts of noise. As a result,

Theorem 4.13. The fast sketch estimator with client noise addition
provides (𝜀,Δ)-item level local differential privacy in the federated
model for the data distribution shift problem (Defninition 3.3).

For constant values of 𝜀, the magnitude of the noise is constant,

i.e., Θ(1). If a client holds𝑚 distinct values, then the noise on each

is Θ(1), totalling up to Θ(𝑚). After normalization, the contribution

to the error in the 𝐿1 distance estimation is Θ(1), i.e., potentially
large. However, when the client has a less uniform input value

distribution, we expect the error to reduce, to 𝑂 (𝑑/𝑚), where 𝑑
is the number of distinct values held by the client, while𝑚 is the

(larger) number of values. A first crude initial test on synthetic data

(comparing two Normal distributions) bears this out: using 𝜀 = 3,

and setting the threshold to 4, we observe a change to the 𝐿1 norm

of less than 1%, for Δ ∼ 10
−6
. More in-depth results are reported in

the experimental study in Section 5.

The exact same outline is used to instantiate the distributed

differential privacy version, where each client again adds some

noise to their input. However, this time, the magnitude of the noise

is much less (Section 4.7). The noise volume is now calibrated so

that the sum of noise from all clients is equivalent to the noise that

would have been added in the central setting. To ensure that the

server only sees the aggregated output of the computation with the

full noise, Secure Aggregation (Definition 3.4) should be used to

combine the sketches from the clients via addition [12].

4.7.2 Security without noise addition. Our sketches can also be

applied in other privacy models. Next, we describe how to use the

sketches in a distributed setting when DP is not required.

Here, there are𝑚 clients who each hold a distribution 𝑃ℓ , andwho

wish to cooperate to compute the difference between a given proxy

distribution𝑄 and the (weighted) sum of the client distributions, as

𝐷TV (𝑃,𝑄) = ∥
∑︁𝑚
ℓ=1 𝑃ℓ−𝑄 ∥1. In this situation, the clients send their

sketches to the server, who will sum them together as described

in Section 4.6, and probe them to build the final estimate. This

instantiates the model of “Federated Analytics” [9, 25], where each

client reveals only a partial view of their data in order to compute

the desired function, rather than sharing their data in its entirety.

However, if the messages from client to server were accessible to a

curious third party, this would reveal some information about the

inputs. The observer would not learn every item and weight in the

client’s distribution, but theymay see some sensitive item identifiers

from the client’s distribution. If the hash function used to define

the weights𝑤 is public, an observer could also infer approximate

original weights of items from the client’s distribution.

To address this, we ensure that messages from clients to server

are encrypted (to prevent observation by external parties), and

that the server is trusted to receive the sketches and perform the

aggregations without “snooping” on the intermediate results. This

trusted server can compute the required estimate, and release it

(possibly with noise). To reduce the level of trust in the server, the

clients cooperate to mask the identity of the items that they are

reporting. Specifically, the clients agree on a secret (salted) one-way

hash function that they apply to the identities of their items, but

which is kept secret from the server. Because the labels attached

to the items are unimportant for the 𝐿1 distance, relabelling them

does not change it. Then, the server is still able to compute the

necessary estimate, but is oblivious as to which items are present

in the inputs. This model is suitable when no clients will collude

with the server to give up the details of the hash function.

Finally, Secure Aggregation (Definition 3.4) is used to produce

a combined sketch, without any information about which client

contributed what. However, it is still necessary to use (masked)

item identifiers to extract the estimate, so an additional secure

primitive is needed to gather the union of the item identifiers from

the clients. The options are to use anonymous messages (using

anonymous credentials [39]), or by secure aggregation over one-

hot vector encodings. Together, this information is sufficient to

probe the aggregated sketches, and build either of the estimators.

5 EXPERIMENTAL STUDY
We implemented the different sketching techniques in Python. The

methods we implemented were:

• Our “fast estimators” using the HH and top-𝑘 approaches

described in Sections 4.3 and 4.4.

• The 𝛼-sketches of Braverman et al. [13] which correspond to

the basic version of the top-𝑘 approach (Section 4.4).

• The same 𝛼-sketch but using the HH estimation procedure,

i.e., the accurate but slow HH estimator of Section 4.3.

• The Very Sparse Stable Random Projections (“Sparse”) sketch

due to Li [40]. These use hashing to sample a 𝛽 fraction of entries,

then compute the projection of these by symmetric Pareto distri-

butions, repeated 𝑘 times. The estimate is formed by taking the

scaled geometric mean of the 𝑘 sampled scaled sums. We default to

𝛽 = 0.05 and 𝑘 = 100 for this sketch, the same values as in [40].

