Finding Hierarchical Heavy Hitters
in Streaming Data

GRAHAM CORMODE
AT&T Labs—Research
and

FLIP KORN

AT&T Labs—Research
and

S. MUTHUKRISHNAN
Rutgers University
and

DIVESH SRIVASTAVA
AT&T Labs—Research

Data items that arrive online as streams typically havébatis which take values from one or more hierarchies
(time and geographic location; source and destination tesdes; etc.). Providing an aggregate view of such
data is important for summarization, visualization, andlgsis. We develop an aggregate view based on certain
organized sets of large-valued regions (“heavy hittersiyesponding to hierarchically discounted frequency
counts. We formally define the notion éfierarchical Heavy Hitters(HHHs). We first consider computing
(approximate) HHHs over a data stream drawn from a singletubical attribute. We formalize the problem
and give deterministic algorithms to find them in a singlespager the input.

In order to analyze a wider range of realistic data streangs, (Bom IP traffic monitoring applications), we
generalize this problem to multiple dimensions. Here, #maantics of HHHs are more complex, since a “child”
node can have multiple “parent” nodes. We present onlinerigigns that find approximate HHHSs in one pass,
with provable accuracy guarantees. The product of hiei@ttimensions form a mathematical lattice structure.
Our algorithms exploit this structure, and so are able tadokt approximate HHHs using only a small, fixed
number of statistics per stored item, regardless of the eummidimensions.

We show experimentally, using real data, that our proposgatithms yield outputs which are very similar
(virtually identical, in many cases) to offline computasaof the exact solutions whereas straightforward heavy
hitters based approaches give significantly inferior amsyality. Furthermore, the proposed algorithms result
in an order of magnitude savings in data structure size vgdtéorming competitively.

Categories and Subject Descriptors: H.D@tabase Applications]: Data Mining
General Terms: Algorithms, Experimentation, Performaiiteory

Additional Key Words and Phrases: data mining, approxiomatilgorithms, network data analysis

Author’s addresses{graham,flip,divesh@research.att.com; muthu@cs.rutgers.edu.

Work carried out while first author was at the Center for DaseMathematics and Computer Science (DIMACS);
Bell Laboratories; and AT&T Labs—Research. The work of the find third authors was partially supported by
NSF ITR 0220280 and NSF EIA 02-05116.

Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfppoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on serversto redistribute to lists requires prior specific
permission and/or a fee.

© 2007 ACM 0362-5915/2007/0300-0001 $5.00

2 . Graham Cormode et al.

1. INTRODUCTION

Emerging applications in which datasseamedypically have hierarchical attributes. The
quintessential example of data streams is IP traffic dath as@ackets in an IP network,
each of which defines a tuple (Source address, Source PastinBgon Address, Des-
tination Port, Packet Size). IP addresses are naturalbnged into hierarchies: indi-
vidual addresses are arranged into subnets, which arenwititivorks, which are within
the IP address space. For example, the address 66.241.243t be represented as
66.241.243.111 at full detail, 66.241.243.* when geneedlito 24 bits, 66.241.* when
generalized to 16 bits, and so on. Ports can be grouped iatarbhies, either by nature
of service (“traditional” Unix services, known P2P file simgrport, and so on), or in some
coarser way: in [Estan et al. 2003] the authors propose arciey where the points in the
hierarchy are “all” ports, “low” ports (less than 1024), ghi" ports (1024 or greater), and
individual ports. So port 80 is an individual port which iddnv ports, which is in all ports.

Data warehouses also frequently consist of data items wdttrilautes take values from
hierarchies. For example, data warehouses accumulatewatime, so each item (e.qg.,
sales) has a time attribute of when it was recorded. We cam kierarchical attributes
such as time at various levels of detail: given transactwitis a time dimension, we can
view totals by hour, by day, by week and so on. There are atgthsuch as geographic
location, organizational unit and others that are alsoma#ijuhierarchical. For example,
given sales at different locations, we can view totals byestaity, state, country and so on.

Our focus is on aggregating and summarizing such data. Alatdrapproach is to
capture the value distribution at the finest detail in sonmeeisict way. For example, one
may use the most frequent items (“heavy hitters”), or histots to represent the data
distribution as a series of piece-wise constant functidis.call thesdlat methods since
they focus on one (typically, the finest) level of detail. tRizethods are not suitable for
describing the hierarchical distribution of values. Foample, an item at a certain level
of detail (e.qg., first 24 bits of a source IP address) made updyyegating many small
frequency items may be a heavy hitter item even though ifgiohaal constituents (the full
32-bit addresses) are not. In contrast, one neddsrarchy-awarenotion of heavy hitters.
Simply determining the heavy hittersedich levebf detail will not be the most effective:
if any node is a heavy hitter, then all its ancestors are haétgrs too. For example, if a
32-bit IP address were a heavy hitter, then all its prefixeslavbe, too.

1.1 One Dimensional Hierarchical Heavy Hitters

We begin by introducing the concept of Hierarchical Heavyteis (HHHS) over data
drawn from a single hierarchical attribute, before we cdeisthe more general problem
on data with multiple hierarchical attributes. Figure 1\wwh@n example distribution of
N =100 items over a simple hierarchy in one dimension, with the t®tor each internal
node representing the total number of items at leaves ofdh@gponding subtree. The
traditional heavy hitters definition is, given a threshgldo find all items with frequency
atleastpN. Figure 1 (a) shows that settigg= 0.1 yields two items with frequency above
10. However, this does not adequately cover the full distidim, and so we seek a defini-
tion which also tells us about heavy hitters at points in tieedichy other than the leaves.
A natural approach is to apply the heavy hitters definitiozeath level of generalization: at
the leaves, but also for each internal node. The effect sfdéfinition is shown in Figure 1
(b). But this fails to convey the complexity of the distrilmrt: is a node marked as signifi-

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data : 3

100 100

(a) Leaf Heavy Hitters (b) All Heavy Hitters

100

(c) Hierarchical Heavy Hitters

Fig. 1. lllustration of HHH concept/N = 100, ¢ = 0.1)

cant merely because it contains a child which is significanbecause the aggregation of
its children makes it significant?

This leads us to our definition of HHHs given a fractionfind nodes in the hierarchy
such that their HHH count exceed#/, where the HHH count is the sum of all descendant
nodes which have no HHH ancestors. This is best seen thraugkample, as shown in
Figure 1 (c). Observe that the node with total count 25 is ndildH, since its HHH count
is only 5 (less than the threshold of 10): the child node wihbrt 20 is an HHH, and so
does not contribute. But the node with total count 60 is an Hbikce its HHH count is
15. Thus we see that the set of HHHs forms a superset of they néiders consisting of
only data stream elements, but a subset of the heavy hittersad prefixes of all elements
in the data stream. The formal definition of this problem igegiin Section 2.3.

A naive way of computing HHHSs, using existing techniquesrf@intaining heavy hit-
ters, would be to find heavy hitters over all prefixes of alhedats in the data stream and
then discard extraneous nodes in a post-processing steprdlve that this approach can
be considerably improved in practice (in terms of the spassland the answer quality)
by incorporating knowledge of the hierarchy into algorithfar computing heavy hitters.
We present algorithms that maintain sample-based sumrtraptuwres, and provide deter-
ministic error guarantees for finding HHHs in data streams.

1.2 Multi-dimensional Hierarchical Heavy Hitters

In practice, data warehousing applications and IP traffta daeams have several hierar-
chical dimensions. In the IP traffic data, for example, Sewned Destination IP addresses
and port numbers together with the time attribute yeldimensions, although typically
the Source and Destination IP addresses are the two mostapdyperarchical attributes.
So, in practice, one needs summarization methods that weonkdltiple hierarchical di-

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

4 . Graham Cormode et al.

*9

@l @®1) (@2 (02
6 2 3 2 @1 @Gl @2 b2

(a) Frequency distribution wittv' = 13 (b) Heavy hitters withp = 0.35

@l @®1) @2 ®b2@l1) bl @2 b2
(c) HHHs under overlap rule (d) HHHs under split rule

Fig. 2. lllustration of HHH in two dimensions

mensions. This calls for generalizing HHHs to multiple dimsiens. As is typical in many
database problems, generalizing from one dimension to tmoase dimensions presents
many challenges.

Multidimensional HHHs are a powerful construct for summig hierarchical data. To
be effective in practice, the HHHs have to toely multidimensional. Heuristics like ma-
terializing HHHs along one of the dimensions will not be able in applications. For ex-
ample, as described by Estan et al. [2003], aggregatirfictbaf IP address might identify
a set of popular domains and aggregating traffic by port maghttify popular application
types, but to identify popular combinations of domains drelkinds of applications they
run requires aggregating by the two fiekmultaneously

A major challenge is conceptual: there are sophisticatetvi@ the product of hier-
archies on two (or more) dimensions to interact and how peégito define the HHHs in
this context is not obvious. In the previous example, noa¢tifaffic generated by a partic-
ular application running on a particular server will be ctaehtowards both the total traffic
generated by that port as well as the total traffic generagatidt server. Hence, there is
implicit overlap. Alternatively, one may wish to count thiaffic along one but not both of
these generalizations (e.g., traffic on low ports is geimrdlto total port traffic whereas
traffic on high ports is generalized to total server traffig).this case, the traffic is split
among its ancestors such that the resulting aggregates afisjoint sets. This so-called
“split case” was studied by Cormode et al. [2004]; here weaigoun the “overlap” case.

As with summarization of data with a single hierarchicalibtite, flat methods are inad-
equate because they do not capture heavy hitters at higtaéisdeay traffic from &4-bit
subnet to anothe¥4 bit subnet. One could try to run these flat methods at evergiples

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data : 5

combinationin the hierarchies, but this rapidly becomestpensive. For example, deter-
mining a heavy hitter at every combination of detail of eaigndrchy would be ineffective:
any heavy hitter of 32-bit Source and Destination IP adé:®sseans that ali2 x 32 of
thei bit Source IP prefix ang bit Destination IP prefix for eachand; are heavy hitters.
As in one dimensional HHHs, we need to discount the “desaafidheavy hitters while
determining HHHSs at any given level of detail. However, kalthe one dimensional case,
it is not even clear how to discard nodes that do not qualifylidéis in a post-processing
step.

We show a simple example in Figure 2. Consider a two-dime&asidomain, where
the first attribute can take on valuesandb, and the secontl and2. Figure 2(a) shows
a distribution wherda, 1) has count 6(a, 2) has count 3(b, 1) has count 2, andb, 2)
has count 2. Moving up the hierarchy on one or other of the dsioms yields internal
nodes:(a, *) covers botha, 1) and(a, 2) and has count 9, 2) covers botha, 2) and
(b,2), and has count 5. Setting= 0.35 means that a count of 5 or higher suffices, thus
there is only one Heavy Hitter over the leaves of the domaithé one-dimensional case,
we can think of the count of a non-HHH node being propagatet ifg ancestors. If we
allow a node to count the contributions of all its non-HHH ekrsdants, then we get the
overlap case (since one input item may contribute to mel@icestors becoming HHHS).
Figure 2(c) shows the result on our example: the nede) becomes an HHH, since it
covers a count of 5(x, 1) is not an HHH, because the count of its non-HHH descendants
is only 2. Note that the root node is not a HHH since, afterrsauting off the contributions
from (a, 1) and(x,2), its remaining count is only 2. The contrasting split casem@re
procedural: we ‘split’ the count of non-HHH node evenly beén its ancestors, so there is
no double-counting. Thus the split count(ef 2) in Figure 2(d) is only 2.5, and the count
of (x,1) is 1. Under this definition, the only non-leaf HHH (s,). Since this case turns
out to be somewhat more straightforward [Cormode et al. R@@d focus exclusively on
the overlap definition from now on.

1.3 Contributions

We address the challenge of defining and computing Hiereathieavy Hitters (HHHS),
and our contributions are as follows:

(1) We introduce HHHs over one and multiple dimensions ane §drmal definitions
of them. For online scenarios, we define an approximate natidiHHs as well as
accuracy and coverage guarantees required for correctness

(2) We present online algorithms that find approximate HHisrie pass, with accuracy
guarantees, and provide proofs of their correctness. Hueiims use a small amount
of space and can be updated to keep pace with high-speedréatas. The algorithms
keep upper- and lower-bounds on the counts of items. Hezédtdms exist at various
nodes in the hierarchy, and we must keep additional infaomab avoid over- and
under-counting in the presence of parent(s) and descendant
In multiple dimensions, the lattice property of the prodeichierarchical dimensions
is crucially exploited in our online algorithms to track appimate HHHs using only
a small, fixed number of statistics per candidate node, dégss of the number of
dimensions. We present two general online strategies fouleding HHHs over one
and multiple hierarchical dimensions: one that maintaesfull hierarchy down to
a fringe (“Full Ancestry”), and one that allows intermediatode deletions (“Partial

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

6 . Graham Cormode et al.

Ancestry”). We present a complete analysis of the spaceiaredrequirements of our
algorithms.

In comparison with our prior work [Cormode et al. 2003; 2Q0d¢re we provide
additional algorithms, give full proofs of important prapes of these algorithms, and
carefully analyze their space and time requirements.

(3) We do extensive experiments with data from real IP apfibois and show that our

proposed online algorithms yield outputs that are very lainvirtually identical, in
many cases) to their offline counterparts. Our experimeatsahstrate that (a) the
proposed “hierarchy-aware” online algorithms yield higlality outputs with respect
to the exact answer (almost identical) and significantlydsehan Heavy Hitters based
approaches that do not account for descendant Heavy Hliltased on a variety of
precision-recall measures; (b) they have competitivegoerince and save an order
of magnitude with respect to both space usage and outpuytcingpared to finding
Heavy Hitters on all prefixes; (c) our proposed Partial Atrgestrategy is better when
space usage is of importance whereas our proposed Full nstgategy is better
when update time and output size is more crucial; and (d) gréopnance of the
proposed algorithms in a data stream system is implementagnsitive, and must
be lightweight (e.g., based on hashing rather than a pebased data structure) and
non-blocking to keep up with fast streaming rates, which wscdbe herein how to
do.
Our prior work [Cormode et al. 2003; 2004] did not evaluagdlacuracy of proposed
online algorithm outputs with respect to the exact answsirsgprecision-recall anal-
ysis, and did not evaluate the performance of these algositin a real data stream
management system.

1.4 Ouitline

Section 2 formally defines hierarchical heavy hitters, fat s well as 2-d, and their ap-
proximate online variants. Section 3 provides streamiggrithms to solve the approxi-
mation problems defined in Section 2. Section 4 experimigreaalutes these algorithms.
Section 5 describes how the algorithms can be extended s$titdited processing and
handling deletions.

2. PROBLEM DEFINITIONS AND BOUNDS
2.1 Notation

Formally, we model the data @6 d-dimensional tuples. Each attribute in the tuple is drawn
from a hierarchy, and the attribute dimensions are numbktedi. Let the (maximum)
height of the hierarchy, or depth, of tii dimension bé,;. For concreteness, we give ex-
amples consisting of pairs of 32-bit IP addresses, with tealchy induced by considering
each octet (i.e., 8 bits) to define a level of the hierarchy.dew illustrative examples then,
d = 2 andh; = he = 4; our methods and algorithms apply to any arbitrary hienarthe
generalizatiorof an element on some attribute means that the elementesiralp one level
in the hierarchy of that attribute: the generalization & Ha address pair (1.2.3.4,5.6.7.8)
on the second attribute is (1.2.3.4, 5.6.7.*). We denotpdyye,) the parent of element
formed by generalizing on théh dimensionpar((1.2.3.4,5.6.7.%),2) = (1.2.3.4,5.6.%).

