
Electronic Books in Digital Libraries

Gultekin Ozsoyoglu, N. Hurkan Balkir, Graham Cormode, Z. Meral Ozsoyoglu
Case Western Reserve University

Cleveland, Ohio 44106
(tekin, balkir, grc3, ozsoy)@eecs.cwru.edu

Abstract1
Electronic book is an application with a multimedia
database of instructional resources, which include
hyperlinked text, instructor’s audio/video clips, slides,
animation, still images, etc. as well as content-based
information about these data, and metadata such as
annotations, tags, and cross-referencing information.
Electronic books in the Internet or on CDs today are
not easy to learn from. We propose the use of a
multimedia database of instructional resources in
constructing and delivering multimedia lessons about
topics in an electronic book.
We introduce an electronic book data model containing
(a) topic objects and (b) instructional resources, called
instruction module objects, which are multimedia
presentations possibly capturing real-life lectures of
instructors. We use the notion of topic prerequisites for
topics at different detail levels, to allow electronic book
users to request/compose multimedia lessons about
topics in the electronic book. We present automated
construction of the “best” user-tailored lesson (as a
multimedia presentation.

1. Introduction

Presently, a large number of user manuals and books
are made available in electronic form over the Internet
or in CD-ROMS. These electronic books are typically
large, usually contain hyper-linked table of contents,
indexed search facilities on keywords, and occasionally
have multimedia data such as images, maps, and
audio/video streams. Most of the time, the sheer size
of these electronic books and their static and black box
nature impede the user in effectively learning from
such books. One commonly hears the frustration of
electronic book readers in trying to learn topics from
electronic books or in finding an answer to a specific
question that they have. We think that new techniques
and tools are needed for modeling, querying,
“teaching” and “learning” from electronic books. We
use the term electronic book as an application with a
multimedia database of instructional resources
containing, among others, pre-captured multimedia
presentations about topics in the book. Our goal is
designing techniques for the automated and/or query-

1 This research is supported by the National Science
Foundation grants IRI96-31214 and CDA95-29513.

based assembly of lessons from electronic books. In
doing so, we borrow from the Computer-Assisted
Learning (CAL) literature, and use some of the existing
CAL techniques such as “over-the-shoulder” guidance
of users, and interactivity in our environment. We
propose electronic books as learning environments. We
assume that multimedia presentations of instructors
about topics in a book are captured and enhanced with
content-based information, tags, annotations, etc. We
call each such unit of data an instruction module, or
simply a module2, and maintain it in the database of an
electronic book. This way, a content-based model of
instruction modules is provided. The DBMS maintains
user profiles (such as users’ knowledge levels about
topics covered in the electronic book), and allows
automated or query-based construction of user-tailored
multimedia lessons for a given topic. In short, an
electronic book is an application with a multimedia
database, and has the ability to

a) model its data,
b) maintain users’ knowledge about topics

covered in the electronic book,
c) keep a (possibly, growing) list of multimedia

instruction modules of instructors, e.g., about
the electronic book’s original author’s
teaching sessions as well as the teaching
sessions of other instructors,

d) automatically or manually create multimedia
lessons as multimedia presentations, and

e) enable users to learn about ad hoc topics or to
obtain answers to specific questions using a
mixture of searching, browsing and querying.

In essence, an electronic book application,
together with its database, automated lesson
construction techniques and a query language, provides
controlled, interactive and over-the-shoulder-guided
learning environments. Clearly, such applications can
be used for independent, remote and distance learning
as well.

This paper

2 As an example, an instruction module can be an enhanced,
tagged, annotated, and catalogued version of a course lecture,
a tutorial, or a seminar. It may contain instructor’s
audio/video clips, student’s audio/video clips (asking
questions and interacting with the instructor), whiteboards,
animated data, slides, text, etc.

 2

1) extends electronic books with a data model
containing (a) topic hierarchies, (b) instruction
modules of instructors about topics in the book,
(c) prerequisite dependencies specifying the
order of teaching different topics at different
knowledge levels, (d) user profiles with explicit
knowledge levels on each topic, (e) table of
contents (TOC) hierarchies, (f) relationships
between various instructional resources such as
topic hierarchies, TOC hierarchies, keywords,
references, assignments, assignment solutions (as
text data or as instruction modules), tests, etc.,

2) introduces the notions of teaching and learning
topics, by using multimedia presentations, called
lessons, constructed from instruction modules,
and

3) discusses automated lesson construction
techniques for assembling the “best” lesson from
instruction modules in an automated manner,
given the user’s request for learning a set of
topics.

Section 2 lists the main features of a data model
for electronic books, to be used as a basis in the rest of
the paper. Section 3 discusses prerequisite
dependencies. In Section 4, we discuss automated
construction of the best lesson for a specific lesson
construction request. Section 5 concludes.

2. Electronic book data model

We use an object-oriented data model for
electronic book databases with the following object
types and properties.
• Electronic book objects of type: text, tables, figures,

pictures, pie-charts, histograms, maps, images. Text
objects are paginated with page objects containing
some of the above-listed objects as well as
hyperlinks to different objects.