Our experiments are arranged in three parts. First, we see how

best to set the parameters of our fast sketches. Second, we compare

against the alternatives (𝛼-sketches and sparse sketches) in terms

of both speed and accuracy. Third, we evaluate across a range of

real and synthetic data both with and without privacy imposed, to

test the consistency of our findings. For the initial tests, we evaluate

accuracy when there is no privacy noise addition, i.e., cases where

Secure Aggregation is sufficient to protect the data; in our later

tests we add privacy noise in the local model (so all client messages

have privacy protection before aggregation).

We evaluate on both real and synthetic data. The synthetic data

is sampled from two Zipfian distributions with different skewness

parameters (default: skewness 1.2 and 1.4), resulting in a measurable

𝐷TV. The default domain size for the synthetic data is 350,000.

The real data are standard benchmark datasets from the ML and

Federated Learning communities [15]. In each case, we map the

raw examples into frequency vectors to act as distributions.

Sent140 [28]. The Sent140 dataset is a collection of 1.6M tweets,

each tagged as positive or negative in sentiment. Each word is

hashed to a 20 bit range, and the dataset was divided up variously

100 101 102 103

τ

0.00

0.05

0.10

0.15

A
bs

ol
ut

e
E

rr
or

Zipf
Normal

(a) Varying 𝜏 , synthetic data

100 101 102 103

τ

0.00

0.02

0.04

0.06

0.08

0.10

A
bs

ol
ut

e
er

ro
r

Celeb-A
FEMNIST
IMDB
Sent140

(b) Varying 𝜏 , Sent140 data

Figure 2: Calibration experiments for the HH estimator

100 101 102 103 104

κ

0.00

0.01

0.02

0.03

0.04

0.05

A
bs

ol
ut

e
er

ro
r

Zipf
Normal

(a) Varying 𝜅, synthetic data

100 101 102 103 104

κ

0.00

0.02

0.04

A
bs

ol
ut

e
er

ro
r

Celeb-A
FEMNIST
IMDB
Sent140

(b) Varying 𝜅, Sent140 data

Figure 3: Calibration experiments for the top-𝑘 estimator

as: (i) distribution of word use in positive reviews vs. in negative

reviews (ii) word use between two clusters of users.

FEMNIST [15]. The FEMNIST dataset is a collection of 803,000

handwritten characters in greyscale. We map the digits into inten-

sity vectors, encoding the brightness in different regions of the

image. These are formed into pairs of distributions in three ways:

(i) intensity distribution of odd digits vs. even digits; (ii) intensity

distribution of digits with more curves (0, 3, 6, 8, 9) vs. digits with

more straight lines (1, 2, 4, 5, 7); (iii) splitting the digits into two

disjoint halves by author.

Celeb-A [42] The Celeb-A dataset is a collection of 200,000 color

images of celebrities with a variety of tags. We map these into

vectors of luminance and chroma values, and diivide them based

on the labels: (i) males vs. females; (ii) old vs. young; (iii) smiling

vs. not smiling.

IMDB [43]. The IMDB review sentiment database is a collection

of 50,000 movie reviews, divided into positive and negative classes.

Each word is hashed to a 20 bit range, and the dataset was divided

up variously as: (i) distribution of word use in positive reviews vs.

in negative reviews (ii) word use in two disjoint halves.

In each experiment, we use the various sketch techniques to

estimate the true total variation distance (𝐷TV) between each pair

of input distributions (building a sketch for each distribution then

combining them to estimate the difference), and compare this to the

ground truth by exhaustively building the exact distribution. We

measure and report the absolute difference between the estimated

and exact distances; ideally, we want this to be as close to zero as

possible for an accurate estimate. We perform 5 repetitions of each

experiment, and show the standard error via error bars.

Our experiments are performed on a single machine with an

Intel Xeon CPU with 3.2GHz cores and 48GB memory. They fully

simulate the work of the clients and the server in the protocol, and

account for the communication, storage, and computational costs

incurred by all parties. The plots focus on the accuracy and the

client side costs (space and time), since the server-side costs are

negligible (≪ 1MB storage and≪ 1s time).

5.1 Initial parameter setting
Our initial set of experiments determine suitable values for the

key parameters: 𝜏 for the heavy-hitters estimator, and 𝜅 for the

(smoothed) top-𝑘 estimator (Section 4.4.2). Importantly, the goal

here is to find a parameter choice that is robust to use over the

range of different datasets, not to tune 𝜏 and 𝜅 for each dataset. We

ran experiments to estimate the TV-distance between two Zipfian

distributions (𝐷TV ≈ 0.16), two Normal distributions (𝐷TV = 0.31)

and between the real datasets (see Table 2), and measured the abso-

lute error when applying the different estimators. Figure 2 shows

that there is a range of 𝜏 values for which the error is low and

stable, allowing us to confidently choose any setting in this range.

