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Abstract

Many modern applications of AI such as web search, mobile browsing, image processing,

and natural language processing rely on finding similar items from a large database of

complex objects. Due to the very large scale of data involved (e.g., users’ queries from

commercial search engines), computing such near or nearest neighbors is a non-trivial

task, as the computational cost grows significantly with the number of items. To

address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and

evaluate four variants in a distributed computing environment (specifically, Hadoop).

We identify several optimizations which improve performance, suitable for deployment

in very large scale settings. The experimental results demonstrate our variants of LSH

achieve the robust performance with better recall compared with “vanilla” LSH, even

when using the same amount of space.

1 Introduction 1

Every day, hundreds of millions of people visit web sites and commercial search engines 2

to pose queries on topics of their interest. Such queries are typically just a few key 3
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words intended to specify the topic that the user has in mind. To provide users with a 4

high quality service, search engines such as Bing, Google, and Yahoo require intelligent 5

analysis to realize users’ implicit intents. The key resource that they have to help tease 6

out the intent is their large history of requests, in the form of large scale query logs, as 7

well as the log of user actions on the corresponding result pages. A key primitive in 8

learning users’ intents is finding the nearest neighbors for a user-given query. 9

Computing nearest neighbors is useful for many search-related problems on the Web 10

and Mobile such as finding related queries [1–3], finding near-duplicate queries [4], 11

spelling correction [5, 6], and diversifying search results [7]; and Natural Language 12

Processing (NLP) tasks such as paraphrasing [8, 9], calculating distributional 13

similarity [10–12], and creating sentiment lexicons from large-scale Web data [13]. 14

In this paper, we focus on the problem of finding nearest neighbors over very large 15

data sets, and ground our study with the application of searching for the best match of 16

a given query from very large scale query logs from a large search engine. In order to 17

understand the implicit users’ intent, each query is initially represented in a high 18

dimensional feature space, where each dimension corresponds to a clicked url. Given the 19

importance of this question, it is critical to design algorithms that can scale to many 20

queries over huge logs, and allow online and offline computation. However, computing 21

nearest neighbors of a query can be very costly. Naive solutions that involve a linear 22

search of the set of possibilities are simply infeasible in these settings due to the 23

computational cost of processing hundreds of millions of queries. Even though 24

distributed computing environments such as Hadoop make it feasible to store and 25

search large data sets in parallel, the naive pairwise computation is still infeasible. The 26

reason is that the total amount of work performed is still huge, and simply throwing 27

more resources at the problem is not effective. Given a log of hundreds of millions 28

queries, most are “far” from a query of interest, and we should aim to avoid doing many 29

“useless” comparisons that only confirm that other queries are indeed far from it. 30

In order to address the computational challenge, this paper aims to find nearest 31

neighbors by doing a small number of comparisons—that is, sublinear in the dataset 32

size—instead of brute force linear search. In addition to minimizing the number of 33

comparisons, we aim to retrieve neighboring candidates with 100% precision and high 34

recall. It is important that the false positive rate (ratio of “incorrectly” identifying 35
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queries as close) is penalized more severely than the false negative rate (ratio of missing 36

“true” neighbors). 37

When seeking exact matches for queries, effective solutions are based on storing 38

values in a hash table and mapping in via hash functions. The generalization of this 39

approach to approximate matches is the framework of Locality Sensitive Hashing, where 40

queries are more likely to collide under the hash function if they are more alike, and less 41

likely to collide if they are less alike. The methods we propose in this paper meet our 42

criteria by extending Locality Sensitive Hashing [14–16]. In particular, we apply the 43

framework within a distributed system, Hadoop, and take advantage of its distributed 44

computing power. 45

Our work makes the following contributions: 46

1. We describe four variants of vanilla LSH motivated by the research on 47

Multi-Probe LSH [17]. We show that two of these achieve much better recall than 48

vanilla LSH using the same number of hash tables. The main idea behind these 49

variants is to intelligently probe multiple “nearby” buckets within a table that 50

have high probability of containing near neighbors of a query. 51

2. We present a framework on Hadoop that efficiently finds nearest neighbors for a 52

given query from commercial large-scale query logs in sublinear time. 53

3. We discuss the applicability of our framework on two real-world applications: 54

finding related queries and removing (near) duplicate queries. The algorithms 55

presented in this paper are currently being implemented for production use within 56

