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Abstract— Temporal data analysis in data warehouses and data
streaming systems often uses time decay to reduce the importance
of older tuples, without eliminating their influence, on the results
of the analysis. While exponential time decay is commonly used
in practice, other decay functions (e.g. polynomial decay) are
not, even though they have been identified as useful. We argue
that this is because the usual definitions of time decay are
“backwards”: the decayed weight of a tuple is based on its age,
measured backward from the current time. Since this age is
constantly changing, such decay is too complex and unwieldy for
scalable implementation.

In this paper, we propose a new class of “forward” decay
functions based on measuring forward from a fixed point in
time. We show that this model captures the more practical
models already known, such as exponential decay and landmark
windows, but also includes a wide class of other types of time
decay. We provide efficient algorithms to compute a variety of
aggregates and draw samples under forward decay, and show
that these are easy to implement scalably. Further, we provide
empirical evidence that these can be executed in a production
data stream management system with little or no overhead
compared to the undecayed computations. Our implementation
required no extensions to the query language or the DSMS,
demonstrating that forward decay represents a practical model
of time decay for systems that deal with time-based data.

I. INTRODUCTION

“One today is worth two tomorrows”
— Benjamin Franklin

In processing data with timestamp information, it is com-
mon to downweight tuples which correspond to older data.
Intuitively, this reflects the belief that the most recent data
is most relevant for query answering, while older data is of
less significance, and can be counted at a lower weight or
ignored entirely. Notions of such “time decay” have been
widely adopted across a broad class of systems, such as
data warehouses, data streaming systems, sensor networks,
and other distributed monitoring systems. Here, we focus on
systems for managing data streams, although our analysis and
observations apply broadly to all these settings.

Building robust systems for managing data streams is a
challenging task, since typical streams (in application areas
such as networks and financial data) arrive at very high rates

1Work done while visiting AT&T Labs–Research.

and require immediate processing. Queries are typically con-
tinuous, meaning that the output of a query is itself a stream,
which may be the input for subsequent querying. Systems must
also cope with data quality issues: for example, there is no
guarantee that tuples will be presented in timestamp order, and
so techniques such as punctuations [36] and heartbeats [25]
are used to avoid query blocking. A number of general
purpose prototype streaming systems have been created, such
as Stream [35], Aurora [38] and TelegraphCQ [8]; the current
state-of-the-art deployed streaming systems (including GS [15]
and Streambase [34]) are specialized for particular application
domains (networking and financial).

Motivated by such applications, there has been a great deal
of work on algorithms for efficiently answering streaming
queries under time decay. Much of this focus has been on
giving approximate answers to aggregate queries. However,
within current production systems, the support for time decay
is actually quite limited. We give our examples and evalua-
tion using GS, a mature network stream processing system
developed at AT&T [15]. This system allows a wide variety
of queries to be posed in an SQL-like language, and has many
hooks in it for extensibility: support for user defined operators
(UDOPs) and user defined aggregate functions (UDAFs),
which allow arbitrary (C/C++) code to be executed on selected
tuples. This infrastructure has enabled approximate algorithms
to be evaluated in the non-decayed case [10]. Yet support for
time decay has so far been limited to a simple time-bucket
approach: the query specifies a duration, such as the time in
the granularity of minutes, and an answer is provided for each
minute-wise time-bucket.

On closer inspection, it is clear that many of the approaches
proposed so far for handling time decay do not scale well
within streaming systems. Answering queries with a sliding
window exactly requires buffering large quantities of tuples.
While the approximate solutions, such as exponential his-
tograms and its variants [17], [20], [12], improve the resources
needed, they can still be of the order of megabytes of space
per group and milliseconds of time per tuple to track com-
plex holistic aggregates. But the motivating applications can
typically only afford a few kilobytes of space per group in a
query (since there can be tens of thousands of active groups)
and microseconds per update, at best. So while these solutions



(surveyed in more detail in Section VII) have good asymptotic
performance, they are not yet suitable for deployment in high
throughput systems.

The complexity of existing algorithms for time decay arises
because work so far has mostly concentrated on the case that
we dub backward decay. That is, the weight of an item is
computed based on its age, measuring back from the current
time. This definition is motivated based on physical analogies:
backward decay based on an exponential function resembles
radioactive decay; with a polynomial function, it resembles the
dispersion of (sound) energy. But implementing such decay
is problematic, since an item’s age changes as time elapses,
making it necessary to maintain a lot of additional information
to recompute the relative weights for the query.

Our Contributions. We propose a new class of decay func-
tions which instead measures the age of an item forwards
from an appropriate landmark point. Thus we call this class
forward decay. It has the advantage that it can be much easier
to compute with, since the “forward age” of an item (relative to
the landmark) is fixed once it has been observed; its relative
importance diminishes as newer items are seen, since their
weights grow to dominate the older weights. It can also be
motivated by physical analogies, again to radioactive decay,
but also to (visual) perspective: the apparent height of objects
is captured by a linear decay function, reaching zero at the
horizon (the landmark).

We show several important properties of forward decay:
• Exponential decay is identical under both forward and

backward decay models. The forward view of exponential
decay helps to explain why this decay model is easier to
compute; it also allows us to propose simple, effective
algorithms for sampling under exponential decay, which
strictly improve on the state of the art.

• For a large class of functions, specifically the mono-
mials, forward decay guarantees a useful relative decay
property, which is that the effective weight of an item
is a function of its relative age: how far it falls along
the interval between the landmark time and the current
time. This is a natural and intuitive property that was not
attainable under backward decay models.

• Forward decay captures and generalizes the existing
notions of landmark windows.

