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We study the mergeability of data summaries. Informally speaking, mergeability requires that, given two
summaries on two data sets, there is a way to merge the two summaries into a single summary on the two
data sets combined together, while preserving the error and size guarantees. This property means that the
summaries can be merged in a way akin to other algebraic operators such as sum and max, which is espe-
cially useful for computing summaries on massive distributed data. Several data summaries are trivially
mergeable by construction, most notably all the sketches that are linear functions of the data sets. But some
other fundamental ones like those for heavy hitters and quantiles, are not (known to be) mergeable. In this
paper, we demonstrate that these summaries are indeed mergeable or can be made mergeable after ap-
propriate modifications. Specifically, we show that for ε-approximate heavy hitters, there is a deterministic
mergeable summary of size O(1/ε); for ε-approximate quantiles, there is a deterministic summary of size
O((1/ε) log(εn)) that has a restricted form of mergeability, and a randomized one of sizeO((1/ε) log3/2(1/ε))

with full mergeability. We also extend our results to geometric summaries such as ε-approximations which
permit approximate multidimensional range counting queries. While most of the results in this paper are
theoretical in nature, some of the algorithms are actually very simple and even perform better than the pre-
viously best known algorithms, which we demonstrate through experiments in a simulated sensor network.

We also achieve two results of independent interest: (1) we provide the best known randomized streaming
bound for ε-approximate quantiles that depends only on ε, of size O((1/ε) log3/2(1/ε)), and (2) we demon-
strate that the MG and the SpaceSaving summaries for heavy hitters are isomorphic.

1. INTRODUCTION
Data summarization is an important tool for answering queries on massive data sets,
especially when they are distributed over a network or change dynamically, as work-
ing with the full data is computationally infeasible. In such situations, it is desirable
to compute a compact summary S of the data D that preserves its important prop-
erties, and to use the summary for answering queries, hence occupying considerably
less resources. Since summaries have much smaller size, they typically answer queries
approximately, and there is a trade-off between the size of the summary and the ap-
proximation error. A variety of data summaries have been proposed in the past, start-
ing with statistical summaries like heavy hitters, quantile summaries, histograms,
various sketches and synopses, to geometric summaries like ε-approximations and ε-
kernels, and to graph summaries like distance oracles. Note that the error parameter
ε has different interpretations for different types of summaries.

Algorithms for constructing summaries have been developed under several models.
At the most basic level, we have the data set D accessible in its entirety, and the
summary S is constructed offline. More generally, we often want the summary to be
maintained in the presence of updates, i.e., when a new element is added to D, S
can be updated to reflect the new arrival without recourse to the underlying D. Much
progress has been made on incrementally maintainable summaries in the past years,
mostly driven by the study of data stream algorithms. Some applications, especially
when data is distributed over a network, call for a stronger requirement on summaries,
namely, one should be able to merge the ε-summaries of two (separate) data sets to
obtain an ε-summary of the union of the two data sets, without increasing the size
of the summary or its approximation error. This merge operation can be viewed as
a simple algebraic operator like sum and max; it is commutative and associative. We
motivate the need for such a merge operation by giving two specific applications.

Motivating Scenario 1: Distributed Computation. The need for a merging operation
arises in the MUD (Massive Unordered Distributed) model of computation [Feld-
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man et al. 2008], which describes large-scale distributed programming paradigms like
MapReduce and Sawzall. In this model, the input data is broken into an arbitrary
number of pieces, each of which is potentially handled by a different machine. Each
piece of data is first processed by a local function, which outputs a message. All the
messages are then pairwise combined using an aggregation function in an arbitrary
fashion, eventually producing an overall message. Finally, a post-processing step is
applied. This exactly corresponds to our notion of mergeability, where each machine
builds a summary of its share of the input, the aggregation function is the merging
operation, and the post-processing step corresponds to posing queries on the summary.
The main result of [Feldman et al. 2008] is that any deterministic streaming algo-
rithm that computes a symmetric function defined on all inputs can be simulated (in
small space but with very high time cost) by a MUD algorithm, but this result does not
hold for indeterminate functions, i.e., functions that may have many correct outputs.
Many popular algorithms for computing summaries are indeterminate, so the result
in [Feldman et al. 2008] does not apply in these cases.

Motivating Scenario 2: In-network aggregation. Nodes in a sensor network organize
themselves into a routing tree rooted at the base station. Each sensor holds some data
and the goal of data aggregation is to compute a summary of all the data. Nearly
all data aggregation algorithms follow a bottom-up approach [Madden et al. 2002]:
Starting from the leaves, the aggregation propagates upwards to the root. When a node
receives the summaries from its children, it merges these with its own summary, and
forwards the result to its parent. Depending on the physical distribution of the sensors,
the routing tree can take arbitrary shapes. If the size of the summary is independent of
|D|, then this performs load-balancing: the communication along each branch is equal,
rather than placing more load on edges closer to the root.

These motivating scenarios are by no means new. However, results to this date have
yielded rather weak results. Specifically, in many cases, the error increases as more
merges are done [Manjhi et al. 2005; Manjhi et al. 2005; Greenwald and Khanna 2004;
Chazelle and Matousek 1996]. To obtain any overall guarantee, it is necessary to have
a bound on the number of rounds of merging operations in advance so that the er-
ror parameter ε can be scaled down accordingly. Consequently, this weaker form of
mergeability fails when the number of merges is not pre-specified; generates larger
summaries (due to the scaled down ε); and is not mathematically elegant.

1.1. Problem statement
Motivated by these and other applications, we study the mergeability property of vari-
ous widely used summarization methods and develop efficient merging algorithms. We
use S() to denote a summarization method. Given a data set (multiset) D and an error
parameter ε, S() may have many valid outputs (e.g., depending on the order in which
it processes D, it may return different valid ε-summaries), i.e., S() could be a one-to-
many mapping. We use S(D, ε) to denote any valid summary for data set D with error
ε produced by this method, and use k(n, ε) to denote the maximum size of any S(D, ε)
for any D of n items.

We say that S() is mergeable if there exists an algorithmA that produces a summary
S(D1]D2, ε) from any two input summaries S(D1, ε) and S(D2, ε). Here, ] denotes mul-
tiset addition. Note that, by definition, the size of the merged summary produced by
A is at most k(|D1| + |D2|, ε). If k(n, ε) is independent of n, which we can denote by
k(ε), then the size of each of S(D1, ε), S(D2, ε), and the summary produced by A is at
most k(ε). The merge algorithm A may represent a summary S(D, ε) in a certain way
or may store some additional information (e.g., a data structure to expedite the merge
procedure). With a slight abuse of notation, we will also use S(D, ε) to denote this rep-
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resentation of the summary and to include the additional information maintained. We
will develop both randomized and deterministic merging algorithms. For randomized
algorithms, we require that for any summary that is produced after an arbitrary num-
ber of merging operations, it is a valid summary with at least constant probability.
The success probability can always be boosted to 1 − δ by building O(log(1/δ)) inde-
pendent summaries, and the bound is sometimes better with more careful analysis.
But we state our main results below assuming δ is a small constant for simplicity and
fair comparison with prior results, while the detailed bounds will be given in the later
technical sections.

Note that if we restrict the input so that |D2| = 1, i.e., we always merge a single item
at a time, then we recover a streaming model: S(D, ε) is the summary (and the data
structure) maintained by a streaming algorithm, and A is the algorithm to update the
summary with every new arrival. Thus mergeability is a strictly stronger requirement
than streaming, and the summary size should be at least as large.

Some summaries are known to be mergeable. For example, all sketches that are lin-
ear functions of (the frequency vector of) D are trivially mergeable. These include the
sketches for moment estimation [Alon et al. 1999; Indyk 2006; Kane et al. 2011], the
Count-Min sketch [Cormode and Muthukrishnan 2005], the `1 sketch [Feigenbaum
et al. 2003], among many others. Summaries that maintain the maximum or top-k
values can also be easily merged, most notably summaries for estimating the num-
ber of distinct elements [Bar-Yossef et al. 2002]. However, several fundamental prob-
lems have summaries that are based on other techniques, and are not known to be
mergeable (or have unsatisfactory bounds). Designing mergeable summaries for these
problems will be the focus of this paper.

Finally, we note that our algorithms operate in a comparison model, in which only
comparisons are used on elements in the data sets. In this model we assume each
element, as well as any integer no more than n, can be stored in one unit of storage.
Some prior work on building summaries has more strongly assumed that elements are
drawn from a bounded universe [u] = {0, . . . , u − 1} for some u ≥ n, and one unit of
storage has log u bits. Note that any result in the comparison model also holds in the
bounded-universe model, but not vice-versa.

1.2. Previous results
In this subsection we briefly review the previous results on specific summaries that we
study in this paper.

Frequency estimation and heavy hitters. For a multiset D, let f(x) be the fre-
quency of x in D. An ε-approximate frequency estimation summary of D can be used
to estimate f(x) for any x within an additive error of εn. A heavy hitters summary
allows one to extract all frequent items approximately, i.e., for a user-specified φ, it
returns all items x with f(x) > φn, no items with f(x) < (φ− ε)n, while an item x with
(φ− ε)n ≤ f(x) ≤ φn may or may not be returned.

