Parameterized Streaming: Maximal Matching and Vertex Cover*

Rajesh Chitnis'

Graham Cormode *

MohammadTaghi Hajiaghayi®

Morteza Monemizadeh¥

Abstract

As graphs continue to grow in size, we seek ways
to effectively process such data at scale. The model
of streaming graph processing, in which a compact
summary is maintained as each edge insertion/deletion
is observed, is an attractive one. However, few results
are known for optimization problems over such dynamic
graph streams.

In this paper, we introduce a new approach to han-
dling graph streams, by instead seeking solutions for
the parameterized versions of these problems. Here, we
are given a parameter k and the objective is to decide
whether there is a solution bounded by k. By com-
bining kernelization techniques with randomized sketch
structures, we obtain the first streaming algorithms for
the parameterized versions of Maximal Matching and
Vertex Cover. We consider various models for a graph
stream on n nodes: the insertion-only model where the
edges can only be added, and the dynamic model where
edges can be both inserted and deleted. More formally,
we show the following results:

e In the insertion only model, there is a one-pass
deterministic algorithm for the parameterized Ver-
tex Cover problem which computes a sketch using

"~ ¥An earlier draft of this paper was made available online as
http://arxiv.org/abs/1405.0093

TDepartment of Computer Science , University of Maryland at
College Park, USA. rchitnis@cs.umd.edu. Supported in part by
NSF CAREER award 1053605, NSF grant CCF-1161626, ONR
YIP award N000141110662, DARPA/AFOSR grant FA9550-12-
1-0423 and a Simons Award for Graduate Students in Theoretical
Computer Science.

tDepartment of Computer Science, University of Warwick,
UK. g.cormode@warwick.ac.uk. Supported in part by the Yahoo
Faculty Research and Engagement Program and a Royal Society
Wolfson Research Merit Award.

$Department of Computer Science , University of Maryland,
USA. hajiagha@cs.umd.edu. Supported in part by NSF CAREER
award 1053605, NSF grant CCF-1161626, ONR YIP award
N000141110662, and DARPA/AFOSR grant FA9550-12-1-0423.

9YGoethe-Universitit Frankfurt, Germany and Department of
Computer Science, University of Maryland at College Park, USA.
monemizadeh@em.uni-frankfurt.de, Supported in part by MO
2200/1-1.

O(k?) space [!|such that at each timestamp in time
O(2%) it can either extract a solution of size at most
k for the current instance, or report that no such
solution exists. We also show a tight lower bound
of Q(k?) for the space complexity of any (random-
ized) streaming algorithms for the parameterized

Vertex Cover, even in the insertion-only model.

e In the dynamic model, and under the promise
that at each timestamp there is a maximal match-
ing of size at most k, there is a one-pass O(k?)-
space (sketch-based) dynamic algorithm that main-
tains a maximal matching with worst-case update
tim O(k2) This algorithm partially solves Open
Problem 64 from [I]. An application of this dy-
namic matching algorithm is a one-pass O(k?)-
space streaming algorithm for the parameterized
Vertex Cover problem that in time O(2%) extracts
a solution for the final instance with probability
1—6/n°W where § < 1. To the best of our knowl-
edge, this is the first graph streaming algorithm
that combines linear sketching with sequential op-
erations that depend on the graph at the current
time.

e In the dynamic model without any promise, there
is a one-pass randomized algorithm for the pa-
rameterized Vertex Cover problem which computes
a sketch using O(nk) space such that in time
O(nk + 2%) it can either extract a solution of size
at most k for the final instance, or report that no
such solution exists.

1 Introduction

Many large graphs are presented in the form of a
sequence of edges. This stream of edges may be a simple
stream of edge arrivals, where each edge adds to the
graph seen so far, or may include a mixture of arrivals
and departures of edges. In either case, we want to

1O0(f(k)) = O(f(k) - 1og®M m), where m is the number of
edges.

2The time to update the current maximal matching upon an
insertion or deletion.

http://arxiv.org/abs/1405.0093

be able to quickly answer basic optimization questions
over the current state of the graph, such as finding a
(maximal) matching over the current graph edges, or
finding a (minimum) vertex cover, while storing only a
limited amount of information, sublinear in the size of
the current graph.

The semi-streaming model introduced by Feigen-
baum, Kannan, McGregor, Suri and Zhang [15] is a
classical streaming model in which maximal matching
and vertex cover are studied. In the semi-streaming
model we are interested to solve (mostly approximately)
graph problems using one pass over the graph and us-
ing O(n polylog n) space. Numerous problems have
been studied in this setting, such as maintaining ran-
dom walks and page rank over large graphs [32].

However, in many real world applications, we often
observe instances of graph problems whose solutions
are small comparing to the size of input. Consider for
example the problem of finding the minimum number
of fire stations to cover an entire city, or other cases
where we expect a small number of facilities will serve a
large number of locations. In these scenarios, assuming
that the number of fire stations or facilities is a small
number k is very practical. So, it is meaningful to solve
instances of graph problems whose solutions are small
(say, sublinear in the input size) in a streaming fashion
using space which is bounded with respect to the size of
their solutions, not the input size.

In order to make progress on this objective, we
parameterize problems with a parameter k, and look for
a solution whose size is bounded by k. We therefore
seek parameterized streaming algorithms whose space
and time complexities are bounded with respect to k,
i.e., sublinear in the size of the input.

There are several ways to formalize this question,
and we give results for the most natural formalizations.
The basic case is when the input consists of a sequence
of edge arrivals only, for which we seek a parameterized
streaming algorithm (PSA). More challenging problems
arise when the input stream is more dynamic, and
can contain both deletions and insertions of edges. In
this case we seek a dynamic parameterized streaming
algorithm (DPSA). The challenge here is that when an
edge in the matching is deleted, we sometimes need
substantial work to repair the solution, and have to
ensure that the algorithm has enough information to do
so, while keeping only a bounded amount of working
space. If we are promised that at every timestamp
there is a solution of cost k, then we seek a promised
dynamic parameterized streaming algorithm (PDPSA).
We give examples of PSAs, DPSAs and PDPSAs for the
problems of Maximal Matching and Vertex Cover.

1.1 Parameterized Complexity Most interesting
optimization problems on graphs are NP-hard, imply-
ing that, unless P=NP, there is no polynomial time
algorithm that solves all the instances of an NP-hard
problem exactly. However as noted by Garey and John-
son [19], hardness results such as NP-hardness should
merely constitute the beginning of research. The tradi-
tional way to combat intractability is to design approxi-
mation algorithms or randomized algorithms which run
in polynomial time. These methods have their own
shortcomings: we either get an approximate solution
or lose the guarantee that the output is always correct.

Parameterized complexity is essentially a two-
dimensional analogue of “P vs NP”. The running time
is analyzed in finer detail: instead of expressing it as a
function of only the input size n, one or more parame-
ters of the input instance are defined, and we investigate
the effects of these parameters on the running time. The
goal is to design algorithms that work efficiently if the
parameters of the input instance are small, even if the
size of the input is large. We refer the reader to [12} [17]
for more background.

A parameterization of a decision problem P is a
function that assigns an integer parameter k to each in-
stance I of P. We assume that instance I of problem P
has the corresponding input X = {xy, -+, 25, ,2m}
consisting of elements xz; (e.g. edges defining a graph).
We denote the input size of instance I by |I| = m. In
what follows, we assume that f(k) and g(k) are func-
tions of an integer parameter k.

DEFINITION 1.1. (FIXED-PARAMETER TRACTABILITY
(FPT)) A parameterized problem P is fixed-parameter
tractable (FPT) if there is an algorithm that in time
f(k) -mOPW returns a solution for each instance I whose
size fulfills a given condition corresponding to k (say, at
most k or at least k) or reports that such a solution does
not exist.

To illustrate this concept, we define the parameter-
ized version of Vertex Cover as follows. A wvertex cover
of an undirected graph G = (V, E) is a subset S of ver-
tices such that for every edge e € E at least one of the
endpoints (or vertices) of e is in S.

DEFINITION 1.2. (PARAMETERIZED VERTEX COVER
(VC(k))) Given an instance (I,k) where I is an undi-
rected graph G = (V, E) (with input size |I| = |E| = m
and |V| =n) and parameter k € N, the goal in the pa-
rameterized Vertex Cover problem (VC(k) for short) is
to develop an algorithm that in time f(k)-m©PW) either
returns a vertex cover of size at most k for G, or reports
that G does not have any vertex cover of size at most k.