Our analysis shows how forward decay can be computed
using existing techniques for aggregates on weighted tuples
in data streams. As a consequence, efficient and scalable
algorithms follow immediately, with the same space and time
bounds as their undecayed counterparts. Further, we imple-
ment these within the GS system, and compare to a selection
of general techniques for backward decay. Simple aggregation
such as count and sum is immediate, while holistic aggregates
such as quantiles and heavy hitters require only appropriate
UDAFs for the weighted versions of the aggregates. No
extensions to the query language or changes to the system
are needed. We observe that the forward decay solutions
are practical for use in high speed systems, in contrast to

the backward decay methods. In our experiments on live
network streams, we observed that the forward decay approach
could answer queries on multi-gigabit data without loss, while
methods based on backward decay dropped many packets, and
reached 100% CPU load.

Outline. We proceed as follows: In Section II we describe
decay models and existing backward decay definitions, then in
Section III we introduce our model of forward decay and study
its properties. We show how to compute aggregates under
forward decay in Section IV, and how to draw samples in
Section V. Implementation issues are discussed in Section VI,
related work in Section VII, and our experimental study is
described in Section VIII.

II. DECAY FUNCTIONS

We consider streams of input items (ti, vi), which describe
item arrivals. We assume the i’th arrival has an associated time
stamp ti (this can be either given explicitly or be implicit as
the arrival time). It may also have some associated value vi:
this can correspond to a description of the item (for example,
the source-destination pair of a network packet), or a count
associated with that item.

Definition 1: A decay function takes some information
about the ith item, and returns a weight for this item. It can
depend on a variety of properties of the item such as ti, vi

as well as the current time t, but for brevity we will write it
simply as w(i, t), or just w(i) when t is implicit. We define
a function w(i, t) to be a decay function if it satisfies the
following properties:
1. w(i, t) = 1 when ti = t and 0 ≤ w(i, t) ≤ 1 for all t ≥ ti.
2. w is monotone non-increasing as time increases: t′ ≥ t ⇒
w(i, t′) ≤ w(i, t).

A. Backward Decay Functions

Prior work on time decay has focused on decay functions of
a particular form: where the weight of an item can be written
as a function of its age, a, where the age at time t > ti is
simply a = t− ti. We refer to decay of this form as backward
decay, since we are always measuring back from the current
time to the item’s timestamp. More formally, we state:

Definition 2: A backward decay function is defined by a
positive monotone non-increasing function f() so that the
weight of the ith item at time t is given by

w(i, t) =
f(t− ti)
f(t− t)

=
f(t− ti)

f(0)
The denominator in the expression normalizes the weight,

so that it obeys condition 1 of Definition 1. Some examples
of the most popular decay functions are generated by picking
f to be of a certain form, such as:

No decay. The trivial function f(a) = 1 for all ages a weights
all ages equally. This means that the time-decayed model
captures prior work on non-decayed aggregates.

Sliding Window. Given a “window size” parameter, W , the
function fW (a) = 1 for a < W and fW (a) = 0 for a ≥ W



captures the common sliding window semantics—only items
whose age is less than W are considered.

Exponential Decay. The class of functions f(a) = exp(−λa)
for λ > 0 has been used for many applications in the past.
Part of its popularity stems from the ease with which it
can be computed for sums and counts: given a new update,
the exponentially decayed sum can be found by multiplying
the previous sum by an appropriate amount, then adding on
the weight of the new arrival. This backward decay function
ensures that the time for f to drop by a constant fraction is
the same, i.e. for a fixed delay A, the ratio f(a)/f(A + a) is
the same for all a.

Polynomial Decay. For some applications, exponential decay
is too fast, and a slower decay is required [9]. Polynomial
(backward) decay is defined by f(a) = (a + 1)−α, for some
α > 0. Note the here, (a + 1) is used to ensure f(0) = 1.
Equivalently, we can write f(a) = exp(−α ln(a + 1)).

Many other classes of backward decay are possible simply
by choosing a different form for f , including super-exponential
decays (e.g. f(a) = exp(−λa2)) and sub-polynomial decays
(e.g. f(a) = (1 + ln(1 + a))−1). It is easy to verify that all the
above functions satisfy the requirements for decay functions
(Definition 1).

There has been significant study of how to compute a variety
of simple and complex aggregates under decay functions [9],
[28], [12] (especially the special case of sliding window [4],
[17], [26]). Typically their cost is high: the space and time
required to apply decay can be many times the cost of com-
puting the aggregate without decay. We survey these results
in more detail in Section VII.

III. FORWARD DECAY

The main challenge in implementing time decay compu-
tations under a backward decay function is that we must
compute a function of the age of each item, relative to the
current time, and this is constantly changing. To compute a
simple decayed aggregate exactly, such as decayed sum, can
require revisiting every input item to compute the contribution
of that item (an exception is exponentially decayed sum
and counts, which can be tracked in constant space due to
properties of the decay function).

Instead we propose Forward Decay as a different model of
decay satisfying Definition 1. The forward decay is computed
on the amount of time between the arrival of an item and a
fixed point L, known as the landmark. By convention, this
landmark is some time earlier than all other items; we discuss
how this landmark can be chosen below. Thus we are looking
forward in time from the landmark to see the item, instead of
looking backward from the current time.

Because we wish to weight more recent items more heavily
than older ones, forward decay functions are based on mono-
tone non-decreasing functions g. In order to normalize values
given that the function value increases with time, we typically
need to include a normalizing factor in terms of g(t), the
function of the current time. More formally,

Definition 3: Given a positive monotone non-decreasing
function g, and a landmark time L, the decayed weight of
an item with arrival time ti > L measured at time t ≥ ti is
given by

w(i, t) =
g(ti − L)
g(t− L)

This definition ensures that when t = ti the weight is 1
(condition 1 of Definition 1). As t increases, this weight never
increases (due to the monotonicity of g) and remains in the
range [0, 1]. Observe that scaling g by a constant has no effect
on the value of the decayed weight.

Example 1: Consider the stream of (ti, vi) pairs

S = {(105, 4), (107, 8), (103, 3), (108, 6), (104, 4)}

Let the landmark time L = 100, and set g(n) = n2. Evaluated
at t = 110, the decayed weights are respectively

{0.25, 0.49, 0.09, 0.64, 0.16}.