In the bounded-universe model, the frequency estimation problem can be solved by
the Count-Min sketch [Cormode and Muthukrishnan 2005] of size O((1/ε) log u), which
is a linear sketch, and is thus trivially mergeable. Since the Count-Min sketch only al-
lows querying for specific frequencies, in order to report all the heavy hitters efficiently,
we need a hierarchy of sketches and the space increases to O((1/ε) log u log( log u

ε )) from
the extra sketches with adjusted parameters. The Count-Min sketch is randomized,
and it has a log u factor, which could be large in some cases, e.g., when the elements
are strings or user-defined types. There are also deterministic linear sketches for the
problem [Nelson et al. 2012], with size O((1/ε2) log u).
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The counter-based summaries, most notably the MG summary [Misra and Gries
1982] and the SpaceSaving summary [Metwally et al. 2006], have been reported [Cor-
mode and Hadjieleftheriou 2008a] to give the best results for both the frequency esti-
mation and the heavy hitters problem (in the streaming model). They are determinis-
tic, simple, and have the optimal size O(1/ε). They also work in the comparison model.
However, only recently were they shown to support a weaker model of mergeability
[Berinde et al. 2010], where the error is bounded provided the merge is “one-way” (this
concept is formally defined in Section 3.1). Some merging algorithms for these sum-
maries have been previously proposed, but the error increases after each merging step
[Manjhi et al. 2005; Manjhi et al. 2005].

Quantile summaries. For the quantile problem we assume that the elements are
drawn from a totally ordered universe and D is a set (i.e., no duplicates); this as-
sumption can be removed by using any tie breaking method. For any 0 < φ < 1, the
φ-quantile of D is the item x with rank r(x) = bφnc in D, where the rank of x is the
number of elements in D smaller than x. An ε-approximate φ-quantile is an element
with rank between (φ − ε)n and (φ + ε)n, and a quantile summary allows us to ex-
tract an ε-approximate φ-quantile for any 0 < φ < 1. It is well known [Cormode and
Hadjieleftheriou 2008a] that the frequency estimation problem can be reduced to an
ε′-approximate quantile problem for some ε′ = Θ(ε), by identifying elements that are
quantiles for multiples of ε′ after tie breaking. Therefore, a quantile summary is auto-
matically a frequency estimation summary (ignoring a constant-factor difference in ε),
but not vice versa.

Quite a number of quantile summaries have been designed [Gilbert et al. 2002;
Greenwald and Khanna 2004; 2001; Shrivastava et al. 2004; Manku et al. 1998; Cor-
mode and Muthukrishnan 2005], but all the mergeable ones work only in the bounded-
universe model and have dependency on log u. The Count-Min sketch (more generally,
any frequency estimation summary) can be organized into a hierarchy to solve the
quantile problem, yielding a linear sketch of size O((1/ε) log2 u log( logn

ε )) after adjust-
ing parameters [Cormode and Muthukrishnan 2005]. The q-digest [Shrivastava et al.
2004] has size O((1/ε) log u); although not a linear sketch, it is still mergeable. Neither
approach scales well when log u is large. The most popular quantile summary tech-
nique is the GK summary [Greenwald and Khanna 2001], which guarantees a size
of O((1/ε) log(εn)). A merging algorithm has been previously designed, but the error
could increase to 2εwhen two ε-summaries are merged [Greenwald and Khanna 2004].

ε-approximations. Let (D,R) be a range space, where D is a finite set of objects and
R ⊆ 2D is a set of ranges. In geometric settings, D is typically a set of points in Rd and
the ranges are induced by a set of geometric regions, e.g., points of D lying inside axis-
aligned rectangles, half-spaces, or balls. A subset S ⊆ D is called an ε-approximation
of (D,R) if

max
R∈R

abs

( |R ∩D|
|D| − |R ∩ S||S|

)
≤ ε,

where abs(x) denotes the absolute value of x. Over the last two decades, ε-
approximations have been used to answer several types of queries, including range
queries, on multidimensional data.

For a range space (D,R) of VC-dimension1 ν, Vapnik and Chervonenkis [1971]
showed that a random sample of O((ν/ε2) log(1/εδ))) points from D is an ε-
approximation with probability at least 1 − δ; the bound was later improved to

1The VC-dimension of (D,R) is the size of the largest subset N ⊂ D such that {N ∩R | R ∈ R} = 2N .
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O((1/ε2)(ν + log(1/δ))) [Talagrand 1994; Li et al. 2001]. Random samples are
easily mergeable, but they are far from optimal. It is known that, if R is the
set of ranges induced by d-dimensional axis-aligned rectangles, there is an ε-
approximation of size O((1/ε) logd+1/2(1/ε)) [Larsen 2011], and an ε-approximation
of size O((1/ε) log2d(1/ε)) [Phillips 2008] can be computed efficiently. More generally,
an ε-approximation of size O(1/ε2ν/(ν+1)) exists for a range space of VC-dimension
ν [Matoušek 2010; Matousek 1995]. Furthermore, such an ε-approximation can be
constructed using the algorithm by Bansal [2010] (see also [Bansal 2012; Lovett
and Meka 2012]). More precisely, this algorithm makes constructive the entropy
method [Matoušek 2010], which was the only non-constructive element of the discrep-
ancy bound [Matousek 1995].

These algorithms for constructing ε-approximations are not known to be merge-
able. Although they proceed by partitioning D into small subsets, constructing ε-
approximations of each subset, and then repeatedly combining pairs and reducing
them to maintain a fixed size, the error accumulates during each reduction step of
the process. In particular, the reduction step is handled by a low-discrepancy coloring,
and an intense line of work (see books of Matoušek [2010] and Chazelle [2000]) has
gone into bounding the discrepancy, which governs the increase in error at each step.
We are unaware of any mergeable ε-approximations of o(1/ε2) size.

Table I: Best constructive summary size upper bounds under different models; the
generality of model increases from left to right.

problem offline streaming mergeable

heavy hitters 1/ε

1/ε

1/ε (§2)[Misra and Gries 1982]
[Metwally et al. 2006]

quantiles
1/ε

(1/ε) log(εn) (1/ε) log u [Shrivastava et al. 2004]
(deterministic) [Greenwald and Khanna 2001] (1/ε) log(εn) (§3.1, restricted)

quantiles
1/ε (1/ε) log3/2(1/ε) (§3.3)(randomized)

ε-approximations
(1/ε) log2d(1/ε)

(1/ε) log2d+1(1/ε)
(1/ε) log2d+3/2(1/ε) (§4)(rectangles) [Suri et al. 2006]

ε-approximations
1/ε

2ν
ν+1 1/ε

2ν
ν+1 log

2ν+1
ν+1 (1/ε) (§4)(VC-dim ν)

1.3. Our results
In this paper we provide the best known mergeability results for the problems defined
above.

— We first show that the (deterministic) MG and SpaceSaving summaries are merge-
able (Section 2): we present a merging algorithm that preserves the size O(1/ε) and
the error parameter ε. Along the way we make the surprising observation that the
two summaries are isomorphic, namely, an MG summary can be mapped to a Space-
Saving summary and vice versa.

— In Section 3 we first show a limited result, that the (deterministic) GK summary for
ε-approximate quantiles satisfies a weaker mergeability property with no increase
in size. Then using different techniques, we achieve our main result of a randomized
quantile summary of size O((1/ε) log3/2(1/ε)) that is mergeable. This in fact even
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improves on the previous best randomized streaming algorithm for quantiles, which
had size O((1/ε) log3(1/ε)) [Suri et al. 2006].

— In Section 4 we present mergeable ε-approximations of range spaces of near-
optimal size. This generalizes quantile summaries (that maps to the range space
for intervals which have VC-dimension 2) to more general range spaces. Specifi-
cally, for d-dimensional axis-aligned rectangles, our mergeable ε-approximation has
size O((1/ε) log2d+3/2(1/ε)); for range spaces of VC-dimension ν (e.g., ranges in-
duced by halfspaces in Rν), the size is O((1/ε2ν/(ν+1)) log(2ν+1)/(ν+1)(1/ε)). The latter
bound again improves upon the previous best streaming algorithm which had size
O((1/ε2ν/(ν+1)) logν+1(1/ε)) [Suri et al. 2006].

Table I gives the current best summary sizes for these problems under various mod-
els. The running times of our merging algorithms are polynomial (in many cases near-
linear) in the summary size.

In addition to the above theoretical results, we find that our merging algorithm for
the MG summary (and hence the SpaceSaving summary) and one version of the merge-
able quantile are very simple to implement (in fact, they are even simpler than the
previous non-mergeable algorithms). And due to the mergeability property, they can
be used in any merging tree without any prior knowledge of the tree’s structure, which
makes them particularly appealing in practice. In Section 5, we conduct an experi-
mental study on a simulated sensor network, and find that, despite their simplicity
and lack of knowledge of the merging structure, our algorithms actually perform as
well as, sometimes even better than, the previous best known algorithms which need
to know the size or the height of the merging tree in advance. This shows that merge-
ability is not only a mathematically elegant notion, but may also be achieved with
simple algorithms that display good performance in practice.

1.4. Conference version
This is an extended version of a paper [Agarwal et al. 2012] appearing in PODS
2012. Unlike this version, the conference version did not contain any of the experi-
mental evaluation, and hence did not demonstrate the simplicity and utility of these
summaries and framework. This extended version also contains a new variant of the
mergeable heavy hitters algorithm; this version is more aggressive in minimizing the
space required for guaranteeing error of at most ε in all frequency estimates. Empiri-
cally it demonstrates to have the best space of any algorithms making this guarantee.
Finally, in this presentation, some of the bounds have been tightened, sometimes re-
quiring careful additional analysis. These include more specific analysis on the proba-
bility of failure in the randomized algorithms for quantiles, and also improved analysis
of the summary size for ε-approximation for range spaces with better VC-dimension.
This second improvement notably results in these summaries having the best bound of
any streaming summary, improving upon the previous best bound of Suri et al. [2006].