A simple branching method gives a 2¢ . m©@1)

algorithm for VC(k): choose any edge and branch on
choosing either end-point of the edge into the solution.
The current fastest FPT algorithm for V'C(k) is due to
Chen et al. [10] and runs in time 1.2738% + k - n.

We also study the problem of maintaining a maxi-
mal matching, which becomes challenging in streaming
models where edges are inserted and deleted.

DEFINITION 1.3. (PARAMETERIZED MAXIMAL
MATcHING (MM(k))) Given an instance (I,k)
where I is an undirected graph G = (V, E) (with input
size |I| = |E| = m and |V| = n) and parameter
k € N, the goal in the parameterized Maximal Matching
problem (MM (k) for short) is to develop an algorithm
that in time f(k) - mPW) either returns a mazimal
matching of size at most k for G, or reports that G has
a mazimal matching of size more than k.

One of the techniques used to obtain FPT algo-
rithms is kernelization. In fact, it is known that a prob-
lem is FPT if and only if it has a kernel [I7]. Kernel-
ization has been used to design efficient algorithms by
using polynomial-time preprocessing to replace the in-
put by another equivalent input of smaller size. More
formally, we have:

DEFINITION 1.4. (KERNELIZATION) For a parameter-
ized problem P, its kernelization is a polynomial-time
transformation that maps an instance (I,k) of P to an
instance (I' k") such that

o (I,k) is a yes-instance if and only if (I',K') is a
yes-instance;

o k' < g(k) for some computable function g;

e the size of I' is bounded by some computable func-

tion [of k, i.e., |I'| < f(k).

The output (I', k") of a kernelization algorithm is called
a kernel.

In Section [3.1] we review the kernelization algorithm
of Buss and Goldsmith [7] for the parameterized Ver-
tex Cover problem which relies on finding a maximal
matching of a graph G = (V, E). This kernel gives a
graph with O(k?) vertices and O(k?) edges. Another
kernelization algorithm given in [I7] exploits the half-
integrality property of LP-relaxation for vertex cover
due to Nemhauser and Trotter, and produces a graph
with at most 2k vertices.

1.2 Parameterized Streaming Algorithms: Our
Results In order to state our results for parameterized
streaming we first define the notion of a sketch in a very
general form.

DEFINITION 1.5. (SKETCH [4, [16], 20]) A sketch is a
sublinear-space data structure that supports a fived set
of queries and updates.

Insertion-Only Streaming. Let P be a problem
parameterized by £k € N. Let I be an instance
of P that has the input X = {z1, -+, ,Tm}-
Let S be a stream of INSERT(x;) (i.e., the insertion
of an element ;) operations of underlying instance
(I,k). In particular, stream S is a permutation X’ =
{zh,---,a},-- 2z} for i € X of an input X. Here
we denote the time when an input 2} is inserted by time
i. At time 4, the input which corresponds to instance I

DEFINITION 1.6. (PARAMETERIZED STREAMING AL-
GORITHM (PSA)) Given stream S, let A be an al-
gorithm that computes a sketch for problem P wusing
O(f(k))-space and with one pass over stream S. Sup-
pose at a time i, algorithm A in time O(g(k)) extracts,
from the sketch, a solution for input X[(of instance I)
whose size fulfills the condition corresponding to k or
reports that such a solution does not exist. Then we say

Ais a (f(k),g(k))-PSA.

For many problems, whether or not there is a
solution of size at most k is monotonic under edge
additions, and so if at time 4, algorithm A reports
that a solution for input X! does not exist, then there
is also no solution for any input X of instance I at
all times ¢ > i. Consequently, we can terminate the
algorithm A. For example, there is a trivial (k,k)-
PSA for Maximal Matching in the insertion-only model:
simply greedily maintain a maximal matching on the
prefix of the stream so far. If the maintained matching
exceeds size k, then we have evidence that there exists a
matching in excess of this size. We state a simple result
on the parameterized streaming algorithm for Vertex
Cover and prove in Section

THEOREM 1.1. Let S be a stream of insertions of edges
of an underlying graph G. Then there exists a deter-
ministic (k2,290))-PSA for VC(k) problem.

The best known kernel size for the VC (k) problem
is O(k?) edges [7]. In fact, Dell and van Melkebeek [11]
showed that it is not possible to get a kernel for the
VO(k) problem with O(k?~¢) edges for any € > 0, un-
der some assumptions from classical complexity. Inter-
estingly, the space complexity of our PSA of Theorem
BIl matches this best known kernel size. In Section [l we
show that the space complexity of above PSA is optimal
even if we use randomization. More precisely, we prove
the following result.

THEOREM 1.2. Any (randomized) PSA for the VC(k)
problem requires Q(k?) space.

Dynamic Streaming. We define dynamic parameter-
ized stream as a generalization of dynamic graph stream
introduced by Ahn, Guha and McGregor [2].

DEFINITION 1.7. (DYNAMIC PARAMETERIZED
STREAM) Let P be a problem parameterized by
k € N. Let I be an instance of P that has an input
X = {x1, - ,xi, Ty} with input size |I| = m.
We say stream S is a dynamic parameterized stream
if S is a stream of INSERT(x;) (i.e., the insertion of
an element x;) and DELETE(x;) (i.e., the deletion of
an element x;) operations applying to the underlying
instance (I, k) of P.

Now stream S is not simply a permutation X' =
{4, ,2b, - ,al,} for 2 € X of an input X, but
rather a sequence of transactions that collectively define
a graph. We assume the size of stream S is |S| < m°
for a constant ¢ which means log|S| < clogm or
asymptotically, O(log|S]) = O(logm). We denote the
time which corresponds to the i-th update operation
of S by time i. The i-th update operation can be
INSERT(z;) or DELETE(z}) for x; € X (note that we
can perform DELETE(z}) only if x is present at time
i —1). At time 4, the input of instance I is a subset
X! C X of inputs which are, up to time 4, inserted but
not deleted.

We next define a promised streaming model as
follows. Suppose we know for sure that at every time
i of a dynamic parameterized stream S, the size of
the vertex cover of underlying graph G(V, E) (where
FE is the set of edges that are inserted up to time i
but not deleted) is at most k. We show that within
the framework of the promised streaming model we
are able to develop a dynamic parameterized streaming
algorithm whose space usage matches the lower bound
of Theorem [4.1) up to O(1) factor.

We formulate a dynamic parameterized streaming
algorithm within the framework of the promised stream-
ing model as follows.

DEFINITION 1.8. (PROMISED DYNAMIC PARAMETER-
IZED STREAMING ALGORITHM (PDPSA)) Let S be a
promised dynamic parameterized stream, i.e., we are
promised that at every time i, there is a solution for
input X| whose size fulfills the condition corresponding
to k. Let A be an algorithm that computes a sketch for
problem P using O(f(k))-space in one pass over stream
S. Suppose at the end of stream S, i.e., time |S|, al-
gorithm A in time O(g(k)) extracts, from the sketch, a
solution for input X|IS| (of instance I) whose size ful-

fills the condition corresponding to k. We say A is an
(f(k), g(k))-PDPSA.

In this model, maintaining a maximal matching
turns out to be the more challenging problem. We
summarize this main result in the following theorem and
we develop it in Section

THEOREM 1.3. Suppose at every timestep the size of
the vertex cover of underlying graph G(V, E) is at most
k. There exists a (k* k)-PDPSA for MM (k) and
(k2,200))_PDPSA for VC (k) with probability > 1 —
d/n, where § < 1 and c is a constant.

Our algorithm takes the novel approach of combin-
ing linear sketching with sequential operations that de-
pend on the current state of the graph. Prior work
in sketching has instead only performed updates of
sketches for each stream update, and postponed inspect-
ing them until the end of the stream. As an example,
Ahn, Guha, and McGregor [2] proposed a multi-pass
streaming algorithm for M M (k). Their algorithm re-
peatedly samples an edge set of size O(n1+1/p) in each
pass, and finds the maximal matching for the sampled
edges, for p rounds, and remove the vertices in the
matching. Indeed, our algorithm partially solves Open
Problem 64 from [I] as posed by McGregor at “Berti-
noro Workshop on Sublinear Algorithms 2014”. The
problem as stated is “Consider an unweighted graph
on n nodes defined by a stream of edge insertions and
deletions. Is it possible to approximate the size of the
mazimum cardinality matching up to constant factor
given a single pass and o(n?) space?” Even stronger for
k = o(n), our algorithm maintains a maximal match-
ing of size o(n) using o(n?) space. As an example for
k = O(y/n), this gives a dynamic algorithm for maxi-
mal matching whose space, worst-case update and query
times are O(n), O(v/n) and O(y/n), respectively.