a large search provider. 57

2 Problem Statement 58

We start with user query logs C having query vectors collected from a commercial 59

search engine over some domain (e.g. URLs); closeness of queries is measured via cosine 60

similarity on the corresponding vectors. Given a set of queries Q and similarity 61

threshold τ , the problem is to develop a batch process to return a small set T of 62

candidate neighbors from C for each query q ∈ Q such that: 63
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1. T = {l | s(l, q) ≥ τ, l ∈ C}, where s(q1, q2) is a function to compute a similarity 64

score between query feature vector q1 and q2; 65

2. T achieves 100% precision with “large” recall. That is, our aim is to achieve high 66

recall, while using a scalable efficient algorithm. 67

The exact brute force algorithm to solve the above problem would be to compute 68

s(l, q) for all q ∈ Q and all l ∈ C and return those (l, q) where s(l, q) > τ . This 69

approach is computationally infeasible on a single machine, even if the size of Q is of 70

the order of few thousands when the size of C is hundreds of millions. Even in a 71

distributed setting such as Hadoop, the resulting communication needed between 72

machines makes this strategy impractical. 73

Our aim is to study locality sensitive hashing techniques that enable us to return a 74

set of candidate neighbors while performing a much smaller (sublinear in |Q| × |C|) set 75

of comparisons. In order to tackle this scalability problem, we explore the combination 76

of distributed computation using a map-reduce platform (Hadoop) as well as locality 77

sensitive hashing (LSH) algorithms. We explore a few commonly known variants of 78

LSH and suggest several variants that are suitable to the map-reduce platform. The 79

methods that we propose meet the practical requirements of a real life search engine 80

backend, and demonstrates how to use locality sensitive hashing on a distributed 81

platform. 82

3 Proposed Approach 83

We describe a distributed Locality Sensitive Hashing framework based on map-reduce. 84

First, we present the “vanilla” LSH algorithm due to Andoni and Indyk [16]. This 85

algorithm builds on prior work on LSH and Point Location in Equal Balls 86

(PLEB) [14,15]. Subsequent prior work on new variants of PLEB [18] for distributional 87

similarity can be seen as implementing a special case of Andoni and Indyk’s LSH 88

algorithm. We next present four variants of vanilla LSH motivated by the technique of 89

Multi-Probe LSH [17]. A significant drawback of vanilla LSH is that it requires a large 90

number of hash tables in order to achieve good recall in finding nearest neighbors, 91

making the algorithm memory intensive. The goal of Multi-probe LSH is to get 92
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significantly better recall than the vanilla LSH with the same number of hash tables. 93

The main idea behind Multi-probe LSH is to look up multiple buckets within a table 94

that have a high probability of containing the nearest neighbors of a query. We present 95

the high-level ideas behind the Multi-probe LSH algorithm; for more details, the reader 96

is referred to [17]. 97

3.1 Vanilla LSH 98

The LSH algorithm relies on the existence of a family of locality sensitive hash 99

functions. Let H be a family of hash functions mapping RD to some universe S. For any 100

two query terms p, q, we choose h ∈ H uniformly at random and analyze the probability 101

that h(p) = h(q). Suppose d is a distance function (e.g. cosine distance), R > 0 is a 102

distance threshold, and c > 1 an approximation factor. Let P1, P2 ∈ (0, 1) be two 103

probability thresholds. The family H of hash functions is called a (R, cR, P1, P2) 104

locality sensitive family if it satisfies the following conditions: 105

1. If d(p, q) ≤ R, then Pr[h(p) = h(q)] ≥ P1, 106

2. If d(p, q) ≥ cR, then Pr[h(p) = h(q)] ≤ P2 107

An LSH family is generally interesting when P1 > P2. However, the difference between 108

P1 and P2 can be very small. Given a family H of hash functions with parameters 109

(R, cR, P1, P2), the LSH algorithm amplifies the gap between the two probabilities P1 110

and P2 by concatenating K hash functions to create g(·) as: 111

g(q) = (h1(q), h2(q), . . . , hK(q)). A larger value of K leads to a larger gap between 112

probabilities of collision for close neighbors (i.e. distance less than R) and those for 113

neighbors that are far (i.e. distance more than cR); the corresponding probabilities are 114

PK1 and PK2 respectively. This amplification ensures high precision by reducing the 115

probability of dissimilar queries having the same hash value. To increase the recall of 116

the LSH algorithm, Andoni et al. use L hash tables, each constructed using a different 117

gj(·) function, where each gj(·) is defined as gj(q) = (h1,j(q), h2,j(q), . . . , hK,j(q))); 118

∀1 ≤ j ≤ L. 119
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Preprocessing: Input is N queries with their respective feature vectors.