On synthetic data (Figure 2a), the results show similar results when

𝜏 ∈ (4, 50). Here, the error is quite small: around 0.01 for the pre-

ferred choice of 𝜏 , corresponding to a very small deviation from

the true distance. On real data (Figure 2b), choices of 𝜏 in the range

1–10 are comparable in terms of accuracy. After these tests we use

a default of 𝜏 = 5 as a robust choice for subsequent experiments.

Figure 3 shows the top-𝑘 estimator as we vary 𝜅 , which indicates

the number of estimates around the 𝑘/2th largest that we average

together (see Section 4.4.2). Although increasing 𝜅 from 1 upwards

does not significantly change the accuracy, on the synthetic data

(Figure 3a), there is a local optimum close to 𝜅 = 1000 (here, 𝑘 =

10000), then there is a rapid fall in accuracy for larger values of 𝜅 . In

what follows, we use 𝜅 = 100 (taking the average of 100 entries for

the top-𝑘 estimator). The take-away from these tests is that good

results can be obtained from the estimators. While there is not a

single optimal choice for the parameters 𝜅 and 𝜏 , we can find values

that are a good choice across a range of inputs.

The space of the sketch depends on 𝑘 . Each sketch consists of a

fixed-size heap tracking the 𝑘 largest estimated frequencies, and a

CountSketch [17] of size proportional to 𝑘 . Concretely, the heap is

an array of exactly 𝑘 words, and the CountSketch uses 3𝑘 words,

plus some constant overhead. With 32-bit words, the space is 16𝑘

bytes (plus some bookkeeping), so choosing 𝑘 = 10, 000 requires

160KB of space. This is our default 𝑘 value for the fast sketches.

5.2 Comparison to prior work
Figure 4 compares our fast sketches with prior work on time cost

and accuracy and shows prior theoretical work is not competitive in

practice. For the FEMNIST data, Figure 4a shows time as a function

of sketch size 𝑘 (tests on other datasets showed similar results).

Here, the 𝛼-sketching approach is up to three orders of magnitude

slower even for small 𝑘 and worse for large 𝑘 since time costs grow

linearly with 𝑘 . Although sparse sketching approach is much faster,

its cost also grows linearly with 𝑘 , while our fast sketches have a

running time independent of 𝑘 . Figure 4b fixes 𝑘 for each method

101 102 103 104

k

100

101

102

Ti
m

e
(s

)

Alpha Sparse Fast

(a) Time to process FEMNIST data

103 104 105

N

10−2

10−1

100

101

102

Ti
m

e
(s

)

Alpha (k=10)
Sparse (k=100)
Fast (k=10000)

(b) Time as FEMNIST data size increases

101 102 103 104

k

0.00

0.25

0.50

0.75

1.00

A
bs

ol
ut

e
E

rr
or

Top-k (α)
HH (α)

Top-k
HH

Sparse

(c) Accuracy on FEMNIST data

Figure 4: Speed and accuracy comparison with prior work

0 5000 10000 15000
k

0.00

0.05

0.10

0.15

A
bs

ol
ut

e
E

rr
or

HH
Top-k

(a) Varying size parameter 𝑘

10−2 10−1 100

TVD

0.00

0.02

0.04

0.06

0.08

0.10

A
bs

ol
ut

e
E

rr
or

y = x
Top-k
HH
Sparse

(b) Varying 𝐿1 difference

104 105 106 107

N

0.000

0.025

0.050

0.075

0.100

A
bs

ol
ut

e
er

ro
r

Top-k
HH
Sparse

(c) Varying number of samples 𝑁

Figure 5: Testing on synthetic data

and varies the size of the input 𝑁 . Our fast sketches stay the fastest,

and the time cost grows linearly with 𝑁 .

Figure 4c shows that only the fast sketches are able to achieve

acceptable accuracy but they require somewhat large values of

sketch size 𝑘 . For small 𝑘 in the range 10-200, the 𝛼-sketches achieve

average error of greater than 0.5, which is unusable as 𝐷TV takes

values between 0 and 1. We did not evaluate the 𝛼-sketches for

larger 𝑘 due to their extremely high computation cost. The sparse

sketching approach achieves error around 0.25 on this data, which

is better but still poor. Furthermore, their accuracy did not show

meaningful improvement even as we increased 𝑘 to 10,000. For 𝑘

large enough (5,000-10,000), the fast sketches have better accuracy

than all other sketches and achieve an acceptable error close to 0.