In one-dimension, we may abbreviate thigto:(¢). An element iSully generalon some
attribute if it cannot be generalized further, and this iaated “*"; the pair (*, 5.6.7.%)

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data : 7

*

, 5 1.%
* 56.* 1% 5% 1:2.% *

* 5.6.7% 1.*/5.6.* 1.2+ 5% 1.2.3.* *
56.6.78 1% 56.7. 12*56* 123%5* 1234
1+56.78 1.2* 5.6.7.* 1.2.3* 56.* 1.234,5*
1.2.%56.7.8 1.2.3*,5.6.7.1.2,3.4,5.6.*
1.2.3.%5.6.7.81.2.34,5.6.7.*

1.2.34,5.6.7.8

Fig. 3. The lattice induced by the element (1.2.3.4,5.6.7.8

is fully general on the first attribute but not the second. @osely, an element iully
specifiedon some attribute if it is not the generalization of any elehan that attribute.
We denote the generalization relation-kyif p is generalizable tg, then we write this as

p < g, withp < g defined agp < ¢) V (p = ¢). The generalization relation over a defined
set of hierarchies generatedadtice structure that is the product of the 1-d hierarchies.
Elements form the lattice nodes, and edges in the lattitediements and their parents.
The node in the lattice corresponding to the generalizaifoelements on all attributes
we denote as “*", or ALL, and has cou. We will overload this notation to define the
sublattice of esetof elementsP as(e < P) <= (Jp € P.e < p). The total number of
nodes in the latticel is computed a$l = Hle(hi +1).

An example is shown in Figure 3, where we show how the leafete(.2.3.4,5.6.7.8)
appears at each point in the lattice. Modeling the struatfiproducts of generalizations
of items as a lattice is standard on work on computing datas{#garwal et al. 1996] and
iceberg cubes [Ng et al. 2001]. It is worth noting that stnues induced by elements can
partially overlap with each other. For examp(e.2.%, 5.6.7.x), and all its generalizations,
are also common to the structure induced by the elerfien®.1,5.6.7.7).

In order to facilitate referring to specific points in thetieg, we may label each element
in the lattice with a vector of lengtih whoseith entry is a non-negative integer that is at
mosth,, indicating the level of generalization of the element. Plagr (1.2.3.4, 5.6.7.8)
is at generalization level [4,4] in the lattice of IP addrpsg's, whereas (*, 5.6.7.%) is at

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

8 . Graham Cormode et al.

[0,3]. Theparentsof an element afay, as, .. ., aq] are the elements where one attribute
has been generalized in one dimension; hence, the paregienoénts at [4,4] are at [3,4]
and [4,3]; items at [0,3] have only one parent, namely at][Gice the first attribute is
fully general. Two elements andy arecomparableunder the< relation if the label ofy

is less than or equal to that efon every attribute: items at [3,4] are comparable to ones
at [3,2], but [3,4] and [4,3] have no comparable elements. défne Level (i), the ith
level in the lattice as the set of labels where the sum of dllesain the vector ig: hence
Level(8) = {[4,4]}, whereasLevel(5) = {[1,4],[2,3],[3,2],[4,1]} and Level(0) =
{[0,0]}. We may overload terminology and refer to an element beingember of the
set Level(l), meaning that the item has a label which is a member of thatNetpair

of elements with distinct labels ihevel(i) are comparable: formally, they form an anti-
chain in the latticé. Equivalently, ifz andy are at the same level, then# y andy 4

x. The levels in the lattice range frothto L = ", h;, and hence the total number of
levels in the lattice isL + 1. We define the functioener al i zeTo which takes an
item and a label, and returns the item generalized to thaicpkar label. For example,
CGeneral i zeTo((1.2.3.4,5.6.7.8),[0,3]) returns (*, 5.6.7.%).

2.2 Heavy Hitters

We first review the definition of heavy hitters, before foripalefining hierarchical heavy
hitters later in this section.

DEFINITION 1 HEAVY HITTER. Given a (multi)setS of size N and a thresholds, a
Heavy Hitter(HH) is an element whose frequency$nis no smaller thanpN. Let f.
denote the frequency of each elememt S. ThenHH = {e| f. > ¢N}. O

The heavy hitters problers that of finding all heavy hitters, and their associated fre
guencies, in a data set. In any data set, there can be no naore/thheavy hitters, by the
definition of heavy hitters. This problem is solved exactigoa stored data set, using the
SQL query:

SELECT S.el em COUNT(*)
FROM S

GROUP BY S. el em
HAVING COUNT(*) >=o¢N

In the data stream model of computation, where each dateeekimthe stream can be
examined only once, it is not possible to keep exact coumtsdoh data element without
using a large amount of space. To use only small space, tlaglipar of approximation
is adopted, to output only items that occur with a proporbetween(¢ — ¢) and¢. The
problem of finding HHs in data streams has been studied extdpgsee [Cormode and
Muthukrishnan 2003] for a brief survey), based on the mamee of summary structures
that allow element frequencies to be estimated.

2.3 Hierarchical Heavy Hitters over One Dimension

The preceding description of a lattice also applies wherdtia is drawn from a single

hierarchical attribute, but the structure is simplifiechsfigantly. In particular, the lattice is

simply a tree, because each (non-fully general) item hastigp@ne parent. We can define
the Hierarchical Heavy Hitters over such a domain in an itidedashion.

1 An anti-chainis a set of elements from the lattice such that no two elenigrite set are comparable.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data : 9

DEFINITION 2 HIERARCHICAL HEAVY HITTER. Givena (multi)sef of elements from
a hierarchical domainD of depthh, and a threshold, we define the set dilierarchical
Heavy Hittersof S inductively.

—HHHp, the hierarchical heavy hitters at levél (the leaf level of the hierarchy), are
simply the heavy hitters df.

—Given a prefiy from Level(),0 < I < hin the hierarchy, defind}, = " f(e) : (e €
S)YA (e 2 p)A (e A HHH+1). The setHHH, is defined as the set

HHHip1 U {p: (p € Level()) A (F, > ¢N)}
—The set of Hierarchical Heavy Hitters({7, is the set{HHy. O

Note that, because we can attribute each item from the iopat most one of the Hi-
erarchical Heavy Hitters, and each HHH requires at leéaétitems from the input, then
there can be at most ¢ HHHSs in this setting.

Thehierarchical heavy hitters probleme study is that of finding all hierarchical heavy
hitters, and their associated frequencies, in a data strddm HHH problem cannot be
solved exactly over data streams in general without usirgesfinear in the input size.
Hence, we will study the following (approximate) problem:

DeriNITION 3 HHH PROBLEM. Given a data strean$ of NV elements from a hierar-
chical domainD, a thresholdy € (0,1), and an error parametet € (0, ¢), theHierar-
chical Heavy Hitter Problerns to output a set of prefixdd C D, and approximate bounds
on the frequency of eagh€ P, f,.., and f,,..: such that the following conditions are
satisfied:

(1) accuracy:fmin(p) < f*(p) < fmaz(p), Wwheref*(p) is the true frequency gf in S,
Ie!f*(p) = Zejp f(e)- and fmam(p) - fmzn(p) S eN.
(2) coveragefor all prefixesg & P, oN > > f(e): (e 2q) A (e A P). O

LEMMA 1. Inone dimension, the size of the smallest set of Hierartheavy Hitters
that satisfies the Coverage constraint is equal to the sitleeoéxact HHHS|HHH).

PrROOF First, observe that{HH satisfies the coverage constraint, by following the
definition of F;,. Now let X' be a set satisfying coverage that is smaller thati?, the set
of HHHs computed by the exact algorithm XfandHHH differ, then letp be a prefix that
is in the symmetric difference of the two sets, and occurbaideepest level, of those
items (if there are many such items, one can be chosen ailgijtrahere are two cases to
consider. (1p € HHH\X. This cannot be the case, since it means fhatiolates the
coverage conditior{HH and X agree on all levels greater thaand the exact algorithm
was “forced” to pickp, sincef(p) > ¢N, and soX must includep as well or else it will
violate coverage. (2) € X\HHH. Then, becaus& andHHH agree on all items at
levels greater thah we can remove from X and replace it wittpar(p) without violating
the coverage condition (becaus8{ does not violate coverage). This does not increase
the size ofX', and may in fact reduce its sizegiéir (p) is already inX . Applying these two
arguments repeatedly, we show that by repeatedly “pushph@hat is, applying case (2))
items in X, we will end up with a set that is identical ¥§HH, since eventually there will
be no itemg that are in the symmetric difference of the two sets, andWikkype identical.
As every step did not increase the size of theXetve must conclude thét{HH| < | X|,
contradicting the initial assumption th&twas smaller. O

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

10 . Graham Cormode et al.

This means that we will evaluate the quality of our solutiomkich will guarantee to
meet the accuracy and coverage constraints, by the sizeiofaltput. We will use the
size of the sel{HH (computed offline) to compare against.

2.4 Hierarchical Heavy Hitters in Multiple Dimensions

The general problem of findinilulti-Dimensional Hierarchical Heavy Hitter6HHHS)

is to find all items in the lattice whose count exceeds a givantion, ¢, of the total
count of all items, after discounting the appropriate dedeats that are themselves HHHSs.
This still needs further refinement, since in this settinig ilot immediately clear how to
compute the count of items at various nodes in the latticehénprevious section, with
just a single hierarchy, the semantics of what to do with thent of a single element
when it was rolled up was clear: simply add the count of theedolip element to that of
its (unique) parent. In this more general multi-dimenslaae, each item has multiple
parents — up tal of them. So this problem will vary significantly depending loow
the count of an element is allocated to its parents. Therenaréundamental variations to
consider, which differ in how we allocate the count of a t&thode that is not a hierarchical
heavy hitter when it is rolled up into its parents. Informpathe “overlap rule” allocates
the full count of an item to each of its parents and, therefooainted multiple times,
in nodes that overlap. The overlap rule appears implicitriorpvork on network data
analysis [Estan et al. 2003], to show patterns of traffic @aerultidimensional hierarchy
of source and destination ports and addresses in what therauall “compressed traffic
clusters”. Meanwhile, the “split rule” means that the coahan item is divided between
its parents in some way. The split rule is considered by Cderei al. [2004], and we do
not discuss it further here, since it is less involved, angkaps to have fewer applications.

For simplicity and brevity, we will describe the case whdtétee input data consists of
elements which are fully specified on every attribute, leaf elements in the lattice. Our
methods naturally and obviously extend to the case whermhg can arrive as a mix of
partially and fully specified items, although we do not dssthis case in detail.

By analogy with the semantics for computing iceberg cubespoierlap case says that
the count for an item should be given to each of its parentswilieitem is rolled up [Beyer
and Ramakrishnan 1999]. The HHHSs in the overlap case are #lements whose count
is at leastp N whereN is the total count of all items, artl < ¢ < 1. When an item is
identified as an HHH, its count is not passed up to either gfatents. This is one mean-
ingful extension of the 1-d case, where the count of an itemgoelled up is allocated to
its only parent, unless the item is an HHH.

This seems intuitive, but there are many subtleties of th@ach that will need to be
handled in any algorithm to compute the HHHs under this r8eppose we kept only
lists of elements at each level of generalization in thedrigty, and updated these as we
roll up items. Then the itera = (1.2.3.4,5.6.7.8) with a count of one (we will write
fe to denote the count of, so heref, = 1), would be rolled up to (1.2.3.*, 5.6.7.8)
and (1.2.3.4, 5.6.7.*), each with a count of one. Rolling apheof these to the common
grandparent of (1.2.3.4, 5.6.7.8) would give (1.2.3.*,B.9 with a count of two. This is
a problem, since this results from a single descendent wethuat of one; we should like
each item to contribute at most once to the count. So additioformation is needed to
avoid over-counting errors like this, and similar problemhich can grow worse as the
number of attributes increases. To formally define the moble introduce the notion of
the overlap count of an item, and will then show how to comphiteexactly.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 11

DEFINITION 4. Hierarchical Heavy Hitterswith Overlap Rule Let the inputS con-
sist of a set of elementsand their respective counfge). LetL = " h;. The Hierarchi-
cal Heavy Hitters are defined inductively based on a thrashet ¢ < 1.

—HHH, contains all heavy hitters at levél: e € S such thatf, > ¢N.

—The overlap sublattice count of an elemgratt Level(l) in the lattice wheré < L is
given byfi(p) = > f(e) : (e € S) A(e 2 p) A(e A HHH4+1). The setHHH, is
defined as the set

HHHi1 U{p: (p € Level(1)) A (fi(p) = ¢N)}

—The Hierarchical Heavy Hitters with the overlap rule foetketS is the setHHH =
HHHo. O

LEmMmMA 2. Consider the lattice induced by an element (as in Figure 8,lahA denote
the length of the longest anti-chain in this lattice. (i) IneodimensionA = 1; in two
dimensions,A = 1 4 min(hy, h2). In higher dimensions, we havé < (Hle(l +
hi))/ max; (1 + h;). (i) The size of the sé{HH under the overlap rule is at most/¢.

PrROOF (i) In a one-dimensional hierarchy and the induced lattitearly for any two
elements, one must be the ancestor of (or equal to) the dibace the anti-chain has
size at mostd = 1. For two dimensions, we have a product of hierarchies. From a
element(z, y), we can find all its generalizations &twvel(min(hq, h2), which contains
1+ min(hq, ho) items, none of which are comparable. For example, in Figufe:del(4)
contains(x, 5.6.7.8), (1.%,5.6.7.%), (1.2.%, 5.6.x), (1.2.3.%,5.%), (1.2.3.4, *). To see that
this is the maximum possible, suppose w.l.0.g. thakc h, and that we had more than
1 + hy items: then at least two of them must be have the same valugedirdt attribute,
and are therefore comparable. The same logic shows the bpped onA for higher
dimensions: two items are comparable if they share valuak nut one of the dimensions,
and so the tightest bound comes from letting this last dio@nse the one with greatest
depth.

(i) The total number of HHHs is bounded in terms of the degtthe hierarchies. Each
item in the input can be counted towards multiple members(®fH, but these HHHs
must be incomparable, else the item could not be counteddisvedl of them. Then these
HHHs must form an anti-chain in the lattice, and so we bout&l ¢bunt by the size of
the largest anti-chain. Hence, the sum of counts of HHHs esat ImostAN. Since each
HHH has count at leagtV, we conclude the number of HHHs under the overlap rule can
be atmostd/¢. O

This gives evidence of the “informativeness” of the set ofHfland their conciseness.
By contrast, if we propagated the counts of each item to emagestor and found the
Heavy Hitters at every level, then there could be as man{ 48 HHHs, whereH =
Hle(hi + 1). Evenin low dimensiong can be many times larger thah

In the data stream model of computation, where each dateeekimthe stream can be
examined only once, it is not possible to keep exact coumtsdoh data element without
using a large amount of space. To use only small space, theigar of approximation is
adopted, as formalized in the following definition.