• Select L functions gj , j = 1, 2, . . . , L, setting gj(q) =
(h1,j(q), h2,j(q), . . . , hK,j(q)), where {hi,j , i ∈ [1,K], j ∈ [1, L]} are cho-
sen at random from the LSH family.

• Construct L hash tables, ∀1 ≤ j ≤ L. All queries with the same gj value
(∀1 ≤ j ≤ L) are placed in the same bucket.

Query: Set of M test queries. Let q denote a test query.

• For each j = 1, 2, . . . , L

– Retrieve all the queries from bucket gj(q)

– Compute cosine similarity between query q and all retrieved queries.
Return all the queries within threshold τ .

Fig 1. Locality Sensitive Hashing Algorithm

3.2 LSH for Cosine Similarity 120

For cosine similarity we adapt the LSH family defined by Charikar [15]. The cosine 121

similarity between two queries p, q ∈ RD is
(

p.q
‖p‖‖q‖

)
. The LSH functions for cosine 122

similarity use a random vector α ∈ RD to define a hash function as hα(p) = sign(α · p). 123

A negative sign is interpreted as 0 and positive sign as 1 to generate indices of buckets 124

in the hash tables (i.e. the range of each gj) as K bit vectors. To create α, we exploit 125

the intuition in [19] and sample each coordinate of α from {−1,+1} with equal 126

probability. In practice, these are generated by hash functions that maps that index to 127

{−1,+1} (a.k.a. the “hashing trick” of [20]). This lets us avoid explicitly storing a 128

(huge) D ×K × L random projection matrix. 129

Fig. 1 gives the algorithm for creating and querying the data structure. In a 130

preprocessing step, the algorithm takes as input N queries along with the associated 131

feature vectors. In our application, each query is represented using an extremely sparse 132

and high dimensional feature vector constructed as follows: for query q, we take all the 133

webpages (urls) that any user has clicked on when querying for q. Using this 134

representation, we generate the L different hash values for each query q, where each 135

such hash value is again the concatenation of K hash functions. These L hash values 136

per query are then used to create L hash tables. Since the width of the index of each 137

bucket is K and each coordinate is one bit, each hash table contains 2K buckets. Each 138

query term is placed in its respective buckets in each of the L hash tables. 139

To retrieve near neighbors, we first find all query terms appearing in the buckets 140
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associated with each of the M test queries. We compute cosine similarity between each 141

of the retrieved terms and the input test queries and return all those queries as 142

neighbors which are within a similarity threshold (τ). 143

The above algorithm fits the Map-Reduce setting quite naturally. We describe a 144

batch setting which performs the LSH on all queries together to perform an all-pairs 145

comparison; other variations are possible depending on the setting. Our implementation 146

performs two map-reduce iterations: in the first phase, the map jobs read in all the 147

queries and their vector representation and outputs key-value pairs that contain the 148

hash-function id (∈ [1, L]) and the bucket id (∈ [0, 2K − 1]) as the keys and the query as 149

the value. The reduce jobs then aggregate all queries belonging to a single bucket for a 150

particular hash function, and output candidate pairs. A second map-reduce job then 151

joins these candidate query pairs with their respective feature vectors, computes the 152

exact cosine similarity, and outputs the pairs that have similarity larger than τ , 153

ensuring that our precision is 100%. To only consider matches between the M test 154

queries and the N stored queries, we simply tag each query with its type (test or 155

stored), and only consider candidate pairs that have one of each type. Our experiments 156

show that this map-reduce implementation scales to hundreds of millions of queries. 157

3.3 Reusing Hash Functions 158

Directly implementing vanilla LSH requires L×K hash functions. But generating hash 159

functions is computationally expensive as it takes time to read all features and evaluate 160

hash functions over all those features to generate a single bit. To reduce the number of 161

hash functions evaluations, we use a trick from Andoni and Indyk [16] in which hash 162

functions are reused to generate L tables. K is assumed to be even and R ≈
√
L. We 163

generate fj(q) = (h1,j(q), h2,j(q), . . . , hK/2,j(q))) of length k/2. Next, we define 164

g(q) = (fa, fb), where 1 ≤ a < b ≤ R. Using such pairings, we can thus generate 165