The shape of this decay function is plotted in Figure 1.

As with backward decay, the most natural choices of func-
tions g fall into similar classes:

• No decay: g(n) = 1 for all n.
• Polynomial decay: g(n) = nβ for some parameter β > 0.
• Exponential decay: g(n) = exp(αn) for parameter α>0.
• Landmark Window: g(n) = 1 for n > 0, and 0 otherwise.
We discuss the properties of each of these classes of forward

decay in turn.

A. Exponential Decay

We observe that forward exponential decay coincides ex-
actly with backward exponential decay. Formally, consider
item i which arrives at time ti. Under backward decay and
the function f(a) = exp(−α(a)), its decayed weight is
w(i, t) = exp(−α(t− ti)). Under forward decay, its decayed
weight under the function g(n) = exp(α(n)) is

g(ti − L)
g(t− L)

=
exp(α(ti − L))
exp(α(t− L))

= exp(αti − αL− αt + αL)
= exp(−α(t− ti)) = w(i, t)

i.e. the two definitions precisely coincide. This is not the case
for other classes of decay such as backward polynomial decay.

This observation motivates our study of forward decay, since
it shows forward decay contains an important existing class of
functions that have been widely studied and adopted. But more
than this, viewing exponential decay from the forward decay
perspective allows us to propose effective new algorithms for
problems such as sampling (Section V).

B. Polynomial Decay

In general, one can specify arbitrary polynomial decay
functions of the form g(n) =

∑
j γjn

j for some set of γjs. But
the most natural polynomials to use are monomials, g(n) = nβ

for some exponent β. Under such decay functions, the decayed
weights obey an important relative decay property.
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Fig. 1. Relative decay property for forward decay on g(n) = n2

Definition 4: A system for determining decayed weights is
said to have the relative decay property if, for any time t
after a landmark time L, the weight for items with time stamp
γt + (1− γ)L is the same.

In other words, if the weight assigned to an item depends
only on where it falls as a fraction in the window defined by L
and t, then it is relative decay. So for instance, the item arriving
half way between L and t is assigned the same weight, as t
increases. This should be an intuitive property: it asks that the
weight assigned to an item is a function of its relative age,
that is, its age as a fraction of the total time period observed.
However, backward decay is only concerned with absolute
age, and so gives no guarantee of relative decay.

Lemma 1: Forward decay based on a monomial function
g(n) = nβ satisfies the relative decay property.

Proof: Let g(n) = nβ . The weight for an item with
arrival time ti = γt+(1−γ)L evaluated at time t is given by

w(i, t) =
g(ti − L)
g(t− L)

=
g(γ(t− L))

g(t− L)
=

(γ(t− L))β

(t− L)β
= γβ

This is illustrated in Figure 1 with g(n) = n2: at time t,
in Figure 1(a), item ti chosen to fall half-way between L and
t has weight 0.25. This is true for any time t′, as shown in
Figure 1(b), where t′i (also chosen to fall midway between L
and t′) has the same weight as before.

Landmark Choice. This observation is helpful in determining
a meaningful landmark L to choose for forward decay: because
of the relative decay property, it makes sense to set the
landmark time to the start time (or just before) of the query
in question. Then items with the same relative time within the
span of timestamps associated with the query have the same
decayed weight. From now on, we assume that the default
for L for a given query is (a lower bound on) the smallest
timestamp in the stream. For example, when timestamps are
allocated as the system time at which the tuple is observed,
we set L to be the time when the query was issued.

C. Landmark windows

Lastly, we observe that the natural equivalent of (backward)
sliding window is the Landmark window, given by the forward
decay function that assigns weight 1 to all items with times-
tamp greater than landmark L [21]. The window is said to
“close” when the query terminates—perhaps based on seeing

a certain number of tuples, or after a certain time has elapsed.
This model has been implicitly adopted by many systems,
since it is trivial to implement (just do regular aggregation
until the window closes). Here, we give a foundation for this
model by viewing it as a (simple) instance of forward decay.

IV. AGGREGATE COMPUTATION UNDER FORWARD
DECAYED MODELS

A decay function in either the forward or backward setting
assigns a weight to each item in the input (and the value of
this weight can vary over time). Aggregate computations over
such data must now use these weights to scale the contribution
of each item. In most cases, this leads to a natural weighted
generalization of the aggregate. We next work through choices
of aggregates, and show their weighted generalization. We then
discuss how to implement exact or approximate computation
of these aggregates over n tuples assuming forward decay
based on a function g and a landmark time L.

A. Count, Sum and Average

The three basic aggregates of Count, Sum and Average are
straightforward to generalize under forward decay:

Definition 5 (Count, Sum and Average): The decayed
count, C, is the sum of decayed weights of stream items

C =
n∑

i=1

(g(ti − L)/g(t− L)).

The decayed sum, S, takes an additional value vi for each
item i, and sums the weighted values:

S =
n∑

i=1

(g(ti − L)vi/g(t− L)).

The decayed average, A, is the ratio of decayed sum to
decayed count, so

A = S/C = (
∑

i

g(ti − L)vi)/(
∑

i

g(ti − L)).

Example 2: Take the same example stream given in exam-
ple 1. Then we have

C =0.25 + 0.49 + 0.09 + 0.64 + 0.16 = 1.63
S =0.25 · 4 + 0.49 · 8 + 0.09 · 3 + 0.64 · 6 + 0.16 · 4 = 9.67
A =S/C = 5.93

Observe that we can write S = 1
g(t−L) (

∑
i g(ti−L)vi). This

can be computed by maintaining the value of
∑

i g(ti−L)vi,
and scaling by the value of g(t − L) only when needed for
output. C can be maintained in the same fashion, and A is
given by the ratio of these two values. Note that the value of
the average under this definition does not vary as the current
time t increases: this is because the average gives an average
of the input values, weighted towards the more recent ones.
But, for instance, if all items have the same value v, then their
average should be v no matter when the query is executed,
which is obeyed by our definition.