• Topic Hierarchies. In hardcopy books, topics, in their

simplest form as keywords, appear as part of a book
index at the end of each book. We allow topics to be
defined as phrases or keywords. Topics form a main
component in our electronic book data model. Topics
are organized into a “topic hierarchy” (TP
hierarchy). In hardcopy books, the TP hierarchy

itself is not used. For each topic, we assume that
there are a number of integer-valued topic detail
levels describing how advance the level of the topic
is. To illustrate topic detail levels, for example, the
knowledge of a user on the topic “relational
calculus” can be at a beginner (i.e., detail level 1)
level, e.g., only “relational calculus with
propositional calculus formulas”. Or, it may be at an
advanced (say, detail level n) level, e.g., “relational
calculus and its safety”, etc. Topic x at detail level i
is more advanced (i.e., more detailed) than topic x at
detail level j when i > j.

• Text objects that are classified into a Table of
Contents (TOC) hierarchy with the book object at
the top level, chapter objects at the next level
followed by section objects, subsection objects, and
so on. This is the traditional classification hierarchy
used in hardcopy textbooks, and also available in
(some) electronic books today.

• User profiles contain the knowledge levels of users
about topics as well as users’ preferences. Other
information kept in user profiles may be sections
(chapters, examples, pictures, etc.) of electronic
books that are read/viewed by users, the number of
times each section is taught, and the time spent on
sections.
If the user has learned the topic x at level n then we
say that the user’s knowledge level of topic x is at
level n. For a given user and a topic, the knowledge
level of the user on the topic (zero, originally) is kept
in the user profile.

• Multimedia instruction modules on topics. The main
component of an instruction module, or simply
module, is a synchronized multimedia presentation
which contains audio/video segments of
instructors/students/teaching assistants as well as
images, text, animation, whiteboards used by the
instructor/students, etc. In addition to the multimedia
presentation, an instruction module also contains a
content-based model of the multimedia data in the
presentation. As an example, the content-based
model captures information like “Instructor John
Doe explains with an example the (topic) Relational
Algebra Divison operator in the audio/video segment
#3”. In Figure 2.1, using the horizontal x-axis as a
timeline, (the multimedia presentation component of)
an instruction module is illustrated. Possibly, an
instruction module is captured in real-time from a
live lecture/teaching session in an automated manner.
It is then analyzed and enhanced by a domain expert
(instructor or someone highly trained in the subject
matter) by identifying important and relevant parts
and content information, tagging different media,
cross-referencing, etc. Finally, we assume that an
electronic book administrator (EBA), a computer
expert, modifies the database by entering the
structure of the presentation (in the instruction

Window 1: Audio/Video 1
Student 1

Window2: Still Image A
Still Images

Window3:
Instructor Lectures Audio/Video Video Only

Figure 2.1. Multimedia Presentation Component of an Instruction
Module

 3

module), defining the content-based model and
entering content data, etc. into the database. We
expect that the process of instruction module creation
will be a labor-intensive, but one-time, task
involving the joint expertise of the domain expert
and the EBA.

• Prerequisite Dependencies. Some hardcopy
textbooks provide “dependency diagrams” in an
attempt to help instructors/students choose the order
of topic coverage. For example, the prerequisite to
discussing the topic relational algebra in a database
course is the coverage of the topic relational data
model. We formalize this concept into the concept of
“prerequisite dependencies” among topics, and use it
and the existing instruction modules in the database,
for automated lesson (i.e., multimedia presentation)
construction. For example, we may have the
prerequisite dependency “the topic relational
algebra (ra) should be taught after teaching the topic
relational data model (rm)”. That is, the teaching
dependency ra�rm holds. In a given course, if topic
y is a prerequisite to another topic x (i.e., x→y
holds), for the cohesiveness of the course, the
instructor makes sure that topic y is covered first,
and topic x is covered next. We require that, when a
student requests a lesson (a multimedia presentation)
on x, and has not yet been rendered those instruction
modules that correspond to y then the constructed
lesson should also have the instruction modules that
correspond to y. Please note that we actually use
prerequisite dependencies among topics at different
detail levels, e.g., the prerequisite dependency
ra4�rm1 states that “the prerequisite to teaching
relational algebra at the detail level 4 is teaching
relational data model at the detail level 1 or higher”.

• Users request multimedia lessons from the electronic
book. Each lesson is a sequence of (multimedia
presentation components of) instruction modules, as
defined above. Thus, a lesson is also a multimedia
presentation, constructed from multiple modules, and
refined by the system. One of the main
responsibilities of the electronic book application is
to construct “semantically coherent” lessons (that
satisfy the prerequisite dependencies and other user-
defined constraints) from instruction modules.

We say that lesson S containing a set of instruction

modules covers topic t at level i if S contains all the
instruction modules in the mapping from the topic t at
level i to the set of instruction modules.

• For the sake of simplicity, in this paper, we assume

that there is a total ordering of all the instruction
modules in the database so that, for a given lesson L
containing a number of instruction modules to be
rendered (i.e., played out), modules in L are ordered
into a sequence. Thus, any chosen sets of modules

are always ordered by this total ordering in order to
form a lesson.

We now define the notions of teaching and learning.

Definition (Teaching): Topic t is said to be taught at
level i if a lesson that covers the topic t at level i and all
the prerequisite topics of t at level i are rendered to the
user at least once. Such a lesson is said to be a teaching
lesson for topic t at level i.

For each user, we keep in the database those topics
that are taught, the dates and the number of times they
are taught, instruction modules played out, etc.
• For each topic and its level, there is a timed test in the

database that evaluates the users’ knowledge on
the topic at that level. The test is passed when the
user obtains a score above a pre-defined threshold.