Hence we conclude that the 𝛼-sketches are dominated in both speed

and accuracy, and so can’t be used in practice. The sparse sketch is

comparable in terms of time cost for moderate 𝑘 (around 100), but

does not show accuracy improvements for 𝑘 in the range 10
2
-10

4
.

In what follows, we show a few further tests with the sparse sketch,

but the accuracy is rarely strong enough to be competitive.

5.3 Accuracy results on synthetic data
Having established that our fast sketches achieve usable results, we

study their accuracy as parameters of the sketches and of the input

are varied (Figure 5). Figure 5a shows the impact of varying the

sketch size, 𝑘 . As expected, increasing 𝑘 tends to improve accuracy

with the top-𝑘 approach needing a fairly large value of 𝑘 ≥ 5000

to obtain good accuracy. The HH estimator also improves as 𝑘

increases but is less accurate than top-𝑘 except for smaller 𝑘 values.

In Figure 5b, we generate Zipfian distributions with a range of

skewness parameters to obtain pairs of distributions with a range

of 𝐷TV values, from close to zero (very similar) to one (completely

disjoint) and show the error of our sketches on a log scale with

respect to the true 𝐷TV (heavy line). The heavy line is equivalent

to ignoring the sketches and always guessing that the distance is

zero. The plot demonstrates that the error is small relative to the

distance and decreases when the distance is smaller, so that we

can accurately determine its magnitude. The absolute values of the

error are also small: always below 0.01 for the top-𝑘 based method.

This gives evidence that we can make good use of the sketches for

this task: the error is small enough to accurately use to measure the

𝐷TV. From these results, we may lean towards preferring the top-𝑘

estimator, since it reliably achieves lower error here and in other

tests, at least when 𝑘 is large enough (here, we use 𝑘 = 10, 000).
Figure 5c varies the number of samples, 𝑁 , and shows that our

estimators work for both small and large datasets. Larger values of

𝑁 are associated with better accuracy, but not dramatically so. The

accuracy of the top-𝑘 estimator is slightly better than the heavy

hitters estimator and has appreciably less variation. The absolute

sketch error is often small – always < 0.02, and often < 0.01. This

is accurate enough to detect a change in a distribution, sufficient to

trigger retraining a model or other use cases discussed in Section 1.

The sparse sketch results improve as 𝑁 increases, but remain much

worse than the fast sketches on this data.

0 5000 10000 15000
k

0.00

0.02

0.04

0.06

A
bs

ol
ut

e
er

ro
r

Top-k
HH

(a) Varying 𝑘 for both estimators

2 4
ε

10−3

10−2

10−1

A
bs

ol
ut

e
er

ro
r

Top-k
HH

(b) Varying DP parameter privacy 𝜀

105 106 107

N

10−2

10−1

100

A
bs

ol
ut

e
er

ro
r

Top-k
HH
Exact

(c) Varying the size of the input 𝑁

Figure 6: Accuracy experiments on Sent140 data with differential privacy

Table 2: Accuracy and timing results on real data sets (𝜀 = 3)

Dataset 𝐷TV Top-𝑘 HH Time(s) Sparse Time(s)

IMDB-(i) 0.137 0.005 0.008 2.335 0.274 5.378

IMDB-(ii) 0.038 0.001 0.006 2.354 0.426 5.345

Sent140-(i) 0.121 0.002 0.005 3.224 0.410 7.821

Sent140-(ii) 0.195 0.003 0.007 4.301 0.318 10.787

Celeb-A-(i) 0.465 0.011 0.016 0.467 0.065 0.503

Celeb-A-(ii) 0.525 0.011 0.013 0.463 0.065 0.453

Celeb-A-(iii) 0.413 0.007 0.013 0.451 0.073 0.492

FEMNIST-(i) 0.509 0.013 0.006 0.059 0.207 0.076

FEMNIST-(ii) 0.272 0.006 0.006 0.056 0.063 0.081

FEMNIST-(iii) 0.216 0.005 0.004 0.066 0.109 0.069

5.4 Real data with differential privacy
Next, we study differential privacy noise (discrete Laplace noise

corresponding to 𝜀 = 3) on the real datasets. Adding privacy noise

does not substantially weaken the accuracy in Figure 6. For the

sketch size 𝑘 , we see a general trend that increasing 𝑘 improves

accuracy (Figure 6a). Similar to the synthetic data case, the top-𝑘

estimator requires a sketch that is large enough in order to obtain

accurate results. We see that for our preferred sketch size of 𝑘 =

10, 000, it obtains very high accuracy, even with added privacy noise.

Moreover, the variation in error is lower for the top-𝑘 estimator,

compared to the HH-based estimator. The absolute error bound

is below 0.01 for large 𝑘 and sufficiently accurate to identify any

notable change in the input distribution.