L = R(R−1)
2 hash indices. This scheme requires O(K

√
L) hash functions, instead of 166

O(KL). We use this trick to generate L hash tables with bucket indices of width K bits. 167
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3.4 Multi-Probe LSH 168

Since generating hash functions can be computationally expensive and the memory 169

required by the algorithm scales linearly with L, the number of hash tables, it is 170

desirable to keep L small. The large memory footprint of vanilla LSH makes it 171

impractical for many real applications. Here, we first describe four new variants of the 172

vanilla LSH algorithm motivated by the intuition in Multi-probe LSH [17]. Multi-probe 173

LSH obtains significantly higher recall than vanilla LSH while using the same number 174

of hash tables. The main intuition for Multi-probe LSH is that in addition to looking at 175

the hash bucket that a test query q falls in, it is also possible to look at the neighboring 176

buckets in order to find its near neighbor candidates. Multi-probe LSH in [17] suggests 177

exploring neighboring buckets in order of their Hamming distance from the bucket in 178

which q falls. They show (empirically) that these neighboring buckets contain the near 179

neighbors with very high probability. Though Multi-probe LSH achieves higher recall 180

for the same number of hash tables, it makes more probes as it searches multiple 181

buckets per table. The advantage of searching multiple buckets over generating more 182

tables is that less memory and time is required for table creation. 183

The original Multi-probe LSH algorithm was developed for Euclidean distance. 184

However, that algorithm does not immediately translate to our setting of cosine 185

similarity. For example, in generating the list of other buckets inspected, [17] utilizes 186

the distance of the hash value to the bucket boundary—this makes sense when the hash 187

value is a real number, but we have bits. We present four variants of Multi-probe LSH 188

for cosine similarity: 189

• Random Flip Q: Our baseline version first computes the initial LSH of a test 190

query q to give the L bucket ids. Next, we create F alternate bucket ids by 191

flipping a set of coordinates randomly in each gj(q). For scalability, we restrict 192

our implementation to flipping a single bit out of the K possible bits each time, 193

and ensure that the sampling is done without repetition. Since the hash functions 194

are randomly chosen, we implement this by simply flipping the first bit, then 195

revert it and flipping the second bit, until we reach the F ’th bit. 196

• Random Flip B: The second variant is another baseline similar to the previous 197

one. Instead of just flipping the bits for only the test query, here we flips bits for 198
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both the test query and all the queries in the database: this increases the “radius” 199

of the search. We treat each database point as if it were a query, and flip a 200

random bit in each of its hash representations F times over. Note that this 201

method requires applying flipping to all the queries in the database. This is a 202

one-time operation done while creating the database. We generate up to F 203

variants of each hash, so for each query, first its L LSH representations of length 204

K are generated. On each of the L representations, flipping of bits is applied F 205

times to generate LF representations of a query. 206

• Distance Flip Q: The third variant is a smarter version of Random Flip Q. It 207

selects coordinates based on the distance of q from the random hyperplane (hash 208

function) used to create this coordinate. The distance of the test query q from 209

the random hyperplane α is the absolute value which we get before applying the 210

sign function on it (see Section 3.2), i.e., abs(α · q), the distance of q from 211

hyperplane α. This method flips up to F coordinates in order of increasing 212

distance from the hyperplane. That is, for each group of K hash values, we sort 213

by the distance to the hyperplane, and swap each of the first F of these in turn. 214

As with Random Flip Q, we restrict to flip only a single bit in each repetition, so 215

F ≤ K. 216

• Distance Flip B: Our fourth variant flips bits for both the test query and for 217

the queries in the database (i.e., the intelligent version of the second baseline). 218

Like Random Flip B, it rquires us to flip all database items, which is a one-time 219

data pre-processing step. 220

The map-reduce implementation of Multi-probe LSH follows the same structure as 221

the vanilla one—the map phase of the first map-reduce job generates the alternate 222

bucket-ids for both the test query and the queries in the database. For all LSH 223

methods, the first preprocessing step is the same, which is to evaluate the hash 224

functions to generate K
√
L bits. The second step is to generate tables indexed by the 225

hash function id and bucket id. Within the map job, each query is mapped to its 226

various indices. For multiprobe LSH, each query is also mapped to additional indices. 227