As in a traditional classroom environment, testing is
not always sufficient by itself to make sure that topics
are “learned” by electronic book users. Developing a
deeper learning behavior for electronic book users is a
research topic for education specialists. In this paper,
we will make the, perhaps insufficient, assumption
that, for electronic book users, given a topic, passing
the associated test constitutes “learning” the topic at
that level.

Definition (Learning): Topic t is said to be learned at
level i by a user if the user passes the test for t at level
i. A learning lesson for topic t at level i is a lesson that
includes in it the test for t at level i.

3. Prerequisite dependencies

Prerequisite dependencies can be defined in
different ways. One approach is for the electronic book
administrator to enter the dependencies directly into the
system. Another approach is the automated creation of
prerequisite dependencies: the electronic book DBMS
can be instructed to create a prerequisite dependency
x→z from topic x to topic z when the number of
references to topic z in (the instruction modules of)
topic x exceed a predetermined threshold, say, K.
Similarly, DBMS can create a prerequisite dependency
xy→z when the number of references to topic z in (the
instruction modules of) topics x and y exceed K, even
though the number of references to topic z in x or y
alone may be less than K. “References to topic z” can
be (i) references to z itself or to its descendant topics in
the topic hierarchy of z, or (ii) the occurrences of
“keywords” of z.

3.1. Consistency of prerequisite dependencies
We expect that, in different electronic book

environments, different and possibly domain-
dependent consistency requirements will exist for

 4

prerequisite dependencies. As domain-independent
consistency example, consider the following rules.

Consistency Rule #1: For a dependency xa→xb, the
property a>b always holds.

That is, for a given topic, if there is a prerequisite
dependency within its levels, the dependency is always
from a higher (i.e., more detailed; more advanced)
level to a lower (i.e., less detailed) level. In order to
teach a topic at a given level, it may be necessary to
teach it first at a simpler level, but never at a more
advanced level.

Consistency Rule #2: For two dependencies xa→yb and
xc→yd, if a<c then b≤d.

This is due to the fact that, since c>a, x at level c is
a more detailed (i.e., more advanced) topic than x at
level a. Thus, teaching x at level c should necessitate
teaching y at a level at least as advanced as b, i.e., y at
level d where d is at least as high as b.

The following consistency requirement may apply
to some, but not necessarily all, electronic book
environments.

Consistency Rule #3: If there is a dependency from x
(at any level) to y (at any level) then, for each level i of
x, there is a dependency from x at level i to y at some
level.

3.2. Computing topic and prerequisite
dependency closures

Prerequisite dependencies may be
a) cyclic (e.g., x→x forms a trivial cycle; x→y

and y→x form a non-trivial cycle). The
alternative is to allow only acyclic prerequisite
dependencies (e.g., trivial or non-trivial cycles
are not allowed),

b) (left-hand-side) decomposable (e.g., xy→z is
equivalent to x→z and y→z) or
nondecomposable (e.g., xy→z is not
equivalent to x→z and y→z).

We first define what it means for a set of
dependencies to be acyclic.

Def’n: A set of dependencies is strongly cyclic if,
applying the rule of transitivity, it is possible to deduce
that a topic depends on itself. For example, the set F =
{X → Y, Y → Z, Z → X} is strongly cyclic. This still
holds if X represents a set of topics.

Def’n: A set of dependencies is weakly cyclic if,
treating the set of dependencies as decomposable and
applying the rule of transitivity it is possible to deduce
that a topic depends on itself. For example, the set F =
{WX →Y, YZ →V, V →W} is weakly cyclic.

A set of dependencies is considered to be acyclic if it is
neither weakly cyclic nor strongly cyclic. Absence of
weak cycles implies absence of strong cycles.

The simplest prerequisite dependency model that is
commonly used in hardcopy textbooks allows only
acyclic and decomposable prerequisite dependencies.
However, one can also have electronic book
environments in which prerequisite dependencies are
cyclic and/or nondecomposable. Consider the case of a
cycle of three prerequisite dependencies, namely, x�y,
y�z, z�x among topics x, y, and z. We interpret the
existence of this cycle as “in any lesson request having
one of topics x, y, or z, the instruction modules that
cover all three topics must be included into the
constructed lesson”. Clearly, this attaches a separate
semantics to a cycle of prerequisite dependencies,
which overrides the semantics of each individual
prerequisite dependency in the cycle.

As for decomposability, consider the prerequisite
dependency ab�c which states that “ a and b together
in a presentation request have c as the prerequisite” or
“the prerequisite of a and b is c”. We say that ab�c is
nondecomposable if ab�c does not imply that a�c
and b�c. (Note that the reverse is always true, i.e., the
prerequisite dependencies a�c and b�c always imply
the prerequisite dependency ab�c)3. Below we
illustrate a case in which prerequisite dependencies are
nondecomposable.

Example 3.1. Assume s, q, and r represent the topics
SQL, Query-by-Example, and Relational Calculus,
respectively. When a lesson about both SQL and
Query-by-Example, both at level 2, is requested, it may
make sense to include Relational Calculus at level 1
into the lesson for completeness (thus, the prerequisite
dependency s2q2→r1). However, we may not require
Relational Calculus to be included into the lesson if
only one of SQL or Query-by-Example is requested
(e.g., s2q2→r1 is not equal to s2→r1 and q2→r1).