Other simple numeric quantities can be computed similarly.
For example, the decayed variance V (interpreting weights as



probabilities) can be written in terms of the decayed sum of
squared values, V =

∑
i g(ti−L)v2

i /C−A2. More generally,
the decayed version of any summation of an algebraic ex-
pression of tuple values (i.e. one based on standard arithmetic
operations such as addition, multiplication and exponentiation)
is found by computing the value of the expression on tuple ti,
multiplying by g(ti −L). The final result is found by scaling
the sum by g(t− L) at query time t. Thus:

Theorem 1: Any summation of an arithmetic operation on
tuples that can be computed in constant space without decay
can also be computed in constant space under any forward
decay function.

This has immediate implications for any high-performance
streaming system: simple algebraic quantities can be computed
under any forward decay function using existing arithmetic
support. This can be specified directly in the query by spelling
out the function to create the weights, or by adding some
simple syntactic sugar to achieve the same effect. For example,
within the GS query language (GSQL), we can express a
decayed count query under quadratic decay as:
select tb, destIP, destPort,

sum(len*(time % 60)*(time % 60))/3600 from TCP

group by time/60 as tb, destIP, destPort

Here, the query finds the (decayed) sum of lengths of
packets per unique destination (port, address) pair, within
a window constrained to 60 seconds (hence the scaling by
602 = 3600). Since it is expressed entirely in the high-level
query language, the optimizer can decide how to execute it,
find shared subexpressions etc.

These results are in contrast to backward decay functions:
prior work has shown approximation algorithms for sum and
count with 1+ε relative error for any backward decay function,
but requiring a blow up in space by an O( 1

ε log n) factor.

B. Min and Max

For Min (respectively, Max), we want to find the tuple
which has the smallest (largest) associated decayed value.
Under backward decay functions, this is a challenging task,
since the changing value of the decay function over time
causes the value of the Min (Max) to vary over time. In
contrast, applying the definition to forward decay generates
the following definition:

Definition 6 (Min and Max): The decayed minimum value
MIN is defined as

MIN = min(g(ti − L)vi/g(t− L))

=
1

g(t− L)
min

i
g(ti − L)vi

and the decayed maximum value MAX is defined as

MAX = max(g(ti − L)vi/g(t− L))

=
1

g(t− L)
max

i
g(ti − L)vi.

Observe that in both cases it suffices to compute the smallest
(greatest) value of g(ti−L)vi seen so far. For MAX , when a
new (ti, vi) pair is observed, compute the corresponding value

of g(ti − L)vi, and retain the item if it exceeds the largest
value seen so far. As for algebraic aggregates, this is easily
computed within a streaming system as a simple extension of
the undecayed aggregate. In contrast, this problem is provably
hard to solve in small space under backward decay, since in the
sliding window case we can force the algorithm to “remember”
the entire contents of the window.

C. Heavy Hitters and Quantiles

For holistic aggregates such as Heavy Hitters and Quantiles,
it is more complicated to find the answer to queries. However,
we will show approximate solutions to the problem with
forward decay which have the same asymptotic costs as their
undecayed equivalents. Meanwhile, for backward decay, meth-
ods take at least a logarithmic factor more space (Section VII).

Approximate Heavy Hitters. First, we formally define the
heavy hitters problem:

Definition 7 (Heavy hitters under forward decay): For
each item in the input, v, its decayed count is given by
dv =

∑
vi=v g(ti − L)/g(t − L). Given a threshold value φ,

the φ heavy-hitters are all items v satisfying dv ≥ φC.

Example 3: Consider the example stream given in Exam-
ple 1. We have C = 1.63, and

d3 = 0.09, d4 = 0.16 + 0.25 = 0.41, d6 = 0.64, d8 = 0.49

Setting φ = 0.2, the φ heavy hitters are items 4, 6, and 8,
since their decayed counts exceed 1.63 ∗ 0.2 = 0.326.

Observe, as in heavy hitters without decay, that
∑n

i=1 di =
C, where C is the (decayed) count given by Definition 5. The
(decayed) heavy hitters are those items whose (decayed) count
is at least a φ fraction of the total (decayed) count. Efficiently
computing the heavy hitters over a stream of arrivals is a
challenging problem that has attracted much study even in
the unweighted, undecayed case. The difficulty comes from
trying to keep track of sufficient information while using much
fewer resources than explicitly tracking information about each
distinct item. Here, efficient approximate solutions are known.
Given a parameter ε, these approximate solutions may give an
error in the estimated (decayed) count of items of at most ε
times the sum of all (decayed) counts.

Theorem 2: Given an error bound ε, we find all items with
dv ≥ φC, and report no items with dv < (φ − ε)C under
the forward decay model using space O(1/ε) counters, and
processing each update in time O(log 1/ε).

Proof: Observe that we can rewrite the requirement as

dvg(t− L) ≥ φCg(t− L)

or equivalently
∑
vi=v

g(ti − L) ≥ φ
∑

i

g(ti − L).

In other words, we can treat this as an instance of a weighted
heavy hitters problem, where the weight of each item is set on
arrival as g(ti −L). Importantly, these weights do not change
over time.

We can use the SpaceSaving algorithm proposed by Met-
wally et al. [29]. As analyzed in [11], this algorithm naturally



extends to weighted updates. We omit full details of the proof
for brevity; the proof in [11] is in the context of exponentially
decayed updates, but holds for arbitrarily weighted updates.
The running time and resources needed are the same as the
original SpaceSaving algorithm, which can be implemented in
the given bounds.