Within the reduce job, all queries with the same index are collected and all colliding 228

pair of queries (that share the same index) are output. The final step is to compute 229
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similarity for the colliding pairs and only keep those pairs that are above the threshold 230

τ (based on exact comparison using their original feature representation). 231

3.5 Time cost 232

The exact running time of these algorithms is hard to predict, as it depends on the 233

distribution of the data, as well as the configuration of the computing environment 234

(number of machines, communication topology etc.). Broadly speaking, the time cost is 235

comprised of the preprocessing (the one-time cost to build the database of queries), and 236

the runtime cost to process a new set of query look-ups. The communication cost of our 237

algorithms in the Map-Reduce framework is low, since the majority of the work is 238

embarassingly parallel. Across all our methods, at most O(K
√
L) hash function 239

evaluations are needed. While it may seem that the multiprobe LSH methods require 240

more hash function evaluations, we aim to choose the parameters K and L so that less 241

work is needed overall in order to achieve the same level of recall compared to the 242

vanilla LSH methods. The final step, to compute the true similarity of the retrieved 243

pairs, is proportional to the number of collisions. We expect the proposed methods to 244

be faster here, since there should be fewer candidates to test. This stands in contrast to 245

the naive exact method, which performs an all-pairs comparison. 246

Due to the variation in real world configurations, we do not explicitly measure the 247

time taken to perform the experiments. Rather, we make use of the number of 248

comparisons as a surrogate. Our informal tests indicate that this is a robust measure of 249

effort required, since the total CPU time was broadly proportional to this measure 250

across a number of different configurations, while we find that the number of 251

comparisons is not subject to interference from external factors (overall cluster loading 252

etc.). 253

4 Experiments 254

4.1 Data 255

We use two data sources for our experiments. The first is the AOL-logs dataset that 256

contains search queries posed to the AOL search engine and that dataset was made 257
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available in 2006 [21]. This data is accessible from the figshare repository, 258

https://doi.org/10.6084/m9.figshare.5527231.v1. We also use a partial sample 259

of query logs from a commercial search engine, denoted as Qlogs. Note that realistic 260

query log information is considered confidential and contains potentially sensitive 261

information about individuals. We are therefore careful in our handling of the data, and 262

report only aggregate results and carefully chosen examples. We do not have permission 263

to share the Qlogs data further, but to allow reproduction of results we show all our 264

analyses on the public data. We were provided access to this data on request to Yahoo 265

via an electronic file. Requests for access to this data can be addressed to Yahoo’s 266

academic relations manager, mailto:kimcapps@oath.com. 267

As Qlogs reaches hundreds of millions of queries (approximately 600M unique 268

queries), we generated multiple datasets from Qlogs by sampling at various rates: 269

Qlogs001 represents a 1% sample, Qlogs010 represents a 10% sample and Qlogs100 270

represents the entire Qlogs. The smaller datasets are primarily used to explore 271

parameter ranges and identify suitable values that we then use to experiment with the 272

larger dataset. For each query q, a feature vector in a high dimensional feature space, 273

denoted as q = (f1, f2, · · · , fD), was created by setting fi to be the click through rate 274

of url i when shown in the search results page of search-query q. Note that in our real 275

implementation, q is represented as a sparse feature vector with only non-zero 276

click-through rate features being present. In a pre-processing step, we remove all queries 277

with at most five clicked urls. Table 1 summarizes the statistics of our query-log 278

datasets. 279

Table 1. Query-logs statistics

Data N D
AOL-logs 0.3× 106 0.7× 106

Qlogs001 6× 106 66× 106

Qlogs010 62× 106 464× 106

Qlogs100 617× 106 2.4× 109

Test Data. In all experiments we use a randomly sampled set of 2000 queries Q, as the 280

test set. That is, we want to find set T , where T = {l | s(q, q′) ≥ τ}, s(q, q′) is cosine 281

similarity, and q′ ∈ C for C ∈ {Qlogs001, Qlogs010, Qlogs100, AOL-logs}. For most 282

experiments, we set the similarity threshold τ = 0.7, meaning that for q, candidates q′ 283

having cosine similarity of larger than or equal to 0.7 are retrieved. 284
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Table 2. Varying τ with fixed K = 16 and L = 10