Finally, we formulate a dynamic parameterized
streaming algorithm without any promise as follows.

DEFINITION 1.9. (DYNAMIC PARAMETERIZED
STREAMING ALGORITHM (DPSA)) Let S be a dy-
namic parameterized stream S. Let A be an algorithm
that computes a sketch for problem P using 6(m) - f(k)-
space and with one pass over stream S. Suppose at the
end of stream S, i.e., time |S|, algorithm A in time
o(m)-g(k) extracts, from the sketch, a solution for input
X"S‘ whose size fulfills the condition corresponding to k
or reports that such a solution does not exist. We say

A is an (6(m) - f(k),6(m) - g(k))-DPSA.

We state our result on the DPSA (without any
promise) for Maximal Matching and Vertex Cover and
prove it in Section [f]

THEOREM 1.4. Let S be a dynamic parameterized
stream of insertions and deletions of edges of an
underlying graph G. There exists a randomized
(min(m, nk), min(m,nk) + 2°))-DPSA for VC(k)
problem and a (min(m,nk), min(m,nk))-DPSA for

For graphs which are not sparse (i.e., m > O(nk))
the algorithm of Theorem [1.4] gives (6(m) - f(k),o(m) -
g(k))-DPSA for VC(k). The space usage of PDPSA of
Theorem [L.3] matches the lower bound of Theorem E11
On the other hand, there is a gap between space bound
O(nk) of DPSA of Theorem [1.4and lower bound Q(k?)
of Theorem F11

1.3 Related Work The question of finding maximal
and maximum cardinality matchings has been heavily
studied in the model of (insert-only) graph streams.
The greedy algorithm to find a maximal matching (sim-
ply store every edge that links two currently unmatched
nodes) can also be shown to be a 0.5-approximation to
the maximum cardinality matching [I5]. By taking mul-
tiple passes over the input streams, this can be improved
to a 1 — e approximation, by finding augmenting paths
with successive passes [25] 26].

Subsequent work has extended to the case of
weighted edges (when a maximum weight matching is
sought), and reducing the number of passes to provide
a guaranteed approximation [I4] [I3]. While approxi-
mating the size of the vertex cover has been studied in
other sublinear models, such as sampling [3T], 30], we are
not aware of prior work that has addressed the question
of finding a vertex cover over a graph stream. Likewise,
parameterized complexity has not been previously stud-
ied in dynamic graph streams with both insertions and
deletions.

The model of dynamic graph streams has recently
received much attention, due to breakthroughs by Ahn,
Guha and McGregor [2, B]. Over two papers, they
showed the first results for a number of graph problems
over dynamic streams, including determining connected
components, testing bipartiteness, minimum spanning
tree weight and building a sparsifier. They also gave
multipass algorithms for maximum weight matchings
and spanner constructions. This has provoked much
interest into what can be computed over dynamic graph
streams.

Outline. Section [2| provides background on techniques
for kernelization of graph problems, and on streaming
algorithms for building a sketch to recover a compact
set. Our results on PSA and DPSA for matching and
vertex cover are stated in Section [3| and Section @, re-
spectively, while Section [{4| provides lower bounds for

these problems. Section [5]is the most involved, as it ad-
dresses the most difficult dynamic case in the promised
model. Some observations on the (parameterized) feed-
back vertex set problem are presented in Section

2 Preliminaries

In this section, we present the definitions of streaming
model and the graph sketching that we use.
Streaming Model. Let S be a stream of insertions
(or similarly, insertions and deletions) of edges of an
underlying graph G(V, E). We assume that vertex set
V is fixed and given, and the size of V is |V| = n.
We assume that the size of stream S is |S| < n° for
some large enough constant ¢ so that we may assume
that O(log|S|) = O(logn). Here [x] = {1,2,3,--- ,z}
when x € N. Throughout the paper we denote failure
probabilities by §, and approximation parameters by e.

We assume that there is a unique numbering for the
vertices in V' so that we can treat v € V as a unique
number v for 1 < v < n = |V|. We denote an undirected
edge in F with two endpoints w,v € V by (u,v). The
graph G can have at most (5) = n(n—1)/2 edges. Thus,
each edge can also be thought of as referring to a unique
number between 1 and (}).

At the start of stream S, edge set F is an empty set.
We assume in the course of stream S, the maximum size
of E is a number m, i.e., m’ = |E| < m. Counter m’
stores the current number of edges of stream S, i.e.,
after every insertion we increment m’ by one and after
every deletion we decrement m’ by one.

Let M be a maximal matching that we maintain
for stream S. Edges in M are called matched edges;
the other edges are free. If uv is a matched edge, then
u is the mate of v and v is the mate of u. Let Vi be
the vertices of M and Vp; = V\Vas. A vertex v which
is in V) is called a matched vertex, otherwise, i.e., if
v € Vs, v is called an exzposed vertex.

The neighborhood of a vertex u € V is defined as
N, ={v eV :uv e E}. Hence the degree of a vertex
v € Visd, = [{uw € E} = |[N,|. We split the
neighborhood of u into the set of matched neighbors
of u, N, N Vs, and the set of exposed neighbors of u,
i.e., Nu \ VM.

Oblivious Adversarial Model. We work in the
oblivious adversarial model as is common for analysis
of randomized data structures such as universal hashing
[9]. This model has been used in a series of papers on
dynamic maximal matching and dynamic connectivity
problems: see for example [29, [6, 22 28]. The model
allows the adversary to know all the edges in the graph
G(V, E) and their arrival order, as well as the algorithm
to be used. However, the adversary is not aware of
the random bits used by the algorithm, and so cannot

choose updates adaptively in response to the randomly
guided choices of the algorithm. This effectively means
that we can assume that the adversary prepares the full
input (inserts and deletes) before the algorithm runs.
k-Sparse Recovery Sketch and Graph Sketching.
We first define an fp-Sampler as follows.

DEFINITION 2.1. (£p-SAMPLER [I8, 27]) Let 0 < § < 1
be a parameter. Let S = (a1,t1), -, (as,t;), -+ be a
stream of updates of an underlying vector x € R™ where
a; € [n] and t; € R. The i-th update (a;,t;) updates the
a;-th element of © using x[a;] = x[a;]+t;. A Ly-sampler
algorithm for x # 0 returns FAIL with probability at
most 8. FElse, with probability 1—0, it returns an element
j € [n] such that the probability that j-th element is

_ xyl°

returned is Pr[j] = ROk

Here, lo(x) = (X ;e |z;]) is the (so-called) “O-
norm” of z that counts the number of non-zero entries.

LeMMA 2.1. ([201]) Let 0 < 6 < 1 be a parameter.
There exists a linear sketch-based algorithm for fg-
sampling using O(log® nlog6=1) bits of space.

The concepts behind sketches for fp-sampling can
be generalized to draw k distinct elements from the
support set of x:

DEFINITION 2.2. (k-SAMPLE RECOVERY) A k-sample
recovery algorithm recovers min(k, ||x||o) elements from
x such that sampled index i has x; # 0 and is sampled
uniformly.

Constructions of k-sample recovery mechanisms are
known which require space O(k) and fail only with
probability polynomially small in n [5]. We apply this
algorithm to the neighborhood of vertices: for each node
v, we can maintain an instance of the k-sample recovery
sketch (or algorithm) to the vector corresponding to
the row of the adjacency matrix for v. Note that as
edges are inserted or deleted, we can propagate these to
the appropriate k-sample recovery algorithms, without
needing knowledge of the full neighborhood of nodes.

Specifically, let ay,--- ,aq, - ,a, be the rows of
the adjacency matrix of G, Ag, where a, encodes the
neighborhood of a vertex v € V. We define the sketch
of Ag as follows. Let S be a stream of insertions and
deletions of edges to an underlying graph G = (V, E).
We sketch each row a,, of Ag using the sketching matrix
of Lemma Let us denote this sketch by S,,. Since
sketch S is linear, the following operations can be done
in the sketch space.

e QUERY(S,): This operation queries sketch S, to
find a uniformly random neighbor of vertex u.