In the rest of this section, we discuss how to
compute topic and/or prerequisite dependency closures
when prerequisite dependencies are cyclic/acyclic and
decomposable/nondecomposable.

3.2.1. Cyclic and nondecomposable prerequisite
dependencies. If prerequisite dependencies are
nondecomposable and allowed to be cyclic then their
semantics is equivalent to the semantics of functional
dependencies. That is, prerequisite dependencies can
be axiomatized using Armstrong’s axioms, which are
sound and complete [3]. One can then compute P+, the

3 When prerequisite dependencies are automatically created

by the DBMS as discussed in the first paragraph of section
3, their semantics implies nondecomposable prerequisite
dependencies.

 5

closure (i.e., the set of implied prerequisite
dependencies) of a set P of prerequisite dependencies.
More interestingly, one can find the closure (i.e., all the
prerequisite topics) X+ of a set X of topics by using the
O(N.L) closure algorithm for a set of attributes [3]
where N is the number of prerequisite dependencies,
and L is the length of the encoding for a prerequisite
dependency.

Assume that there is a nondecomposable
prerequisite dependency xy�z in the database. First,
the user u asks for a lesson which includes x, but does
not include y or z. Later, the user u asks for another
lesson which includes y, but does not include x or z. As
a result of these two lessons, user u will be taught x and
y, but not z, thus violating the prerequisite dependency
xy�z. One possible solution to this problem is to
utilize the user profiles. Since user profiles contain
users’ knowledge about all instruction modules that are
taught to the user, topic z coverage can be added to the
second lesson request when topic y is requested (it is
known in the user profile that x is taught to the user
before).

3.2.2. Acyclic and decomposable prerequisite
dependencies. If prerequisite dependencies are acyclic
and decomposable then a given topic cannot be a
prerequisite to itself. This means that the reflexivity
axiom for functional dependencies does not apply to
prerequisite dependencies of this model. Similarly,
augmentation axiom of functional dependencies does
not apply either4. Also, this model allows prerequisite
dependencies of the form xy→z to be equivalent to
x→z and y→z, which is not true for functional
dependencies. For this case, to find the closure P+ of a
set P of prerequisite dependencies, we can first “fully”
decompose all prerequisite dependencies into P’ so as
to have only one topic in the left-hand-side and the
right-hand-side of each dependency. Then, we can
create a dependency graph GP(V,E), where V is the set
of topics, and the set E of edges contains the edge from
node a to node b iff P’ contains the prerequisite
dependency a�b. The closure P+ of P can then be
found by finding the transitive closure of GP. And, the
closure X+ of a set of topics X can be found by finding
all topics that contain nodes in GP reachable from each
of the nodes in X. Also note that we can check the
acyclicity of a set of prerequisite dependencies in this
model by simply checking the existence of a cycle in
its precedence graph in linear time.

4 Given x→y and z, zx→zy is valid for functional

dependencies. However, for prerequisite dependencies,
when z is replaced by x, we have xx→xy, which creates a
trivial cycle and is not allowed.

3.2.3. Cyclic and decomposable prerequisite
dependencies. If prerequisite dependencies are cyclic
and nondecomposable then finding the closure P+ of a
set P of prerequisite dependencies is identical to the
solution of section 3.2.2 above. We first “fully”
decompose all prerequisite dependencies in P into P’ so
as to have only one topic in the left-hand-side and the
right-hand-side of each dependency. Then, we create
the dependency graph GP(V,E), where V is the set of
topics, and the set E of edges contains the edge from
node a to node b iff P’ contains the prerequisite
dependency a�b. The closure P+ of P can be found by
finding the transitive closure of GP. And, the closure X+
of a set of topics X can be found by finding all nodes in
GP reachable from each of the nodes in X.

3.2.4. Acyclic and nondecomposable prerequisite
dependencies. If prerequisite dependencies are acyclic
and nondecomposable then the left-hand-side of a
prerequisite dependency may contain multiple topics.
In this case, one may think of using a dependency
graph where the node from which an edge emanates
contains a set of topics. Such a graph leads to a
hypergraph as a dependency graph. However, unlike
the solutions in sections 3.2.2 and 3.2.3, the transitive
closure of such a graph would not capture all the
dependencies. Consider, for example, the set of
dependencies {x→a, ab→c}, and the request for the
closure of the set {x, b} of topics. The transitive
closure of the dependency graph returns {x, a, b} as the
answer whereas the correct answer should be {x, a, b,
c}. Thus, transitivity itself is not sufficient for topic
closure. Below we give a sound and complete
axiomatization for this case, and describe a topic
closure algorithm.

We observe that Armstrong's Axioms, used to
axiomatize standard functional dependencies, are not
appropriate when acyclicity is demanded. The axiom of
reflexivity generates trivial (weak) cycles, as does the
axiom of augmentation.
Def’n: Pseudo-transitivity axiom: If X→Y and
WY→Z then WX→Z.

Def’n: Split/join axiom: if X→AB then X→A and X→
B, and vice-versa.

Theorem 1: The pseudo-transitivity and split/join
axioms are sound and complete.
Proof: Omitted due to space requirements. Please see
[1] for details.

The following algorithm computes the closure of a set
of topics X.
Algorithm:
1. X(0) is set to empty.

 6

2. X(i+1) is X(i) U {y} such that there is a dependency in
F of the form Xi → y, where Xi ⊆X U X(i) and y ∉X.

The algorithm terminates when X(j)=X(j+1) (when no
dependency can be invoked), and the output X+ is X(j).
Clearly it will always terminate.