2. HEAVY HITTERS
The MG summary [Misra and Gries 1982] and the SpaceSaving summary [Metwally
et al. 2006] are two popular counter-based summaries for the frequency estimation and
the heavy hitters problem. We first recall how they work on a stream of items. For a
parameter k, an MG summary maintains up to k items with their associated counters.
There are three cases when processing an item x in the stream: (1) If x is already
maintained in the summary, its counter is increased by 1. (2) If x is not maintained
and the summary currently maintains fewer than k items, we add x into the summary
with its counter set to 1. (3) If the summary maintains k items and x is not one of
them, we decrement all counters by 1 and remove all items with counters being 0.
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The SpaceSaving summary is the same as the MG summary except for case (3). In
SpaceSaving, if the summary is full and the new item x is not currently maintained,
we find any item y with the minimum counter value, replace y with x, and increase the
counter by 1. Previous analysis shows that the MG and the SpaceSaving summaries
estimate the frequency of any item x with error at most n/(k+1) and n/k, respectively,
where n is the number of items processed. By setting k + 1 = 1/ε (MG) or k = 1/ε
(SpaceSaving), they solve the frequency estimation problem with additive error εn
with space O(k) = O(1/ε), which is optimal. They can also be used to report the heavy
hitters in O(1/ε) time by going through all counters; any item not maintained cannot
have frequency higher than εn.

We show that both MG and SpaceSaving summaries are mergeable. We first prove
the mergeability of MG summaries by presenting two merging algorithms that pre-
serve the size and error. Then we show that SpaceSaving and MG summaries are fun-
damentally the same, which immediately leads to the mergeability of the SpaceSaving
summary.

We start our proof by observing that the MG summary provides a stronger error
bound. Let f(x) be the true frequency of item x and let f̂(x) be the counter of x in MG
(set f̂(x) = 0 if x is not maintained).

LEMMA 2.1. For any item x, f̂(x) ≤ f(x) ≤ f̂(x) + (n − n̂)/(k + 1), where n̂ is the
sum of all counters in MG.

PROOF. It is clear that f̂(x) ≤ f(x). To see that f̂(x) underestimates f(x) by at
most (n − n̂)/(k + 1), observe that every time the counter for a particular item x is
decremented, we decrement all k counters by 1 and ignore the new item. All these
k+ 1 items are different. This corresponds to deleting k+ 1 items from the stream, and
exactly (n− n̂)/(k+ 1) such operations must have been done when the sum of counters
is n̂.

This is related to the result that the MG error is at most F res(k)
1 /k, where F res(k)

1
is the sum of the counts of all items except the k largest [Berinde et al. 2010]. Since
each counter stored by the algorithm corresponds to (a subset of) actual arrivals of the
corresponding item, we have that n̂ ≤ n − F res(k)

1 . However, we need the form of the
error bound to be as in the lemma above in order to show mergeability.

Given two MG summaries with the property stated in Lemma 2.1, we present two
merging algorithms that produce a merged summary with the same property. More
precisely, let S1 and S2 be two MG summaries on data sets of sizes n1 and n2, respec-
tively. Let n̂1 (resp. n̂2) be the sum of all counters in S1 (resp. S2). We know that S1

(resp. S2) has error at most (n1 − n̂1)/(k + 1) (resp. (n2 − n̂2)/(k + 1)).

Merging algorithm that favors small actual error. Our first merging algorithm
is very simple. We first combine the two summaries by adding up the corresponding
counters. This could result in up to 2k counters. We then perform a prune operation:
Take the (k + 1)-th largest counter, denoted Ck+1, and subtract it from all counters,
and then remove all non-positive ones. This merging algorithm always uses k counters
(provided that there are at least k unique elements in the data set) while maintaining
the guarantee in Lemma 2.1 (shown below). In practice this can potentially result
in even smaller than ε actual errors. We use MERGEABLEMINERROR to denote this
merging algorithm.

Merging algorithm that favors small summary size. Our second algorithm tries
to minimize the size of the merged summary by eliminating as many counters as pos-
sible while maintaining the guarantee of Lemma 2.1. More precisely, we first combine
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the two summaries by adding up the corresponding counters. Let C1, C2, . . . , Cs de-
note the counters sorted in descending order and let Cj+1 be the largest counter that
satisfies

(k − j)Cj+1 ≤
s∑

i=j+2

Ci. (1)

We will then subtractCj+1 from all counters, and then remove all non-positive ones. We
use MERGEABLEMINSPACE to denote this merging algorithm. It is easy to see that j =
k always satisfies inequality (1), so the summary produced by MERGEABLEMINSPACE
is no larger than the summary produced by MERGEABLEMINERROR. It also upholds
the guarantee of Lemma 2.1 (shown below), although its actual error could be larger
than that of MERGEABLEMINERROR.

THEOREM 2.2. MG summaries are mergeable with either of the above merging al-
gorithms. They have size O(1/ε).

PROOF. Set k + 1 = d1/εe. It is clear that in either case the size of the merged
summary is at most k, so it only remains to show that the merged summary still has
the property of Lemma 2.1, i.e., it has error at most (n1 +n2− n̂12)/(k+ 1) where n̂12 is
the sum of counters in the merged summary. Then the error will be (n−n̂)/(k+1) ≤ εn.

The combine step clearly does not introduce additional error, so the error after the
combine step is the sum of the errors from S1 and S2, that is, at most (n1 − n̂1 + n2 −
n̂2)/(k + 1).

For MERGEABLEMINERROR, the prune operation incurs an additional error of Ck+1.
If we can show that

Ck+1 ≤ (n̂1 + n̂2 − n̂12)/(k + 1), (2)

we will arrive at the desired error in the merged summary. If after the combine step,
there are no more than k counters, Ck+1 = 0. Otherwise, the prune operation reduces
the sum of counters by at least (k+ 1)Ck+1: the k+ 1 counters greater than or equal to
Ck+1 get reduced by Ck+1 and they remain non-negative. So we have n̂12 ≤ n̂1 + n̂2 −
(k + 1)Ck+1 and the inequality (2) follows.

For MERGEABLEMINSPACE, we similarly need to show the following inequality:

Cj+1 ≤ (n̂1 + n̂2 − n̂12)/(k + 1). (3)

Note that after the prune operation, the summation of all counters is

n̂12 =

j∑

i=1

(Ci − Cj+1) =

(
j∑

i=1

Ci

)
− jCj+1.

We have

n̂1 + n̂2 − n̂12 =

s∑

i=1

Ci −
((

j∑

i=1

Ci

)
− jCj+1

)

=




s∑

i=j+1

Ci


+ jCj+1

=




s∑

i=j+2

Ci


+ (j + 1)Cj+1.
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Thus, rearranging (3) we obtain

(k + 1)Cj+1 ≤




s∑

i=j+2

Ci


+ (j + 1)Cj+1,

which is equivalent to the condition (1).

The time to perform the merge under the MERGEABLEMINERROR approach is O(k).
We keep the items in sorted order in the summary. Then we can merge the counters
in O(k) time while adding up counters for the same item. Then we can extract the kth
largest counter in time O(k) via the standard selection algorithm, and adjust weights
or prune items with another pass. For the MERGEABLEMINSPACE approach, the time
for a merge operation is O(k log k): we first add up the corresponding counters, sort
them, and then pass through to find the counter satisfying (1).

The isomorphism between MG and SpaceSaving. Next we show that MG and
SpaceSaving are isomorphic. Specifically, consider an MG summary with k counters
and a SpaceSaving summary of k+ 1 counters, processing the same stream. Let minSS
be the minimum counter of the SpaceSaving summary (set minSS = 0 when the sum-
mary is not full), and n̂MG be the sum of all counters in the MG summary. Let f̂MG(x)

(resp. f̂SS(x)) be the counter of item x in the MG (resp. SpaceSaving) summary, and
set f̂MG(x) = 0 (resp. f̂SS(x) = minSS) if x is not maintained.

LEMMA 2.3. After processing n items, f̂SS(x)−f̂MG(x) = minSS = (n−n̂MG)/(k+1)
for all x.

PROOF. We prove f̂SS(x)− f̂MG(x) = minSS for all x by induction on n. For the base
case n = 1, both summaries store the first item with counter 1, and we have minSS = 0
and the claim trivially holds. Now suppose the claim holds after processing n items.
We analyze the MG summary case by case when inserting the (n+ 1)-th item, and see
how SpaceSaving behaves correspondingly. Suppose the (n+ 1)-th item is y.

(1) y is currently maintained in MG with counter f̂MG(y) > 0. In this case MG will
increase f̂MG(y) by 1. By the induction hypothesis we have f̂SS(y) = f̂MG(y) +
minSS > minSS so y must be maintained by SpaceSaving, too. Thus SpaceSaving
will also increase f̂SS(y) by 1. Meanwhile minSS remains the same and so do all
f̂SS(x), f̂MG(x) for x 6= y, so the claim follows.

(2) y is not maintained by the MG summary, but the MG summary is not full, so the
MG summary will create a new counter set to 1 for y. By the induction hypothe-
sis f̂SS(y) = minSS , which means that y either is not present in SpaceSaving or
has the minimum counter. We also note that f̂SS(y) cannot be a unique minimum
counter in SpaceSaving with k+ 1 counters; otherwise by the induction hypothesis
there would be k items x with f̂MG(x) > 0 and the MG summary with k counters
would be full. Thus, minSS remains the same and f̂SS(y) will become minSS + 1.
All other f̂SS(x), f̂MG(x), x 6= y remain the same so the claim still holds.

(3) y is not maintained by the MG summary and it is full. MG will then decrease all
current counters by 1 and remove all zero counters. By the induction hypothesis
f̂SS(y) = minSS , which means that y either is not present in SpaceSaving or has
the minimum counter. We also note that in this case there is a unique minimum
counter (which is equal to f̂SS(y)), because the induction hypothesis ensures that
there are k items x with f̂SS(x) = f̂MG(x)+minSS > minSS . SpaceSaving will then
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increase f̂SS(y), as well as minSS , by 1. It can then be verified that we still have
f̂SS(x)− f̂MG(x) = minSS for all x after inserting y.