Since S, is a k-sample recovery sketch, we can
query up to k uniformly random neighbors of vertex
u.

e UPDATE(S,, £(u,v)): This operation updates the
sketch of a vertex w. In particular, operation
UPDATE(S,, (u,v)) means that edge (u, v) is added
to sketch S,. And, operation UPDATE(S,, —(u, v))
means that edge (u,v) is deleted from sketch S,,.

3 Parameterized Streaming Algorithm (PSA)
for VC(k)

To build intuition, we give a simple (k2,2°®*))-PSA for

VC(k). In Section we show that the space complexity

of this PSA is optimal even if we use randomization.

First, we review the kernelization algorithm of Buss and
Goldsmith [7] since we use it in our PSA for VC(k).

3.1 Kernel for VC(k) Let (G,k) be the original
instance of the problem which is initialized by graph
G = (V, E) and parameter k. Let d, denote the degree
of v in G. While one of the following rules can be
applied, we follow it.

(1) There exists a vertex v € G with d, > k: Observe
that if we do not include v in the vertex cover, then
we must include all of AV,,. Since |N,| =d, > k, we

must include v in our vertex cover for now. Update
G+ G\ {vland k< k—1.

(2) There is an isolated vertex v € G: Remove v from
G, since v cannot cover any edge.

If neither of above rules can be applied, then we look
at the number of edges of G. Note that the maximum
degree of G is now < k. Hence, if G has a vertex cover
of size < k, then the maximum number of edges in
G is k?. If |E| > k2%, then we can safely answer NO.
Otherwise we now have a kernel graph G = (V, E) such
that |E| < k®. Since G does not have any isolated
vertex, we have |V| < 2|E| < 2k%. Observe that we
obtain the kernel graph G in polynomial time.
Remark: The FPT algorithm of Chen et al. runs
in time 1.2378* + k - n, where n is the number of
vertices. In the above kernel graph, we have |V| < 2k?
and hence the Chen at el. algorithm runs in time
1.2378% + k - 2k% = 2000,

3.2 (k?,20R)_-PSA for VC (k) We now prove The-
orem which is restated below:

THEOREM 3.1. Let S be a stream of insertions of edges
of an underlying graph G. Then there exists a deter-
ministic (k%,200))-PSA for VC(k) problem.

The proof is divided into three parts: first we
describe the algorithm, analyze its complexity and then
show its correctness.

Algorithm. Let S be a stream of insertions of edges of
an underlying graph G(V, E). We maintain a maximal
matching M of stream S in a greedy fashion. Let V), be
the vertices of matching M. For every matched vertex v,
we also store up to k edges incident on v in a set Ey;. If
at the ith update of stream S we observe that |M| > k,
we report that the size of any vertex cover of G = (V, E)
is more than k£ and quit. At the end of stream S, we run
the kernelization algorithm of Section [3.1] on instance
(G = Vg, Eng), k).

Complexity of the Algorithm. We observe that the
space complexity of the algorithm is O(k?). In fact,
for each vertex v € Vjy assuming |M| < k we keep at
most k incident edges, thus we need space of at most
2k -k = 2k2. If [M| > k, as soon as the size of the
matching M goes beyond k we quit the algorithm and so
in this case we also use space of at most 2k-k = 2k2. The
query time of this algorithm is dominated by the time
to extract the vertex cover of Gy (and hence also of G)
using the FPT algorithm of Chen et al. [10] which runs
in time 1.2378% 4 k - [V | = 290 since |V | = O(k?).
Correctness proof. We argue that

(1) if the kernelization algorithm succeeds on instance
(Gy = (Var, Ear), k) and finds a vertex cover of
size at most k for G, then that vertex cover is
also a vertex cover of size at most k for G.

(2) On the other hand, if the kernelization algorithm
reports that instance (Gpr = (Var, Ear), k) does not
have a vertex cover of size at most k, then instance
(G = (V,E), k) does not have a vertex cover of size
at most k.

First, note that trivially, any matching provides a
lower bound on the size of the vertex cover, and hence
we are correct to reject if |M| > k.

Otherwise, i.e., if |M| < k, we write d, and d,
for the degree of v in G and G}y, respectively. We
follow rules of the kernelization algorithm on G and
Gy in lockstep. Observe that since every edge e € E is
incident on at least one matched vertex v € Vs, when
an edge (u,v) € E is not stored in Ej it is in one of
the following cases.

(1) w € Vs and v € Vjr: Then, we must have d, > k
and d], > k which means that d,, > k and d, > k.

(2) Only u € Vjs: Then, we must have d), > k which
means that d,, > k.

(3) Only v € Va;: Then, we must have d) > k which
means that d, > k.

Now, let us consider a set X = {vg,vk—1,- - ,0p}
(for r > 0) of vertices that Rule (1) of the kernelization
algorithm for G removes. According to Rule (1), for
a vertex vy € X (for k > k' > r) with d,, , > K,
we remove v, and all edges incident on vg from Gy
and decrease k' by one. Note that d;, , > k' if and
only if d,,, > k’. This is due to the fact that, before
we remove vertex v from Gjs, we have removed only
those neighbors of vg: that are matched and the number
of such vertices is less than k — k’. Thus, Rule (1) of
the kernelization algorithm can be applied on G and we
remove vg: and all edges incident on vy from G and
decrease k' by one.

Next we consider Rule (2). Assume in one step of
the kernelization algorithm for G, we have an isolated
vertex v € Gjps. Observe that those neighbors of v
that we have removed using Rule (1) (before vertex
v becomes isolated) are all matched vertices and the
number of such vertices is less than k. Moreover, v
never had any neighbor in V\V), otherwise, v is not
isolated. Thus, if v has a neighbor u in the remaining
vertices of Vi, edge (u,v) must be in E)js as we store
up to k edges incident on v in set Ej; which means v is
not isolated in GGj; and that is in contradiction to our
assumption that v is isolated in Gj;. Since we run the
kernelization algorithm on GGj; and on G for the vertices
in set X, the same thing happens for G, i.e., v in G is
also isolated. So, using Rule (2), v is removed from Gy,
if and only if v is removed from G.

Now assume neither Rule (1) nor Rule (2) can be
applied for Gz, but the number of edges in Ej; is
more than k2. The same thing must happen for E.
Therefore, G; and G do not have a vertex cover of size
at most k.

If none of the above rules can be applied for Gy,
we have a kernel (G, k') such that |Viy| < 2k and
|Ear| < k2 < k®. Now observe that after removal of
all vertices of X and their incident edges from G, for
every remaining vertex v in Gy, d, < k’; otherwise
d, > k' and d, > k’; so we can apply Rule (1) which
is in contradiction to our assumption that none of the
above rules can be applied for Gj;. Therefore, kernel
(G, k') is also a kernel for (G, k') and this proves the
correctness of our algorithm.

4 Q(k?) Lower Bound for VC(k)
We prove Theorem [£.1] which is restated below:

THEOREM 4.1. Any (randomized) PSA for the VC (k)
problem requires (k) space.

Proof. We will reduce from the INDEX problem in
communication complexity:

INDEX

Input: Alice has a string X € {0,1}" given by
1T ... Tn. Bob has an index ¢ € [n]

Question: Bob wants to find z,, i.e., the (! bit of X.

It is well-known that there is a lower bound of Q(n)
bits in the one-way randomized communication model
for Bob to compute x; [24]. We assume an instance of
the index problem where n is a perfect square, and let
k = y/n. Fix a canonical mapping from [n] — [k] x [k].
Consequently we can interpret the bit string as an
adjacency matrix for a bipartite graph with k vertices
on each side.

From the instance of INDEX, we construct an in-
stance G x of Vertex Cover. Assume that Alice has an
algorithm which solves the VC(k) problem using f(k)
bits. For each i € [k], we have vertices, v;, v}, v, and
w;, w,w. First, we insert the edges corresponding to
the edge interpretation of X between nodes v; and wj:
for each ¢, € [k], Alice adds the edge (v;,w;) if the
corresponding entry in X is 1. Alice then sends the
memory contents of her algorithm to Bob, using f(k)
bits.