DEFINITION 5. Online HHH Problem: Overlap Case The Multi-Dimensional Hier-
archical Heavy Hitters problem with the overlap rule on ingiwith threshold¢ is to

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

12 . Graham Cormode et al.

output a set of item# from the lattice, and their approximate counfts such that they
satisfy two properties:

(1) accuracy:fmin(p) < f*(0) < fmaz(p), wheref*(p) is the true sublattice count @f
in S, Ie,f*(p) = Zejp f(e)a and fmam(p) - fmzn(p) < eN.
(2) coverageFor all prefixesg &€ P, > f(e) : (e X q) A(e A P) < ¢N. O

This definition is identical to the definition of HHHs in oné¥énsion, extended to a
multidimensional setting. Note that for accuracy, we askaio accurate sublattice count
for each output item, rather than the count discounted byvémy the HHHs. This is a
useful quantity that we can estimate with high accuracy. Bgrepriate rescaling of,
one could find the discounted count accurately, howeverctiises at a high price for the
required space, multiplying by a factor proportional toldmgest possible number of HHH
descendants. It was shown by Hershberger et al. [2005] titét & factor is essentially
unavoidable, hence our focus on only providing accuratéastite counts.

The “goodness” of an approximate solution is measured bydiose it is in size to that
of the exact solution. In the 1-d setting we proved in Lemméaelexact solution is the
smallest satisfying correctness and, hence, a smalleozippate answer size is preferred.
In the multi-dimensional problem, one can contrive exammplaere the approximate out-
put can be smaller than the exact one.

EXAMPLE 1. Suppose (1.2.*,5.6.%) has count 3
(2.3.%,5.6.*) has count 3
(1.4.*,5.6.*) has count 9
(1.4.*5.7.*) has count 3
(1.4.*,5.8.*) has count 3
and set the thresholdN to be 10, and erroeN to be 2.

Suppose an approximate algorithm includes (1.4.*,5.61thie output. Under the over-
lap semantics, the counts for (1.4.*,5.*) and (1.*,5.6.19 &, so the approximate algorithm
does not have to include these in the output. However, thet definition would not output
(1.4.*,5.6.*) and so would lead to counts of 15 for (1.4.*)&nd (1.*,5.6.*). Thus both of
these items are HHHs under the exact definition. By repedtisgstructure several times,
replacing{2, 3,4, 6, 7, 8} with distinct values, the exact algorithm can be forced ttpat
many more items than an approximate algorithm.

In the worst case, the output may Hetimes bigger than the smallest possible, where
A is the size of the longest anti-chain in the lattice, as ddflmefore. Nevertheless, such
contrived examples seem rare in practice, and on real dateweobserved that the output
size of the exact algorithm always lower bounds the size®gftproximate output. Exact
algorithms to compute HHHs in multiple dimensions were gilsg Cormode et al. [2004];
we do not repeat them here, since they follow almost dirdobiy the definition.

3. ONLINE ALGORITHMS

We develophierarchy-awaresolutions for the one- and multi-dimensional HHH prob-
lems, where new data stream elements only arrive and themoateletions of previously
seen items. For this data stream model, we propose detstimiaigorithms that main-
tain sample-based summary structures, with determinisiist-case error guarantees for
finding HHHs. Here the user supplies error parametier advance and can supply any
thresholdp at query time to output-approximate HHHs above this threshold.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 13

Insert(el ement e, count c):
/* par(e) is the parent of e */
01 forall (p:e=<p) do

02 if t, exists in T then

02 fot=a

03 el se

04 create tp;

05 fo=c;

06 Ap = beurrent — 1;
Conpress():

01 for each t. € T do

02 if (fe+ Ac < beurrent)) then
03 del ete tg;

Qut put (threshol d ¢):

01 for each t. in postorder do
02 if (fe+Ae > ¢N) then
03 print(e,fe, fe +Ae);

Fig. 4. Algorithm for Naive Strategy in arbitrary number dfreénsions

3.1 Naive Algorithm

We first discuss a naive algorithm based on existing workwleatvill use as a baseline to
compare our various results. At a high level, this algoritkemps information for every
label in the lattice, that is, it keed$ independent data structures. Each one of these returns
the (approximate) Heavy Hitters for that point in the latid@ his will be a superset of the
Hierarchical Heavy Hitters, and it will satisfy the accuramnd coverage requirements for
any of our definitions of HHHs (one dimensional, or multi-@insional overlap); however
it will be very costly in terms of space usage. It also becowesg slow to process updates
as the dimensionality and depths of the hierarchies ineréle evaluate the output on the
metrics of the space used by the data structures, and thefsize output (i.e., number
of items output). We expect this naive algorithm to do badhthese measures. Hence,
we propose algorithms which keep one data structure to suirerthe whole lattice, and
show that they are empirically better in terms of space anputsize.

In detail, the naive method works as follows: for every updatwe compute all gen-
eralizations of this item and insert each one separatedyandifferent data structure for
computing approximate counts of items. We ensure that feenge data structure for each
different label. Thd.ossyCount i ng algorithm due to Manku and Motwani [2002] can
be used as a “black box” independently, one copy to summatizeems with the same
label in the lattice structure.ossyCount i ng keeps track of a set of items seen in the
stream with lower and upper bounds on their counts. Wheneamn i observed in the
stream which is recorded in the data structure, its bourelapdated accordingly; else, it
is inserted with a lower bound of 1 and an upper bound\of Periodically, a “compress”
operation is performed on the data structure, which remalféems whose upper bound
is less thare V. It can be shown that this algorithm guarantees accuraeyvdbr all item
counts and require@(% log e N) space.

Since we usé{ independent instances of this algorithm, and place eachtajnto each
of theseH instances, the naive algorithm has(ah% log e N) overall space bound. Note
that we could replace this algorithm with any approximaterting algorithm which finds
all items occurring more than a specified fractipaf the time with accuracy, such as the
Misra-Gries [1982] algorithm or that of Metwally et al. [280 We use Lossy Counting

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

14 . Graham Cormode et al.

here since it has good practical performance on the realigtia sets that we use, and
because it is the basis of the more advanced algorithms thdewelop here, meaning we
can directly compare the space savings of our approach.

The desired HHHs can be extracted in post-processing as&lThe tuples are scanned
in postorder across levels. At each level, we output all editters that exceed the N
threshold. It is a simple observation that this approachsatisfy the necessary accuracy
and coverage constraints in one dimension, and in higheemsions; however, since it
makes no adjustment to reduce the count based on descendgist Hhen the size of the
output will likely be much larger than the smallest possibiidis naive algorithm can be
thought of as running “heavy hitters for every label”. Thgaithm is given in Figure 4.

The time required to process each updai@(i#7) plus the periodic pruning of the data
structure everyt /e updates, which requires a linear scan of the data struclime amor-
tized cost is therefore worst cak H log e N). Since the space used by Lossy Counting
is observed to be closer (@(%) [Manku and Motwani 2002], the amortized costs may be
dominated more by the insertion cost, whictDi§H) per insertion.

3.2 One Dimensional Case

Our algorithms maintain a trie data struct@feconsisting of a set of tuples which corre-
spond to samples from the input stream; initiallyjs empty. Each tuplé. consists of

a prefixe that corresponds to elements in the data stream. Associdtie@ach value is
a bounded amount of auxiliary information used for deteingrthe lower- and upper-
bounds on the frequencies for elements whose prefix($,..»(¢) and f,,..(e), respec-
tively). The input stream is conceptually divided into betkofw = [1] consecutive
insertions; we denote the current bucket numbér.as.c.: = [%] There are two alter-
nating phases of the algorithms: insertion and compresgionevery update received,
thel nsert routine is called with parameteesand count 1. After everyw updates (i.e.,
on the bucket boundaries), ti@npr ess routine is called to prune away unnecessary
information from the data structure, and keep it to a boursieel During compression,
the space is reduced via merging auxiliary values into therganode and then deleting
these nodes. We will show worst case space bounds that depetnd on the sequence
of updates processed. The procedures for insertion andressipn vary from strategy to
strategy and are described in more detail below. At any paiatcan extract and output
HHHSs given user-supplied by calling theQut put routine. This framework is closely
based on theossyCount i ng algorithm [Manku and Motwani 2002], which keeps sim-
ilar information and uses similar routines to find HHs. Itrfar the basis of our naive
algorithm, as described above. Next, we describe two giegeising this framework and
give the algorithms fof nser t , Conpr ess andQut put for each.

3.2.1 Full Ancestry Algorithm.Our first algorithm is a “hierarchy aware” version of
the naive algorithm. It extends the naive algorithm by tiagknformation across levels
of the hierarchy, rather than treating each level indepethyleThe data structure tracks
information about a set of nodes that vary over time, but tialevays form a subtree of
the full hierarchy. When a new node is inserted, informasimmed by its ancestors is used
to give more accurate information about the possible fragyeount of the node. This has
the twin benefits of yielding more accurate answers and kgdigwer nodes in the data
structure (since we can more quickly determine if a node aebe frequent and so does
not need to be stored). Thus we are able to prove that theithlgomaintains the required

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 15

Insert(el enent e, count c):

/* par(e) is the parent of e */
01 if t. exists in T then

02 get+ =c¢;

03 el se

04 create te;

05 ge = C;

06 if (e# %)

07 I nsert (par(e),0);

08 Ae=me = Mpar(e);

09 el se

10 Ae =me = beurrent — 1;

Conpress():

01 for each t. € T in postorder do

02 if ((te has no descendants)
/\(ge + A, < bmmw‘ent)) then

03 Jpar(e)t = ge;

04 Mpar(e) = MaX(Mpar(e), ge + Ae);

05 del ete t;

Qut put (threshol d ¢):
0l let Fo=fe=0 for all ¢
02 for each t. in postorder do

03 if (ge +Ac+ Fe > ¢N) then

04 print(e, fe + ge, fe + ge + A¢);
05 el se

06 Fpar(c)+ = Fe + ge;

07 fpar(c)+ = fe + ge;

Fig. 5. Algorithm for Full Ancestry Strategy in one dimensio

accuracy guarantees in space no worse than that used byivkatgorithm.

More formally, consider the set of nodes whose (unadjustedifiH descendants) count
exceeds the fractionV for the current value ofV. This induces a proper subtree of the
hierarchical domain. The leaves of this subtree consisbdéa whose count exceeds this
threshold, but none of their children do. This set of leavesrefer to as “the fringe”,
and they form an anti-chain under therelation. The goal of our first strategy is to (ap-
proximately) maintain the fringe as items arrive. In ordegtiarantee approximation, we
may keep information about some nodes which are not in thgdribut we will prune our
data structure to remove as many nodes as possible thattirethe fringe. We enforce
the property that if we store information about any node inalgorithm, then all of its
ancestors are also stored. Hence, we denote this approttehfgll ancestry” method.

We maintain auxiliary informatiofig,, A,) associated with each item where they,’s
arefrequency differencdsetweerp and its descendanfs }. Thatis,g, bounds the number
of nodes with prefiy that are not counted in descendant nodes dhis allows for fewer
insertions because, unlike the naive approach where we msprefixes for each stream
element, here we only need to insert prefixes until we eneslant existing node i’
corresponding to the inserted prefix. This is an immediatefiedue to being “hierarchy-
aware”. A, represents an upper bound on our uncertainty in the coumthvid1set when
we insert the node.. Naively, we could sef\, = bcyrrent, Dy analogy withLossy
Count i ng [Manku and Motwani 2002], but we keep extra information ic@stor nodes
to give a tighter bound. Lefd(e)} denote the deleted children of a nade We observe
that one can improve the bounds on the's by keeping track ofn. = maxgeq(e)(ga +
Ag). This is easy to maintain: following the deletion of a chilgpdatem,. of its parent if

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

16 . Graham Cormode et al.

necessary. Thus, the auxiliary information associatel edich element that is stored in
T is (ge, Ae, me), Whereg. and A, are defined above. We extend the definitiomofo
nodes that are not materialized in the data structure bygett, = m,,.,(,) for nodesy
notinT. By applying this definition recursively, a value®f, can always be found.

3.2.1.1 Computation of f,,;, and f,q... FOr any prefixp, we compute

fmzn(p) = Z Je

exp

fmaz(p) = fmin(p) + Ay

if p is stored inT’, and if not, we sef,,a.(p) = fmin(p) + mp = M.
Insertion operation. To process a new update @fwith an update weight aof, we test to
see whethee is presentiril’. If so, then we just have to incrememnt by c. Else, if not,
we recursively call nsert with (par(e),0) (this ensures that the parent of the node is
inserted in the data structure), and create a node to represg/e use then,. from the
parent node to seh. = m,.,.(.). Each insertion operation requires us to examine up to
H nodes inT" in the worst case; however, in practice we expect this to kalensince the
process only needs to find the closest ancesterttioét is present ifl’.
Compress operation. During compression, we scan through the tuples in postaaér
find nodes satisfyingg. + A. < |eN]). These correspond to nodes whose contribution is
sufficiently small that they can be removed without loss a@fuaacy. For each such node,
if it has no descendants, then it is deleted from the datatstre! (andm () is updated).
Consequentlyf” is a complete trie down to a “fringe”. Alf not stored inT" must be
below the fringe. Any pruned nodég must have satisfieflf,,..(¢) < [eN]) due to the
algorithm. If there aréT'| tuples inT', then the cost to perform@onpr ess operation is
O(|T)). Below we show thalfl'| = O(Z logeN).
Output operation. The Qut put function for this strategy takes as a parameter and
chooses a subset of the prefixedimsatisfying correctness. That is, we compute an over-
estimate of the adjusted sublattice count for each node cgeeding level by level from
the leaves (see Definition 4). We initialiZ&, our estimate of the sublattice count of non-
HHH nodes, to zero for all nodes. We proceed up the hierametyadateF, as we go. If
a node is not an HHH, then we updadfg,,.) of its parent by adding o#.. However, if
the nodee is an HHH, then we do not propagate thg count upward. We test whether
is an HHH by comparind’. + g. + A, to ¢ N: this compares an upper bound on the count
of e to the threshold for being an HHH.

Figure 5 gives the algorithm. Below, we show that this cdiyauaintains the necessary
constraints.

THEOREM 1. The routines in Figure 5 guarantee the accuracy and covepaggerties
from Definition 3.

PROOF Accuracy requires that the estimated count of a node ismwiéthe N additive
factor of the true count of the node. Our output routine cotepyi, as ZHP ge and
outputsf, + g, as the approximate sublattice countédin line 04 of the Output routine).
This is exactly equal to our earlier definition ff,;,,(p). Observe thaf,,....(p) counts only
insertions to nodes in the subtree definedbbgnd is therefore no more thati(p). We
argue thatf,,... (p) is an upper bound ofi*(p) by induction over the sequence of insertion

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 17

and compression operations. Cleafly..(p) = 0 at the start of the stream is a valid
upper bound. When we compress, we delete nodes that satisfyp) < eN (line 02 of
Compress), and we update thevalue ofp’s parent to be max ofivq; (), fmaz(p) (line
04). This ensures that,,q,,) > fma:(p) for deletedp values at all times (this is true even
if par(p) gets deleted: we derive a valuerf, for nodes that are not materialized in the
data structure because we defineg = m,,,(,)). When we (re)insert a node we st
based oM., () (line 08 of Insert). Sincen,,.,. ;) > fmae(p) Whenp was deleted, and
no further insert operations have occurred to nodessisubtree (else would have been
reinserted earlier), whiler,,,.,) can only have increased, thgn,...(p) continues to be
an upper bound offi;, the true count op.