To see that we always have minSS = (n− n̂MG)/(k + 1), just recall that the sum of all
counters in the SpaceSaving summary is always n. If we decrease all its k+ 1 counters
by minSS , it becomes MG, so minSS(k + 1) = n− n̂MG and the lemma follows.

Therefore, the two algorithms are essentially the same. The difference is that MG
gives lower bounds on the true frequencies while SpaceSaving gives upper bounds,
while the gap between the upper and lower bound is minSS = ε(n − n̂MG) for any
element in the summary.

Due to this correspondence, we can immediately state:

COROLLARY 2.4. The SpaceSaving summaries are mergeable.

That is, we can perform a merge of SpaceSaving summaries by converting them to
MG summaries (by subtracting minSS from each counter), merging these, and convert-
ing back (by adding (n−n̂MG)/(k+1) to each counter). It is also possible to more directly
implement merging. For example, to merge under the MERGEABLEMINERROR pro-
cess, we simply merge the counter sets as above, and find Ck, the k’th largest weight.
We then drop all counters that have value Ck or less.

3. QUANTILES
We first describe a result of a weaker form of mergeability for a deterministic summary,
the GK algorithm [Greenwald and Khanna 2001]. We say a summary is “one-way”
mergeable if the summary meets the criteria of mergeability under the restriction that
one of the inputs to a merge is not itself the output of a prior merge operation. One-
way mergeability is essentially a “batched streaming” model where there is a main
summary S1, into which we every time insert a batch of elements, summarized by a
summary S2. As noted in Section 1.2, prior work [Berinde et al. 2010] showed similar
one-way mergeability of heavy hitter algorithms.

After this, the bulk of our work in this section is to show a randomized construc-
tion which achieves (full) mergeability by analyzing quantiles through the lens of
ε-approximations of the range space of intervals. Let D be a set of n points in one
dimension. Let I be the set of all half-closed intervals I = (−∞, x]. Recall that an
ε-approximation S of D (w.r.t. I) is a subset of points of D such that for any I ∈ I,
n|S∩I|/|S| estimates |D∩I|with error at most εn. In some cases we may use a weighted
version, i.e., each point p in S is associated with a weight w(p). A point p with weight
w(p) represents w(p) points in D, and we require that the weighted sum

∑
p∈S∩I w(p)

estimates |D ∩ I| with error at most εn. Since |D ∩ I| is the rank of x in D, we can then
do a binary search to find an ε-approximate φ-quantile for any given φ. We will first
develop a randomized mergeable ε-approximation of size O((1/ε) log(εn)

√
log(1/ε)) in-

spired by low-discrepancy halving. Then after we review some classical results about
random sampling, we combine the random-sample-based and low-discrepancy-based
algorithms to produce a hybrid mergeable ε-approximation whose size is independent
of n.

3.1. One-way mergeability
We define a restricted form of mergeability where the merging is always “one-way”.

Definition 3.1 (One-way mergeability). A summary S(D, ε) is one-way mergeable if
there exist two algorithmsA1 andA2 such that, (1) given anyD,A2 creates a summary
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of D, as S(D, ε); (2) given any S(D2, ε) produced by A2 and any S(D1, ε) produced by
A1 or A2, A1 builds a merged summary S(D1 ]D2, ε).

Note that one-way mergeability degenerates to the standard streaming model when
we further restrict to |D2| = 1 and assume without loss of generality that S(D2, ε) = D2

in this case. One-way mergeability is essentially a “batched streaming” model where
there is a main summary, into which we insert batches of elements at a time, sum-
marized by a summary in S2. As noted in Section 1.2, prior work showed one-way
mergeability of heavy hitter algorithms.

THEOREM 3.2. Any quantile summary algorithm which is incrementally maintain-
able is one-way mergeable.

PROOF. Given a quantile summary S, it promises to approximate the rank of any
element by εn. Equivalently, since D defines an empirical frequency distribution f
(where, as in the previous section, f(x) gives the count of item x) we can think of S
as defining an approximate cumulative frequency function F̂ , that is, F̂ (i) gives the
(approximate) number of items in the input which are dominated by i. The approxima-
tion guarantees mean that ‖F − F̂‖∞ ≤ εn, where F is the (true) cumulative frequency
function (CFF) of f , and the∞-norm, ‖ · ‖∞, takes the maximal value. Further, from F̂

and n, we can derive f̂ , the distribution whose cumulative frequency function is F̂ . 2

Given summaries S1 and S2, which summarize n1 and n2 items respectively with
error ε1 and ε2, we can perform a one-way merge of S2 into S1 by extracting the dis-
tribution f̂2, and interpreting this as n2 updates to S2. The resulting summary is a
summary of f ′ = f1 + f̂2, that is, f ′(x) = f1(x) + f̂2(x). This summary implies a cumu-
lative frequency function F̂ ′, whose error relative to the original data is

‖F̂ ′ − (F1 + F2)‖∞ ≤ ‖F̂ ′ − (F̂2 + F1)‖∞ + ‖(F̂2 + F1)− (F1 + F2)‖∞
≤ ε1(n1 + n2) + ‖F̂2 − F2‖∞
= ε1(n1 + n2) + ε2n2.

By the same argument, if we merge in a third summary S3 of n3 items with error ε3,
the resulting error is at most ε1(n1 +n2 +n3)+ε2n2 +ε3n3. So if this (one-way) merging
is done over a large number of summaries S1, S2, S3 . . . Ss, then the resulting summary
has error at most

ε1(

s∑

i=1

ni) +

s∑

i=2

εini ≤ (ε1 + max
1<i≤s

εi)N.

Setting ε1 = ε2 = . . . εi = ε/2 is sufficient to meet the requirements on this error.

An immediate observation is that the GK algorithm [Greenwald and Khanna 2001]
(along with other deterministic techniques for streaming computation of quantiles
which require more space [Manku et al. 1998]) meets these requirements, and is there-
fore one-way mergeable. The merging is fast, since it takes time linear in the summary
size to extract an approximate distribution, and near-linear to insert into a second
summary.

COROLLARY 3.3. The GK algorithm is one-way mergeable, with a summary size of
O((1/ε) log(εn)).

2We assume that this is straightforward to extract, as is the case with existing quantile summaries. If not,
we can use the summary as a black box, and extract the ε-quantiles of the distribution, from which it is
straightforward to construct a distribution f which has these quantiles.
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This analysis implies a step towards full-mergeability. We can apply the rule of al-
ways merging the summary of the smaller data set into the larger. This ensures that
in the summarization of n items, any item participates in at most log(εn) one-way
merges (we only incur errors for data sets of at least 1/ε points). Thus the total error is
ε log(εn), and the summary has size O((1/ε) log(εn)). If we know n in advance, we can
rescale ε by a log(εn) factor, and achieve a space of O((1/ε) log2(εn)), matching the re-
sult of [Greenwald and Khanna 2004]. However, this does not achieve full mergeability,
which does not allow foreknowledge of n.

3.2. Low-discrepancy-based summaries
Unfortunately, we cannot show that the GK summary is (fully) mergeable, nor can
we give a negative proof. We conjecture it is not, and in fact we conjecture that any
deterministic mergeable quantile summary must have size linear in n in the com-
parison model. On the other hand, in this section we give a randomized mergeable
quantile summary of size O((1/ε) log1.5(1/ε)). The idea is to adopt the merge-reduce al-
gorithm [Matoušek 1991; Chazelle and Matousek 1996] for constructing deterministic
ε-approximations of range spaces, but randomize it in a way so that error is preserved.

Same-weight merges. We first consider a restricted merging model where each
merge is applied only to two summaries (ε-approximations) representing data sets of
the same size. Let S1 and S2 be the two summaries to be merged. The algorithm is very
simple: Set S′ = S1 ∪ S2, and sort S′. Then let Se be all even points in the sorted order
and So be all odd points in the sorted order. We retain either Se or So with equal prob-
ability as our merged summary S, with the weight of each point scaled up by a factor
2. We call this a same-weight merge. We note essentially the same algorithm was used
by Suri et al. [2006], but their analysis permits the error to increase gradually as a
series of merges are performed. Below we give our analysis which shows that the error
is actually preserved. We first consider a single merge.

LEMMA 3.4. For any interval I ∈ I, 2|I ∩S| is an unbiased estimator of |I ∩S′| with
error at most 1.

PROOF. If |I ∩ S′| is even, then I ∩ S′ contains the same number of even and odd
points. Thus 2|I ∩ S| = |I ∩ S′| no matter whether we choose the even or odd points.

If |I ∩ S′| is odd, it must contain exactly one more odd point than even points. Thus
if we choose the odd points, we overestimate |I ∩ S′| by 1; if we choose the even points,
we underestimate by 1. Either happens with probability 1/2.

Below we generalize the above lemma to multiple merges, but each merge is a same-
weight merge. We set the summary size to be kε, and note that each merge operation
takes time O(kε) to merge the sorted lists and pick every other point. Let D be the
entire data set of size n. We assume that n/kε is a power of 2 (this assumption will be
removed later). Thus, the whole merging process corresponds to a complete binary tree
with m = log(n/kε) levels. Each internal node in the tree corresponds to the (same-
weight) merge of its children. Let S be the final merged summary, corresponding to
the root of the tree. Note that each point in S represents 2m points in D. Recall that
(randomized) mergeability requires that S is a valid ε-summary after any number of
merges, so it important that the merging algorithm is oblivious to m (hence n). In fact,
our algorithm only has one parameter kε. We first analyze the correctness of S for any
one query.
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LEMMA 3.5. If we set kε = O((1/ε)
√

log(1/δ)), then for any interval I ∈ I with
probability at least 1− δ,

abs(|I ∩D| − 2m|I ∩ S|) ≤ εn.
PROOF. Fix any I. We prove this lemma by considering the over-count error Xi,j

(which could be positive or negative) produced by a single merge of two sets S1 and S2

to get a set S(j) in level i. Then we consider the error Mi =
∑ri
j=1Xi,j of all ri = 2m−i

merges in level i, and sum them over all m levels using a single Chernoff-Hoeffding
bound. We will show that the errors for all levels form a geometric series that sums to
at most εn with probability at least 1− δ.