Approximate Quantiles. The quantiles of a distribution gen-
eralize the median, so that the φ quantile is that item which
dominates a φ fraction of the other items. As with heavy hit-
ters, a natural weighted generalization can be used over time-
decayed weights: we now search for an item that dominates a
φ fraction of the decayed weights. Formally,

Definition 8 (Quantiles under forward decay): For
each item v, its decayed rank is computed as
rv =

∑
vi≤v g(ti − L)/g(t − L). Given a query value

φ, the φ quantile is the smallest item v satisfying rv ≥ φC.

Again, exact computation of quantiles can be costly over
large data sets, since it requires keeping information about the
whole input. Instead, approximate quantiles tolerate additive
error ε in the rank (relative to the maximum rank). We will
assume that the items are drawn from an integer domain of
size U , i.e. each vi ∈ [1, U ]. Then:

Theorem 3: Given an error bound ε, we find decayed φ-
quantiles under forward decay using space O( 1

ε log U) coun-
ters, and processing each update in time O(log log U).

Proof: Similarly to heavy hitters, we can factor out the
g(t − L) term, so that we reduce the problem to find the
smallest item i such that

∑
vi≤v g(ti − L) ≥ φ

∑
i g(ti − L).

This is a weighted quantiles problem defined over the (static)
weights g(ti − L). We can now make use of solutions to
weighted quantiles problems. The q-digest data structure [33],
[11] naturally handles weighted updates and answers the
approximate quantiles problem with the bounds given in the
statement of the theorem.

This approach applies to other holistic aggregate compu-
tations over data streams (e.g. clustering and other geometric
properties [22], [24]): factor out the g(t−L) term and track the
input using weights g(ti − L). We suppress further examples
that fit this pattern for brevity.

D. Count Distinct

Aggregates with distinct keywords, such as Count Dis-
tinct, are a little more complicated to handle. It is not immedi-
ately obvious how to extend the count distinct aggregate to the
weighted scenario. We proceed by analogy with the undecayed
case: there, we can view the process as computing a single
weight for each distinct item and summing these weights to
get the overall aggregate. In the undecayed case, the weight
for each distinct item present in the input is always 1. So for
the weighted (time decayed) case, the natural generalization
is to compute some function of the weights of each distinct
item and sum these. For time decay, the weight of an item
begins at 1 and decays towards 0, so we choose to define the
representative weight of a set of items as the maximum of
their current weights. This generalizes the unweighted case,

which can be thought of taking the max of the set of the (all
1) values attached to each distinct item. More formally,

Definition 9 (Count Distinct under forward decay): The
distinct count D of a set of items under forward decay is

D =
∑

v

max
vi=v

g(ti − L)/g(t− L).

This definition seems to be justified, since it can be ap-
proximated using techniques based on careful combinations
of unweighted count distinct summaries.

Theorem 4: Given a desired error bound ε, we can approx-
imate D under the forward decay model within relative error
(1± ε) using space Õ( 1

ε2 ).
Proof: We write distinct count under forward decay as

1
g(t− L)

∑
v

max
vi=v

g(ti − L)

and so focus our effort on estimating the quantity∑
v maxvi=v g(ti − L), which does not depend on the query

time t. As before, g(ti − L) can be computed on arrival of
the item, and does not vary with time. So we can write the
weight of item i as w(i, t) = wi = g(ti −L), and the desired
quantity is

∑
v maxvi=v wi. This now corresponds exactly to

the “dominance norm” defined in [13]. The most efficient
method to approximate this quantity is due to Pavan and
Tirthapura [31], which generalizes techniques for counting the
number of distinct items. Applied to our problem, the time cost
is Õ( 1

ε2 ) (with Õ notation suppressing polynomial factors in
log n and log ε). Each update takes time Õ(1) time. The result
is correct up to relative error 1± ε with high probability.

V. SAMPLING UNDER FORWARD DECAY

The aggregate computations discussed in the previous sec-
tion are each somewhat specific to a particular goal: finding
heavy hitters, quantiles, and other pre-defined aggregates. It
is also useful to generate generic summaries of large data, on
which ad-hoc analysis can be performed after the data has been
observed. The canonical example of such a summary is the
uniform random sample: given a large enough sample, many
aggregates can be accurately estimated by evaluating them on
the sample. We discuss various techniques for sampling from
data with weights determined by forward decay functions.

A. Sampling With Replacement

In sampling with replacement, we aim to draw samples
from the population so that in each drawing, the probability
of picking a particular item is the same. For the unweighted
case, a single sample is found by the simple procedure of inde-
pendently retaining the i’th item in the stream (and replacing
the current sampled item) with probability 1/i. Under forward
decay, the probability of sampling item i should be

w(i, t)∑n
i=1 w(i, t)

=
g(ti − L)∑n
i=1 g(ti − L)

Theorem 5: We can draw a sample with replacement under
forward decay in constant space, and constant time per tuple.



Proof: A simple generalization of unweighted version
suffices to draw a sample according to this definition. Let
Wi =

∑i
j=1 g(tj−L) denote the sum of the weights observed

so far in the stream, up to and including item i. We choose
to retain the ith item as the sampled item with probability
g(ti − L)/Wi. The probability that the ith item is chosen as
the final sample is given by

g(ti − L)
Wi

n∏
j=i+1

(
1− g(tj − L)

Wj

)
=

g(ti − L)
Wi

n∏
j=i+1

Wj−1

Wj

=
g(ti − L)

Wn

For a sample of size s, we repeat this procedure s times in
parallel with different random choices in each repetition. As
in Reservoir Sampling [37], the procedure can be accelerated
by using an appropriate random distribution to determine the
total weight of subsequent items to skip over.

B. Sampling Without Replacement

A disadvantage of sampling weighted items with replace-
ment is that an item with heavy weight can be picked multiple
times within the sampled set, which reveals less about the
input. This is a particular problem when applying exponential
decay, when the weights of a few most recent items can dwarf
all others. There are many formulations of weighted sampling
without replacement [30]. Here, we outline two approaches
that work naturally for forward decay. Both are based on the
observation that, since sampling should be invariant to the
global scaling of weights, we can work directly with g(ti−L)
as the weight of the ith item.