For the bounds on the uncertainty in our estimatg ofve show that for any nodg,
fmaz(p) — fmin(p) < €N as follows. Ifp is present in the data structure, then it has a
value ofA,, representing an upper bound $f.. (p) — fm:n (p) that was instantiated when
p was inserted A, is instantiated based an,,, which is the maximum over a subset of
deleted nodes of thejf,,,,.. The value ofn, is never more thab.,,rent, Since this is the
requirement for a node to be deleted. Hence, becAysa a tuple inT" is never changed,
we concludef, 4. (p) — finin(P) < bewrrent < €eN. Similarly, for a nodep not present in
the lattice, it hasfax(p) — fmin(p) = m,, Where againn, is bounded by, rent Y
the condition for compressing.

For coverage, we need to show that the output function isereative, that is, based on
the information available in the summary, it outputs anyenadhen it is possible that it is
above the threshold. We decide whether to output based oooouputation off, (line
03 in Output): this is computed similarly #, but does not include any contribution from
nodes that are included in the output set of noded)Ve see that for any prefix

Fq+gq+Aq = fmin(Q)+Aq_ Z Je
(eXg)A(e=xP)
> (O fle)ie=xq=> fle):(e=xq)A(e=P))

=) fle):(exq)A(e £ P)

That is, our computed value is always an overestimate ofdhéition from Definition 3,
and so the algorithm guarantees coverage.

THEOREM 2. For a givene, the Full Ancestry strategy finds HHHs m(g log(eN))
space.

PROOF Our proof proceeds in several steps. First, we show thatfihee used by our
strategy is no more than that used by the same algorithmmgrar a modified version of
the input stream. Then we argue that the space used to find léHites modified stream
is no more than the space used by the Lossy Counting algoafhivtanku and Motwani
over this same stream [Manku and Motwani 2002]. We can thetlydpe space bounds
of that algorithm.

Consider the space used by our algorithm alfeupdates have been seen. Then some
nodes are materialized in our summary. Let the set of nodesrisummary that have no
descendants that are also materialized define the fringesn@d timeN): FR = {p €
T|Vg € T.q < p = q = p}. Observe that every element from the inguts either a
fringe node itself, or it has exactly one fringe node as aresiwe. Given a leaé and

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

18 . Graham Cormode et al.

a set of fringe node$'R, we rewrite the original stream of updates as a new stream, by
replacing every nodein the update stream by thec F'R such that < p. We argue that
if we run our algorithm on this modified stream, then we wilhgeate a virtually identical
data structure at timé& as when we run our algorithm on the original stream. In order
to do this, we will show that two invariants are preservedh®ydlgorithm. We denote by
St the algorithm running on the original stream, a@gq” the algorithm running on the
modified stream.

Property 1. For any node stored byS’fu” with g, m andA, the node representirgn
S 11 has the same values gfm andA.

Property 2. For any nodee stored by our algorithms, all ancestgrsof e satisfy

fmam (e) < fmaw (p)

LEmMMA 3. If both these properties are satisfied, then after procestie same input,
every node stored by, is also stored by}, ,;, and further, that for every nodestored
by S}u”, eithere is stored bySy,; or, if e is below the fringe, thep is stored byS .,
wheree < pandp € FR.

PrROOF. This we prove by contradiction: suppose first théd stored byS ., but not
S+ Fore to have been deleted i, it must be the case that at some pofipt... (e)
was less that,,rent. But at the same time should have been deleted i}, since
by Property 1, it has the same valuef3f..(¢) = ¢ + A. Note that all its descendants
would also have been deleted, since by Property 2, all their. values were no bigger
than that of. Hence, we argue that this case cannot happen. Now, supgised stored
by S}u” but not byS,;;. Then a similar argument based on Property 1 shows:thatst
be deleted by both algorithms at the same point. One difterémnote is thats,,;; may
store some that is “below” the fringe of node§'R. In this case, we argue that$fs,;
storese thenS’,,;, must store the fringe node that contains.e., thep € F'R such that
e=<p 0O

This means that the sets of nodes stored by both versions alglorithm are not com-
pletely identical, since several nodes may be stored y; corresponding to only one in
S - However, at timeV, then since there are no nodes storedbhy;; below the fringe
(since the state at this time defines the fringe), and so tref peefixes stored it$'s,,;; and
S, are identical after seeing the whole input.

LEMMA 4. Our algorithm always maintains Properties 1 and 2.

PrROOF We now show that Properties 1 and 2 always hold, by inducii@r the se-
guence of operations$ isert andConpr ess). The base case is to observe that initially
the data structures are empty, and so trivially both prigeehiold. For an insert case, there
are two cases to consider, depending on whetli®currently stored bﬁ’fu” or not.

Case 1. Insertion ofe which is already stored by} ;. By Lemma 3, ther is also
stored byS.;, and by the inductive hypothesis has the same value g¢f,,,, in both
versions. We update thevalue for node: and do not alter\ or m, SO f,,q.(e) increases
by the same amount in both versions, preserving PropertindilaBly, for all descendants
of e, their f,,,4, all increase by the same amount, so Property 2 is preserved.

Case 2. Insertion ofe which is not stored by’,;;. By the above argument, thenis
not stored bySy,,;; either, and consequently all descendants afe not stored by either
version. We insert with g = c andA = m,,,,.(.) in both versions of the algorithm, which

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 19

ensures Property 1. Thfg, .., of all ancestors increases by ¢, whijlg,..(¢) takes the value
of c+mpqr(). We observe for any noge thenm,, < g,+A4,, by the way then values are
createdmn,, represents the maximugn+ A of a deleted descendant@flf m, > g, + A4,
whenm,, is set, therp would also be deleted at the same time, so this is not posJibén
m,, is not modified (until another deletion occurs), while+ A, cannotincrease, and so
we maintain the conditiom, < g, + A,. So, when we insert a new node and initialize
A, = Mpar(e)s then we haV$e + ge = A.+1< Gpar(e) + Apar(e) < fmaw (par(e)),
which thus ensures that Property 2 is met.

Case 3. Deletion ofe which is stored by";,,;. We know thate is stored by bottt ..,
andS%,;;, and has the same value §f,., In both. However, in order to deletefrom
S%1» We must be sure that it has no descendants. isfone of the fringe nodes, then
descendants af may be present iS}u” correspond t@ in S¢,;;. However, by Property
2, since these havg,., no greater than their ancestor, ther ifan be deleted i5s,,;,
by Property 1 and 2, these descendants can all be deletethemditself can be deleted.
We update the values ofi,,,,(identically in both cases, ensuring the preservation of
Property 1. O

To complete the proof, we argue that the set of prefixes ffoRstored byS}u” is
a subset of the set of prefixes that would be stored by the L@ssyting algorithm of
Manku and Motwani [2002] run on the same stream.

LEmMMA 5. Given the same input, our full ancestry algorithm will negéosre more
(leaf) elements thahossyCount i ng.

PROOF We argue that if an item is stored by our algorithm, then @lso retained by
Lossy Counting. We consider the sequence of insertionseofiehts. Suppose our algo-
rithm encounters some element that it is not currently sgprive useA. = M4, () t0
insert the item with, noting that triviallyn, < beyrent — 1 (this property is preserved by
every operation that affecta. in the algorithm given in Figure 5). Then there are two
cases to consider:

(i) the iteme is already being stored by Lossy Counting algorithm. Theh.dssy Count-
ing, the item hag, + AL > beyurrent (€lse it would have been compressed at the previous
bucket boundary), while we insert the item with= 1 s0g. + A. = Myape) + 1 <
bcurremﬁ -1+ 1 S g; + A/e

(i) the iteme is not already being stored by Lossy Counting. Then, we irtkeritems

e With Ay = mpare) < beurrent — 1 = A, andg. = g, = 1. In this case also,

ge +Ac < gL+ AL

From this point on, we do not chang€, or A., and we updatg. andg. by the same
amount for every insertion. Hence, the inequality+ A. < g, + A/ remains. We
therefore conclude that for as long as the iteis stored by our algorithm it is also stored
by Lossy Counting: since the occurrence of the prefix in thesyoCounting algorithm
has a higher value aof + A, it will never get deleted before the copy in the full ancegstr
algorithm (both algorithms use the same condition for daettesting whethey + A is
less tharb..--nt). HeENce, the space required to store the fringe is at mosuted by
Lossy Counting to represent the inpuf]

The space used by Lossy Counting is at m@@ log e N') [Manku and Motwani 2002].
Lastly, we observe that for each fringe node, there are at ios 1 non-fringe nodes
also stored by our algorithm ifi (these are the set of all ancestors of the element). So, we

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

20 . Graham Cormode et al.

Insert (elenent e, count c):

/* anc(e) is the closest ancestor of e */
/* par(e) is the immediate prefix of e */
01 if t. exists in T then

02 get =c¢;

03 el se

04 create t;

05 ge = C;

06 if tanc(ey €Xists in T then
07 Ae =me = Manc(e)s

08 el se

09 Ae = me = beurrent — 15
Conpress():

01 for each t. € T do

02 if (.(]e + A < bmmw‘ent) then
03 if (e# «') then

04 I nsert(par(e), ge);
05 Mpar(e) = MAX(Mpar(e)s Je + Ae);
06 del ete t.;

Qut put (threhold ¢):

I Fe =73 f of non-HHH descendants of e */
0l let Fo=fe=0 for all e

02 Enqueue every fringe node;

03 whil e queue not enpty do

04 Dequeue e;

05 if enot in T then

06 Ao = mg(e)s

07 if (ge +Ac+ Fe > ¢N) then

08 print(e, fe + ge, fe + ge + A¢);

09 el se

10 Frar(eyt+ = Fe + ge;

11 fpar(e)yt = fe + ge;

12 Enqueue par(e) if not already in queue;

Fig. 6. Algorithm for Partial Ancestry Strategy in one dirs@n

conclude that the space used by our algorithm is bound@i(@log eN).

LEMMA 6. Each update in the full ancestry algorithm in one dimensgkes amor-
tized timeO(H logeN).

PrROOF Each insertion takes time at ma@stH), in the case that none of the ancestors
of the inserted item are materialized. The amortized cosbofpress dominates the over-
all cost of updates. Each compress requires a linear pastheveéata structure, to remove
and push up counts of deleted nodes. Since we have just shavthe data structure is
bounded byO(Z logeN), and if we run compress after eved)(1) insertions, then the
amortized cost i$)(H logeN). Note that this amortized cost can be made into a worst
case cost by some careful use of buffers and incremental atatiqgn: essentially, instead
of doing a full compress after some number of insertions,dwes a small amount of com-
pression work (processing(H log e N') items) after every insertion. We omit the details
from this presentation, since they are mostly straightésddrom this description.

3.2.2 Partial Ancestry Algorithm.We observe that the previous strategy can be waste-
ful of space, since it retains all ancestors of the fringeaso@ven when these have low
(even zero) count. In this strategy, we allow such low cowttas to be removed from the
data structure, thus potentially using less space. Thisnib longer the case that every

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 21

1.2* 5.6.7.*

Ipa rpar

1.2+ 56.7.8 1.2.3.*%5.6.7.*

1.2.3+%56.7.8

Fig. 7. The diamond property: Each item has at most one “comgnandparent” in the lattice.

prefix that is stored has all its ancestors stored as wellcéieme only keep a partial an-
cestry. The bouneh,. is obtained from the closest existing ancestor of the nemdgited
element. Figure 6 presents the algorithms for tmsert , Conpr ess and Qut put
operations,

The auxiliary information associated with each elemei® (g., A, m.), which are
defined as before. When a new elemeistinserted, its\. andm, are initialized using the
auxiliary information of its closest ancestatic(e) in 7' usingm (.. Once the closest
ancestor inl" has been found, no further operations are required, in asinto the full
ancestry case where intermediate ancestors must alsodyéehénto the data structure.
We computef,,.;, and f,.... in the same way as for the complete ancestry case. We can
show this algorithm, illustrated in Figure 6, is correct akoiws.

THEOREM 3. The algorithm in Figure 6 maintains the accuracy and coverpgpper-
ties from Definition 3.

PROOF The proof of correctness is very similar to that for Theorkntor accuracy,
observe that as befor&,;,, (p) is indeed a lower bound ofi* (p) since it counts a subset of
the updates that affected By the definition of the condition for deleting onpr ess,
we maintain the uncertainty in counts is bounded:by The only difference is that we
get the boundn, for inserting a new prefix from some ancestopahther than its parent.
However, once again we can show thaj is always less thab.,, ..., because then
values are set based gnt- A values from a deleted node, and for these ngdesA <
beurrent- This gives the accuracy condition. For coverage, we agsgrthe bounds on the
counts of items to act conservatively: because we compyteased on the upper bound
of the count forp, less the lower bound on the count of the HHHs already outpet we
never underestimate the count fgrand consequently never fail to outpuivhen we need
to. O

It seems that the partial ancestry algorithm should alwagsless space than the full
ancestry version, but this is not an immediate consequaifben a new item is inserted,
all its ancestors are forced to be present in the full angefgorithm, so this appears to use
more space; however, it also means that they are insertbdhveitsame value ak. In the
partial ancestry case, when a prefix is deleted from the datetsre, its count is passed
on to its parent, which may be inserted if it is not presenhwitlarger value ofA than
in the full ancestry case, and consequently this entry haghehvalue ofg + A than in
the full ancestry case, making it harder to delete. So we dtryéo argue that the partial
ancestry algorithm will always use less space than the Adeatry, although we observe

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

22 . Graham Cormode et al.

in our experiments that this is the case on the data that weres

3.3 Multi-dimensional Algorithms

In this section, we consider the multidimensional (overlegse, where the count of an
item being rolled up is given teachof its parents. As discussed in Section 2.4, there are
many subtleties of this approach that would need to be asielddsy an online algorithm. A
straightforward rolling up of an element’s count to eachtefiarent elements, iteratively
up the levels of the lattice, would result @vercountingerrors, which are only worsened
as the number of hierarchical attributes increases. Tog@rect algorithm, we instead
update the counts of not only the immediate parents of theteldelement, but also those
of “grandparents”, “great grandparents” (i.e., parenfsarents, their parents) etc., butin a
bounded fashion that depends on the dimensionality of tkee €aur approach essentially
applies the inclusion-exclusion principle, meaning that add the count of the deleted
node to parents, but subtract it from grandparents, addgteat-grandparents, until we
reach the unique ancestor of the deleted item, correspgialithe generalization on each
of thed attributes. We refer to this as the “diamond” property, siilicistrated on a Hasse
diagram, it resembles a diamond. This is shown in Figure 2{fdrhere the count for node
(1.2.*, 5.6.7.*) can be obtained using inclusion-exclasiy adding the count of nodes
(12.2.*,5.6.7.8) and (1.2.3.*, 5.6.7.*), and subtractihg tount of (1.2.3.*, 5.6.7.8). More
generally, on a-dimensional lattice, the diamond structure is an embedegichensional
hypercube.