Start the induction at level 1, before any sets are merged. Merging two sets S1 and
S2 into S(j) causes the estimate 2|S(j) ∩ I| to have over-count error

X1,j = 2|S(j) ∩ I| − |(S1 ∪ S2) ∩ I|.
Now abs(X1,j) ≤ 1 = ∆1, by Lemma 3.4. There are r1 = 2m−1 such merges in this level,
and since each choice of even/odd is made independently, this produces r1 independent
random variables {X1,1, . . . , X1,r1}. Let their total over-count error be denoted M1 =∑r1
j=1X1,j . So, now except for error M1, the set of r1 sets S(j), each the result of an

independent merge of two sets, can be used to represent |D ∩ I| by 2|(⋃j S(j)) ∩ I|.
Then inductively, up to level i, we have accumulated at most

∑i−1
s=1Ms error, and have

2ri point sets of size kε, where ri = 2m−i. We can again consider the merging of two
sets S1 and S2 into S(j) by a same-weight merge. This causes the estimate 2i|S(j) ∩ I|
to have error

Xi,j = 2i|S(j) ∩ I| − 2i−1|(S1 ∪ S2) ∩ I|,
where abs(Xi,j) ≤ 2i−1 = ∆i, by Lemma 3.4. Again we have ri such merges in this level,
and ri independent random variables {Xi,1, . . . , Xi,ri}. The total error in this level is
Mi =

∑ri
j=1Xi,j , and except for this error Mi and Mi−1, . . . ,M1, we can accurately

estimate |D ∩ I| as 2i|(⋃j S(j)) ∩ I| using the ri sets S(j).
We now analyze M =

∑m
i=1Mi using the following Chernoff-Hoeffding bound. Given

a set {Y1, . . . , Yt} of independent random variables such that abs(Yj−E[Yj ]) ≤ Υj , then
for T =

∑t
j=1 Yj we can bound Pr[abs(T −∑t

j=1E[Yj ]) > α] ≤ 2e−2α2/(
∑t
j=1(2Υj)

2). In our
case, the random variables are m sets of ri variables {Xi,j}j , each with E[Xi,j ] = 0 and
abs(Xi,j − E[Xi,j ]) = abs(Xi,j) ≤ ∆i = 2i−1. There are m such sets for i ∈ {1, . . . ,m}.
Setting α = h2m for some parameter h, we can write

Pr [abs(M) > h2m] ≤ 2 exp

(
− 2 (h2m)

2

∑m
i=1

∑ri
j=1(2∆i)2

)

= 2 exp

(
− 2 (h2m)

2

∑m
i=1(ri)(22i)

)

= 2 exp

(
− 2h2

(
22m

)
∑m
i=1(2m−i)(22i)

)

= 2 exp

(
− 2h2

(
22m

)
∑m
i=1 2m+i

)

= 2 exp

(
− 2h2

∑m
i=1 2i−m

)
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= 2 exp

(
− 2h2

∑m−1
i=0 2−i

)

< 2 exp
(
−h2

)
.

Thus if we set h =
√

ln(2/δ), with probability at least 1 − δ we have abs(M) < h2m =
hn/kε. Thus for kε = O(h/ε) the error will be smaller than εn, as desired.

An ε-approximation is required to be correct for all intervals I ∈ I, but this can
be easily achieved by increasing kε appropriately. There is a set of 1/ε evenly spaced
intervals Iε such that any interval I ∈ I has

abs(|D ∩ I| − |D ∩ I ′|) ≤ εn/2

for some I ′ ∈ Iε. We can then apply the union bound by setting δ′ = δε and run the
above scheme with kε = O((1/ε)

√
log(1/δ′)). Then with probability at least 1 − δ, no

interval in Iε has more than εn/2 error, which means that no interval in I has more
than εn error.

THEOREM 3.6. There is a same-weight merging algorithm that maintains a sum-
mary of sizeO((1/ε)

√
log(1/εδ)) which is a one-dimensional ε-approximation with prob-

ability at least 1− δ.

Uneven-weight merges. We next reduce uneven-weight merges to O(log(n/kε))
weighted instances of the same-weight ones. This follows the so-called logarithmic
technique used in many similar situations [Greenwald and Khanna 2004].

Set kε = O((1/ε)
√

log(1/εδ)) as previously. Let n be the size of data set currently
being summarized. We maintain log(n/kε) layers, each of which summarizes a disjoint
subset of data points. Each layer is either empty or maintains a summary with exactly
kε points. In the 0th layer, each summary point has weight 1, and in the ith layer, each
summary point has weight 2i. We assume n/kε is an integer; otherwise we can always
store the extra ≤ kε points exactly without introducing any error.

We merge two such summaries S1 and S2 via same-weight merging, starting from
the bottom layer, and promoting retained points to the next layer. At layer i, we may
have 0, 1, 2, or 3 sets of kε points each. If there are 0 or 1 such sets, we skip this layer
and proceed to layer i + 1; if there are 2 or 3 such sets we merge any two of them
using a same-weight merge, and promote the merged set of kε points to layer i + 1.
Consequently, each merge takes time O(kε(log εn + log kε)), linear in the total size of
both summaries; specifically, sorting the first layer takes time O(kε log kε), then each
successive layer takes O(kε) time to process and there are O(log εn) layers.

The analysis of this logarithmic scheme is straightforward because our same-weight
merging algorithm preserves the error parameter ε across layers: Since each layer is
produced by only same-weight merges, it is an ε-approximation of the set of points
represented by this layer, namely the error is εni for layer i where ni is the number of
points being represented. Now consider n′ = kε2

i such that n′/2 < n ≤ n′. If we merged
in one more summary so we now have n′ points instead of n, specifically so that all
layers are empty except for the top one, the error bound should only be larger than
without doing this. Importantly, the series of merges with n′ points is now equivalent
to a series of even-weight merges and so the one remaining layer has error at most εn′
with probability at least 1 − δ, via Theorem 3.6. We can then use ε/2 in place of ε to
achieve εn error over uneven-weight merges on n > n′/2. Again it should be clear that
this algorithm works without the a priori knowledge of the number of merges.
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THEOREM 3.7. There is a mergeable summary of size O((1/ε)
√

log(1/εδ) log(εn))
which is a one-dimensional ε-approximation with probability at least 1− δ.

3.3. Hybrid quantile summaries
In this section, we build on the above ideas to remove the dependence on n in the size
of the summary.

Random sampling. A classic result [Vapnik and Chervonenkis 1971; Talagrand
1994] shows that a random sample of kε = O((1/ε2) log(1/δ)) points from D is an ε-
approximation with probability 1 − δ. So an ε-approximation can also be obtained by
just retaining a random sample of D. Random samples are easily mergeable; a stan-
dard way of doing so is to assign a random value ua ∈ [0, 1] for each point pa ∈ D, and
we retain in S ⊂ D the kε elements with the smallest ui values. On a merge of two
summaries S1 and S2, we retain the set S ⊂ S1 ∪ S2 that has the kε smallest ua values
from the 2kε points in S1 ∪ S2. It is also easy to show that finite precision (O(log n) bits
with high probability) is enough to break all ties; we generate these bits on demand as
needed. Note that we give our results in the standard RAM model, where we assume
that we can store n in a constant number of machine words.

One technical issue is that the classic sampling results [Vapnik and Chervonenkis
1971; Talagrand 1994] are for drawing points with replacement, but the procedure we
define above is without replacement. Although it is generally believed that the same
result should hold for sampling without replacement, we are not aware of a formal
proof. To be completely correct, when the sample is to be queried, we can always con-
vert it into a sample with replacement by simulating the with-replacement process:
If a new point is to be sampled, draw one from S and remove it from S; otherwise if
an existing point is required, draw it from the existing set. Note that this simulation,
specifically the decision to choose a new or existing point, requires the knowledge of
|D|, which can be easily maintained as the samples are merged.

FACT 1. A random sample of size kε = O((1/ε2) log(1/δ)) is mergeable and is an
ε-approximation with probability at least 1− δ.

Random sampling and mergeability. Below, we show how to combine the ap-
proaches of random sampling and the low-discrepancy-based method to achieve a sum-
mary size independent of n. We first show an intermediate result that achieves Õ(1/ε)
space usage, before the main result in this section, which reduces the dependency
on log 1/ε. The idea is that since a sample of size O((1/ε2

s) log(1/δs)) provides an εs-
approximation, we can reduce the size further by applying the mergeable summary
from Theorem 3.7 with parameter εh over a sample. The resulting summary provides
an (εs+εh)-approximation. The challenge is that we do not know the size of the data in
advance, so cannot choose the appropriate sampling rate. We address this by keeping
multiple samples in parallel with different sampling rates of p = 1, 1

2 ,
1
4 , . . .. The sample

with p = 1/2i is obtained from the sample with p = 1/2i−1 by retaining each point with
probability 1

2 , and we stop using smaller p’s when the sample is empty. Meanwhile, we
discard a sample when its size is sufficiently large, i.e., more than Ω((1/ε2

s) log(1/δs)).
A Chernoff bound argument shows that we maintain only O(log(1/εs)) samples with
different p values at a time.