In Figure 6b, we vary the privacy parameter 𝜀, also known as the

privacy budget, from 1 to 5. Unsurprisingly, the accuracy improves

as 𝜀 increases, corresponding to decreased levels of noise. The

accuracy of the HH method tends to flatten near 0.01 error on this

data even as the noise decreases to close to zero, because there

is still the inherent noise of the sketching. Meanwhile, the top-𝑘

error decreases to negligible levels, as its sketching error keeps

decreasing. This is consistent with results on data without privacy

noise, where top-𝑘 is the preferred approach for accuracy.

Figure 6c shows the accuracy when varying the size of the input,

from a small fraction (100K words) to almost the whole Sent140

dataset (10M words). For both methods, error decreases with 𝑁 .

The reason is that as 𝑁 increases, the absolute magnitude of privacy

noise remains the same, so its relative impact on the 𝐿1 estimation

decreases as 𝑁 increases. For this data, it means that for small

inputs (100K words), the privacy noise can drown out the signal,

since individual words have small absolute frequency. However,

for large enough inputs, the accuracy is sufficient to detect data

shift. To highlight this, we additionally plot the true total variation

distance on this figure as “exact”. For 𝑁 = 10
6
, the estimate’s error

is almost equal to the target distance. Meanwhile, for 𝑁 = 10
7
, the

error is about an order of magnitude smaller than the distance.

Finally, Table 2 shows results with DP for all the different ways

to split the four different real data sets described above. Different

splits lead to different 𝐷TV values: splitting in half leads to lower

differences, while splitting based on labels means the distributions

are less alike. In all cases, the top-𝑘 estimator achieves the lowest

error in the fastest time. The HH error is larger but usable, while

the sparse sketch error is too large to be of value here.

6 CONCLUDING REMARKS
This paper introduced the problem of federated data shift distance

estimation, and presented fast sketches with proven accuracy. The

main experimental takeaway is that the sketch-based approach to

federated data shift distance estimation is feasible. With a moder-

ately small sketch (160KB), we can accurately estimate𝐷TV between

distributed distributions. The same sketch admits two different es-

timators. The top-𝑘 based estimator is preferred when 𝑘 is large

enough. Our approach is the first to also offer privacy guarantees, as

the results are quite robust to the addition of differentially private

noise on the item frequencies. The techniques are of most value

when the inputs are high dimensional: for lower-dimensional data,

it may be preferable to materialize the distributions directly.

Future work is to broaden the applicability of sketching tech-

niques within the federated model, to allow more properties of

distributed data to be estimated, in order to support federated com-

putations, such as data preparation and post-processing for modern

data management tasks. It will also be of interest to evaluate them

in distributed systems, and measure the effect of sketching for

downstream tasks. Scenarios with very weak clients (where it is

not feasible to store a small sketch) may need a new approach.

ACKNOWLEDGMENTS
This work is supported in part by EPSRC grant EP/V044621/1, the

UKRI Prosperity Partnership Scheme (FAIR) under the EPSRCGrant

EP/V056883/1, and The Alan Turing Institute.

REFERENCES
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy.

In ACM SIGSAC Conference on Computer and Communications Security. ACM,

308–318. https://doi.org/10.1145/2976749.2978318

[2] Amirali Abdullah, Ravi Kumar, Andrew McGregor, Sergei Vassilvitskii, and

Suresh Venkatasubramanian. 2016. Sketching, Embedding and Dimensional-

ity Reduction in Information Theoretic Spaces. In Proceedings of the 19th In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS (JMLR
Workshop and Conference Proceedings), Vol. 51. JMLR.org, 948–956. http:

//proceedings.mlr.press/v51/abdullah16.html

[3] John M. Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy. In

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
(KDD). ACM, 2867. https://doi.org/10.1145/3219819.3226070

[4] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The Skellam Mechanism

for Differentially Private Federated Learning. In Advances in Neural Information
Processing Systems. 5052–5064. https://proceedings.neurips.cc/paper/2021/hash/

285baacbdf8fda1de94b19282acd23e2-Abstract.html

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming

Algorithms via Precision Sampling. In IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011.
363–372. https://doi.org/10.1109/FOCS.2011.82

[6] Eugene Bagdasaryan, Peter Kairouz, Stefan Mellem, Adrià Gascón, Kallista A.

Bonawitz, Deborah Estrin, and Marco Gruteser. 2022. Towards Sparse Federated

Analytics: Location Heatmaps under Distributed Differential Privacy with Secure

Aggregation. Proc. Priv. Enhancing Technol. 2022, 4 (2022), 162–182. https:

//doi.org/10.56553/POPETS-2022-0104

[7] Victor Balcer and Salil P. Vadhan. 2019. Differential Privacy on Finite Computers.