More specifically, our algorithms for the overlap case maima summary structurg
consisting of a set of tuples that correspond to samples thenmput stream. Each tuple
t. € T consists of an elementfrom the lattice, and a bounded amount of auxiliary infor-
mation. The algorithms we present for insertion ifitocompression of’, and output are
non-trivial extensions of the full and partial ancestryaalthms for the 1-d case, to care-
fully account for the problem of overcounting. With eachneéte, in thed-dimensional
case, we maintain the auxiliary informatiog., A., m.), where:

—yg. is a lower-bound on the total count that is straightforwanmdilled up (directly or
indirectly) intoe,

—A, is the difference between an upper-bound on the total cbantg straightforwardly
rolled up intoe and the lower-bound,,

—me = max(|gqe)| + Adce)), over all descendantie) of e that have been rolled up into
€.

3.3.0.1 Computation of f,,;, and f,q... FOrany prefixp, we compute
)= g
exp
and from this we set
fmin(p) = f(p) — Ap and fraz(p) = f(p) + Ap
if p is stored inT’, and if not, we set

fmin(p) = f(p) — My andfmaw(p) = f(p) + mp

where, as usual, we computg, by finding the minimumn value over all closest ancestors
of p.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 23

Insert(el ement e, count c):

01 if t. exists in T then

02 get+ =c¢;

03 el se

04 create to with (ge = ¢, Me = beurrent — 1) ’
05 for pin ancestors of ein T

06 Ac = me = min(me, myp);

Conpress()
01 for =L downto O do
02 for each node t. at level [do

03 if (lgel +Ac < beurrent) then

04 for j=1to 22 —1 do

05 p =-e; parcount = 0;

06 for i=1to d do

07 if (bit(z,5) =1) then

08 p = par(p, i);

09 parcount+ = 1;

10 if (pin domain) then

11 factor = 2 x bit(1, parcount) — 1;
12 insert(p,ge * factor)

13 if (parcount =1) then

14 mp = max(myp, |ge| + Ae);
15 del ete(t.);

Qut put (threshol d ¢):

01 Fo. = fe=0 for all e

02 for I =L downto O do

03 forall label € Level(l) do

04 forall e € D,level(e) > 1 do

05 p = CeneralizeTo(e,label);

06 fot = ge:

07 if (AheP:(e=h)A(h=D))

08 Fp+ = ge;

09 forall h e P,level(h) <1 do

10 p = CeneralizeTo(h,label);

1 if (BgeP:(h=q)A(qg=p))

12 Fp+ = Ap;

13 forall h,h’ € P,level(h) > I,level(h’) > 1 do
14 p = General izeTo(glb(h,h’),label);

15 if (BgeP:((h=2q)VH(Z9)A(g=p)
16 Fp+ = Ap;

17 forall p e Level(l) with f, >0 do
18 if (Fp+ A, > ¢N)

19 P=PuU{p}

20 print(p, fp, fp +Ap);

Fig. 8. Multidimensional Algorithm with Partial Ancestry

In Figure 8, we present the online algorithm for thedimensional case. Here we show
the algorithm with Partial Ancestry. The Full Ancestry cé&salmost identical; the differ-
ence is that we insert each parentafith count 0 when a new elemesis inserted, and
in the compress phase, we only delete items that have nordsws. As in the algorithms
for the one dimensional case, the input stream is concédyptliaided into buckets of width
w = [1], and the current bucket number is denoted@s,..: = |¢N]. The insertion
phase is very similar to that of previous cases.

During compression, the algorithm scans through the tupléise summary structure,
and deletes elements whose upper bound on the total couatléggger than the current
bucket number. When we find an item that can be deleted, wetnesdlbcate its count to
ancestors. In the one dimensional case, this meant simpbasihg the count to its imme-
diate parent. To generalize this to multiple dimensionsiireg us to apply the inclusion-

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

24 . Graham Cormode et al.

exclusion technique mentioned above: we add the count tpaadints, subtract it from
(common) grandparents, and so on. Concretely, suppasto be deleted. We consider
the common ancestar, defined by generalizing on each of its non-general dimensions:
a = par(par(...(e,1),2),...d). For this discussion, assumewvas non-general on all
dimensions (dimensions that are general will, in effectigmored). Takings ande to-
gether, we induce a sublattice of the lattice structuresisting of all prefixep such that
e=p=Xa.

This sublattice is also a lattice, and contadisprefixes, forming the structure ofd
dimensional hypercube. Each prefix in the lattice can becéssal with a bit string ofl
bits, where theath bit is O if e has not been generalized on dimensipand 1 if it has.
Thus, e is associated withi?, a with 1¢, and109~t is par(e, 1). If e is at levell in the
lattice, thernu is at levell — d. The weight functionwt, applied to a bitstring, counts the
number of 1s in the string. Therefore, the level of a prefixha sublattice with binary
labelb is i — wt(b).

Depending on the distance of a prefix in the sublattice, weeedadd or subtract the count
of the deleted prefix: we subtracy,. from the counts of prefixes withvt(b) = 1 (i.e.,
the parents), add. to the counts of prefixes witlvt(b) = 2 (the common grandparents),
and continue to alternately subtract (odd weight labels) asid (even weight labels) to
all prefixes in the sublattice defined hyande. This is performed in lines 4 to 12 of the
Conpr ess algorithm in Figure 8. The countgrcycles through all the binary labels, and
the loop in lines 6-9 creates the prefix corresponding to theent value ofj, and also
computesut(j) asparcount. We use the functiobit (i, j), which returns théth bit of the
integer; when written in binary. The, count is added if the binary label has odd weight
(i.e. ifits least significant bit is 1), and subtracted if e\east significant bit is 0). Lastly,
we update then values for the immediate parentsaofwe only update immediate parents:
if these are subsequently deleted, thensthealues of their parents will get updated in
turn). This is carried out in lines 13-14: a prefix is an imnageparent oé if the weight
of its binary label is 1.

LEMMA 7. fin and fq. give correct upper and lower bounds on the sub-lattice
count of all prefixes.

PROOF Fix an arbitrary prefixp and consider howf,,:,(p) and f,....(p) vary over
the sequence of operations. Initialfyin(p) = fma(p) = f*(p) = 0. We proceed
inductively over the sequence of insert and compress dpagatFor an insert operation,
suppose: is inserted. Ife < p, thenf(p) increases by 1, either because the existing node
t. has its value ofj. increased, or because a new nagdes inserted, with its value of
ge initialized to 1. By analogy with previous cases, the valleeaempute forf,,.. (p) is
an upper bound, because we bound the largest possible ainteih the sublattice count
by ourm andA values, which are in turn bounded by, = ¢N. Because we may
delete some entries whoge value is small and negative, is not a lower bound, but
since we ensure that any deleted value satisfigst A. < beyrrent, We can lower bound
the sublattice count by (p) — A, i.e. fmin(p) is @ lower bound ory*(p). Lastly, if
e A p, thenf,..n(p), fmaz(p) and f*(p) all remain the same. Hence, the insert operation
correctly maintains the bounds on the true count.

We now focus on the compress operation. Here we must makeatrise of the struc-
ture of the lattice and hypercubes to show that our countsire@ccurate. Let be a
node that is deleted in a compress operatior. # p then f,,,;,(p) and f,,.(p) do not

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 25

change, since the only values that are altered belong to nodesuch thate < ¢. But

e A p = q 2 p, and so the computation ¢f(p) is unaffected. We now argue in the case
whene < p, unless: = p, thatf(p) is also unchanged and $6,;,.(p) andf,,..(p) remain
the same. The reason for this is that although counts areased and decreased within
the sublattice defined hyande, the net effect on any sublattice definedjbsemains the
same.

Consider the effect offi(p) whene is deleted. By the above analysis< p. Therefore,
there must exist at least one dimensioof e such thatar(e,i) < p. Take anye’ such
thate < ¢’ < p ande’ agrees withe on dimension. Then we argue thatar(e’, i) < p,
because of the lattice properties: the least upper bountdulot in lattice terminology)
of ¢/ andpar(e,i) is par(e’,i), and we are guaranteed that the lub exists in the lattice.
Thus we can establish a bijection betweerealk p that agree witlke on dimension, and
par(e’,i). Whene is deleted, the effect is to add to ¢’ and subtracy. from par(e’,),
or vice-versa. Hence, for eaeh par(¢’, i) the net effect orf(p) is zero. Summing over
all ¢/, we see that there is no overall changg (p) (unlesse = p).

Thus, the only way thaf (p) can change in a compress operation is whdtself is
deleted. In this case, we establish thal + A < beyrrent- HENCe, our uncertainty in the
count of the sublattice gf remains bounded bb..;;--c..¢, Which in turn is bounded byV,
giving the required accuracy bound$1

3.3.1 Output Procedure At any point, we can extract and output HHHs given a user-
supplied thresholg. In multiple dimensions, the task of outputting the Hiehacal Heavy
Hitters is rather more involved than in the one-dimensiaaake. This is because certain
nodes may have multiple of their ancestors declared to be ${latéaning that manipula-
tion of counts has to be handled with more care in order to theetoverage requirements
of the definition of the problem. Recall that the coverageir@mmentis one sided: we must
guarantee that any node that is not output has a sublattio® ¢adjusted for descendant
HHHSs) that is at mospN. As long as we take a conservative approach, we can guaran-
tee correctness; our goal is to produce an output that is a ampossible but that has
this guarantee. Therefore, the better approximation wegsamnto the adjusted sublattice
counts, the fewer unnecessary nodes will be output.

For example, consider the naive algorithm. This outputsm@syix p whose sublattice
count exceeds the threshaldv. This makes no adjustment for HHH descendants, and
consequently outputs potentially many more nodes thartigetysnecessary (in particular,
if any node is output, then so too are all its ancestors). Gleiarly satisfies correctness,
but since we have much more information available (we canptaenaccurate bounds on
the sublattice count of any given node), we can hope to do rhettbr.

Our approach is based on estimating the adjusted sublatiioat itself. We can apply
the inclusion/exclusion principle in order to get an acteianswer. As in the one dimen-
sional case, we must proceed bottom up through the lattiogressively computing the
HHHs level-by-level. At any point, we will have created a gebf nodes that have been
output as HHHs. For any nogecurrently under consideration, we must compute a count
that discounts the counts of any items that we have alreathubas HHHSs in the seP.

We defineH,, C P as the set oh € P such thatAh’ € P : h < b/ < p. This s the
subset of the output HHHSs that affects the computation o&tljested count. We can then
compute the adjusted sublattice countpdby taking fq...(p) — Zher fmin(p). Note
that because we are trying to compute an upper bound on thig,aee always add upper

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

26 . Graham Cormode et al.

bounds and subtract lower bounds. This first approximatidheoresult is potentially too
low, since for nodes that are covered by two or more membetseobetH,,, we have
subtracted their count twice. Thus we need to compensatddipgtheir counts back on
to the sum, which will result in an overestimate of the suldatcount (i.e., a conservative
estimate, as required).

This procedure could be continued, applying further stajaslusion/exclusion. How-
ever, we will see that proceeding further will only incredise upper bound. The bound
we produce consists of the sumgtalues not covered by the elementsp, plus some
additional A values. Applying further rounds of inclusion/exclusionil@hmaintaining
conservative counts keeps the same set\edlues, but adds addition&l values. Hence,
the tightest upper bound comes from applying a single rodimactusion/exclusion. This
corresponds to computing

Jmaz(p) — Z fmin(h) + Z fmaz(q)(|Dom(q, HP)| -1)

heH, q=glb(h€Hp,,h' €H,})

This makes use of two lattice theoretic notions, the gredoaser bound (glb) of two
nodes in the lattice, and the dominating set of a node reldtva set of nodes in the
lattice. We writeq = glb(h, }') if ¢ is the unique element in the lattice that satisfies
Vp:(g=p)A(p=<h)A(p=2h'")=p=q.We define the Dominating set gfrelative
to H, as the seDom(q, H,) = {h € H,|lg < h}, the subset of, that dominateg
under=<. In the second term of the computation, the count sf subtracted once for each
member of its dominating set; however, it only needs to baraated off once. The last
term then compensates for this over-reduction by addingifficiently many copies of the
sublattice count.

We can take advantage of the structure of our counts in oodienplement this com-
pensation efficiently. Because the sublattice count of &mmiresponds to summing the
g values of all nodes within the sublattice, then computirggghblattice count of a node
p and subtracting the sublattice count of a npdbat is contained within it, corresponds
to summing they values of all nodeg such thaty < p butq A h. Hence, computing
the adjusted sublattice count for a ngdean be done efficiently over our data structures
by computing the sung values for all nodes not dominated by memberg’ofWe then
compute the necessary compensations by (i) addingitkialues for all members of P
that are below and not dominated by other membergfwhich corresponds to subtract-
ing the lower bounds; and (ii) addiny values for allglb values of pairs of undominated
members o, corresponding to adding on the upper bounds of the valussssted twice.
Note that some of theggb nodes may not be explicitly materialized in the data stmegtu
and hence we will have to instantiate théirvalues by use of the: values as when we
insert a new node. Formally, for nogave compute the conservative upper boufdas

F, = Z e + Z Ay + Z Ay

(e<p)A(VhEP.e£h) heP,h=p (h,h€P)A(h=p)A(R' 2p)A(q=glb(h,h'))

This routine is implemented in the pseudo-codedot put in Figure 8. We make use
of the functionGener al i zeTo defined in Section 2.1. For each prefiwe compute two
values: f,, is used to give the upper and lower bounds on the sublattieetcas required
for accuracy.F, is used to test whether to outpuas one of the HHH nodes. If the upper
bound on the count of using F, exceeds the threshold, we outguand its sublattice

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 27

Fig. 9. Example lattice with elementa.1), (a.2), (b, 1), (b, 2), (b, 3)

pg P D
h q q

e§ h ?1

(a) Line 07 (b) Line 11 (c) Line 15

Fig. 10. lllustration of output routine shown in Fig 6.

counts.

The correctness of theut put algorithm follows from the above descriptions. The
pseudocode computgs for every node by passing over the data struciisend summing
the g. values of alle < p. For those nodes that are output, it pritfits;, and f,,q.- AS
shown in Lemma 7, these give tight bounds on the sublatticaetcfor any prefix. We
satisfy the coverage criterion by pursuing the “consevedtapproach: the algorithm also
computes the quantity, defined above which corresponds to an upper bound on the sub-
lattice count after removing the HHHs that have already bméput. This we compute
similarly to f,, except that nodes already covered by séme HHH do not contribute;
we also have to include the adjustment for potential overting of the HHH nodes, by
including theirA values. Lines 04-08 compute tlfig and first term of th&, values; lines
09-12 compute the second term of tAgvalues and lines 13-16 compute the final term of
the F}, values. Lastly, lines 17-20 consider the materialized sade¢he current level and
determine which to include as HHHSs.