τ
AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

0.7
57

.63
1052

.67
0.8 .84 .81
0.9 .98 .96

Evaluation Metrics. We use two metrics for evaluation: recall and number of 285

comparisons. The recall of an LSH algorithm measures how well the algorithm can 286

retrieve the true similar candidates. The number of comparisons performed by an 287

algorithm is computed as the average number of pairwise comparisons done per test 288

query, and measures the total computation done. The aim is to maximize recall and to 289

minimize the number of comparisons. 290

4.2 Evaluating Vanilla LSH 291

First, we vary the similarity threshold parameter τ in the range {0.7, 0.8, 0.9} while 292

fixing K = 16 and L = 10 for the AOL-logs and Qlogs001 datasets. Table 2 shows that 293

τ = 0.9 achieves higher recall than τ = 0.7. This is expected as finding near duplicates is 294

actually easier than finding near neighbors that satisfy only a looser similarity criterion. 295

For the rest of this paper, τ is set as 0.7 since it represents the more challenging case. 296

In the second experiment, we vary R to be in {1, 4, 7, 10}, corresponding to values of 297

L of {1, 10, 28, 55}, while fixing K = 16 on the AOL-logs and Qlogs001 datasets. 298

Recall that L denotes the number of hash tables and K is the width of the index of the 299

buckets in the table. Increasing K results in increasing precision of the candidate pairs 300

by reducing false positives, but L needs to be correspondingly increased in order to 301

maintain good recall (i.e. reduce false negatives). Table 3 shows that increasing L leads 302

to better recall, at the cost of more comparisons on both datasets. In addition, large L 303

means generating many random projection bits and hash tables which is both time and 304

memory intensive. Hence, we fix L = 10, to achieve reasonable recall with a tolerable 305

number of comparisons. 306

Next, we vary K in {4, 8, 16} while fixing L = 10. As expected, Table 4 shows that 307

increasing K reduces the number of comparisons and worsens recall on both datasets. 308

This is intuitive as the larger value of K leads to larger gap between probabilities of 309

collision for queries that are close and those that are far. Henceforth, we fix K = 16 to 310
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Table 3. Varying L with fixed K = 16 and τ = 0.7.

L
AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

1 7 .28 106 .36
10 57 .63 1052 .67
28 152 .77 2908 .78
55 297 .89 5648 .84

Table 4. Varying K with fixed L = 10 with τ = 0.7.

K
AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

4 112,347 .98 2,29,2670 .96
8 11,008 .90 221,132 .88
16 57 .63 1,052 .67

have an acceptable number of comparisons. 311

In the fourth experiment, we fix L = 10 and K = 16 as determined above, and we 312

increase the size of training data. Table 5 demonstrates that as we increase data size, 313

the number of comparisons done by the algorithm also increase. This result indicates 314

that K needs to be tuned with respect to a specific dataset, as a larger K will reduce 315

the probability of dissimilar queries falling within the same bucket. K and L can be 316

tuned by randomly sampling a small set of queries. In this paper, we randomly select 317

2000 queries to tune parameter K. 318

Table 6 shows the best choices of K for our datasets.1 On our biggest dataset of 319

600M queries, we set K = 24 and L = 10. These settings require only 464 comparisons 320

(on average) to find approximate neighbors compared to exact cosine similarity that 321

involves brute force search over all 600M queries. 322

4.3 Evaluating Multi-Probe LSH 323

First, we compare flipping F bits in the query only. We evaluate two approaches: 324

Random Flip Q and Distance Flip Q. We make several observations from Table 7: 1) As 325

expected, increasing the number of flips improves recall at the expense of more 326

comparisons for both Distance Flip Q and Random Flip Q. 2) The last row of Table 7 327

shows that when we flip all K bits (F = 16), Distance Flip Q and Random Flip Q 328

converge to the same algorithm, as expected. 3) We see that Distance Flip Q has 329

significantly better recall than Random Flip Q with a similar number of comparisons. 330

1On Qlogs100 the precision/recall cannot be computed, as it was computationally infeasible to find
the exact similar neighbors.
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Table 5. Fixed K = 16 and L = 10 with τ = 0.7.