Bob has the index ¢ € [n], which he interprets as
(I,J) under the same canonical remapping to [k] x [k].
He receives the memory contents of the algorithm, and
proceeds to add edges to the instance of vertex cover.
For each ¢ € [k],i # I, Bob adds the edges (v;,v;) and
(vi,v). Similarly, for each j € [k],j # J, Bob adds the
edges (wj,w}) and (wj,w?).

The next lemma shows that finding the minimum
vertex cover of Gx allows us to solve the corresponding
instance of INDEX.

LEMMA 4.1. The minimum size of a vertex cover of Gx
18 2k — 1 if and only if x, = 1.

Proof. Suppose x, = 0. Then it is easy to check that
the set {v; 13 € [kl,i # I} U{w; | j € [k],j # J} forms
a vertex cover of size 2k — 2 for Gx.

Now suppose x, = 1, and let Y be a minimum
vertex cover for Gx. For any i € [k],i # I the vertices
v, and v} have degree one in Gx. Hence, without loss
of generality, we can assume that v; € Y. Similarly,
w; € Y for each j € [k],j # J. This covers all edges
except (vr,wy). To cover this we need to pick one of vy
or wy, which shows that |Y| =2k — 1.

Thus, by checking whether the output of A on the
instance Gy of VC(k) is 2k — 1 or 2k — 2, Bob can
determine the index x,. The total communication
between Alice and Bob was O(f(k)) bits, and hence we
can solve the INDEX problem in f(k) bits. Recall that
the lower bound for the INDEX problem is Q(n) = Q(k?),
and hence we have f(k) = Q(k?).

COROLLARY 4.1. Let 1 > € > 0. Any (randomized)
PSA that approximates VC(k) within a relative error
of € requires Q(E%) space.

Proof. Choose € = i Theorem shows that the
relative error is at most ﬁ, which is less than e.
Hence finding an approximation within e relative error
amounts to finding the exact value of the vertex cover.
The lower bound of Q(k?) from Theorem 4.1 translates
to Q(Z%) here.

5 Promised Dynamic Parameterized
Streaming Algorithm (PDPSA) for VC(k)

In this section we prove our main theorem, i.e., Theo-
rem We first explain the outline of our algorithm.
We then give the detailed description of the algorithm
and the proof of Theorem

It is natural to first think of solutions which keep
some summary (sketch) information for various vertices.
However, many natural such attempts end up in keeping
a large number of sketches. Our aim is to provide a
solution whose cost is bounded by a polynomial of k,
which means we cannot allow such solutions. Instead,
we must only materialize a small number of sketches of
vertices, and add/remove these so as to bound the total
quantity of sketches. This distinguishes this work from
prior algorithms for problems in graph streaming which
maintain a sketch for each vertex [2] 3} 22]

5.1 Outline We develop a streaming algorithm that
maintains a maximal matching of underlying graph
G(V, E) in a streaming fashion. At the end of stream S
we run the kernelization algorithm of Section [3.1|on the
maintained maximal matching. Our data structure to
maintain a maximal matching M of stream S consists
of two parts.

First, for each matched vertex u, we maintain an x-
sample recovery sketch .S, of its incident edges, where
z is chosen to be O(k). Insertions of new edges are
relatively easy to handle: we update the matching with
the edge if we can, and update the sketches if the
new edge is incident on matched nodes. The difficulty
arises with deletions of edges: we must try to “patch
up” the matching, so that it remains maximal, using
only the stored information, which is constrained to
be O(k?). The intuition behind our algorithm is that,
given the promise, there cannot be more than k£ matched
nodes at any time. Therefore, keeping O(k) information
about the neighborhood of each matched node can be
sufficient to identify any adjacent unmatched nodes
with which it can be paired if it becomes unmatched.
However, this intuition requires significant care and
case-analysis to put into practice. The reason is we need

some extra book-keeping to record where information
is stored, since nodes are entering and leaving the
matching, and we do not necessarily have access to the
full neighborhood of a node when it is admitted to the
matching. Nevertheless, we show that additional book-
keeping information of size O(k?) is sufficient for our
purposes, allowing us to meet the O(k?) space bound.

This book-keeping comes in the form of another
data structure T, that stores a set of edges (u,v) such
that both endpoints are matched (not necessarily to
each other), and (u,v) has been inserted into sketches
S, and S, but not deleted from them. The size of T is
clearly O(k?). To implement 7, we can adopt any fast
dictionary data structure (AVL-tree, red-black tree, or
hash-tables).

The update at a time ¢ is either the insertion or the

deletion of an edge (u,v) for 1 < ¢ < |S| where |S| < n¢
is the length of stream S. We continue our outline of
the algorithm by describing the behavior in each case
informally, with the formal details given in subsequent
sections.
Insertion of an Edge (u,v) at Time ¢. When the
update at time ¢ is insertion of an edge (u,v) two cases
can occur. The first case is if at least one of u and v is
matched, we insert edge (u,v) to the sketches of those
vertices (from u and v) which are matched. If both u
and v are matched, we also insert (u,v) to T.

The second case occurs if both vertices u and v are
exposed. We add edge (u,v) to the current matching
and to 7T, and initialize sketches S, and S, by insertion
of edge (u,v) to S, and S,. However, we also need
to perform some additional book-keeping updates to
ensure that the information is up to date. Fix vertex
u. There can be matched vertices, say w € Vj;, which
are neighbors of u. If previously an edge (w,u) arrived
while u was not in the matching, then we inserted (w, u)
to sketch S,,, but (w,u) was not inserted to sketch
S, as u was an exposed vertex at that time. If at
some subsequent point w becomes an exposed vertex
and matching edge (u,v) is deleted then vertex u must
have the option of choosing an unexposed vertex w to
be rematched. For that, we need to ensure that some
information about (w,u) is accessible to the algorithm.

A first attempt to address this is to try interrogating
each sketch S, for all edges incident on u, say when u
is first added to the matching. However, this may not
work while respecting the space bounds: w may have a
large number of neighbors, much larger than the limit
z. In this case, we can only use S,, to recover a sample
of the neighbors of w, and u may not be among them.

To solve this problem we must wait until w has
low enough degree that we can retrieve its complete
neighborhood from S,. At this point, we can use

these recovered edges to update the sketches of other
matched nodes. We use the structure 7 to track
information about edges on matched vertices that are
already represented in sketches, to avoid duplicate
representations of an edge. This is handled during the
deletion of an edge, since this is the only event that can
cause the degree of a node w to drop.

Deletion of an Edge (u,v) at Time ¢. When the
update at time ¢ is deletion of an edge (u,v), we have
three cases to consider. The first case is if only one of
vertices u and v is matched, we delete edge (u,v) from
the sketch of that matched vertex.

The second case is if both u and v are matched
vertices, but (u,v) ¢ M. We want to delete edge
(u,v) from sketches S, and S,, but (u,v) might not
be represented in both these sketches. We need to find
out if (u,v) has been inserted to S, and S,, or only to
one of them. This can be found from 7. If (u,v) € T,
edge (u,v) has been inserted to both S, and S,. So, we
delete (u,v) from both sketches safely. Otherwise, i.e.,
if (u,v) ¢ T, (u,v) has been inserted to the sketch of
only one of u and v. Assume that this is u. To discover
this we define timestamps for matched vertices. The
timestamp ¢; of a matched vertex u is the (most recent)
time when v was matched. We show that edge (u,v)
is only in sketch S, (not S,) if and only if (u,v) ¢ T
and t, < t,. Therefore, if ¢, < t,, we delete (u,v)
from sketch S,. Otherwise, i.e., if t, < t,, we delete
(u,v) from sketch S,. Observe that if ¢, = t,, we have
inserted (u,v) to S, and S, as well as 7.

The third case is when (u,v) € M. We delete edge
(u,v) from sketches S, and S, as well as matching M
and 7. To maintain the maximality of matching M
we need to see whether we can rematch u and v. Let
us consider u (the case for v is identical). If w has
high degree, we sample edges (u,z) from sketch S,.
Given the size of the sketch, we argue that there is high
probability of finding an edge to rematch u. Meanwhile,
if u is has low degree, then we can recover its full
neighborhood, and test whether any of these can match
u. Otherwise, u is an exposed vertex, and its sketch is
deleted. We also remove all edges incident on u from 7.

We now describe and prove the properties of
PDPSA for VC(k) in full. We begin with notations,
data structures and invariants.