For each sample in the collection, we feed its points into an instance of the mergeable
summary from Theorem 3.7 as points are being sampled. The size of each summary is
then O((1/εh)

√
log(1/εhδh) log((εh/ε

2
s) log(1/δs))). Setting εh = εs = ε/2, and treating

δh and δs as constants to simplify the expression, we obtain a total summary size of
O((1/ε) log5/2(1/ε)). However, it seems redundant to track all these guesses of p in
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parallel. In what follows, we show how to remove this factor of log(1/ε) by a more
involved argument.

At an intuitive level, for a subset of points, we maintain a random sample of size
about (1/ε) log(1/ε). The sample guarantees an error of

√
ε for any range, so we make

sure that we only use this on a small fraction of the points (at most εn points). The
rest of the points are processed using the logarithmic method. That is, we maintain
O(log(1/ε)) levels of the hierarchy, and only in the bottom level use a random sample.
This leads to a summary of size (1/ε) poly log(1/ε).

Hybrid structure. We now describe the summary structure in more detail for n
points, where 2j−1kε ≤ n < 2jkε for some integer j, and kε = (4/ε)

√
ln(4/εδ). Let

gε = (64/ε2) ln(16/εδ). For each level l between i = j− log2(gε) and j−1 we either main-
tain kε points, or no points. Each point at the lth level has weight 2l. We refer to lower
levels as those having a smaller index and representing fewer points, specifically kε2l
points. The remaining m ≤ 2ikε points are in a random buffer at level i, represented
by a random sample of kε points (or only m if m < kε). Each point in the sample has
weight m/kε (or 1 if m < kε). Note the total size is O(kε log(gε)) = O((1/ε) log1.5(1/εδ)).
If there are n = O(kε log(gε)) points, we just store them exactly. Figure 1 shows the
structure schematically; there are O(log gε) levels, representing geometrically more
points at each level, plus the sample of the buffer.

Merging. Two hybrid summaries S1 and S2 are merged as follows. Let n1 and n2 be
the sizes of the data sets represented by S1 and S2, and w.l.o.g. we assume n1 ≥ n2. Let
n = n1 + n2. Let j be an integer such that 2j−1kε ≤ n < 2jkε, and let i = j − log2(gε).

First consider the random buffer in the merged summary; it now contains both ran-
dom buffers in S1 and S2, as well as all points represented at level i − 1 or below in
either S1 or S2. Note that if n1 ≥ 2j−1kε, then S1 cannot have points at level l ≤ i − 1.
Points from the random buffers of S1 and S2 already have ua values. For every p of
weight w(p) = 2l that was in a level l ≤ i− 1, we insert w(p) copies of p into the buffer
and assign a new ua value to each copy. Then the kε points with the largest ua values
are retained.

When the random buffer is full, i.e., represents 2ikε points, then it performs an “out-
put” operation, and outputs the sample of kε points of weight 2i each, which is then
merged into the hierarchy at level i. At this point, the without-replacement sample
can be converted to a with-replacement sample. It is difficult to ensure that the ran-
dom buffer represents exactly m = 2ikε points when it outputs points, but it is suffi-
cient if this occurs when the buffer has this size in expectation (as we will see starting
in Lemma 3.10). There are two ways the random buffer may reach this threshold of
representing m points:

(1) On insertion of a point from the hierarchy of level l ≤ i − 1. Since copies of these
points are inserted one at a time, representing 1 point each, it reaches the threshold
exactly. The random buffer outputs and then inserts the remaining points in a new
random buffer.

(2) On the merge of two random buffers B1 and B2, which represent b1 and b2 points,
respectively. Let b1 ≥ b2, and let B be the union of the two buffers and represent
b = b1 + b2 points. If b < m we do not output; otherwise we have m/2 ≤ b1 <
m ≤ b < 2m. To ensure the output from the random buffer represents m points in
expectation either:
(i) With probability ρ = (b−m)/(b−b1), we do not merge, but just output the sample

of B1 and let B2 be the new random buffer.
(ii) With probability 1 − ρ = (m − b1)/(b − b1), we output the sample of B after the

merge, and let the new random buffer be empty.
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Fig. 1: Illustration of the hybrid summary. The labels at each level of the hierarchy
shows the number of points represented at that layer. Each filled box contains exactly
kε summary points, and empty boxes contain no summary points. The random buffer,
the bottom left leaf of the hierarchy, is shown in more detail.

Note that the expected number of points represented by the output from the ran-
dom buffer is ρb1 + (1− ρ)b = b−m

b−b1 b1 + m−b1
b−b1 b = m.

Next, the levels of the hierarchy of both summaries are merged as before, starting
from level i. For each level if there are 2 or 3 sets of kε points, two of them are merged
using a same-weight merge, and the merged set is promoted to the next level. See
Figure 1 for illustration of hybrid structure.

Analysis. First we formalize the upward movement of points.

LEMMA 3.8. Over time, a point only moves up in the hierarchy (or is dropped): it
never decreases in level.

PROOF. For this analysis, the random buffer is considered to reside at level i at the
end of every action. There are five cases we need to consider.

(1) A point is involved in a same weight merge at level l. After the merge, it either
disappears, or is promoted to level l + 1.

(2) A point is merged into a random buffer from the hierarchy. The point must have
been at level l ≤ i− 1, and the random buffer resides at level i, so the point moves
up the hierarchy. If its ua value is too small, it may disappear.

(3) A point is in a random buffer B that is merged with another random buffer B′. The
random buffer B could not be at level greater than i before the merge, by definition,
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but the random buffer afterward is at level i. So the point’s level does not decrease
(it may stay the same). If the ua value is too small, it may disappear.

(4) A point is in a random buffer when it performs an output operation. The random
buffer was at level i, and the point is now at level i in the hierarchy.

(5) Both j and i increase. If the point remains in the hierarchy, it remains so at the
same level. If it is now at level i − 1, it gets put in the random buffer at level i,
and it may be dropped. If the point is in the random buffer, it remains there but
the random buffer is now at level i where before it was at level i − 1. Again the
point may disappear if too many points moved to the random buffer have larger ua
values.

Now we analyze the error in this hybrid summary. We will focus on a single interval
I ∈ I and show the over-count error X on I has abs(X) ≤ εn/2 with probability 1− εδ.
Then applying a union bound will ensure the summary is correct for all 1/ε intervals
in Iε with probability at least 1 − δ. This will imply that for all intervals I ∈ I the
summary has error at most εn.

The total over-count error can be decomposed into two parts. First, we invoke Theo-
rem 3.7 to show that the effect of all same-weight merges has error at most εn/4 with
probability at least 1 − εδ/2. This step assumes that all of the data that ever comes
out of the random buffer has no error, it is accounted for in the second step. Note that
the total number of merge steps at each level is at most as many as in Theorem 3.7,
even those merges that are later absorbed into the random buffer. Second, (the focus
of our analysis) we show the total error from all points that pass through the random
buffer is at most εn/4 with probability at least 1 − εδ/2. This step assumes that all
of the weighted points put into the random buffer have no error, this is accounted for
in the first step. So there are two types of random events that affect X: same-weight
merges and random buffer outputs. We bound the effect of each event, independent of
the result of any other event. Thus after analyzing the two types separately, we can
apply the union bound to show the total error is at most εn/2 with probability at least
1− εδ.

It remains to analyze the effect on I of the random buffer outputs. First we bound
the number of times a random buffer can output to level l, i.e., output a set of kε points
of weight 2l each. Then we quantify the total error attributed to the random buffer
output at level l.

LEMMA 3.9. A summary of size n, for 2j−1kε ≤ n < 2jkε, has experienced hl ≤
2j−l = 2i−lgε random buffer promotions to level l within its entire merge history.

PROOF. By Lemma 3.8, if a point is promoted from a random buffer to the hierarchy
at level l, then it can only be put back into a random buffer at a level l′ > l. Thus the
random buffer can only promote, at a fixed level l, points with total weight n < 2jkε.
Since each promotion outputs points with a total weight of 2lkε, this can happen at
most hl < 2jkε/2

lkε = 2j−l times. The proof concludes using gε = 2j−i.

LEMMA 3.10. When the random buffer promotes a set B of kε points representing a
set P of m′ points (where m/2 < m′ < 2m), for any interval I ∈ I the over-count

X = (m/kε)|I ∩B| − |I ∩ P |
has expectation 0 and abs(X) ≤ 2m.

PROOF. The expectation of over-count X has two independent components. B is a
random sample from P , so in expectation it has the correct proportion of points in any
interval. Also, since E[|P |] = m, and |B| = kε, then m/kε is the correct scaling constant
in expectation.
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To bound abs(X), we know that |P | < 2m by construction, so the maximum error an
interval I could have is to return 0 when it should have returned 2m, or vice-versa. So
abs(X) < 2m.

Since m ≤ n/gε at level i, then m ≤ 2l−in/gε at level l, and we can bound the over-
count error as ∆l = abs(X) ≤ 2m ≤ 2l−i+1n/gε. Now we consider a random buffer pro-
motion that causes an over-count Xl,s where l ∈ [0, i] and s ∈ [1, hl]. The expected value
of Xl,s is 0, and abs(Xl,s) ≤ ∆l. These events are independent so we can apply another
Chernoff-Hoeffding bound on these

∑i
l=0 hl events. Recall that gε = (64/ε2) ln(4/εδ)

and let T̂ =
∑i
i=0

∑hl
s=1Xl,s, which has expected value 0. Then

Pr[abs(T̂ ) ≥ εn/4] = 2 exp

(
−2

(εn/4)2

∑i
l=0 hl∆

2
l

)

≤ 2 exp

(
−2

(εn/4)2

∑i
l=0 (2i−lgε) (2l−i+1n/gε))

2

)

≤ 2 exp

(
−gε

ε2

8

1
∑i
l=0 2i−l22(l−i)+2

)

= 2 exp

(
−gε

ε2

32

1
∑i
l=0 2l−i

)

= 2 exp

(
−2 ln(4/εδ)

1
∑i
l=0 2−l

)

≤ 2 exp(− ln(4/εδ))

= 2(εδ/4) = εδ/2.