Example. Figure 9 illustrates a toy example lattice to demonstraténduhe output rou-
tine how the discounted frequenéy is calculated at the root noge= (x,). Initially,

F,, was set to zero and the nodes far2), (b, 2) and(a, *) were marked as HHHSs. Fig-
ure 10(a) illustrates the predicate in line 07, which iss$etil only by leafe = (b, 1);
therefore, after lines 04-08;, .)+ = g(,1), and that is the only leaf count added to
Fi.+)- Figure 10(b) illustrates the predicate in line 11, whiclsadisfied only by leaf
e = (b, 1); therefore, after lines 09-12, , + = A, 2 (note thatA, 5) is notadded to
Fi..+))- Figure 10(c) illustrates the predicate in line 15. Afiaek 13-16, nothing is added

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

28 . Graham Cormode et al.

to F\. .y becausé = (a,2) andh’ = (b,2) is the only pair of HHHs and there existga
between one of these HHHs and the root, namgely, (a, *).

THEOREM 4. The algorithm given in Figure 8 computes HHHs accuratelyto The
space used by the online algorithm for the overlap case withahcestry is bounded by
O((H/€) log(eN)).

PROOF We demonstrate the space used by the full ancestry is nexrerthran that used
by the naive algorithm. First, we show a monotonicity prapabout counts in the naive
algorithm, which means that the full ancestry property ifered in the naive algorithm.
From this property then we can easily show the claimed result

LEMMA 8. For any element stored by the naive algorithm, and fpisuch thake < p,
theng. + Ac < g, + Ay.

PrROOF We show this by induction over the sequence of operaticaisatter informa-
tion aboute andp. The base case is when the data structure is empty, and thetiirel
hypothesis is trivially satisfied. For insertions, there famur cases to consider:

Case 1: bothe andp are present in the data structure. If the insertion affemtsesnode

q = e, theng. andg, increase by the same amount, aidandA,, are unchanged. Else,
if the insertion affecty < p butg £ e, theng. stays the same whilg, increases. Either
way, the hypothesis remains true.

Case 2: e andp are both absent. If the insertion affects bettndp, then both are created
with identical values of = 1 andA; if it affects onlyp then the hypothesis does not apply,
since it only considers nodesstored in the data structure.

Case 3. e is present bup is absent. We argue that this cannot occur if the induction
hypothesis was always true up to this time: foto be absent but present themp must
have been subject to a deletion (since it would have beernt@usat the same timewas
inserted). But folp to have been deleted means thatt A, < beyrrent at the time of
deletion, whereag. + A. > beurrent at the same time of deletion. This contradicts the
inductive hypothesis, so it cannot have happened.

Case 4. p is present but is absent. Becaugeis present in the data structure, we know
thatg, + A, > beurrent, €lse it would have been deleted on the last bucket bountibey.
naive algorithm inserts with g. = 1, A, < beurrent — 1 @and so the inductive hypothesis
is satisfied.

Lastly, for compression operations, observe thatig not deleted, then its counts do not
change,; ife is deleted, then it is no longer present in the data strucame so the statement
does not apply.

Since every operation maintains the truth of the inductiyedthesis, we conclude that
the claim is true. O

Note that an important part of the case analysis showedftlatipresent in the data
structure for the naive algorithm then, relying on the monatity of theg + A values, any
ancestop of e must also be stored. We now conclude the proof by arguinggiiiahode
e stored by our algorithm is also stored by the naive algorithm

Consider some nodethat is stored by the full ancestry algorithm.elfs a fringe node
— that is, no descendants efare stored — then by the argument of Lemma 5 it is also
stored by the naive algorithm. dfis not a fringe node, then there exists same e which
is a fringe node. By the same argument, this node is alsocshyréheLossyCount i ng

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 29

algorithm, and because we have argued that if the naiveitddlgostores any then it also
stores all ancestors @f thene is also stored by the naive algorithm. Hence, the space
required by the full ancestry algorithm is never more thaat tised by the naive algorithm,
and can be much less.

LEMMA 9. The amortized update cost for the full ancestry algorithnminltiple di-
mensions i) (H logeN).

PROOF The proof of this follows from the analysis in Lemma 6 for ttvee dimen-
sional algorithm. Each insertion takes worst case tin{é]) if we have to create every
ancestor of the inserted node. If compressions take plaeeemferyO(%) insertions, and
require a linear pass over the data structure then, sincdataestructure is bounded by
O(% logeN), the overall cost is dominated by this amortizZ@dH log e N) cost. As be-
fore, this amortized cost can be made worst case with a $eit@plementation. O

4. EXPERIMENTS

In this section we evaluate both the effectiveness and effitgi of our proposed online
strategies, Full Ancestry and Partial Ancestry, for 1-geftand 2-d (lattice) prefix hier-
archies. The space usage was quantified using two measheesizé of the output sets
generated by the algorithm and the amount of memory usedglaxecution. As a yard-
stick, we consider the size of the (exact) output from offtbeenputation of HHHs. We
compared the performance of these algorithms in variouswayterms of the number
of insertion and deletion operations to the data structureéerms of the quality of the
approximate output compared to the exact algorithm; andgusimings based on their
implementations in a live data stream management systemedeh strategy, we tested
several implementation alternatives including (a) theiohof data structure; (b) amor-
tized vs. non-amortized compression; and (c) recursivaes:recursive insertion.

For comparison purposes, we also tested the naive algqtitheed oh.ossy Count [Manku
and Motwani 2002, to find heavy hitters on the set of all multi-dimensionalfixes of
all stream items. Whereas this algorithm uses two auxiNarables (the minimum fre-
qguency,f, and the difference between the maximum and minimum frecjgeA) and
the proposed algorithm uses thrge 4, andm), the overall storage ratio between these
data structures depends on the overhead of storing itentifidesy which dominates the
total space usage. Hence, we do not normalize by the indiVidple sizes but instead
report results in terms of the number of tuples.

We used real IP traffic data in our experiments, containingc®and destination IP
addresses (among other fields) from network “flow” measurgsn@-LOW), and packet
traces (PACKET). For the experiments on two-dimensionatdichies, we projected on
source-destination IP address pairs; for those on a siiglersion we projected only on
the source address. To examine the effect of the “bushiredgse hierarchy, we varied
the granularities of the hierarchies: the IP address spaees viewed on the byte-level
(“octets”) for some experiments, and on the bit-level fdress. The source used for the
performance experiments was a live IP packet stream mexitat a network interface
inside the AT&T Customer Backbone. On average, the stregnaite at this interface was

2While the asymptotics of other heavy hitter algorithms [Miand Gries 1982; Demaine et al. 2002; Karp et al.
2003; Metwally et al. 2005] are bettdrpssyCount has exhibited the best performance in practice, especially
on skewed data sets, as noted by Manku and Motwani [2002]q#&a of Sec 4).

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

30 . Graham Cormode et al.

about 100,000 packets/sec, or about 400 Mbits/sec. Altnalg traffic rate fluctuates
slightly over the course of a day, such changes are graddabesur in regular (diurnal)
cycles.

We compared the candidate strategies using the User-Deéfggegate Function (UDAF)
facility in Gigascope, a highly optimized system for monitg very high speed data
streams [Cranor et al. 2003]. Gigascope has a two-levelycarehitecture: at the low
level, data is taken from the Network Interface Card (NICJ @placed in a ring buffer;
gueries at the high level then run over the data from the rirffeb Gigascopereates
gueries from an SQL-like language (called GSQL) by genegafl and C++ code, which
is compiled and linked into executable queries. To integeaUDAF into Gigascope, the
UDAF functions (also in C/C++) are added to the Gigascopmtipband query generation
is augmented to properly handle references to UDAFs; forentgtails, see [Cormode
et al. 2004].

4.1 Implementation Details

Translating a complicated algorithm into a fast implemgatais rarely trivial, and re-
quires particular care when running it in real-time on a IRdraffic stream. We focus on
the details pertaining to implementation of these alganihn the context of Gigascope
UDAFs. Below we describe the data structures and optintiratused for our proposed
strategies (for both 1-d as well as 2-d prefixes), as well athinaive approach of com-
puting heavy hitters on all prefixes of all items, which wasdias a basis of comparison.
We focus on implementation choices at the high-level quetlyiwGigascope. At the low-
level, we employed two different basic processing altéveat (a) buffering items in an
array for blocks transfers; and (b) buffering items as a tveid set using a hash table.
The performance of the algorithms depends partly on theuéreqy with which the
Conpr ess routine is run. This can be as often as after evarger t operation; after ev-
ery1/e tuples; or with some other frequency. Note that the frequehcompressing does
not affect the correctness, just the aggressiveness witthwie prune the data structure.
We now describe how the individual strategies were impldegtn

—Naive: This method is based drossyCount and maintains a set of tuplés f, A) in
a hash table on item identifiets For each incoming stream iteamd all of its prefixesa
lookup is issued to find an existing tuple for that item. If @xésts, f is incremented by
1; otherwise, new tuples are created for all prefixes. Fortimeal compression, at each
stepes tuples are visited by traversing the hash table sequenfiadite that traversal
order does not matter for this algorithm), to determine Wiiodes can be pruned.

—Full Ancestry: This method, henceforth called FullAnces, maintains sifdeg, A, m)
in a hash table on identifier values Hence, this data structure effectively implements
a trie for one-dimensional hierarchies (resp. lattice feo-dimensional hierarchies).
We implemented two variants of this strategy: one that stpanters to the parent(s)
of each node and one that requires hash lookup to retriewn{sabased on the node
identifier. For each incoming stream item, a lookup is isgodihd an existing node for
that item. If one existy is incremented by 1; otherwise, new lattice nodes are ateate
(with ¢ = 0 for nonleaf nodes) up to a closest ancestor(s). Unlike tiemaethod,
which updates every ancestor in every path frofeading up to the root, this method
stops updating along a path whenever the closest ancestocasintered.
This method also maintainsfange, which is the set of nodes without children. The

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 31

fringe is used for efficient bottom-up pruning by focusingmession at only the nodes
that need to be visited (recall that this strategy only aders nodes having no children
for deletion). The fringe must be dynamically maintainedidgiinsertion and compres-
sion; hence, we employ a hash table for access. During th@mss phase, a queue
is employed to enforce a proper traversal order, since a slod@ld not be visited until
all its children have been visited) by enqueuing parentsisifed nodes; compression
iterates until the queue is empty. For amortized comprassionodes are dequeued at
each time step.

—Partial Ancestry: This method, henceforth called PartialAnces, maintaiasitides as
L distinct sets of tupleg, g, A, m), one for each level of the trie/lattice, with a separate
hash table on each level. For each stream item a single loigkispued, resulting in
either an increment or creation; prefix nodes are not cre@#dte intermediate nodes
(i.e., nodes with children) are considered for deletioarétis no performance benefit to
maintaining the fringe as with FullAnces. Bottom-up trasaditherefore proceeds level-
by-level. During the compress phase, nodes across eadlatevasited sequentially by
hash value (note that nodes at the same level can be visitatiarder). For amortized
compressiongs nodes are visited at each time step, in level order.

These methods were implemented in C++ and attempts weretmatike the three im-
plementations as uniform as possible for a fair comparisbe.C++ STLhash_mul ti set
container type was used for efficient hash access to thestuphsertions for naive and
FullAnces strategies, which require all prefixes, were engnted both recursively and
iteratively. We considered several other implementatiossibilities but eliminated them
since the ones described above performed better.

4.2 Experiments on One-dimensional Data

Space Usage.In the first set of experiments, we compared the output sizéemnline
strategies, and included the exact (offline) output size faasrae of reference. Figure 11
summarizes the results using FLOW at time step 100K withp(&) 0.2 (¢ = 0.1) and
(b) » = 0.02 (¢ = 0.01). The naive strategy clearly gives the largest output sizttha
difference from the output sizes of the proposed strateg@ss in cardinality with smaller
¢ ande. Note how close the output size from the Full Ancestry statis to the exact
output size. The output size of the Partial Ancestry strategignificantly less than that
of the naive one, but also noticeably larger than that of Ratestry. Figure 12 presents
the results based on PACKET. Here the differences in outpes ire more pronounced.

In the second set of experiments, we reportadtmosteriorispace utilization in terms of
the number of tuples at each timestep. Figure 13 gives a aisopaof the three strategies
on PACKET. The left column considered byte-level prefixaa glarity = 8) and the right
column bit-level prefixes (granularity = 1). The top row wasa with e = 0.01; the bottom
row was run withe = 0.001.2 (The graphs using FLOW were very similar and are omitted
for brevity.) The main observation is that PartialAncesdugee least space in all cases,
especially where is small and the prefix granularity is small. It is clearly theperior
strategy with respect to data structure size.

Update Efficiency.Figure 14 compares the speed of the strategies by measteng t
total number of insertion and deletion operations to thersany structure. The data sets

3Note that affects output size but not the space usage during execution

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

32 . Graham Cormode et al.

25 . : . . 120
100
2 2
El T 80
c c
5 5
g § 60|
S S
: 2 Y
20
0
exact naive full partial
(@)¢p=0.2,e=0.1 (b) ¢ = 0.02, ¢ = 0.01

Fig. 11. Comparison of output sizes from the online algonglon 1-d data, and the exact
answer size, using FLOW with bit-level hierarchies.

25 200

20 +
2> 2> 150 ¢
g g
s B i<
5] 8 100
5 10+ 5
=3 =3
p} p}
o ° 50
5 L
7
0 2 % 2 2 0
exact naive full partial exact naive full partial
(@)¢=02e=0.1 (b) ¢ = 0.02,e = 0.01

Fig. 12. Comparison of output sizes from the online algonglon 1-d data, and the exact
answer size, using PACKET with bit-level hierarchies.

used were (a) FLOW and (b) PACKET; the operations were tdtafeer 140K timesteps,
with bit-level granularity and = 0.01. It presents this breakdown as histogram bars where
the height gives the sum of all operations. The naive styatguires slightly more updates
than the other strategies because every prefix of every aldmimserted. The differences
between the proposed strategies are small.

4.3 Experiments on Two-dimensional Data

Space Usage for 2-d CaseThe data structure size of PartialAnces with bit-level gran
ularity was about 7 times more space-efficient than the retiategy, for different values
of ¢ ande (¢ = 0.2,¢ = 0.1 and¢ = 0.02,¢ = 0.01). The space differences were even
greater using PACKET: PartialAnces gave up to a 40-fold sgmvings over the naive
strategy.

Update Efficiency for 2-d CaseWe have already seen that both proposed strategies
yield smaller output sizes and use less space than the rietegy, with FullAnces having
a smaller output than PartialAnces but PartialAnces beiogerapace-efficient with respect

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 33

Space Usage versus Time for tcpsrc Data Space Usage versus Time for tcpsrc Data
(eps=0.01, gran=8) (eps=.01, gran=1)
200 o R
— naive 1400 naive
————————— full L full |
‘e 150 | e partial { @ 1200 partial
= £ 1000 - 1
=1 2 Q sl AALI
£ E 800 Al /
8 8 600 e
=3 & 400 Faln
200 g
L L L L L L L O L L L L L L L
20 40 60 80 100120140 20 40 60 80 100 120 140
time step (1073) timestep (10"3)
(a) (b)
Space Usage versus Time for tcpsrc Data Space Usage versus Time for tcpsrc Data
(eps=.001, gran=8) (eps=.001, gran=1)
1000 —— - —— -
naive 6000 | naive 4
800 | fuly o0 e full
a partial & 5000 r e partial |
§ 600 § 4000
@ @ 3000 |
g 400 g
=3 =3 2000
200 1000 ,“5___’——-——“"_—
0 L L L L L L L

20 40 60 80 100 120 140 20 40 60 80 100 120 140

timestep (10"3) timestep (10"3)
(©) (d)

Fig. 13. Comparison of data structure size from the onlirtegies on 1-d prefixes us-
ing PACKET. The left column is at byte-level granularitygthight column is at bit-level
granularity. The top row is witlh = 0.01; the bottom row is withke = 0.001.

to data structure size. We now consider the performanceeoptbposed strategies in
achieving such benefits.