5.2 Notations, Data Structures and Invariants
Timestamp of a Vertex and an Edge. We define
time t corresponding to the ¢-th update operation
(insert or delete of an edge) in stream S. We define
the timestamp of a matched vertex as follows. Let u
be a matched vertex at time t. Let ¢ < t be the
greatest time such that w was unmatched before time

t" and is matched in the interval [¢',¢]. Then we say the
timestamp ¢, of vertex u is ¢’ and we set ¢, = ¢'. If
at time t, vertex u is exposed we define ¢, = oo, i.e. a
value larger than any timestamp.

We define the timestamp of an edge as follows. Let
E; denote the set of edges present at time ¢, i.e. which
have been inserted without a corresponding deletion.
Let t' <t be the last time in which the edge (u,v) € E;
is inserted but not deleted in the interval [¢',¢]. Then
we say the timestamp t(,,) of edge (u,v) is ' and we
set t(y,p) = t'. If at timestamp ¢, edge (u,v) is deleted
we define (,) = oc.
Low and High Degree Vertices. Let z = 8ck -
log(n/d), for constant ¢ (where, we assume that |S| =
O(n®)). At time t we say a vertex u is a high-degree
vertex if d, > x; otherwise, if d, < x, we say u is a
low-degree vertex.
Data Structures: For every matched vertex wu, i.e.,
u € Vi, we maintain an z-sample recovery sketch S,
of edges incident on u. We also maintain a dictionary
data structure 7 of size O(k?). We assume the inser-
tion, deletion and query times of 7 are all worst-case
O(logk). At every time ¢, T stores edges (u, v) for which
vertices u and v are matched at time ¢ (not necessar-
ily to each other); and also edge (u,v) is represented
in both sketches S, and S,, i.e. there is a time ¢/ < ¢
at which we invoked UPDATE(S,, (u,v)), but there is
no time in interval [t/,¢] in which we have invoked Up-
DATE(Sy, —(u,v)), and symmetrically for S,.
Sketched Neighbors of a Vertex: Let u be a
matched vertex at some time ¢, i.e., u € Vjs. Recall that
N, ={v eV : (u,v) € E;} is the full neighborhood of
w at time t. Let N C N, be the set of neighbors of
u that up to time t are inserted to S, but not deleted
from S, that is for every vertex v € N, we have invoked
UPDATE(Sy, (u,v)) at a time ¢ < ¢ but have not invoked
UPDATE(S,, —(u,v)) in time interval [¢',¢]. We call the
vertices in V), the sketched neighbors of vertex u. Note
that we can recover N}, ezactly when |N/| < z.
Invariants. Recall that at every time t of stream .5, set
FE, is the set of edges which are inserted but not deleted
up to time . We maintain three invariants.

e Invariant 1: For every edge (u,v) € F; at time
t we have at least one of v € N/, or u € N.

o Let (u,v) € E; be an edge at time ¢ such that
u,v € Vay. At time ¢,

o Invariant 2: u ¢ N iff ¢, < t, and
(u,v) ¢ T.

o Invariant 3: v € N and v € N iff
(u,v) €T.

Observe that these invariants imply that at any time
|T| < 2k%*. That is, since 7 only holds edges such
that both ends are matched, and we assume that the
matching has at most 2k nodes, then the number of
edges can be at most (22k) < 2k2.

5.3 Adding an Edge to Matching M The
first primitive that we develop is Procedure
AddEdgeToMatching((u, v), t). This procedure first
adds edge (u,v) to matching M and data structure
T. Then it inserts vertex u to Vjs, sets timestamp
t, to the current time ¢, and initializes sketch S, by
inserting edge (u,v) to sketch S,. It also repeats these
steps for v. We invoke this procedure in Procedures
Rematch((u,v),t) and Insertion((u,v), t).

Insertion((u,v),t)

(1) If u ¢ Vs and v ¢ Vi, then
AddEdgeToMatching((u, v), t).

(2) Else InsertToDS((u, v)).

AddEdgeToMatching((u,v),t)

(1) Add edge (u,v) to M and T.
(2) For z € {u,v}

(a) Vi < Vy U{z}

(b) t, +t

(c) Initialize sketch S,
DATE(S;, (u,v)).

with Up-

LEMMA 5.1. Let t be a time when we invoke Procedure
AddEdgeToMatching((u,v),t). Suppose before time t,
Invariants 1, 2 and 3 hold. Then, Invariants 1, 2 and
3 hold after time t.

Proof. Recall that t, is the last time ¢’ < ¢ such that
u before time t’ was unmatched and is matched in the
interval [t/,¢]. Similarly, ¢, is the last time ¢ < ¢ such
that v before time ¢ was unmatched and is matched in
the interval [¢,¢].

In Procedure AddEdgeToMatching((u, v), ¢) we insert
(u,v) to sketches S, and/or S, if the edge has not been
inserted to these sketches. So, at time ¢, Invariant 1 for
edge (u,v) holds. Since (u,v) € M, nothing changes for
Invariants 2 and 3. Therefore, if Invariants 2 and 3 hold
at time ¢ — 1, they also hold at time t.

5.4 Maintenance of Data Structure 7 To main-
tain data structure T at every time ¢ of stream S, we de-
velop two procedures to handle insertions and deletions

to the structure. If u and v are matched vertices, Pro-
cedure InsertToDS((u, v)) inserts edge (u,v) to sketches
S, and S, as well as to data structure 7. If only one
of w and v is matched, we insert (u,v) to the sketch
of the matched vertex. We invoke this procedure upon
insertion of an arbitrary edge (u,v) inside Procedure
Insertion((u, v),t).

InsertToDS((u, v))

(1) If w € Vay and v € Vi then insert edge (u,v)
into 7.

(2) If u € Vs then UPDATE(S,, (u,v)).
(3) If v € Vs then UPDATE(S,, (u,v)).

LEMMA 5.2. Lett be a time of stream S when we invoke
Procedure InsertToDS((u, v)). Suppose before time t,
Invariants 1, 2 and 3 hold. Then, Invariants 1, 2 and
3 hold after time t.

Proof. First assume at time ¢t when we invoke Proce-
dure InsertToDS((u,v)), vertices u and v are already
matched. In Procedure InsertToDS((u,v)) we insert
(u,v) to sketches S, and S, using UPDATE(S,, (u,v)))
and UPDATE(S,, (u,v))). So, u € N} and v € N/
and Invariant 1 holds. Moreover, we insert (u,v) to
T. Therefore, Invariant 3 holds. Invariant 2 also holds
as neither condition is true (v ¢ N, and (u,v) ¢ T).

Next assume only vertex u is matched. We insert
(u,v) to sketch S, but not to S, and 7. Since v € N},
Invariant 1 is correct. Invariant 2 and 3 are correct as
v is not matched at time ¢. The case when only vertex
v is matched is symmetric.

The second procedure is DeleteFromDS((u,v))
which is invoked in Procedure Deletion((u,v),t) when
(u,v) ¢ M. There are three main cases to consider. If
(u,v) € T, we delete (u,v) from sketches S, and S, as
well as data structure 7. If not, we know that (u,v) is
only in one of S, and S,,.

If t, < t, and both v and v are matched, we delete
the edge from S, otherwise, if ¢, < t, and u and v
are matched from S,, we delete the edge from S,. If
none of these cases occur, then only one of v and v is
matched. If the matched vertex is u, we delete (u,v)
from S,,. Otherwise, we delete (u,v) from S,,.

Deletion((u,v),t)
(1) If (u,v) € M then invoke Rematch((u,v),t)

(2) Else invoke DeleteFromDS((u,v)).

(3) Invoke AnnounceNeighborhood(u) and
AnnounceNeighborhood(v)

DeleteFromDS((u, v))

(1) If (u,v) € T then
(a) UPDATE(S,, —(u,v)) and
UPDATE(S,, —(u, v)).
(b) Remove (u,v) from 7.

(2) Else if t,, < t, and u,v € Vs then
UPDATE(Sy, —(u, v)).

(3) Else if t, < t, and u,v € V)y then
UPDATE(S,, —(u,v)).

(4) Else if u € Vs and v ¢ Vi then
UPDATE(Sy, —(u, v)).

(5) Else if v € Vi; and u ¢ V) then
UPDATE(S,, —(u,v)).

LEMMA 5.3. Assume Invariants 1, 2 and 3 hold at
time t when Procedure DeleteFromDS((u, v)) is invoked.
Then, Procedure DeleteFromDS((u,v)) chooses the cor-
rect case.