THEOREM 3.11. A fully mergeable one-dimensional ε-approximation of size
O((1/ε) log1.5(1/εδ)) can be maintained with probability at least 1− δ.

We first note that, for δ ≥ ε, the bound above is always O((1/ε) log1.5(1/ε)). For δ < ε,
the bound is O((1/ε) log1.5(1/δ)), but this can be further improved as follows. We run r
independent copies of the structure each with failure probability δ′ = ε/2. Then for any
interval query, we return the median value from all r such summaries. The query thus
fails only when at least r/2 copies of the structure fail, which by the Chernoff bound,
is at most

[
e1/ε−1

(1/ε)1/ε

]εr/2
< (eε)1/ε·εr/2 = (eε)r/2.

Setting r = O(log(1/δ)/ log(1/ε)) will make the above probability at most εδ, which
means that the structure will be correct for all interval queries with probability at
least 1 − δ. The total size of all r copies is thus O((1/ε)

√
log(1/ε) log(1/δ)). Note that,

however, the resulting structure is not technically a single ε-approximation, as we
cannot just count the (weighted) points in the union of the r summaries that fall into a
query range. Instead, we need to answer the query separately for each summary and
then take their median value.

COROLLARY 3.12. A fully mergeable ε-approximate quantile summary can be main-
tained with probability at least 1 − δ. The size is O((1/ε) log1.5(1/εδ)) for δ ≥ ε, and
O((1/ε)

√
log(1/ε) log(1/δ)) for δ < ε.
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4. ε-APPROXIMATIONS OF RANGE SPACES
In this section, we generalize the approach of the previous section to ε-approximations
of higher dimensional range spaces. For example, rectangular queries over two-
dimensional data, or generalizations to other dimensions and other queries. Let D
be a set of points in Rd, and let (D,R) be a range space of VC-dimension ν (see Sec-
tion 1.2 for the definition). We use Rd to denote the set of ranges induced by a set of
d-dimensional axis-aligned rectangles, i.e., Rd = {D ∩ ρ | ρ is a rectangle}.

The overall merge algorithm is the same as in Section 3, except that we use a more
intricate procedure for each same-weight merge operation. This is possible by follow-
ing low-discrepancy coloring techniques, mentioned in Section 1.2 that create an ε-
approximation of a fixed data set D (see books [Matoušek 2010; Chazelle 2000] on the
subject), and have already been extended to the streaming model [Suri et al. 2006].
A sub-optimal version of this technique works as follows: it repeatedly divides D into
two sets D+ and D−, so for all ranges R ∈ R we have 2|D+ ∩R| ≈ |D ∩R|, and repeats
dividing D+ until a small enough set remains. The key to this is a low-discrepancy
coloring χ : D → {−1,+1} of D so we can define D+ = {x ∈ D | χ(x) = +1} and
has the desired approximation properties. A long series of work (again see books [Ma-
toušek 2010; Chazelle 2000] and more recent work [Bansal 2010; Larsen 2011; Lovett
and Meka 2012]) has improved properties of these colorings, and this has directly led
to the best bounds for ε-approximations. In this section we use these low-discrepancy
coloring results for higher dimensions in place of the sorted-order partition (used to
obtain Se and So).

For two summaries S1 and S2 suppose |S1| = |S2| = k, and let S′ = S1 ∪ S2. Now
specifically, using the algorithm in [Matousek 1995; Bansal 2010], we compute a low-
discrepancy coloring χ : S′ → {−1,+1} such that for any R ∈ R,

∑
a∈S′∩R χ(a) =

O(k1/2−1/2ν). Let S+ = {a ∈ S′ | χ(a) = +1} and S− = {a ∈ S′ | χ(a) = −1}. Then
we choose to retain either S+ or S− at random as the merged summary S. From an
analysis of the expected error and worst-case bounds on absolute error of any range
R ∈ R, we are able to generalize Lemma 3.4 as follows.

LEMMA 4.1. Given any range R ∈ R, 2|S ∩ R| is an unbiased estimator of |S′ ∩ R|
with error at most Λν = O(k1/2−1/2ν).

For the range space (P,Rd), we can reduce the discrepancy of the coloring to
O(log2d k) using the algorithm by Phillips [2008], leading to the following generaliza-
tion of Lemma 3.4.

LEMMA 4.2. Given any range R ∈ Rd, 2|S ∩ R| is an unbiased estimator of |S′ ∩ R|
with error at most Λd = O(log2d k).

Lemma 3.5 and its proof generalize in a straightforward way, the only change being
that now ∆i = 2i−1Λν . Again let M be the error of any one range, with m levels of
even-weight merges, where level i makes ri = 2m−i merges, for h = (Λν/

√
2) log1/2(2/δ)

Pr[abs(M) > h2m] ≤ 2 exp

(
− 2(h2m)2

∑m
i=1

∑ri
j=1(2∆i)2

)

= 2 exp

(
− 2(h2m)2

∑m
i=1(ri)(22iΛ2

ν)

)

≤ 2 exp(−2h2/Λ2
ν) ≤ δ.

Using the union bound, setting h = O(Λν log1/2(1/εδ)) allows this bound to hold for all
ranges, for constant ν (since there is a set of (2/ε)ν ranges such that all ranges differ
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by at most ε/2 of one them). Now we want to solve for kε the number of points in the
final summary. Since there are 2m levels over n points and each level merges sets of
size kε, then n = 2mkε. Thus to achieve Pr[abs(M) > εn] ≤ δ for all ranges we set
εn = h2m = hn/kε. And thus

kε = h/ε =
1

ε
O

(
Λν

√
log

1

εδ

)

=O

(
1

ε

(
k1/2−1/(2ν)
ε

)√
log

1

εδ

)

=O

((
1

ε

)2ν/(ν+1)

logν/(ν+1)

(
1

εδ

))
.

For (P,Rd) (substituting Λd in place of Λν , for constant d) we get

kε = O

(
1

ε
Λd
√

log(1/εδ)

)
= O

(
1

ε
log2d

(
log(1/δ)

ε

)√
log(1/εδ)

)
.

LEMMA 4.3. For a range space (D,R) of VC-dimension ν, an ε-approximation of
size O((1/ε)2ν/(ν+1) logν/(ν+1)(1/εδ)) can be maintained under the framework of same-
weight merges, with probability at least 1 − δ. For the range space (D,Rd), the size of
the ε-approximation is O((1/ε) log2d(log(1/δ)/ε)

√
log(1/εδ)).

This algorithm extends to different-weight merges with an extra log(nε) factor, as
with the one-dimensional ε-approximation. The random buffer maintains a random
sample of basically the same asymptotic size O((1/ε2)(ν + log(1/δ))) [Talagrand 1994;
Li et al. 2001] and 0 expected over-count error. When using the increased kε values, the
generalizations of Lemma 3.9 and Lemma 3.10 are unchanged. From here, the rest of
the analysis is the same as in Section 3 (except with updated parameters), yielding the
following result.

THEOREM 4.4. A mergeable ε-approximation of a range space (D,R) of VC-
dimension ν of size O((1/ε

2ν
ν+1 ) log

2ν+1
ν+1 (1/εδ)) can be maintained with probability at

least 1− δ. If R = Rd, then the size is O
(

(1/ε) log2d+3/2(1/εδ)
)

.

As with the one-dimensional ε-approximations, for δ < ε, we can replace all but one
log(1/εδ) by log(1/ε), by running O(log(1/δ)/ log(1/ε)) independent copies of the struc-
ture, each with failure probability δ′ = ε/2. The resulting structure is not technically a
single ε-approximation, but it can be used to answer all range counting queries within
εn error, with probability at least 1− δ.

5. EXPERIMENTS
5.1. Experiment setup
We chose to experiment with our algorithms on the routing tree of a simulated sen-
sor network, as it is irregular, unbalanced, with possibly long branches, a situation
where mergeability is an appealing property. Both the heavy hitters and the quantiles
problems have been studied in the sensor network setting, under the name data aggre-
gation. Here we compare our algorithms with the previous best known heavy hitters
algorithms [Manjhi et al. 2005; Manjhi et al. 2005] as well as the best quantile al-
gorithms [Greenwald and Khanna 2004; Shrivastava et al. 2004; Huang et al. 2011].
Note that all these algorithms do not produce mergeable summaries and need to know
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Fig. 2: Heavy hitters: ε vs. summary size.

the structure of the routing tree (size or height) in order to set their parameters cor-
rectly. On the other hand, all our algorithms only need a single parameter ε, the target
error bound.

We used the standard procedure (as in e.g. [Shrivastava et al. 2004]) for generating a
sensor network and its routing tree. Specifically, we first distributed 1024 sensor nodes
over a unit square uniformly at random. The sensor nodes have a fixed radio range,
and two nodes can be connected if they are within the radio range of each other. Then
we randomly picked a node as the root. Then starting from the root, we grew a routing
tree by a breadth-first search.

For each experiment, we first give each sensor node some initial data, which is used
to compute the initial local summary at the node. Then starting from the leaves, we
merge the summaries in a bottom-up fashion, all the way to the root. We measure the
maximum summary size in this merging process, as well as the actual error observed
in the final summary at the root, which could be smaller than the error parameter ε.