First, to get an implementation-independent comparis@ngeunted the number of in-
sertion and deletion operations from each strategy ovdfpess of the data; see Figure 15.
The graphs indicate that, for all strategies, the diffeedmetween the number of insertions
and deletions is relatively small, which is due to the datacstire size remaining fairly
constant over time. The graphs also show that the stratddfesin the total number of
runtime operations performed, with the naive strategyiretgithe least using both FLOW
and PACKET data. FullAnces performs slightly more operaithan the naive strategy;
PartialAnces performs an even greater number. The diféeeare slightly more apparent
with PACKET, though compared to FLOW the number of operatiisress for all strate-
gies. It appears that, while PartialAnces was consistemtty/definitively the best strategy
in terms of minimizing space usage, this comes with a perdmece penalty, due to the
extra pruning.

Output Quality.. Next, we study thejuality of the output. Since we are using approxi-
mate algorithms, we cannot hope to find the exact set of HHhtssa there will be some
of these items missing from the output, and some extra. Hewéve quality and useful-
ness of this output will vary: for example, we might arguet thatputting the parent of an

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

34 . Graham Cormode et al.

Runtime Costs Runtime Costs
3.5e+06 — deletions ‘] 3.5e+06 — deletions
. ! ¢ . ! ¢
g 36406 | insertions g 36406 | insertions
€ 25e+06 | € 25e+06 |
S 2e+06 | S 2e+06 |
© 15e+06 © 15e+06
[[
= 1e+06 = 1e+06
2 500000 | 2 500000 |
0 0
naive full partial naive full partial
strategy strategy
(a) FLOW (b) PACKET

Fig. 14. Comparing the update efficiency of the 1-d strategiéth e = 0.01 and bit-level
prefixes.

Runtime Costs Runtime Costs
1.8e+08 [——= deletions ‘] 1.8e+08 [—— deletions’
2 1pe+08 | == insertions 2 1pe+08 | == insertions
2 1.4e+08 | 2 14e+08 |
g_ 1.2e+08 g_ 1.2e+08
o 1le+08 - o 1le+08 -
S 8e+07 | S 8e+07 |
2 6e+07 2 6e+07
E se+07 E se+07
= 2e+07 1 = 2e+07
0 0
naive full partial naive full partial
strategy strategy
(a) FLOW (b) PACKET

Fig. 15. Comparing the update efficiency of the 2-d strategiéth e = 0.01 and bit-level
prefixes.

“exact” HHH instead of the HHH itself is more useful than autting a distant ancestor.
We will introduce a sequence of progressively more refinegswia study the quality of
the output.

Firstly, we compared the output sizes of the online strategand included the exact
(offline) output size as a frame of reference. In practicis,itidicates of how valuable the
answer is: too large, and there may be too much informatioveite through. However,
unlike with the 1-d case, a smaller output size is not neciygseetter. Therefore, we go
on to present precision-recall analysis of the answer gatis fespect to the exact answer)
using a variety of scoring functions.

In general, the naive strategy yielded output set cardiealihat were an order of mag-
nitude larger than that of our proposed strategies, for e&tyaof ¢-values wherp = 20e
(a factor of 20 rather than 2 was chosen because of the gssatsitivity tog in 2-d). At
the same time, our proposed strategies yielded outputsvdratclose in size to that of the
exact answers computed offline. The output sizes of ParizdA were larger than those
of FullAnces, due to the insertion of intermediate nodesduthe output routine (see Fig-

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 35

Output Size Output Size

110 T — T T 4000

100] |
% 90| , 3500
O X 3000 f
3] L o L
5 gg I 5 2500
ks 50 | ‘G 2000
L 40t £ 1500
E 30} € 1000 |
2 20+ 2 500

10 - o Y 7] [

o Lz v/ 0
exact naive full partial exact naive full partial
strategy strategy
(@)¢ = 0.2,e =0.01 (b) ¢ = 0.02,¢e = 0.001

Fig. 16. Comparison of output sizes from the online algaonitfor the 2-d overlap case,
and the exact answer size, using FLOW with bit-level hidras.

ure 8), but this difference is eclipsed by that from the naivategy. The pruning power
of the proposed methods appeared to be proportional to tivegr&e and, though for this
data set the order of magnitude difference in output sizedidccur for ratios less then 5,
there were still benefits at these small ratios. Figure 16pl® output sizes, at time step
100K, using FLOW with (a)) = 0.2 (¢ = 0.01); and (b)¢ = 0.02 (e = 0.001), where the
hierarchies are induced by considering bit-level prefixethe IP addresses. Here there
is a clear difference between the naive strategy and thextivéh PartialAnces yielding
slightly larger output sizes than FullAnces, which gave@dtithe same sizes as the exact
qguery answers. The reduction in output size by the propasatbgies on the PACKET
data, using the same parameter values, was even greatéactbes were roughly 35 and
75 for¢ = 0.2 and¢ = 0.02, respectively. Clearly, the proposed hierarchy-awaedestr
gies are able to filter out a considerable number of prefixes.

To measure the quality of output sets obtained from the uaramline algorithms with
respect to the exact answer, we first use two standard setttmasasures of similarity:

the Jaccard coefficie Agg}; and the Dice coefficien Am?', which is the harmonic
mean of precision and recdllHowever, the output objects are multidimensional prefixes
at potentially different levels in the lattice, so “flat” seteasures are not suitable. For
example, how does one compare two prefixes when one is a p#Eranbther? Hence,
we used a measure designed for hierarchical domains, thmiSfit Genealogy Measure
(OGM) due to Ganesan et al. [2003], and modified it slightlyntake more sense for our
setting where objects are not all leaf nodes. Thus, we giselate differences rather than
relative ratios and made OGM symmetric as follows:

1—sim(4, F) = Z | depth(LC A) — depth(a)| — Z | depth(LC A) — depth(e)|
a€A ecE

That s, for each prefix in the approximate answet, we find its best matchin the exact
answerE, compute the lowest common ancesfaf’ A(a, e), and retain the difference
with respect taz. Symmetrically, we find the best match for eacke E and compute

4We do not consider bag-based measures since the HHH (dischurequencies in practice are typically all
roughly ¢ N.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

36

Graham Cormode et al.
1 : : : m
09l proposed i
: K-+ naive
08 [fringe 1
0.7 t — 1
o 065, =]
g 057 1
© 04y 1
03}/ 1
02 1
01F 4
g * ‘
0.05 0.1 0.15 0.2
@
Jaccard, flow data
1 : ‘ : ——
09 | —F— proposed]
' K- paive | ——
0.8 Ad fringe 1
0.7 U =1 |
o 06/ 1
g 057 1
® 04 1
0.3 1
02 X
O'é KK *]
0.05 0.1 0.15 0.2
]
Dice, flow data
o]
[=} 4
(]
(2] 4
0.05 0.1 0.15 0.2

OGM, flow data

score

score

score

0.9

08 |
07 |
06 |
05 |
0.4/
0.3
0.2
01}

—
L

\moposed
naive_
fringe ~+——

=

N N N

==l
=

0.05 0.1
0
Jaccard, packet data

0.15

0.2

1 . . .
09 | _proposed |
: . nave—
0.8 1 fringe 1
0.7t - g
oy =
06 |/]
05 ¢ q
0.4 1
03 r 1
0.2 + q
0.1 ¢} q
0 kX %K x 12
0.05 0.1 0.15 0.2
o
Dice, packet data
1 . :
—+— proposed
| ¥/ naive —7
095 1 e
0.9 ¢ X
0.85 q
08 | /.-]
%
0.75 % = q
- tp
0.7 : : :
0.05 0.1 0.15 0.2
]

OGM, packet data

Fig. 17. Comparison of output scores of naive, fringe anggpsed online algorithms,
with respect to the exact answer, using different simifamieasures: flow (left column),
and packet (right column) data at bit-level granularity.

LCA(e,a)'s. In addition to the naive all-NN output, we show results tloe fringe (the
subset of all-NN nodes which do not have a HHH descendantest is not cleaa priori
which will have a better score under the above measureshvdgambine both precision
and recall.
Figure 17 compares the output of the proposed algorithm thahof all-HH (“naive”
and the fringe, using the different score functions at wait>values. Bit-level granularity

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 37

Strategy CPU user time [iS) Strategy CPU user time [iS)
utilization per packet utilization per packet
Lossy Counting 49% 7.5 Lossy Counting 48% 6.85
FullAnces 51% 7.62 FullAnces 63% 9.18
PartialAnces 44% 6.6 PartialAnces 63% 10.96
(a) 1-d prefixes (bit-level) (b) 2-d prefixes (byte-level)

Fig. 18. Average performance for the different methods dverlP packet streams.

prefixes were computed and our proposed algorithm was itiestiach with the FullAnces
version. The Jaccard and Dice coefficients clearly disistgthat the naive algorithm gives
very poor outputs. They also indicate that the proposedtitiigo finds better answers than
the fringe, but this comparison is better evaluated usiegQiEM hierarchical measure
(rightmost column). Here we observe that, whereas thedrmmgput was better than naive
using flow data, the opposite is true using packet data. Sormive and fringe have bad
cases, while the proposed algorithms are consistently.good

4.4 Performance on a Live Data Stream

We measured the performance of the strategies on a livefffe saeam using Gigascope.
We wrote GSQL queries in Gigascope which reported the HHHh Wik longest prefix

length (both prefix label and frequency) at intervals of gwvainute, for a total duration of

30 minutes. For the 1-d prefix queries, we projected amtol P over all packets; for the

2-d prefix queries, we selected out only TCP packets prajenito(srcl P, dest| P).

We first compared the two low-level alternative implemenots described in Section 4.1
and found that, though neither was a bottleneck, hash-tmgfsting of items as a weighted
set was consistently faster than using an array to buffenhkiset, due to the temporal
clustering of IP addresses (e.g., during a TCP session)refdre, the results reported
below use the hash-based strategy at the low-level.

At the high-level, we ran the methods over similar live wodds and measured the av-
erage CPU utilization and user processing times at 1-mintgevals. Figure 18(a) sum-
marizes the results for HHH on 1-d prefixes at bit-level gtarity, with ¢ = 0.001 and
¢ = .05. The numbers did not vary considerably among the methodbk, RértialAnces
achieving the fastest processing times, followed by theenaiethod, followed by Ful-
IAnces. For these experiments, thenpr ess() operations were amortized rather than
doing them all at once at block boundaries; experiments héticthconpr ess() gave
only slightly slower speeds.

For HHH on 2-d prefixes, none of the algorithms could keep upmiising bit-level
granularity, so we set the granularity to byte-level in théloiving experiments. Fig-
ure 18(b) summarizes these results. Here we see a diffeferthe processing speeds
of the methods, with the naive method running fastest angtbposed methods doing
comparably. There did not appear to be any packet loss fooftlye above methods.
Emboldened by this, we tried running HHH on 2-d prefixes witranularity of 2 bits and
found that it could just barely keep up with the stream (CRlization of all methods were
close to 99%). However, the differences in both data strecimd output sizes increased
dramatically.

We also tested the non-amortized versions of the strategiesre a full compress is
performed only at block boundaries, using the same querthkytacket loss was so great
that we were unable to obtain any measurements. Hence, lyoloes spreading out the

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

38 . Graham Cormode et al.

processing for compression improve performance but, &t GRU utilization, it can make
the difference between whether or not the method can keepthphe streaming rate.

Another factor which impacted performance was the errondowlthough larger val-
ues ofe result in smaller space, more pruning will occur. In fact, ttee same query as
above, increasing the valueofrom 0.001 to 0.01 resulted in packet loss, despite the com-
press operation being amortized. Indeed, the benefits oftenaiion decrease at higher
values ofe due to non-amortized compress processing being more regnddess spiked.
There were other optimizations we tried (e.g., removingrsion, reducing hash lookups
by storing pointers, etc.) but these had very minor impaavsalo not describe them in
detail.

4.5 Summary of Experimental Results

With respect to performance, the proposed strategies veenpetitive with the naive one,
requiring only slightly more processing time in generald atightly less in the case of
PartialAnces on 1-d prefixes. As currently implemented ainigithe CPU speed available
in our measurement infrastructure, all of the methods waestow to compute HHHs on
2-d prefixes at bit-level granularity; for coarser graniti@s, though, they can keep pace
with high speed packet streams.

As shown in Sections 4.2 and 4.3, the space savings of thegedstrategies compared
to the naive one were significant, by an order of magnitudé) waspect to both data
structure and output size. This is due to hierarchy-awaokkeeping, which results in
more accurate frequency estimates and thus smaller dat@wst sizes, and allows for
sophisticated bottom-up calculation of discounted coanis thus smaller output sizes.
Our experiments show that the space savings of the proptrsgeges, compared to that
of the naive one, is more dramatic on 2-d prefixes than on Jefixas; at fine granularity
(e.g., bit-level) than at coarse granularity (e.g., byteel); and with smaller values af
ande.

PartialAnces was the most aggressive at pruning, resuirgightly slower perfor-
mance on 2-d prefixes, but always using the least amount ofameraven compared to
FullAnces, the data structure size was quite small, as msiehfactor of ten at fine prefix
granularity and small. At the same time, PartialAnces yielded slightly largemputsizes
than FullAnces. The question of which of these proposedegfies is better depends on
several factors:

—In general, a smaller output size means a higher qualityygaleswer; however, it is
difficult to quantify the “goodness” of an answer set due tonptex combinatorics.
Some applications may be very sensitive to false-hits ipuigets and thus may benefit
more from using FullAnces.

—The space needed during execution of an online strategyb@ayucial in some appli-
cations, for example, when there are multiple simultaneposps over which HHHs
are computed. When memory usage is of premium importancgaPaces may be the
best choice.

—Parameter value settings impacted the space usage ofdpesed strategies. At larger
ratios of¢ /e whene was small, PartialAnces exhibited the best space usagetirdata
structure and memory size, but it did not fare as well as FdBs with respect to output
size fore-values close t@.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 39

5. EXTENSIONS
5.1 Merging Summaries

We have so far considered the case where all the data is @okatra single point, and so
the summaries for finding HHHs can be computed centrallyattgbint. A more general
scenario arises when the updates are being observed gplmldtiations. This can happen
in a network, where we observe packets entering or leaviagéitwork at multiple points,
and we monitor each of these incoming or outgoing links. it aiso happen within a
single system, for example in the Gigascope monitoringesystvhere we periodically
want to merge recent observations made by a low level mang@ystem with the high
level summary of all observations to date. In both cases,aeel the ability to merge two
summaries over disjoint sets of data to give a summary thaddsurate over the union of
the sets of observations. Rather than give specific detidilsv to achieve this for each of
the different algorithms, we outline the main principlesutficient detail that they can be
applied to each of the algorithms in turn.