Proof. First, we consider the case that both u and v
are matched vertices. Since Invariant 3 holds, we know
that edge (u,v) at time ¢ is in 7 if and only if v € N},
and u € N,. Procedure DeleteFromDS((u,v)) searches
for (u,v) in 7. If this finds (u,v) in T, we then know
that v € N, and u € N. So, we can safely delete the
edge from sketches S,, and S, and data structure 7T .

On the other hand, if (u,v) ¢ T, we ensure that
the edge is in only one of S, and S,. Now, we can use
the claim of Invariant 2 which says u ¢ N if and only
if t, < t, and (u,v) ¢ T. We compare t, and ¢,. If
ty < ty, then u ¢ N/. Recall that since Invariant 1
holds, we know that at least one of v € N, and u € N},
is correct. Because u ¢ N, we must have v € N|.
So deleting edge (u,v) from sketch S, is the correct
operation. On the other hand, if ¢, < t,, then v ¢ N,
and so edge (u,v) is only in sketch S,. Thus, deleting
edge (u,v) from sketch S, is the correct operation.

Next we consider the case that only one of u and
v is matched. Let us assume u is the matched vertex.
Since Invariant 1 holds, we know that at least one of
v € N, and u € N} is correct. Because u is the matched
vertex and we maintain the sketch of matched vertices,
(u,v) has been inserted to sketch S, that is v € N.
Therefore, deleting edge (u,v) from sketch S, is the
correct operation. The case when v is the matched
vertex is symmetric.

5.5 Announcement and Deletion of Neighbor-
hood of a Vertex In this section we develop ba-

sic primitives for the announcement and deletion of
the neighborhood of a vertex. Announcement is per-
formed by Procedure AnnounceNeighborhood(u) which
is invoked in Deletion((u,v),t). Suppose that node u
has low degree. For every matched vertex v € N, we
search for edge (u,v) in 7. If (u,v) € T, (u,v) is in
both S, and S, and no action is needed. If not, we
insert edge (u,v) into tree T as well as sketch S,.

AnnounceNeighborhood(u)
(1) If u € Vi and d,, < x, then

(a) For every edge (u,v) in sketch S,
i. Add v to set V.
(b) For every v € N, NV

i. If edge (u,v) ¢ T, then insert (u,v) to
T; UPDATE(S,, (u,v)).

We also introduce a deletion primitive in the form
of Procedure DeleteNeighborhood(u). This is invoked in
Rematch((u,v),t) when the matched edge (u,v) is re-
moved. The DeleteNeighborhood(u) procedure is called
on a node u when all the following three conditions hold.

(1) The matched edge of matched vertex w is deleted.

(2) Vertex u is a low-degree vertex.

(3) Vertex u does not have any exposed neighbor.

In this case, we need to delete u from V}; and delete
incident edges on u from data structure 7 as Invariant
3 for u is not valid anymore. More precisely, for a
low-degree matched vertex whose neighborhood are all
matched we do as follows.

We recover all edges from the sketch S, (i.e. N)).
For every edge (u,v) € N, we check to see if (u,v) € T.
If so, we know that (u,v) is represented in both sketches
Sy and S,. We also delete (u,v) from T as wu is
not matched and Invariant 3 does not hold. But if
(u,v) ¢ T, since Invariant 1 holds we know that (u,v)
is inserted only in S, not in S,. Observe that since
u does not have any exposed neighbor, vertex v must
be a matched vertex, and so vertex v has an associated
sketch S,. Therefore, in order to fulfill Invariant 1, we
first insert (u,v) to sketch S,. Finally, we delete the
whole sketch S,,, and remove u from Vj;.

DeleteNeighborhood(u)

(1) For every edge (u,v) in sketch S,

(a) If edge (u,v) € T, then Remove (u,v) from
T.

(b) Else UPDATE(S,, (u,v)).

(2) Delete sketch S, and remove u from V.

LEMMA 5.4. Lett be a time when we invoke Procedure
AnnounceNeighborhood(u). Suppose u is a low-degree
matched verter at time t. Suppose before time t,
Invariants 1, 2 and 3 hold. Then after time t, Invariants

1, 2 and 3 hold.

Proof. Let N, be the set of neighbors of u that up to
time ¢ are inserted into sketch S, but not deleted from
Sy. Since u at time ¢ is a low-degree vertex we can use
Definition to recover N/ in its entirety. We assume
Invariants 1, 2 and 3 hold before time t. We prove that
all three invariants continue to hold after invocation of
AnnounceNeighborhood(u).

Fix a matched neighbor v of u in N}, that is v €
Var NN, In Procedure AnnounceNeighborhood(u) for v
we do the following. If edge (u,v) has not been already
inserted in 7, we insert edge (u,v) to 7 and S,. So,
now v € N, and v € N}, and (u,v) € T. Invariants 1, 2
and 3 hold for (u,v), and continue to hold for all other
edges.

After processing this deletion, edge (u,v) is no
longer in E;, and so the invariants trivially hold in
regard of this edge. Meanwhile, for any other edge, if
the invariants held before, then they continue to hold,
since the changes only affected edge (u,v).

LEMMA 5.5. Suppose before time t, Invariants 1, 2 and
3 hold and we invoke DeleteNeighborhood(u) at time t.
Here we assume u is a matched vertex whose neighbors
are all matched, i.e., Nu NV = 0. Then after time t,
Invariants 1, 2 and 3 hold.

Proof. Let (u,v) be an edge in sketch S,. Since we
assume Invariant 1 holds before time ¢, (u,v) must be
inserted into at least one of S, and S,. We know edge
(u,v) is in Sy. Since Invariants 2 and 3 hold, we have
one of the two following cases.

(i) If edge (u,v) is also inserted to S,, this means
this edge must be in 7. In DeleteNeighborhood(u) if
edge (u,v) is in T, we delete the edge from T as well as
sketch Sy,. As (u,v) is still in S, Invariant 1 after time
t holds.

(ii) Else, edge (u,v) is not in S,. Using Invariant 2
this happens if and only if ¢, < ¢, and (u,v) ¢ T. We

want to delete all edges which are inserted to S, and
delete sketch S,,. Observe that since u does not have any
exposed neighbor, vertex v must be a matched vertex
and so has an associated sketch S,. We insert (u,v) to
sketch S, and subsequently S, is deleted. Therefore,
Invariant 1 still holds.

Finally, Invariants 2 and 3 hold after time ¢ since u
is not a matched vertex anymore.

5.6 Rematching Matched Vertices In this sec-
tion we develop the last (and most involved) primitive,
Rematch((u,v),t). We invoke this procedure in Proce-
dure Deletion((u,v),t) when the matched edge (u,v) is
deleted. We first delete edge (u,v) from sketches S, and
Sy as well as data structure 7. We also delete (u,v)
from current set M of matched edges. To see if we can
rematch u and v to one of their exposed neighbors, we
perform the subsequent steps for v (and then repeat for
v).

If u is a low degree vertex, by querying S, we
recover N/, i.e., the set of neighbors of u that up to
time t are inserted into sketch .S, but not deleted from
S.. We then check whether there is an exposed vertex
z € N,. If so, we rematch u to z.

Rematch((u,v),t)

(1) DeleteFromDS((u,v)), remove (u,v) from M,
remove u, v from Vy,

(2) For w € {u,v}

(a) If dy, < x then
i. For every edge (w, z) in sketch S,
add z to set NV,.

ii. If there is an exposed z € N/, then
invoke AddEdgeToMatching((w, z),t).

iii. Else invoke
DeleteNeighborhood(vertex w).

(b) If dyy > then

i. Query edges (w, z1),- -+, (w, zy) from
sketch S, for y = 8clog(n/9d).
ii. If there is an exposed z € {z1,--- , 2y}

then invoke
AddEdgeToMatching((w, z), t).

But if there is no exposed vertex in NV}, we announce
u as an exposed vertex. We also remove sketch S,
as u is not a matched vertex anymore. Moreover, we
remove all incident edges on u from 7 as our third
invariant does not hold anymore. Lemma [5.6|shows that
in both cases, the matching after invoking Procedure

Rematch((u, v),t) is maximal if the matching before this
invocation was maximal.