Weighted Reservoir Sampling. In weighted reservoir sam-
pling (WRS), a fixed sized sample (reservoir) is maintained
online over a stream. The algorithm of Efraimidis and Spi-
rakis [19] draws a sample of size k without replacement,
with same probability distribution as the following (offline)
procedure: At each step i, 1 ≤ i ≤ k, select an element from
those that were unselected at previous steps. The probability
of selecting each element at step i is equal to the element’s
weight divided by the total weights of items not selected before
step i.

The (online) algorithm in [19] generates a “key” pi =
u

1/wi

i for the ith tuple, where wi is the weight and ui is
drawn randomly from [0 . . . 1]. The sample is the set of k
items with the k largest key values. Since we can factor out
g(t−L) in forward decay and this does not affect the sampling
probability for each element, we can set the weight of each
tuple wi = g(ti − L), and obtain a sample according to the
weights in the forward decay model.

Priority Sampling. Priority sampling due to Alon et al. [3]
also generates a sample of size k, with a similar procedure:
now, the priority qi is defined as wi/ui (where ui is again
uniform from [0 . . . 1]), and the algorithm retains the k items
with highest priorities. Such a sample can be used to give

an unbiased estimator for any selection query. The variance of
this estimator is proved to be near-optimal. For similar reasons,
priority sampling can also be used over the streams with any
decay function within the forward decay model.

Theorem 6: We can maintain a weight based reservoir of
stream elements under the WRS or priority sampling models
for any decay functions in the forward decay model using
space O(k) and time O(log k) to process each element.

The time bounds for the theorem follow by keeping the
keys/priorities in a priority queue of size k. To our knowledge,
there is no way to draw such samples over a stream for
general backward decay functions without blowing up the
space considerably greater than k.

C. Sampling Under Exponential Decay

The special case of drawing a sample under exponential
decay has been posed previously, and a partial solution given
for the case when the time stamps are sequential integers [2].
By using the forward decay view, we are able to provide a
solution for arbitrary arrival times, using space proportional
to the desired sample size.

Corollary 1: We can draw a sample of size k with weights
based on exponential decay in the backward decay model
using only O(k) space.

The corollary follows immediately from the algorithms in
Section V-B, and the fact shown in Section III-A that for-
ward and backward exponential decay coincide. This strictly
improves previously known solutions, and is quite simple,
relying only on the ability to draw a weighted sample. This
observation was possible by viewing the problem through the
lens of forward decay; it appeared much more complex when
viewed as a backward decay problem.

VI. IMPLEMENTING FORWARD DECAY

A. Numerical issues

A common feature of the above techniques—indeed, the
key technique that allows us to track the decayed weights
efficiently—is that they maintain counts and other quantities
based on g(ti−L), and only scale by g(t−L) at query time.
But while g(ti−L)/g(t−L) is guaranteed to lie between zero
and one, the intermediate values of g(ti − L) could become
very large. For polynomial functions, these values should
not grow too large, and should be effectively represented in
practice by floating point values without loss of precision. For
exponential functions, these values could grow quite large as
new values of (ti − L) become large, and potentially exceed
the capacity of common floating point types. However, since
the values stored by the algorithms are linear combinations
of g values (scaled sums), they can be rescaled relative to a
new landmark. That is, by the analysis of exponential decay in
Section III-A, the choice of L does not affect the final result.
We can therefore multiply each value based on L by a factor
of exp(−α(L′ − L)), and obtain the correct value as if we
had instead computed relative to a new landmark L′ (and then
use this new L′ at query time). This can be done with a linear
pass over whatever data structure is being used.



B. Out-of-order and Distributed arrivals

It has recently been noted that many streams in practical
applications do not arrive in exactly sorted order: delays
or merging multiple streams can result in “late” arrivals.
Under backward decay, this can require significant effort to
accommodate [6], [12]. But for our forward decay methods, it
is quite straightforward to accommodate, since nowhere do any
of our proposed algorithms rely on items arriving in increasing
order of timestamps. The only caveat is that we should ensure
that queries are posed with time values t that are at least as big
as the largest timestamp ti observed so far—otherwise some
decayed weights could exceed 1. Alternately, if we allow items
whose time stamps are “in the future” relative to the query
time parameter t, then one can pose historical queries in the
forward decay model.

Similarly, we have phrased the discussion so far in terms of
a single, centralized system. But the current trend is towards
distributed, parallel systems (or within a single, multi-core,
CPU). We comment that the definition of forward decay
naturally extends to this model, and that all the techniques for
aggregate computation and sampling discussed apply naturally
to this scenario. In particular, given the data structures com-
puted at each centralized site for the same decay function and
landmark, they can easily be merged to form a data structure
summarizing the union of the inputs. These details are mostly
immediate from the definitions of the algorithms.

VII. RELATED WORK ON TIME DECAY

Related work on computing aggregates and samples with
time decay has focused on two cases: sliding window decay,
and other decay functions.

Sliding Window. The notion of a sliding window is a nat-
ural one when processing a stream of updates: since there
are too many tuples to store (especially when processing
joins), simply drop the oldest tuples. This simple definition
holds much complexity, and has led to numerous papers and
theses on processing this definition (see [21] and references
therein). Various models have been proposed for the semantics
of sliding windows. The Aurora system [7] defines sliding
windows, which can overlap; tumbling windows, which have
no overlaps; and latched windows, which are tumbling with
preserved internal states. Li et al. [27] propose an approach
based on panes: each window is divided into panes consisting
of multiple tuples, so that each “slide” drops the oldest pane.
GS typically provides tumbling window semantics by allowing
queries to be based on “time-buckets” [16].