Lemma 1: Algorithm 1 correctly computes X(+).
Proof: Omitted due to space requirements. Please see
[1].

This algorithm can be implemented naively to check
through the set of dependencies at each iteration to see
whether any new topics can be added. A more efficient
implementation is described in [3], which runs in time
linear in the size of the dependencies (counting one for
each topic which appears in each dependency).

Finally, we show that our system does not break the
condition of acyclicity.

Lemma 2: Computation of the closure of a set of
topics X under a set F of acyclic nondecomposable
dependencies does not violate acyclicity. That is, X
⇒X+ will not imply any cycles.
Proof: Omitted due to space requirements. Please see
[1].

4. Automated lesson construction

When users request a lesson from an electronic
book in an automated manner, what types of
constraints would they attach to their requests? We list
some possibilities:

(a) Lessons about topics. An example request is
“prepare a lesson on topics x at level i and y
at level j”.

(b) an upper bound tUB on the time length of the
lesson. An example is “prepare a lesson on
topic x which is at most 30 minutes long”.

(c) Lessons constructed around tests,
assignments, quizzes, chapters, etc. An
example is “Prepare a lesson on (the topics
covered in) the current assignment”. Since we
assume that there are mappings from tests,
quizzes, assignments, chapters, etc., into
topics, these requests reduce to requests of
type (a) above, and we will not deal with such
requests.

(d) A quantifiable increase, say integer k, on the
user’s knowledge level(s) on a given topic.
An example is “prepare a learning lesson (i.e.,
one with tests) on topic x that, if I pass the
tests in the lesson, increases my current
knowledge on topic x by k units (e.g., from
“beginner” to “intermediate”)”.

In this section, we characterize and classify
“typical” automated lesson construction requests, and
discuss how they can be evaluated.

4.1. Automated lesson construction requests
The lesson construction requests described in this

section have different solutions for each prerequisite
dependency case (1-4) described in Section 3.2. The
differences between the solutions are in the calculation
of topic closures and in the handling of cycles. Topic
closure calculation is included in deciding the
complexity of the algorithms: topic closure can be
calculated in O(N) for all four cases where N is the
number of topics in the database and the length of a
dependency encoding is one.

Lesson Request 1. Given (a) the user’s knowledge
levels for topics, (b) the set X of topics, and (c)
prerequisite dependencies in the electronic book,
produce a lesson that teaches topics X, in the order
given, at the highest levels.

Request 1 can be evaluated by a polynomial-time
algorithm. First, we calculate the topic closure X+ of X
using the highest detail level. Then we eliminate the
topics known by the user from X+. The last step is to
find the instruction modules that map to the topics that
are left in X+, and to order them (using their total
ordering) to obtain a lesson. Steps 1 has complexity
O(N) where N is the number of topics in the database,
and steps 2 and 3, each, have O(M) complexity, where
M is the number of topics in X+.

Lesson Request 2. Given (a) the user’s knowledge
levels for topics, (b) prerequisite dependencies in the
electronic book, (c) the set X of topics, and (d) an
upper bound tUB on the lesson timelength, produce
within the time bound tUB a lesson that teaches all the
topics in X, in the order given in X, at the highest equal
possible levels.

Request 2 can also be evaluated by a polynomial-
time algorithm [2].

Lesson Request 3. Given (a) the user’s knowledge
levels for topics, (b) the set X of topics and priorities
attached to topics in X, (c) prerequisite dependencies
in the electronic book, and (d) an upper bound tUB on
the lesson timelength, produce a lesson of duration tUB
or less that has the highest total priority.

Theorem 2. Request 3 is a NP-Complete problem.

Proof: Omitted due to space requirements. Please see [2].

The following request asks for a lesson that maximizes
the number of topics taught from the user’s list of
chosen topics.

Lesson Request 4. Given (a) the user’s knowledge
levels for topics, (b) the set X of topics, (c)

 7

prerequisite dependencies in the electronic book, and
(d) an upper bound tUB on the lesson timelength,
produce a lesson of duration tUB or less that teaches as
many of the topics in X as possible.

Theorem 3: Request 4 is NP-Complete.

Proof: Omitted due to space requirements. Please see [1].

In the next three sections, we propose four heuristics
to evaluate Requests 3 and 4, and evaluate their
expected and worst-case behavior. The algorithm
below uses these four heuristics in evaluating Request
4.

Request 4 Heuristic Algorithm:
begin
time:=0;
results:={};
repeat
 begin
 Pick topic x from X using one of the heuristics in
 section 4.2;
 Find the topic closure x+ of x at the highest detail
 level;
 Eliminate from x+ the topics that are already known
 by the user, to obtain y;
 results := results UNION y;
 time := time + time of y;
 end
until time > tUB;

The complexity of the above algorithm is O(N) where
N is the number of topics.

Lesson construction requests above dealt with
constructing teaching lessons, i.e., lessons with no
tests. The requests below are for construction learning
lessons, i.e., lessons with tests, where the user’s
knowledge levels about topics are evaluated.
Lesson Request 5. Given (a) the user’s knowledge
levels for topics, (b) prerequisite dependencies in the
electronic book, and (c) an upper bound tUB on the
lesson time length, produce a learning lesson of
duration tUB or less for topics X such that, if the tests in
the lesson are passed, the sum of the level increases on
topics in X is maximized.
Theorem 4: Request 5 is NP-Complete.
Proof: Omitted due to space requirements. Please see
[2].