J. Priv. Confidentiality 9, 2 (2019). https://doi.org/10.29012/jpc.679

[8] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xin-

ming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1253–1269. https:

//doi.org/10.1145/3372297.3417885

[9] Akash Bharadwaj and Graham Cormode. 2022. An Introduction to Federated

Computation. In International Conference on Management of Data (SIGMOD).
ACM, 2448–2451. https://doi.org/10.1145/3514221.3522561

[10] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2012. The Johnson-

Lindenstrauss Transform Itself Preserves Differential Privacy. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society,

410–419. https://doi.org/10.1109/FOCS.2012.67

[11] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (1970), 422–426.

[12] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1175–1191.

https://doi.org/10.1145/3133956.3133982

[13] Vladimir Braverman, Robert Krauthgamer, and Lin F. Yang. 2020. Universal

Streaming of Subset Norms. CoRR abs/1812.00241 (2020). arXiv:1812.00241

http://arxiv.org/abs/1812.00241

[14] Bo Brinkman and Moses Charikar. 2005. On the impossibility of dimension

reduction in l
1
. J. ACM 52, 5 (2005), 766–788. https://doi.org/10.1145/1089023.

1089026

[15] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan,

Virginia Smith, and Ameet Talwalkar. 2018. LEAF: A Benchmark for Federated

Settings. CoRR abs/1812.01097 (2018). arXiv:1812.01097 http://arxiv.org/abs/

1812.01097

[16] Karan N. Chadha, Junye Chen, John C. Duchi, Vitaly Feldman, Hanieh Hashemi,

Omid Javidbakht, Audra McMillan, and Kunal Talwar. 2023. Differentially Private

Heavy Hitter Detection using Federated Analytics. CoRR abs/2307.11749 (2023).

https://doi.org/10.48550/arXiv.2307.11749

[17] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent

items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15. https://doi.org/10.

1016/S0304-3975(03)00400-6

[18] Wei-Ning Chen, Ayfer Özgür, and Peter Kairouz. 2022. The Poisson Binomial

Mechanism for Unbiased Federated Learning with Secure Aggregation. In Inter-
national Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA (Proceedings of Machine Learning Research), Vol. 162. PMLR, 3490–

3506. https://proceedings.mlr.press/v162/chen22s.html

[19] Graham Cormode and Hossein Jowhari. 2019. Lp Samplers and Their Ap-

plications: A Survey. ACM Comput. Surv. 52, 1 (2019), 16:1–16:31. https:

//doi.org/10.1145/3297715

[20] Graham Cormode, Samuel Maddock, and Carsten Maple. 2021. Frequency Estima-

tion under Local Differential Privacy. Proc. VLDB Endow. 14, 11 (2021), 2046–2058.
https://doi.org/10.14778/3476249.3476261

[21] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-

mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005), 58–75.
https://doi.org/10.1016/j.jalgor.2003.12.001

[22] Graham Cormode and Ke Yi. 2020. Small Summaries for Big Data. Cambridge

University Press.

[23] Differential Privacy Team at Apple. 2017. Learning with Privacy at Scale. https:

//machinelearning.apple.com/research/learning-with-privacy-at-scale.

[24] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

https://doi.org/10.1561/0400000042

[25] Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-

toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Albert

Cheu, Katharine Daly, Adria Gascon, Marco Gruteser, and Brendan McMahan.

2024. Confidential Federated Computations. arXiv:2404.10764 [cs.CR]

[26] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: The analysis of a near-optimal cardinality estimation algorithm. In

International Conference on Analysis of Algorithms.
[27] Arik Friedman and Assaf Schuster. 2010. Data mining with differential privacy. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 493–502. https://doi.org/10.1145/1835804.1835868

[28] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification

using distant supervision. Project Report, Stanford.

[29] Sudipto Guha, Piotr Indyk, and Andrew McGregor. 2008. Sketching information

divergences. Mach. Learn. 72, 1-2 (2008), 5–19. https://doi.org/10.1007/S10994-

008-5054-X

[30] Farzin Haddadpour, Belhal Karimi, Ping Li, and Xiaoyun Li. 2020. FedSKETCH:

Communication-Efficient and Private Federated Learning via Sketching. CoRR
abs/2008.04975 (2020). arXiv:2008.04975 https://arxiv.org/abs/2008.04975

[31] Jonathan Hehir, Daniel Ting, and Graham Cormode. 2023. Sketch-Flip-Merge:

Mergeable Sketches for Private Distinct Counting. In ICML.
[32] Charlie Hou, Hongyuan Zhan, Akshat Shrivastava, Sid Wang, Aleksandr Livshits,