5.2. Heavy hitters
In this subsection we experimentally evaluate our two merging algorithms for the
heavy hitters problem (MERGEABLEMINERROR and MERGEABLEMINSPACE), com-
paring with two previous algorithms: the TRIBUTARYANDDELTA algorithm [Man-
jhi et al. 2005] and the MINMAXLOAD algorithm in [Manjhi et al. 2005]. These
two algorithms follow the same framework: They first compute a precision gradient
ε(1) ≤ ε(2) ≤ · · · ≤ ε(h) = ε, where h is the height of the tree (and so they need to know
h in advance). For level-1 nodes (leaf nodes), they compute summaries with error ε(1).
As summaries are merged along the tree, the errors gradually grow following the pre-
cision gradient and eventually reach ε when it comes to the root. The two algorithms
use essentially the same merging algorithm, and only differ in the way the precision
gradient is computed. The final error is guaranteed but there is no guarantee on the
summary size.

We generated synthetic data following Zipf distribution for the experiments. More
precisely, we first generated a total of 1 billion values from a Zipf distribution with
parameter α = 1 with items in the range [0, 232 − 1]. Then we randomly distributed
these 1 billion integers to the 1024 nodes. There are roughly 33, 000 distinct items in
this data set.

ε vs. summary size. We set the error parameter ε from 1 to 10−5 and run all four
algorithms on the same sensor network and the same data. The results are plot-
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Fig. 3: Heavy hitters: ε vs. actual error.

ted in Figure 2 in log-log scale. From the figure, we see that the general conclusion
is that MERGEABLEMINSPACE produces smaller summaries than TRIBUTARYAND-
DELTA and MINMAXLOAD, which in turn produce smaller summaries than MERGE-
ABLEMINERROR, except when 1/ε approaches the number of distinct items (recall that
there are 33, 000 distinct items in the data set). We also observe that the summary size
of MERGEABLEMINERROR is almost always k = 1/ε − 1. This is as expected, since
MERGEABLEMINERROR tries to eliminate counters only when there are more than k
counters.

ε vs. actual error. We also examined the actual errors in the final summary received
by the root of the routing tree. Specifically, we extract the frequencies of the 1/ε most
frequent items from the summary, compute their differences with the true frequencies,
and take the maximum and average of these errors. We also divide the error by n so
that it can be compared with ε. The results are plotted in Figure 3. A subtle issue
when it comes to measuring actual errors is that, although MG and SpaceSaving are
isomorphic, they give different estimates: MG gives lower bounds while SpaceSaving
gives upper bounds. It has been observed [Cormode and Hadjieleftheriou 2008b] that
SpaceSaving tends to give better estimates in practice, so we actually convert the final
summary at the root to SpaceSaving before extracting the item frequencies, though in
the merging process we always work with MG summaries.

From Figure 3 we see that TRIBUTARYANDDELTA and MINMAXLOAD produce er-
rors that are very close to the error guarantee ε. This is especially true for small ε,
where even the average error is close to ε. On the other hand, the actual error of
MERGEABLEMINERROR is 5 to 10 times smaller than ε. MERGEABLEMINSPACE also
produces smaller actual errors but not as much. This is because the error bound of the
MG summary is actually ε(n− n̂), while MERGEABLEMINERROR always gives a larger
n̂. It We also note that the, for small ε, the average error is close to the maximum error.
When ε becomes very large, most items are not included in the summary, and so have
no estimate. Thus, the average error tracks the average count, while the maximum
error approaches the maximum count. This explains the flattening of the curves for all
four algorithms.

Actual error vs. summary size. We also plot the actual error vs. summary size
tradeoff in Figure 4, to better understand the performance of the algorithms. It is
not surprising to see that MERGEABLEMINERROR and MERGEABLEMINSPACE have
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Fig. 4: Heavy hitters: actual error vs. summary size.

Table II: Maximum summary size with the contrived tree.
ε MERGEABLEMINSPACE MERGEABLEMINERROR TRIBUTARYANDDELTA MINMAXLOAD

1 0 0 14 2

0.5 0 1 14 2

0.2 4 4 4097 8194

0.1 9 9 8194 8197

0.05 15 19 12291 12293

0.02 47 49 20485 20492

0.01 93 99 28679 28681

0.005 192 199 36873 36873

0.002 490 498 40970 40972

0.001 994 999 49164 49164

0.0005 1999 1999 53261 53261

0.0002 4999 4999 57358 57358

0.0001 9999 9999 57372 57386

almost the same tradeoff. After all, they are fundamentally the same: the difference is
that one favors error while the other favors space. Meanwhile, TRIBUTARYANDDELTA
and MINMAXLOAD also exhibit very similar tradeoffs, which are worse than that of
our algorithms.

A contrived example. Finally, we designed an example to show that TRIBU-
TARYANDDELTA and MINMAXLOAD may result in huge summary size on some con-
trived inputs. We constructed a merging tree which consists of 4096 internal nodes and
4096 leaves. The internal nodes form a single path, with the lowest node attached to
the 4096 leaves. Each node receives a carefully chosen data set of 8192 items, and no
two nodes share any common items. On this example, both TRIBUTARYANDDELTA and
MINMAXLOAD failed miserably, as shown in Table II (note that these two algorithms
are still given the knowledge of the height of the tree). Such examples do not exist for
our algorithms, due to their theoretical guarantees.

5.3. Quantiles
Our O((1/ε) log1.5(1/ε)) algorithm is moderately complex to implement, but the one
presented in Section 3.2 is more direct to use. It has a slightly worse bound of
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Fig. 5: Quantiles: actual error vs. summary size.

O((1/ε) log0.5(1/ε) log(εn)) but it is very simple. Recall that its only operation is to
merge two sorted lists and then take even or odd positioned items randomly, combined
with the standard logarithmic method. In this subsection we experimentally compare
it with three existing algorithms for computing quantiles in a sensor network: GK
[Greenwald and Khanna 2004] is a quantile summary of size O((1/ε) log n log(h/ε)). It
is not mergeable as it requires the knowledge of both n, the total number of items in the
sensor network, as well as h, the height of the routing tree. q-digest [Shrivastava et al.
2004] is actually a mergeable quantile summary as mentioned in Section 1.2, but it
needs a bounded universe {0, . . . , u− 1}. In our experiments, we choose to use integers
in the range {0, · · · , 232 − 1} so that q-digest can be applied. It has size O((1/ε) log u).
SB-p [Huang et al. 2011] is a sampling based, randomized quantile summary for sen-
sor networks. It has sizeO((1/ε) log(k/h)), where k is the number of nodes in the sensor
network.3 This algorithm needs to know n, k, and h to set its parameters correctly to
work.

We used the same sensor network and its routing tree as in the heavy hitters ex-
periments. For the data sets, we first generated a total of n = 1 billion floating-point
numbers from a Gaussian distribution with mean 0 and variance 1. These values were
then scaled to the range [0, 232 − 1] and round them to integers. Then we randomly
distributed these n integers to the 1024 nodes in the sensor network.

Since two of these four algorithms are deterministic and two are randomized, it will
not be fair to compare them with the same error parameter ε. The deterministic algo-
rithms provide a worst-case ε-error guarantee while the randomized ones only provide
probabilistic guarantees. So we directly look at the actual error vs. summary size trade-
off. For summary size, we as before measure the maximum summary produced by any
node. For the actual error, we query the final summary at the root for the 1%-quantile,
the 2%-quantile, . . . , 99%-quantile, compute the differences from their true percentiles
in the whole data set, and then take the maximum and average.

In Figure 5 we plot the actual error vs. summary size tradeoff curves of the four
algorithms, where the actual error is either the average error or the maximum of the
100 quantiles extracted from the summary. When average error is considered, we see
that SB-p and our algorithm exhibit similar behavior, and both are better than GK.
When we look at the maximum error, however, the three algorithms are similar. Ar-
guably SB-p and our algorithms demonstrate slightly better performance. This could

3The stated bound is for getting one quantile within ε-error with constant probability. For getting all quan-
tiles right (as we do in this paper), the bound becomes O((1/ε) log(k/h) log(1/ε)).
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be due to the randomness and the determinism of these algorithms: The randomized
algorithms produce small errors most of the time, but may be off for a few quantiles,
while the deterministic GK algorithm has more consistent errors for all quantiles. q-
digest is generally also very good, but its behavior is sometimes erratic: the actual
error might suddenly go down even when ε becomes larger. Recall also that q-digest
depends crucially on the bound u on the size of the universe, and does not apply when
such a bound is not known in advance (e.g. when the input domain consists of arbitrary
floating point or string values).

Finally, we note that the comparison between the q-digest, GK, and SB-p sum-
maries4 has been previously made in [Huang et al. 2011]. Here we further compare
our new mergeable quantile summary. The general conclusion is that it has similar
performance as SB-p, but with the additional mergeable property, which also implies
that it does not need the knowledge of the merging tree as SB-p does.

6. CONCLUDING REMARKS
We have formalized the notion of mergeable summaries, and demonstrated fully
mergeable summaries for the central problems of heavy hitters, quantiles, and ε-
approximations. The obvious open question is for what other problems do there exist
fully mergeable summaries. In some cases, it may be possible to adapt existing solu-
tions from the streaming literature to this setting. For example, consider the problem
of k-median clustering. Guha et al. [2000] show that clustering the union of cluster
centers from disjoint parts of the input gives a guaranteed approximation to the over-
all clustering. In our terminology, this means that clusterings can be merged, although
since the accuracy degrades by a constant amount each time, we may think of this as a
one-way merge algorithm. Similarly, results on k-center clustering on the stream can
generate a mergeable summary of size O((k/ε) log(1/ε)) that provides a 2 + ε guaran-
tee [Guha 2009].

Recently, mergeable summaries for graph data were proposed [Ahn et al. 2012] for
problems such as connectivity, k-connectivity, and bipartiteness. However, there are
many other problems in the domain of high-dimensional data, geometric data and
graph data for which no mergeable summary is known or for which bounds are not
tight.
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