However, evaluating aggregate queries over sliding
windows—even simple queries based on sum and count—can
require a lot of state to be maintained, since tuples must be
stored until they expire to correctly compute their effect on
the aggregate. Consequently, there has been much research
on approximate computation of aggregates under sliding
windows using much smaller space resources. The earliest
work focused on tracking sums and counts: both Exponential
Histograms (EH) [17] and Deterministic Waves [20] answer

these queries on a window of size N with relative error ε
by keeping a careful arrangement of O( 1

ε log εN) counts and
timestamps. They can extend to more complex aggregates by
replacing their internal counts with other data structures such
as sketches, but this causes the space to blow up by further
multiples of 1

ε and log N .
For more complex holistic aggregates, such as quantiles and

frequent items, Arasu and Manku proposed a generic approach
with cost only a log 1

ε log N factor larger than the unwindowed
approximate algorithms [4]. Lee and Ting [26] reduce the
space for frequent items for a fixed size window to O( 1

ε ),
the same as the unwindowed case. There has also been recent
interest in handling cases where tuples with timestamps do
not arrive in timestamp order: results have been shown for
sums and counts [6], sampling [14] and quantiles and heavy
hitters [12]. This flexibility comes at a cost: the bounds are
further logarithmic factors more expensive than their ordered
counterparts. Likewise, methods for sampling from a sliding
window require space logarithmically (in the number of tuples
in the window) larger than the desired sample size [5].

Other decay functions: exponential and polynomial decay.
Among other decay functions, exponential decay is most
popular, since a regular counter can be replaced with an
exponentially decayed counter without increasing the (asymp-
totic) space cost. More recently, there has been interest in
extending to aggregates beyond sums and counts, including
sampling under exponential decay [2], and quantiles and heavy
hitters [11], which obtain the same space bounds as the
undecayed case. We explain this by our model, where forward
and backward models of decay coincide for exponential decay.

For backward decay with other functions, such as a poly-
nomial, the space cost is typically (much) higher. Cohen and
Strauss introduced a variety of techniques for tracking sums
and counts under backward decay [9], with cost O( 1

ε log N).
This was extended to sampling and aggregate computa-
tion [14], [12], with similar blow-ups of poly( 1

ε , log N) over
the undecayed version. Our main results show that, in the
different model of forward decay, all computations can be done
in the same asymptotic resources as for undecayed aggregates.

VIII. EXPERIMENTAL EVALUATION

In this section we present the results of experimental evalu-
ation of several aggregate and sampling streaming algorithms
under forward and backward decay models.

Experimental Set-Up and Environment. All the experiments
were done in the context of the GS streaming database [15].
For simple aggregate queries (sum and count), we could write
these using the built-in GSQL aggregate functions, count()
and sum(). We compared the cost of these to that for
Exponential Histograms (EH) [17], with variations for both
sum and count. This makes for an interesting comparison,
since, following the analysis of Cohen and Strauss [9], the EH
is capable of approximating sum and count under any decay
function (forward or backward) specified at query time: we
can rewrite the decayed sum (resp. count) query as a sum of
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Fig. 2. Experiments on Count queries under time decay

multiple scaled sliding window sum (count) queries, each of
which can be answered approximately by the same EH data
structure. So we can compare the cost of exactly computing
the forward decay query to the best previous method, which
would approximate it. We also compare against the baseline
of directly computing the sum and count of the data, without
adjusting for time decay.

For sampling, we performed a similar comparison against
three classes of decay: no decay, forward decay, and backward
decay. We used the traditional reservoir sampling approach to
draw an unweighted sample [37], and compared the cost of this
to priority sampling being supplied with exponentially increas-
ing weights [3] and our implementation of Aggarwal’s method
for sampling under exponential decay [2]. For the backward
decay, all weighting is internal to the UDAF implementing
the decay, while for priority sampling, the UDAF implements
standard priority sampling and the query generates the weights
based on timestamps to feed in.

We also implemented weighted heavy hitters through the
UDAF mechanism, using C code for the weighted version of
the SpaceSaving algorithm discussed in Section IV-C2. Here,

2Our code is based on the routines at http://www.research.att.
com/∼marioh/frequent-items.

we compared to a method for answering sliding window heavy
hitter queries [12]. As in the sum and count case, it can be
shown that the results of multiple sliding window queries can
be combined to form the answer to an arbitrary (forward
or backward) decayed heavy hitter query. So again, we are
comparing our techniques to approximate aggregate queries
under decay with the best known previous method that could
be used to accomplish it. We contrast both these decayed
measures to the undecayed computation of heavy hitters,
where we can use a version of the SpaceSaving algorithm
that is optimized for unweighted (unary) updates.

All the experiments were conducted on live high-speed
network traffic. We used two-CPU, dual-core 3.0Ghz Intel
Xeon server with 4Gbytes of RAM running Linux 2.4.21,
however only one core was used to run the code. In the course
of the experiments the volume of observed network traffic was
approximately 400,000 packet/sec (about 1.8 Gbit/sec). We
could vary the effective stream rate presented to the system
by adjusting the flow sampling rate performed in hardware on
the network interface card.
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Fig. 3. Experiments on Sampling Queries under time decay

A. Experimental Results.

Count and Sum Aggregates. These queries computed a
summary (count or sum) of the traffic (presented as packets)
sent to distinct TCP servers every minute. The undecayed
query is expressed in GSQL as:
select tb, destIP, destPort, count(*)

from TCP

group by time/60 as tb, destIP, destPort

We compared the performance of sum and count queries
with their weighted (backward and forward) counterparts. The
results are shown in Figure 2. Figure 2(a) shows the effect as
we varied the stream rate from 100,00 packets/sec to 400,000
packets/sec and observed the total CPU load. This shows the
cost of forward-decayed aggregates with quadratic (“poly”)
and exponential decay (“exp”) is a little higher than processing
without decay, while supporting backward decay via expo-
nential histograms (with parameter ε = 0.1) has appreciably
higher cost, and nearly saturates the system under high traffic
load. For undecayed and forward-decayed aggregates the GS
system can optimize the query over the system’s two-level
architecture. More precisely, the system splits the query into a
low-level part performing partial aggregation using fixed-size
hash-table and a super-aggregation query combining partial
results. Our UDAFs were written to run at the high-level only.
Figure 2(b) shows our effort to remove this advantage for
the same queries by disabling this aggregate splitting in the
system. However, there is still an appreciable cost of backward
decay over forward decay.