Data Comparisons Recall
AOL-logs 57 .63
Qlogs001 1,052 .67
Qlogs010 10,515 .64
Qlogs100 105,126 -

Table 6. Best parameter settings of K (minimizing comparisons and maximizing
recall) with L = 10.

Data Comparisons Recall
AOL-logs (K = 16) 57 .63
Qlogs001 (K = 16) 1,052 .67
Qlogs010 (K = 20) 695 .53
Qlogs100 (K = 24) 464 -

In the second row of the table with F = 2, the recall of Distance Flip Q is nine points 331

better than that of Random Flip Q. 332

Table 8 shows the result of flipping F bits in both query and the database. In the 333

second row of Table 8 with F = 2, Distance Flip B has thirteen points better recall than 334

Random Flip B with a similar number of comparisons. Comparing across the second 335

row of Tables 7 and 8 shows that flipping bits in both query and database has better 336

recall at the expense of more comparisons. This is expected as flipping both means that 337

we increase our “radius of search” to include queries at distance two (one flip in query, 338

one flip in database), and hence have more queries in each table when we probe. We 339

also compared distance-based flipping with random flipping on different input sizes, and 340

found that distance-based flipping always has much better recall compared to random 341

flipping (for brevity, we omit these numbers). 342

We select F = 2 as the best parameter setting with goal of maximizing recall by 343

restricting comparisons to a minimum. For better recall at the expense of more 344

comparisons, F = 5 can also be selected. However, results in Table 7 and 8 indicate that 345

F > 5 does not increase recall significantly while leading to more comparisons. 346

Table 9 gives the results of both variants of distance-based Multi Probe, i.e. 347

Distance Flip Q and Distance Flip B, on different sized datasets. We present results 348

with the parameters L = 10, F = 2, and value of K chosen as per the values used in the 349

final vanilla LSH experiment. As observed there, flipping bits in both query and the 350

database is significantly better in terms of recall with more comparisons. The second 351

and third row of the table respectively shows that flipping bits in both query and the 352
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Table 7. Flipping the bits in the query only with K = 16 and L = 10 on AOL-logs

with τ = 0.7.

Method Random Flip Q Distance Flip Q
F Comparisons Recall Comparisons Recall
1 108 .65 106 .72
2 159 .66 155 .75
5 311 .70 303 .79
10 557 .75 552 .81
16 839 .82 839 .82

Table 8. Flipping the bits in both the query and the database with K = 16 and
L = 10 on AOL-logs with τ = 0.7.

Method Random Flip B Distance Flip B
F Comparisons Recall Comparisons Recall
1 204 .71 192 .80
2 433 .73 405 .86
5 1557 .86 1475 .93
10 4138 .94 4059 .96
16 5922 .96 5922 .96

database has eight points better recall on both Qlogs001 and Qlogs010 datasets. With 353

the goal of maximizing recall with some extra comparisons, we select Distance Flip B as 354

our preferred algorithm. Distance Flip B maximizes recall with few tables and 355

comparisons. On our entire corpus (Qlogs100) with hundreds of millions of queries, 356

Distance Flip B only requires 3,427 comparisons per test query, compared to hundreds 357

of millions of comparisons by the exact brute force algorithm. Distance Flip B returns 9 358

neighbors on average per given query, averaged over 2000 random test queries.2 359

4.4 Discussion 360

Table 10 shows some qualitative results for a set of arbitrarily chosen queries. These 361

results are found by applying our system (Distance Flip B with parameters L = 10, 362

K = 24, and F = 2 ) on Qlogs100. These results help to highlight several applications 363

that can take significant advantage of the approximate Distance Flip B algorithm 364

presented in this paper. For example, the second column in Table 10 shows that the 365

returned approximate similar neighbors can be useful in finding related queries [1, 2]. 366

The third column shows an example where we find several popular spelling errors 367

automatically, which can usefully be used for query suggestion. 368

One interesting application of near-neighbor finding is to understand specific intents 369

2Many queries are long, and have few neighbors.
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Table 9. Best parameter settings of K (minimizing comparisons and maximizing
recall) with L = 10, F = 2, τ = 0.7.