Giulia Fanti, and Daniel Lazar. 2023. Privately Customizing Prefinetuning to

Better Match User Data in Federated Learning. arXiv:2302.09042 [cs.LG]

[33] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan

Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,

Kaikai Wang, Anthony Shoumikhin, Jesik Min, and Mani Malek. 2022. PA-

PAYA: Practical, Private, and Scalable Federated Learning. In Proceedings of
Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA, USA, August 29
- September 1, 2022. mlsys.org. https://proceedings.mlsys.org/paper/2022/hash/

f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html

[34] Piotr Indyk. 2000. Stable Distributions, Pseudorandom Generators, Embeddings

and Data Stream Computation. In Foundations of Computer Science (FOCS). IEEE
Computer Society, 189–197. https://doi.org/10.1109/SFCS.2000.892082

[35] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing. ACM, 604–613. https://doi.org/10.

1145/276698.276876

[36] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh S. Vempala.

1997. Locality-Preserving Hashing in Multidimensional Spaces. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing. ACM,

618–625. https://doi.org/10.1145/258533.258656

[37] Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1

Sketching. In IEEE International Conference on Data Mining. IEEE Computer

Society, 246–255. https://doi.org/10.1109/ICDM.2010.80

[38] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham

Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El

Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih

Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie

He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri

Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushan-

far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,

Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh

Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng

Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu

Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2021.

Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn.
14, 1-2 (2021), 1–210. https://doi.org/10.1561/2200000083

[39] Saqib A. Kakvi, Keith M. Martin, Colin Putman, and Elizabeth A. Quaglia. 2023.

SoK: Anonymous Credentials. In Security Standardisation Research (Lecture Notes
in Computer Science), Vol. 13895. Springer, 129–151. https://doi.org/10.1007/978-

3-031-30731-7_6

[40] Ping Li. 2007. Very sparse stable random projections for dimension reduction in

lalpha (0 <alpha<=2) norm. In Proceedings of the 13th ACM SIGKDD International

https://doi.org/10.1145/2976749.2978318
http://proceedings.mlr.press/v51/abdullah16.html
http://proceedings.mlr.press/v51/abdullah16.html
https://doi.org/10.1145/3219819.3226070
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://doi.org/10.1109/FOCS.2011.82
https://doi.org/10.56553/POPETS-2022-0104
https://doi.org/10.56553/POPETS-2022-0104
https://doi.org/10.29012/jpc.679
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3514221.3522561
https://doi.org/10.1109/FOCS.2012.67
https://doi.org/10.1145/3133956.3133982
http://arxiv.org/abs/1812.00241
https://doi.org/10.1145/1089023.1089026
https://doi.org/10.1145/1089023.1089026
http://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1812.01097
https://doi.org/10.48550/arXiv.2307.11749
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1016/S0304-3975(03)00400-6
https://proceedings.mlr.press/v162/chen22s.html
https://doi.org/10.1145/3297715
https://doi.org/10.1145/3297715
https://doi.org/10.14778/3476249.3476261
https://doi.org/10.1016/j.jalgor.2003.12.001
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://doi.org/10.1561/0400000042
https://arxiv.org/abs/2404.10764
https://doi.org/10.1145/1835804.1835868
https://doi.org/10.1007/S10994-008-5054-X
https://doi.org/10.1007/S10994-008-5054-X
https://arxiv.org/abs/2008.04975
https://arxiv.org/abs/2302.09042
https://proceedings.mlsys.org/paper/2022/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html
https://doi.org/10.1109/SFCS.2000.892082
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/258533.258656
https://doi.org/10.1109/ICDM.2010.80
https://doi.org/10.1561/2200000083
https://doi.org/10.1007/978-3-031-30731-7_6
https://doi.org/10.1007/978-3-031-30731-7_6

Conference on Knowledge Discovery and Data Mining. ACM, 440–449. https:

//doi.org/10.1145/1281192.1281241

[41] Ping Li. 2008. Estimators and tail bounds for dimension reduction in l𝛼 (0 <𝛼 ≤ 2)

using stable random projections. InACM-SIAM Symposium on Discrete Algorithms,
(SODA). SIAM, 10–19. http://dl.acm.org/citation.cfm?id=1347082.1347084

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Large-scale Celeb-

Faces Attributes (CelebA) Dataset. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.

html.

[43] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,

and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.

In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-

guistics, 142–150.