This benefit becomes more pronounced as we vary the
accuracy parameter ε of the exponential histograms. Recall that
exponential histograms give an answer that is approximate to
within relative error 1+ε, while the other queries are computed
exactly. For the same queries as before, we decreased ε
down to 0.01, while the stream data rate was set to 100,000
packets/second (Figure 2(c)). The throughput of undecayed
and forward decayed aggregates does not alter, since they
do not depend on ε. At ε = 0.01, the backward decayed

algorithms approach 100% CPU utilization and drop tuples.
We show the space usage per group of our methods on a log-

scale in Figure 2(d). Undecayed methods store 4 byte integers,
while forward decay stores 8 byte floating point values. The
exponential histogram methods must track a large amount of
information, of the order of kilobytes. This is a major factor
for our queries, since they typically generate tens of thousands
of groups (in the query above, there is one group for every
distinct TCP destination seen in a minute on a busy link).

Random Sampling. Our experiments on drawing random
samples are shown in Figure 3. The sampling techniques are
all implemented as UDAFs in C code, which are then called
by GSQL queries as

select tb, PRISAMP(srcIP, exp(time % 60))

from TCP

group by time/60 as tb

In this query, a sample is drawn every minute, with the
landmark set to zero seconds within that minute. PRISAMP
references the priority sampling UDAF (in this case), which is
passed the (exponential) weight of the timestamp of the tuple.

We compare computing a fixed-size reservoir sample with-
out decay to the two algorithms designed to draw a sample
under exponential decay. Figure 3(a) shows the CPU usage
as the stream data rate was varied from 100,000 to 400,000
packets per second. This plot shows only the cost of sample
maintenance, and not the cost of the running selection operator
which filters out TCP traffic, since this cost is the same for all
algorithms. All three algorithms scale well and experience less
than 10% increase in CPU load as the data rates increases from
100,000 to 400,000. The CPU load is comparable for all algo-
rithms, meaning that we can achieve the more flexible result
of the forward based decay (arbitrary timestamp values, and
arbitrary arrival order) at virtually no cost over the previous
solution. Moreover, Figure 3(b) shows that the cost of the three
sampling methods all appear independent of the sample size.
(Note that the space used by the methods is essentially that of
size of the sample, plus some small additional values such as
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Fig. 4. Experiments on Heavy Hitter queries under time decay

stored priority values, so we do not show any plots of space
used). Note that we can obtain samples under other forward
decay functions at the same cost, whereas exponential decay
is the only backward class model for which efficient sampling
algorithms are known.

Heavy Hitter Aggregates. Our experiments on holistic ag-
gregate computation concentrated on finding heavy hitters.
For each one minute interval, the query identifies a set of
network hosts receiving the most TCP traffic. We show the
dominant cost, of maintaining the summary under updates,
and do not plot the small final cost of extracting the heavy
hitters. We varied the stream rate from 50,000 packets/sec
to 200,000 packets/sec and observed the total CPU load. For
forward-decayed aggregates, we compared both exponential
and quadratic decay as before.

Figure 5 shows that the overhead of the weighted version
of the heavy hitters algorithm is small compared to version
optimized for unweighted updates (“Unary HH”). We also
see that there is little variation as a function of the decay
function. As we argued in our introductory analysis, the
sliding window-based implementation of backward decay is
much more expensive due to the complexity of the associated
algorithms. At 200,000 packets/sec, the system reached 90%
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CPU utilization (nearing instability), and further increases
in the data rate caused tuple dropping. Although it allows
arbitrary decay functions to be specified at query times, this
form of backward decay is simply not practical to run in a
streaming system.

This is further highlighted in Figures 4(a) and 4(c), which



show CPU and space usage (log scale) respectively as ε varies.
The stream data rate here was set to 200,000 packets/sec
using flow sampling on the network card. At ε = 0.01, the
backward decayed algorithms approach 100% CPU utilization
and further increases in data rate cause tuple drops. The CPU
usage of the weighted algorithms implementing forward decay
is fairly robust to the value of ε, and the space depends on 1/ε
(the space is still of the order of kilobytes, but one typically
expects such aggregate queries to be run over somewhat fewer
groups than sum or count queries). Note that the space of
the backward decayed approach does not vary with ε: this
is because it does not have much pruning power over the
number of tuples presented, and so it is effectively storing
a large fraction of the total input. This is also unsustainable
in a high-throughput streaming system.

Lastly, Figures 4(b) and 4(d) show the same experiments
performed over UDP data. Here, we took the same query
over only the UDP traffic (specified by adding an additional
selection to the query). The stream data rate was set to
170,000 packets/sec, while the rest of the experimental settings
were the same as in previous experiments. We see that the
behavior of the algorithm is virtually unchanged despite the
different characteristics of UDP data. The space required by
Sliding Window approach is slightly lower, but still orders
of magnitude higher than that for forward decay (about a
megabyte compared to 1KB–6KB, depending on ε).

IX. CONCLUDING REMARKS

We have proposed a new class of time decay for streaming
systems, based on a forward view of the decay. Just as with
previous definitions, it can be motivated by metaphors with
the physical world, such as radioactive decay, and perspective
shrinking. It is effective to implement in streaming systems,
and has a low overhead compared to processing undecayed
queries, making it much more attractive than prior algorithms.

One feature of the decay is that it fits easily into distributed
systems seeing different parts of an input that is to be
combined. It will be interesting to study how to integrate
this model of time decay into not just distributed streaming
systems, such as Borealis [1], but also the new generation
of popular distributed processing systems such as MapRe-
duce [18], Hadoop [23] and Sawzall [32].
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