Method Distance Flip Q Distance Flip B
Data Comps. Recall Comps. Recall

AOL-logs (K = 16) 155 .75 405 .86
Qlogs001 (K = 16) 2980 .76 7904 .84
Qlogs010 (K = 20) 1954 .64 5242 .72
Qlogs100 (K = 24) 1280 - 3427 -

behind the user query. Given a user’s query, Bing, Google, and Yahoo often delivers 370

direct display results that summarize expected contents of the query. For instance, 371

when a query “f stock price” is issued to search engines, the quick summary of the stock 372

quote with a chart is delivered to the user as the part of the search engine result page. 373

Such direct display results are expected to reduce the number of unnecessary clicks by 374

providing the user with the appropriate content early on. However, when the query “f 375

today closing price” is issued to search engines, the three major search engines fail to 376

deliver the same direct display experience to the user query, even though its query 377

intent is strongly related to “f stock price”. By employing an algorithm similar to 378

Distance Flip B, we can build a synonym database, which will help trigger the same 379

direct display among related queries. The first and last column of Table 10 show 380

examples of near-duplicate queries that can be automatically answered [4]. 381

Another application is to remove duplicated instances in a set of suggested results. 382

When a query set is retrieved from a repository and presented to users, it is important 383

to remove similar queries from the set so that the user is not distracted by duplicated 384

results. Given a set of queries, we can apply Distance Flip B algorithm to build a 385

lookup table of near-duplicates in order to find the “duplicated query terms” efficiently. 386

As “near-duplicates” among query terms typically require a “higher” degree of 387

similarity (relatively easier problem) than “relatedness”, we can tune parameters 388

(K,L, F ) based on a specific τ (e.g τ = 0.9) from training samples. The fourth column 389

in Table 10 illustrates several effective duplicates: “trumbull weather ct” and “weather 390

in trumbull ct”. 391
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5 Related Work 392

There has been much work in last decade focusing on approximate algorithms for 393

finding similar objects, too much to survey in full, so we highlight some important 394

related publications. From the NLP community, prior work on LSH for noun 395

clustering [10] applied the original version of LSH based on Point Location in Equal 396

Balls (PLEB) [14,15]. The disadvantage of vanilla LSH algorithm is that it involves 397

generating a large number of hash functions (in the range L = 1000) and sorting bit 398

vectors of large width (K = 3000). To address that issue, Goyal et al. [18] proposed a 399

new variant of PLEB that is faster than the original LSH algorithm but that still 400

requires large number of hash functions (L = 1000). In addition, their work can be seen 401

as an implementing a special case of Andoni and Indyk’s LSH algorithm, that was 402

applied to the problem of detecting new events from a stream of Twitter posts [22]. 403

A major distinction of our research is that existing work deals with approximating 404

cosine similarity by Hamming distance [10,18,23–25]. Moran et al. [25] proposed a 405

data-driven non-uniform bit allocation across hyperplanes that uses fewer bits than 406

many existing LSH schemes to approximate cosine similarity by Hamming distance. In 407

all these existing problem settings, the goal is to minimize both false positives and 408

negatives. However, we focus on minimizing false negatives with zero tolerance for false 409

positives. [26] developed a distributed version of the LSH algorithm, for the Jaccard 410

distance metric, that scales to very large text corpora by virtue of being implemented 411

on a map-reduce, and by using clever sampling schemes in order to reduce the 412

communication cost. Our work addresses the cosine similarity metric, and uses bit 413

flipping in a distributed manner to reduce the number of hash tables in LSH and hence 414

the memory. 415

Other work in this area has addressed engineering throughput for massively parallel 416

computation [27], distributed LSH for Euclidean distance [28], and variants such as 417

“entropy-based LSH”, also for Euclidean distance [29]. 418
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Table 10. 10 similar neighbors returned by Distance Flip B with L = 10, K = 24, and
F = 2 on Qlogs100.
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6 Conclusion 419

In this work, we applied the vanilla LSH algorithm of Andoni et al. to search query 420

similarity applications. We proposed four variants of LSH that aim to reduce the 421

number of hash tables used. Two of our variants achieve significantly better recall than 422

vanilla LSH while using the same number of hash tables. We also present a framework 423

on Hadoop that efficiently finds nearest neighbors for a given query from a commercial 424

large-scale query logs in sublinear time. On our entire corpus (Qlogs100) with hundreds 425

of millions of queries, Distance Flip B only requires 3,427 comparisons compared to 426

hundreds of millions of comparisons by exact brute force algorithm. In future, we plan 427

to extend our LSH framework to several large-scale NLP, search, and social media 428

applications. 429
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