An approximate algorithm similar to the one in Figure
4.2 can also be used for evaluating Request 5.

Lesson Request 6. Given (a) the user’s knowledge
levels for topics, (b) prerequisite dependencies in the
electronic book, (c) the set X of topics, (d) an upper
bound tUB on the lesson time length, and (e) integers tp
and k, produce a learning lesson of duration less than

tUB that, if the tests in the lesson are passed, increases
the user’s knowledge levels on at least tp topics in X by
at least k levels.

4.2. Heuristics for expensive lesson requests
Best Base Heuristic (BB): Find the topic x in X which
is a prerequisite to the largest number of topics in X;
and add the corresponding instruction modules into the
lesson being constructed.
The motivation for heuristic BB is that if a topic x is
included in a lesson, it will satisfy, as much as possible,
the prerequisite requirement of other topics in X. To
find x, we find the prerequisites of each topic in X.
Next, we calculate the number of times a topic appears
in the prerequisite lists of other topics in X. The topic
with the highest prerequisite count is chosen.

Example 4.1. Assume that the knowledge level of the
user is zero on all topics; X = {a4, b6, c5, d6, e5, f4}; the
instruction modules of all topics at all levels take the
same amount of time, say t, to present (e.g. a4 takes 4t
time to present); total time allowed for the presentation
is 20t; and the prerequisite dependencies are a4�b5,
c4�a4, d6�b3, and e3�f2. We calculate the
prerequisite count (the number of times a topic appears
in the second column) for a as 1, b as 3, c as 0, d as 0, e
as 0, and f as 1. Using heuristic BB, b will be the first
topic included in the result. A solution set of topics
using BB would be {b6, a4, f4, c5} with duration 19t.
Any other solution set with four or more topics which
does not include b will have a duration longer than 20t.
Clearly, for this example, including b as the first topic
into the solution by heuristic BB is a good choice.

Lowest Detail Level Heuristic (LDL): Find the topic
with the lowest detail level, which is not known by the
user, and add the corresponding instruction modules
into the lesson being constructed.
The motivation for heuristic LDL is that lower detail
levels of topics are more likely to be prerequisites to
other topics. Then, it is easier to include a topic in a
lesson if the prerequisite of the topic is already
included in a lesson. Hence, adding the topic with the
lowest detail level into the lesson being constructed
increases the chances of other topics in X being
included.

Example 4.2. Assume that the knowledge level of user
is zero on all topics; X = {a4, b6, c3, d6, e4, f4}; all
topics at all levels take the same amount of time (t) to
present (e.g. a4 takes 4t to present); total time allowed
for the presentation is 15t; and the prerequisite
dependencies are a4�c2, b4�c1, d6�b3, and e3�f2.
Using heuristic LDL, c will be the first topic included
in the result as it has the lowest detail level unknown to
the user. A solution set of topics using LDL would be
{c3, a4, f4, e4} with duration 15t. Any other solution set

 8

with four or more topics will have duration longer than
15t, which is not acceptable. Including c as the first
topic into the solution by the heuristic LDL allows us
to include other topics that depend on c, and is clearly a
good choice.

Highest Number of Detail Levels Heuristic (HNDL):
Find the topic with the highest number of detail levels
that is not known by the user, and add the
corresponding instruction modules into the lesson
being constructed.
The motivation for heuristic HNDL is that a topic with
high number of detail levels has a higher chance of
being a prerequisite to other topics than a topic with a
low number of detail level. Similar to LDL, including
more prerequisites in a lesson increases the chances of
other topics in X to be included into the lesson.

Example 4.3. Assume that the knowledge level of user
is zero on all topics; X = {a4, b6, c4, d4, e4, f5}; a topic
at level x takes x*t time to present (e.g. a4 takes 4t time
to present); total time allowed for the presentation is
15t; and the prerequisite dependencies are a4�b6,
c4�b6, d4�b6, b6�f5 and e4�f5. Using heuristic
HNDL, b will be the first topic included in the result as
it has the highest number of detail levels unknown to
the user. A solution set of topics using HNDL would be
{b6, f5, a4} with duration 15t. Any other solution set
with three or more topics will have a duration of at
least 15t, which is not any better than the solution
found by HNDL heuristic. Including b as the first topic
into the solution by the heuristic HNDL allows us to
include other topics that depend on b, and is clearly a
good choice.

Lowest Number of Prerequisites Heuristic (LNP):
Find the topic with the lowest number of prerequisites
(that are not known by the user), and add the
corresponding instruction modules into the lesson
being constructed.
The motivation for heuristic LNP is that we expect to
include more topics by choosing topics with few
prerequisites.

Example 4.4. Assume that the knowledge level of user
is zero on all topics; X = {a5, b6, c5, d6, e3, f4}; a topic
at level x takes t*x time to present (e.g. a5 takes 5t time
to present); total time allowed for the presentation is
20t; and the prerequisite dependencies are a5�b6,
c5�a5, d6�b6, b6�f4, and e3�f4. Then the number of
prerequisites for a is 2 (i.e., b6 and f4), b is 1 (i.e., f4), c
is 3 (i.e., a5, b6 and f4), d is 2 (i.e., b6 and f4), e is 1 (i.e.,
f4), and f is 0. Using heuristic LNP, f will be the first
topic included in the result. A solution set of topics
using LNP would be {f4, e3, b6, a5} with duration 18t.
Any other solution set with four or more topics, which
does not include f, will have a duration of at least 22t.