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS) (Proceedings of Machine Learning Research), Vol. 54.
PMLR, 1273–1282. http://proceedings.mlr.press/v54/mcmahan17a.html

[45] Jelani Nelson and David P. Woodruff. 2010. Fast Manhattan sketches in data

streams. In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS). ACM, 99–110. https://doi.org/10.1145/1807085.1807101

[46] Rasmus Pagh and Nina Mesing Stausholm. 2021. Efficient Differentially Private

𝐹0 Linear Sketching. In International Conference on Database Theory, (ICDT)
(LIPIcs), Vol. 186. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:19.

https://doi.org/10.4230/LIPIcs.ICDT.2021.18

[47] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,

Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:

Communication-Efficient Federated Learning with Sketching. In International
Conference on Machine Learning (ICML) (Proceedings of Machine Learning
Research), Vol. 119. PMLR, 8253–8265. http://proceedings.mlr.press/v119/

rothchild20a.html

[48] Adam D. Smith, Shuang Song, and Abhradeep Thakurta. 2020. The

Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private

Counting with Minimal Space. In Advances in Neural Information

Processing Systems. https://proceedings.neurips.cc/paper/2020/hash/

e3019767b1b23f82883c9850356b71d6-Abstract.html

[49] Kunal Talwar, Shan Wang, Audra McMillan, Vojta Jina, Vitaly Feldman, Bailey

Basile, Áine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver Chick,

Mona Chitnis, Suman Ganta, Yusuf Goren, Filip Granqvist, Kristine Guo, Frederic

Jacobs, Omid Javidbakht, Albert Liu, Richard Low, Dan Mascenik, Steve Myers,

David Park, Wonhee Park, Gianni Parsa, Tommy Pauly, Christian Priebe, Rehan

Rishi, Guy Rothblum, Michael Scaria, Linmao Song, Congzheng Song, Karl Tarbe,

Sebastian Vogt, Luke Winstrom, and Shundong Zhou. 2023. Samplable Anony-

mous Aggregation for Private Federated Data Analysis. CoRR abs/2307.15017

(2023). https://doi.org/10.48550/arXiv.2307.15017 arXiv:2307.15017

[50] Mikkel Thorup. 2013. Bottom-k and priority sampling, set similarity and subset

sums with minimal independence. In Symposium on Theory of Computing Confer-
ence, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM, 371–380.

https://doi.org/10.1145/2488608.2488655

[51] Lun Wang and Dawn Song. 2021. Differentially Private Frequency Moments

Estimation with Polylogarithmic Space. In ICLR.
[52] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. AnsweringMulti-Dimensional Analytical Queries under

Local Differential Privacy. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,

Amol Deshpande, and Tim Kraska (Eds.). ACM, 159–176. https://doi.org/10.1145/

3299869.3319891

[53] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Ab-

badi, and Yu-Xiang Wang. 2022. Differentially Private Linear Sketches: Effi-

cient Implementations and Applications. CoRR abs/2205.09873 (2022). https:

//doi.org/10.48550/arXiv.2205.09873 arXiv:2205.09873

[54] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.

2020. Federated Heavy Hitters Discovery with Differential Privacy. In In-
ternational Conference on Artificial Intelligence and Statistics, (AISTATS) (Pro-
ceedings of Machine Learning Research), Vol. 108. PMLR, 3837–3847. http:

//proceedings.mlr.press/v108/zhu20a.html

https://doi.org/10.1145/1281192.1281241
https://doi.org/10.1145/1281192.1281241
http://dl.acm.org/citation.cfm?id=1347082.1347084
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/1807085.1807101
https://doi.org/10.4230/LIPIcs.ICDT.2021.18
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
https://proceedings.neurips.cc/paper/2020/hash/e3019767b1b23f82883c9850356b71d6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3019767b1b23f82883c9850356b71d6-Abstract.html
https://doi.org/10.48550/arXiv.2307.15017
https://doi.org/10.1145/2488608.2488655
https://doi.org/10.1145/3299869.3319891
https://doi.org/10.1145/3299869.3319891
https://doi.org/10.48550/arXiv.2205.09873
https://doi.org/10.48550/arXiv.2205.09873
http://proceedings.mlr.press/v108/zhu20a.html
http://proceedings.mlr.press/v108/zhu20a.html

	Abstract
	1 Introduction
	1.1 Technical overview and contributions

	2 Related Work
	3 Preliminaries
	3.1 Norms and Sketching
	3.2 Federated computation model
	3.3 Security and Privacy

	4 Data shift sketches
	4.1 High-level overview
	4.2 Lp sampling
	4.3 Heavy hitters-based estimator
	4.4 Top-k-based estimator
	4.5 Pseudocode and Algorithmic Summary
	4.6 Distributed Computation
	4.7 Privacy and Security

	5 Experimental study
	5.1 Initial parameter setting
	5.2 Comparison to prior work
	5.3 Accuracy results on synthetic data
	5.4 Real data with differential privacy

	6 Concluding Remarks
	Acknowledgments
	References