We focus on merging two summaries, since to merge more, vwdave to repeatedly
merge each successive summary into one (initially emptbalsummary. We assume
that each summary is made using the same valueibhot, our results follow by taking
e = max{e1,e2}. Each node can be considered separately, and we have twe toase
consider: when the node is present in both input summariesnly one. If a node is
present in both summaries, then we merge the countg, setbe the sum of th¢, values
in each summary). to be the sum of thé\.s, and so on. It is straightforward to show
that we now have upper and lower bounds on the count for eadéf, ramd further that
these differ by at mostN = ¢N; + €Ny, on the assumption that the bourd$, ande N,
hold for the input summaries. If a node is present in only dnth® summaries, then we
must be conservative in our setting of the new values. Thatéanust insert the item and
setA, = A1 + mgy(e,2) WhereA, ; is the A, ; is the value ofA. from the summary
containinge, andm,.) is the value ofm we would get if inserting: into the second
summary. These are the tightest bounds we can givegiven the available information,
but we have guaranteed accuracy from the previous resuiitssferting items. Lastly, note
that if a node is present in neither summary, then we can gitowithout any loss of
accuracy.

Although this merging procedure preserves the accuracheottummaries, its size is
not directly bounded. In the worst case, if every merged sargroontains a disjoint set of
items then the result of merging these summaries can grdvoutibound. This is because,
in the worst case, we are unable to prune any items from thensuynin the compress
stage, and so the summary can continue to grow without bdartactice we can argue
that such a situation is unlikely to occur, since it would Inisual to see disjoint sets of
values in each update. Space bounds can be given based eriritteduced by Manjhi
et al. [2005]: each distributed site runs the algorithm waittmallere than is needed, and
then using the “slack” between this and the desérgdorder to prune the result of merging
the distributed summaries.

5.2 Dynamic Data with Insertions and Deletions

The algorithms we have discussed so far have input whichstsrenly of arrivals of new
items, which may be thought of as insert transactions. Oneiroagine more general
situations where the input stream includes deletions ofiposly seen items in addition

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

40 . Graham Cormode et al.

Insert (elenment e, count ¢):
01 I = Level (e);

02 for j =1 to O;

03 Sket chUpdate(j, e, c);
04 e = par(e);

Qut put (prefix p,level I):
01 w = SketchQuery(l,p);
02 if w<|¢N]|

03 return O;

04 else

05 v =0;

06 foreach child(e) of p do
07 v=v+Qut put (e, l + 1) ;
08 if (w—v>|¢N])

09 print p;

10 return w;

11 el se

12 return O;

Fig. 19. Algorithm using Sketches over one dimension

to insertions. If there are very few deletions relative te ttumber of insertions, then by
simply modifying our online algorithms to subtract frofp,...(¢) to simulate deletions,
the results will be reasonably accurate. If there amgsertions andD deletions, then the
error in the approximate counts will be in termsedf + D), which will be close to the
“desired” error ofe(I — D) for small D. However, if deletions are more frequent, then we
will not be able to prove that the counts are adequately aqipiated, and we will need a
different approach.

A sketchis a generic term for a small space data structure that allawsus properties
of a large data set to be approximated with only a bounded atmfgpace. We will focus
on sketches that are randomized data structures that givea(pilistic) guarantees to ap-
proximate the counts of items in the presence of insertiadsialetions. For this problem,
appropriate sketch data structures are those defined iite¢hatlire [Gilbert et al. 2002;
Charikar et al. 2002; Cormode and Muthukrishnan 2005]. &aitalgorithms give simi-
lar guarantees, any can be used. Where necessary, we withaghe use of Count-Min
Sketches [Cormode and Muthukrishnan 2005], since thesethawest bounds. Because
they are randomized data structures, sketches also havametars which bounds the
probability of error: with probability at least — § they are guaranteed to give an answer
which has error at mostV.

5.2.0.1 Sketch Algorithm for One Dimensional DataWe keep a sketch for each level
of the hierarchy. One sketch allows to estimate the counisddfidual items (the leaves
of the hierarchy). Other sketches allow us to estimate thatsoof all leaves that are
descendants of individual internal nodes in the hierarElgry time a new item arrives or
departs, we update the approximate count of the item and @$ @ncestor nodes in the
sketches.

To find the hierarchical heavy hitters, we perform a top doearsh of the hierarchy,
beginning at the root node. The search proceeds recursauadythe recursive procedure
run on a node returns the total weight of all hierarchicalfyddtters which are descendants
of that node. We assume that, given a node in the hierarcsypdssible to enumerate all
children of this node, and to retrieve the index of the pacéiie node. The algorithm is
given in Figure 19.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 41

The above procedure works because of the observation thiané is a HHH in the
hierarchy below a node, then the range sum of leaf values exasted the threshold of
|¢N|. We then include any node which exceeds the threshold, digeweight of any
HHHSs below has been removed. The following analysis follékesn the properties of
Count-Min sketches:

THEOREM 5. The space required for this algorithm is that used’bgketches, which
is O(% log ;). Updates takes tim@(h log ;).

5.2.0.2 Multidimensional Sketch Algorithms\ similar approach to that described above
can apply for the multidimensional case, with either splibwerlap semantics. We can
keep sketches of items—one sketch for each node in thedatdmd starting from *, de-
scend the lattice looking for potential HHHs, then backtrand adjust the counts as nec-
essary. There is one major disadvantage of this approach, whictaisitle must maintain
a sketch for every node in the lattice, and update this sketithevery item insertion and
deletion. Thus the space cost scales wWiththe product of the depths of the hierarchies,
which may be too costly in some applications. We state tHevidhg result:

THEOREM 6. The space required to identifyapproximate Hierarchical Heavy Hitters
under insertions and deletions using sketche3 (& log %).

The proof case follows immediately, since we just kéegketches, one for each node
in the lattice. In the split case, we keep one sketch for eawadl In the lattice. Since the
counts are divided up so that, over each level, the sum ofdfliseed counts isV, then
we only need a single sketch over each level to estimate s@acurately up teN. The
space bounds follow.

6. RELATED WORK

Multidimensional aggregation has a rich history in dateb@search. We will discuss the
most relevant research directions.

There are a number of “flat” methods for summarizing multieimsional data, that are
unaware of the hierarchy that defines the attributes. Fanple there are histograms [Thaper
et al. 2002; Guha et al. 2001] that summarize data usingwise&onstant regions. There
are also other representations like wavelets [Vitter eL@88] or cosine transforms [Lee
et al. 1999]; these attempt to capture the skew in the dateydserarchical transforms,
but are not synchronized with the hierarchy in the attributer do they avoid outputting
many hierarchical prefixes that potentially form heavydnit

In recent years, there has been a great deal of work on finimgHeavy Hitters”
(HHs) in network data: that is, finding individual addresémssource-destination pairs)
which are responsible for a large fraction of the total nelwmffic [Manku and Motwani
2002; Cormode and Muthukrishnan 2003; Misra and Gries 1BB2wally et al. 2005].
Like other flat methods, heavy hitters by themselves do not fan effective hierarchical
summarization mechanism. Generalizing HHs to multipleatisions can be thought of
as Iceberg cube [Beyer and Ramakrishnan 1999]: finding painthe data cube which
satisfy a clause such &#\VI NG COUNT(*) >= n.

More recently, researchers have looked for hierarchy-awammarization methods.
The Minimum Description Length (MDL) approach to data sumi@sion uses hierarchi-

5This is similar to the bottom-up searching approaches ia-dabes.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

42 . Graham Cormode et al.

cally derived regions to cover significant areas [Lakshmagtal. 2002]. This approach is
useful for covering say the heavy hitters at a particulaaitlasing higher level aggregate
regions, but it is not applicable for finding hierarchicadignificant regions, i.e., a region
that contains many subregions that acé significant by themselves, but the region itself
is significant. The case for finding heavy hitters within riplé hierarchies was advanced
by Estan et al. [2003] where the authors provide a varietyeafristics for computing the
multidimensional HHHs offline.

Subsequent work by Zhang et al. [2004] also considered thie tf HHH detection.
However, the authors principally consider the problem otHHétetection without compen-
sating for the count of HHH descendants. The problem thezefionplifies to finding all
nodes in the lattice whose count is above the threshold whiturn can be thought of as
maintaining a “fringe” of heavy nodes. The algorithms gil®nzZhang et al. [2004] give
output equivalent to that of what we label the naive algomiih our context. In one di-
mension, their worst case bounds &rg7?/¢), and in two dimensions the space required
is O(AH/¢) (whereA is the size of the largest anti-chain in the lattice, as lfoOur
results improve on these worst case bounds significantty,eatend results to arbitrary
dimensions.

The material presented in this paper derives from our eavtiek [Cormode et al. 2003;
2004], which studied the one-dimensional and the multiedisional cases respectively.
Here, we extend our prior work with additional algorithms fiarticular, PartialAnces for
the multi-dimensional case) and give full proofs of impattaroperties of these algo-
rithms as well as analysis of their space and time requirésn¥¥e additionally conduct a
thorough set of experiments, both offline to evalute the gead of approximate answers
returned with respect to the exact answer, as well as in adatal stream management
system (Gigascope), and consider a variety of further sides.

7. CONCLUSIONS

Finding truly multidimensional hierarchical summarizpatiof data is of great importance
in traditional data warehousing environments as well asnerging data stream applica-
tions. We formalized the notion of one-dimensional and rdithensional hierarchical
heavy hitters (HHHSs), and studied them in depth.

For data stream applications, we proposed online algostfimapproximately deter-
mining the HHHSs to provable accuracy in only one pass usimg small space regardless
of the number of dimensions. In a detailed experimentalyswith data from real IP ap-
plications, the online algorithms are shown to be remaskabturate in estimating HHHSs.

REFERENCES

AGARWAL, S., AGRAWAL, R., DESHPANDE, P., GQUPTA, A., NAUGHTON, J. F., RRMAKRISHNAN, R., AND
SARAWAGI, S. 1996. On the computation of multidimensional aggregdteProceedings of the International
Conference on Very Large Data Bases

BEYER, K. AND RAMAKRISHNAN, R. 1999. Bottom-up computation of sparse and Iceberg CUBEroceed-
ings of ACM SIGMOD International Conference on Manageméimata. SIGMOD Record (ACM Special
Interest Group on Management of Data), vol. 28(2). 359—-370.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams. In
Procedings of the International Colloquium on Automatandiaages and Programming (ICALR§93-703.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., DHNSON, T., SPATSCHECK O., AND SRIVASTAVA, D.
2004. Holistic UDAFs at streaming speeds. Aroceedings of ACM SIGMOD International Conference on
Management of Date85—46.

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

Finding Hierarchical Heavy Hitters in Streaming Data . 43

CORMODE, G., KORN, F., MUTHUKRISHNAN, S.,AND SRIVASTAVA, D. 2003. Finding hierarchical heavy
hitters in data streams. Proceedings of the International Conference on Very LargeéaBases464—475.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S.,AND SRIVASTAVA, D. 2004. Diamond in the rough: Finding
hierarchical heavy hitters in multi-dimensional data.Phoceedings of ACM SIGMOD International Confer-
ence on Management of Dath55-166.

CORMODE, G. AND MUTHUKRISHNAN, S. 2003. What's hot and what's not: Tracking most frequearns
dynamically. InProceedings of ACM Principles of Database Syste28§—-306.

CORMODE, G. AND MUTHUKRISHNAN, S. 2005. An improved data stream summary: The count-mittiske
and its applicationsJournal of Algorithms 551, 58-75.

CRANOR, C., OHNSON, T., SPATSCHECK O.,AND SHKAPENYUK, V. 2003. Gigascope: A stream database
for network applications. IRroceedings of ACM SIGMOD International Conference on Mgmaent of Data
647-651.

DEMAINE, E., LOPEZORTIZ, A., AND MUNRO, J. |. 2002. Frequency estimation of internet packet steeam
with limited space. IrfProceedings of the European Symposium on Algorithms (H®A&jure Notes in Com-
puter Science, vol. 2461. 348-360.

ESTAN, C., SAVAGE, S.,AND VARGHESE, G. 2003. Automatically inferring patterns of resource ssamption
in network traffic. InProceedings of ACM SIGCOMM

GANESAN, P., GARCIA-MOLINA, H., AND WIDOM, J. 2003. Exploiting hierarchical domain structure to
compute similarity. ACM Trans. Inf. Syst. 21, 64-93.

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S.,AND STRAUSS, M. 2002. How to summarize the
universe: Dynamic maintenance of quantiles.Phoceedings of the International Conference on Very Large
Data Bases454—465.

GUHA, S., KOUDAS, N., AND SHIM, K. 2001. Data streams and histograms. Pimceedings of the ACM
Symposium on Theory of Computid@1-475.

HERSHBERGERJ., HRIVASTAVA, N., SURI, S.,AND TOTH, C. 2005. Space complexity of hierarchical heavy
hitters in multi-dimensional data streams.Rroceedings of ACM Principles of Database Systems

KARP, R., RPADIMITRIOU, C.,AND SHENKER, S. 2003. A simple algorithm for finding frequent elements in
sets and bagACM Transactions on Database Systemgs528-55.

LAKSHMANAN, L. V. S., NG, R. T., WANG, C. X., ZHOU, X., AND JOHNSON, T. 2002. The generalized
MDL approach for summarization. Proceedings of the International Conference on Very LargeBases
766-777.

LEE, J., Kim, D.,AND CHUNG, C. 1999. Multidimensional selectivity estimation usirgnpressed histogram
information. InProceedings of ACM SIGMOD International Conference on Mgmaent of Data205-214.

MANJHI, A., SHKAPENYUK, V., DHAMDHERE, K., AND OLSTON, C. 2005. Finding (recently) frequent items
in distributed data streams. IREE International Conference on Data Engineerif§7-778.

MANKU, G.AND MOTWANI, R. 2002. Approximate frequency counts over data streamRrdceedings of the
International Conference on Very Large Data Basg$—-357.

METWALLY, A., AGRAWAL, D., AND ABBADI, A. E. 2005. Efficient computation of frequent and top-k ele-
ments in data streams. Rroceedings of ICDT

MISRA, J.AND GRIES, D. 1982. Finding repeated elemen&cience of Computer ProgrammingI23-152.

NG, R. T., WAGNER, A. S.,AND YIN, Y. 2001. Iceberg-cube computation with PC clustersPioceedings of
ACM SIGMOD International Conference on Management of Data

THAPER, N., INDYK, P., GUHA, S.,AND KoOuUDAS, N. 2002. Dynamic multidimensional histograms. In
Proceedings of ACM SIGMOD International Conference on Mgemaent of Data359-366.

VITTER, J. S., WANG, M., AND IYER, B. 1998. Data cube approximation and histograms via weszels
Proceedings of the 7th ACM International Conferences oorinftion and Knowledge Manageme®6—-104.
ZHANG, Y., SINGH, S., &N, S., DUFFIELD, N., AND LUND, C. 2004. Online identification of hieararchical
heavy hitters: Algorithms, evaluation and applications.Pfoceedings of the Internet Measurement Confer-

ence (IMC)

ACM Transactions on Database Systems, Vol. V, No. N, Oct@bér .