Clearly including f as the first topic into the solution by
the heuristic LNP is a good choice.

4.3. Evaluating the expected case behavior of
the heuristics for lesson request 4

We now briefly summarize the experiments conducted
to evaluate the expected performances of the four
heuristics described above for only the lesson request
4. To evaluate the heuristics, we simulated an
electronic classroom. Electronic classroom is an
education environment where students decide on the
length and the content of a presentation about a lecture
using various constraints. We used four components
(users, topics, dependencies, and requests) to model the
electronic classroom environment. Please see the
details at [2].

To observe the effects of changing the number of
prerequisite dependencies, we kept the following
parameters constant: the number of topics 1000, topic
depth 12, length of a topic detail level 10 minutes,
presentation length 60minutes, and length of requests
10 topics. We observed that, as the number of
prerequisite dependencies increases, the number of
presented topics decreases. This result is expected as
increasing the number of prerequisite dependencies
increases the length of the presentation of topics, and
hence decreases the chances of topics being included
into the resulting lesson. All heuristics performed
within 7% of the theoretical maximum. Among the
heuristics, LNP performed the best while HNDL
performed the poorest.

To observe the effect of the topic depth (i.e., the
number of detail levels) on the percentage of requested
topics presented, we kept the following parameters
constant: number of topics 1000, length of a topic
detail level 10 minutes, presentation length 60 minutes,
and length of requests 10 topics. The number of
prerequisite dependencies (400-4000) was changed
proportional to the change in the number of detail
levels (2-20). The results were similar to prerequisite
dependency results. As the topic depth increases, topics
at higher detail levels are included in the requests.
Topics at higher detail levels have longer durations
than topics at lower detail levels; and this decreases the
chances of a topic being included into the resulting
lesson. Obviously, topic depth and the percentage of
the requested topics presented are inversely
proportional. As the topic depth increases, the
percentage of the requested topics presented decreases.

As for the effect of increasing the time upper bound tUB
on the presentation, we kept the following parameters
constant: number of topics 1000, topic depth 12, length
of a topic detail level 10 minutes, number of

 9

prerequisite dependencies 2400, and length of requests
10 topics. Clearly, increasing the time limit increases
the chances of a topic being included into the resulting
lesson. Similar to the previous results, the behaviors of
all heuristics closely resemble the theoretically possible
best result. Time upper bound and the percentage of the
requested topics presented are directly proportional. As
the time upper bound increases, the percentage of the
requested topics presented increases.

As expected, changing the number of topics in the
simulation had no effect on the performance of the
heuristics. To observe this, we kept the following
parameters constant: topic depth 12, length of a topic
detail level 10 minutes, presentation length 60 minutes,
and length of requests 10 topics.

Changing the request length (i.e., the number of topics
in X) had an effect similar to changing the prerequisite
dependencies or changing the topic depth. In this
experiment, we kept the following parameters constant:
number of topics 1000, topic depth 12, length of a topic
detail level 10 minutes, presentation length 60 minutes,
and the number of prerequisite dependencies 2400.
Since the time limit on the lesson does not change, the
percentage of requested topics that are presented
decreases. Request length and the percentage of the
requested topics presented are inversely proportional.
As the request length increases, the percentage of the
requested topics presented decreases.

And, for the effectiveness of the heuristics compared to
calculating the best lesson by enumeration to the lesson
request 4 of Section 4.1, we observed that, as the length
of the lesson increases, the time to calculate the best
solution increases exponentially. When the lesson
includes 18 topics, all heuristic algorithms produce a
solution under 5 mseconds while it takes over 167
seconds for the solution by enumeration. Clearly, as the
request length increases, heuristic solutions become a
must for an efficient implementation. Thus, all of the
four heuristics performed well with results that are
within 7% of the best solution. Relatively, LNP
performed the best, BB and LDL performed very close
to LNP, and HNDL performed the poorest. Similar
results can be shown for lesson requests 3, 5 and 6.

4.4. Worst-case performances of lesson
requests

From the previous section, we have observed that the
expected performances of lesson construction requests
are shown to have acceptable performance on
randomly generated test data. However, in the worst
case their performance can be dramatically poorer, on
data contrived to elicit this performance. Next, we
illustrate this for the lesson construction request 4 and
two of the heuristics.

4.3.1. Request 4 and Best-Base heuristic. This
heuristic picks the topic x from X which is a
prerequisite to most other topics from X, and adds (x)+
to the output, then iterates. We consider the case where
tUB has some specified value, k, and all topics have unit
cost. We set X to be the topics x’, x’’, and xi for all 0 ≤ i
≤ k. We choose F to consist of x’’→x’, x’ →yi, for all
1≤ i ≤k. There are no dependencies of the form xi → z,
and so we could teach all k topics xi. However, the Best
Base Heuristic leads us to choose to teach x0, as it is
the base of the most topics in X. Since x0 depends on k
topics which are not in X, these must be taught first,
meaning that applying this heuristic results in none of
the topics in X being taught.

Although this example is contrived, it could feasibly
occur. Suppose X consisted of two distinct kinds of
topic: a set of basic topics which have no prerequisites,
but also are not prerequisite to any other topics in X;
and a few very advanced topics, which have a common
prerequisite, which in turn depends on many other
(unrequested) topics. The most topics from X would
be achieved by teaching the simple topics, but the Best
Base Heuristic will cause the system to try to teach the
advanced topic that has many prerequisites.

4.3.2. Request 4 and the Lowest-Number-of
Prerequisites heuristic. In tests, the Lowest Number
of prerequisites (LNP) Heuristic performed the best out
of the heuristics tested, but again we can force it to
give bad results. We consider tUB to be set to a constant
value, 2k, and all topics have unit cost. We set X to be
the topics xi for 0≤ i ≤ k, and create F with the
following dependencies: x0 →yi for 1 ≤ i ≤ k-1; and ∀i,
1 ≤ j ≤ k, xi →zj. Since x0 has k-1 prerequisites, and all
other topics in X have k prerequisites, LNP will lead us
to choose to teach x0, at total cost k. To teach any
further topics from X, we require all the k zj’s, but by
the time these have been taught, the time bound of 2k
has been reached. In total, LNP allows one topic from
X to be taught. However, the optimal solution is to
teach all k topics zj and then all k dependent topics xi,
i>0, resulting in k topics from X being taught within
the time-bound. Again, this situation could feasibly
occur, if X consisted on a large set of similar topics,
which have a large common set of prerequisites, and
one unrelated topic which has a lesser number of
prerequisites. Although teaching the unrelated topic has
lower initial cost, this cost does not `buy' anything
useful.

4.5. Worst-case performance guarantees of
lesson requests

For worst-case performance guarantees of lesson
request algorithms, we will consider the simplest case,

 10

i.e., decomposable prerequisite dependencies, and the
lesson request 4. We first transform the problem into
the bipartite graph problem, and state it as a
mathematical integer programming problem, which are
known to be difficult to approximate.

So far we have often considered the case where the
hierarchy of dependencies is shallow: the topics are
partitioned into two sets, with dependencies from one
set to the other. We shall now show that this situation
is not unrepresentative: any set of decomposable
dependencies can be rewritten as a two-level hierarchy.
Each topic is represented by a node, x, on the left side
of the bipartite graph. The cost of this topic is set to
zero. We also create a topic, x’, on the right hand side
of the bipartite graph whose cost is that of the topic.
We initialize F, the new set of dependencies, to be x
→x’. We then add dependencies to F such that x →y’
for each y ∈ (x)+. This problem is identical to the
original problem instance.

In the case that we are trying to answer a request of the
form of Request 4, we can reduce the problem further.
Our observation is that we are only interested in the
requested topics in X. Where we have that some y not
in X has closure (y)+ such that no member of (y)+ is in
X, then we can replace the whole of (y)+ with a single
topic whose length is the sum of the lengths of the
component topics. We can also merge any topics which
form a cycle into a single topic, whose prerequisites are
the union of the prerequisites of the component topics.
The intuition here is that if any topic in a cycle is
chosen, then all topics in that cycle must be included.
This leads to a canonical form for representing such
requests as a bipartite graph problem. The goal is to
‘collect’ as many nodes on the left side as possible
within the time limit. To collect such a node, we must
‘buy’ all the nodes on the right to which it is connected,
each of which has a certain cost. We have a total
budget of tUB. This problem can also be stated as a
mathematical integer-programming problem:

Maximize f(X) subject to: C.X ≤ tUB Xi = 0,1 ∀i
where f(X) is defined as Σx∈X Πy∈x+y.

Unfortunately, problems of this type are hard to
approximate. Results from Mathematical Programming
Theory [4] show that there is effectively no
approximation for the general nonlinear programming
problem. Even considering the extreme restriction that
each topic can depend on at most one topic, (that is, for
a topic x then (x)+ contains at most one other item),
then the problem is still hard. This restricted problem
forms an instance of quadratic programming, for which
no general approximation algorithms are known [4].
This leads us to conclude that for requests like Request
4, there are unlikely to be approximation algorithms

that can guarantee that their results are within any
factor of the optimal, and so we should be content with
using ad hoc heuristics to solve real instances of the
problems.

5. Conclusions

In this paper, we have studied the use of a multimedia
database, and database techniques for electronic books
containing pre-captured multimedia presentations
about topics in an electronic book. We have designed
an electronic book environment for the automated
assembly of multimedia lessons, and discussed possible
heuristics for lesson construction and their expected-
case and worst-case time complexities.

6. Acknowledgments

We would like to thank Dr. G. Phillip Cartwright for
providing us references on CAL and CAI literature,
and for his insightful comments on this work. G.
Cormode thanks Mike Paterson for a discussion
regarding the hardness of Request 4 under
decomposable dependencies.

7. References
[1] Cormode, G., “Topic Dependencies for Electronic

Books”, Unpublished manuscript, 1999. Available at
http://erciyes.ces.cwru.edu/tekin/eb2.ps

[2] Ozsoyoglu, G,. Balkir, N.H., Cormode, G., Ozsoyoglu,
Z.M., “Electronic Books as Multimedia Databases”,
unpublished manuscript, available at
http://erciyes.ces.cwru.edu/tekin/eb1.ps

[3] Ullman, J.D., “Principles of Database and Knowledge-
Base Systems”, Vol. 1, 1988.

[4] Bellare, M., and Rogaway, P., “The Complexity of
Approximating a Nonlinear Problem”, Math.
Programming, 69: 429-442, 1995