If u is a high degree vertex, it samples an edge (u, 2)
from sketch S,. In Lemma we show that with high
probability z is an exposed vertex, so we rematch u to
z. Therefore, if the matching before the invocation of
Procedure Rematch((u,v),t) is maximal, the matching
after this invocation would be maximal as well.

5.6.1 Analyzing Rematching of a Low-Degree
Vertex.

LEMMA 5.6. Let u be a low-degree matched vertex at
time t. Assuming the matching M before time t
is mazimal, then, after the invocation of Procedure
Rematch((u,v),t), the matching M is mazimal. The
running time of Procedure Rematch((u,v),t) when u is
a low-degree vertex is O(klog*(n/d)).

Proof. Let N be the set of neighbors of u up to time ¢
that are inserted into sketch S, but not deleted from

Su. From Definition [2.2] by querying S, and with
probability at least 1 — %, we can recover N . Observe

that assuming Invariants 1, 2 and 3 hold, we must have
NN C Vi, that is, those neighbors of u that are
not in N, at time ¢ must be matched. Therefore, all
exposed neighbors of u must be in N},.

Two cases can occur. The first is if there
is an exposed vertex z in N. Then, Procedure
Rematch((u,v),t) will rematch w using exposed vertex
z. The second is when all neighbors of u are already
matched. Since all neighbors of u are matched, vertex
u cannot be matched to one of its neighbors and so we
announce u as an exposed vertex and release its sketch
Su. Therefore, assuming M before time ¢ is maximal,
M after time ¢ would be maximal as well.

We next discuss the running time of Procedure
Rematch((u,v),t) when u is a low-degree vertex. By
properties of the sketch data structures, the time to
query x sampled edges from sketch S,, and construct set
N is O(xlog® nlog(n/d)). If the second case happens,
since we assume at every time of stream S, | M| < k, we
then have d,, = |N]| < 2k.

Recall that 7 is a data structure with at most k2
edges whose space is O(k?). The insertion, deletion and
search times of 7 are all worst-case O(logk). In the
second case, the main cost is to remove incident edges
on u from 7. For every neighbor z € N, we search, in
time O(logk), if edge (u,z) has been inserted into T;
so overall the deletion of incident edges on u from 7T
is done in time O(klogk) = O(xzlogk) as |N/| < 2k.
So, the running time of Procedure Rematch((u,v),t)
when u is a low-degree vertex is O(x log® nlog(n/d)) =
O(klog*(n/d)), as we set & = O(klog(n/s)).

5.6.2 Analyzing Rematching of a High-Degree
Vertex.

LEMMA 5.7. Let x = 8cklog(n/d) and y = 8clog(n/J).
Let u be a high degree vertex, i.e., d, > x. Suppose we
query edges (u,z1),--- , (u,2;),- -+, (u, zy) from sketch
Su- The probability that there exists an exposed vertex
z € {z1,---,2y} is at least 1 — §/n°. Further, the
running time of Procedure Rematch((u,v),t) when u is
a high-degree vertex is O(log*(n/9)).

Proof. From Definition [2.1} a fp-sampler returns an
|2i]°

clement i € [n] with probability Prli] = ;75 and
returns FAIL with probability at most . Using Lemma
there exists a linear sketch-based algorithm for £y-
sampling using O(log? nlog d~1) bits of space.

Sketch S, is a z-sample recovery sketch which
means we can recover min(z,d,) items (here, edges)
that are inserted into sketch S,. We can think of S,
as x instances of a fyp-sampler. Note that in this way
the space to implement S, would be x times the space
to implement a fy-sampler which is O(zlog® nlog 1)
bits of space. Fach one of these x f¢y-samplers re-
turns FAIL with probability at most 4. Using a union
bound the probability that S, returns FAIL is x6. We
rescale the failure probability § to ﬁ for a con-
stant c¢. Therefore, the probability that sketch S,
returns FAIL is 2%, and hence the overall space of
S, is O(zlog® nlog(zn®/8)) = O(cxlog® n(log(n/d) +
loglog(n/d))) = O(cxlog®nlog(n/d)) as z =
8cklog(n/d) and k < n.

Let (u,21),---,(u,2:), -+, (u,2,) be the edges
queried from sketch S, for y = 8clog(n/d). Note
that the time to query y edges from sketch S, is
O(ylog®nlog(n/d)) = O(log*(n/8)). Let us define
event NOFAIL if S, does not return FAIL. Let us condi-
tion on event NOFAIL which happens with probability
Pr[NOFAIL] > 1 — 2.

Fix a returned edge (u, z;). Recall that A, is the
neighborhood of u that is, Ny = {v € V : (u,v) € E}.
The number of matched vertices is at most 2k, i.e.,
[Vir| < 2k. Thus, [N, N V| < 2k and |N,\N| =
INu| — |N]] < 2k. The probability that (u,z;) is a
fixed edge (u,z) is Pr[(u,z;) = (u,2)] = Pr[z; = 2] =
ﬁ < IN«,,\I—% = Ik Using a union bound and
since d,, > x = 8cklog(n/d) we obtain

1
>, Prla=y< > du — 2k

yeEN, NV yeEN, NV
2k 1 1
< < < — .
~ dy — 2k ~ 2clog(n/d) T 2¢
Therefore the probability that z; is an exposed
vertex, i.e., z; € Var is Prz; ¢ Viy| > 1 — %

Pr[zi S VM] <

We define an indicator variable I; for queried edge
(u,z;) for i € [y] which is one if z; ¢ Vi and zero
otherwise. Note that Pr[l; = 1] > 1 — 2. Let
I = Y% | I,, Then, since y {y-samplers of S, use
independent hash functions we obtain

PI‘[I:O}ZPI‘[Zl€VM/\"'/\ZiEVM/\-'~/\Zy€VM]

£ 1 1 selog(n/s) _ 0
— P Z_G‘/ <7y:78cogn <
[[Peiz € Vi < 3" = () <o
Therefore, the probability that there exists an ex-
posed vertex z € {z1,---,%,} is 1 — 2;57. Overall, the

probability that sketch S, does not return FAIL and
there exists an exposed vertex z € {z1, -, 2y} is

Pr([NoFAILA{z, - ,z,]\Vm #0] >1—46/n° .

LEMMA 5.8. Suppose that we invoke Rematch((u,v),t),
and before time t, Invariants 1, 2 and 3 hold, and
matching M is maximal. Then after time t, Invariants
1, 2 and 3 hold and matching M is maximal. The
running time of Rematch((u, v),t) is O(klog*(n/é)).

Proof. First of all, we invoke
AddEdgeToMatching((u, v), t) to add edge
(u,v) to matching M. In Procedure
AddEdgeToMatching((u, v),t’), we insert the edge

to M as well as 7 for some ¢/ < t. We also in-
sert (u,v) to the sketch of whichever vertex (u or
v) was exposed before time ¢'. So at the end of
AddEdgeToMatching((u, v),t") edge (u,v) is in Sy, S,
and T.

Once we invoke, Procedure DeleteFromDS((u,v)),
it deletes edge (u,v) from S,, S, and 7. We also
delete the edge from M. So after invocation of
DeleteFromDS((u, v)), Invariants 1, 2 and 3 hold. Let
us fix vertex u. The following proof is the same for
vertex v. We consider two cases for u.

(i) First, u is a low-degree vertex, i.e., d, < =z
assuming Invariants 1, 2 and 3 hold. Observe that
using Lemma [5.6] after the invocation of Procedure
Rematch((u,v),t), matching M is maximal. Moreover,
the running time of Rematch((u,v),t) when u is a low-
degree vertex is O(xlog? nlog(n/d)) = O(zlog®(n/s)).
Let N, be the set of neighbors of u that up to time
t are inserted into sketch S, but not deleted from

Su. By Definition 2.2] by querying S, and with
probability at least 1 — %, we can recover N, Observe

that assuming Invariants 1, 2 and 3 hold, we must
have (M, \ V) C Vi. That is, those neighbors of
u that are not in N at time ¢ must be matched.
Therefore, all exposed neighbors of w must be in N.
We have two sub-cases. First, if there is an exposed
z € N, then we invoke AddEdgeToMatching((w, z),t).
Lemma [5.1] shows that Invariants 1, 2 and 3 hold after

invocation of AddEdgeToMatching((w, z),t). The second
subcase is if there is no exposed node in N, we then
invoke DeleteNeighborhood(vertex w). Lemma [5.5|shows
that Invariants 1, 2 and 3 hold after invocation of
DeleteNeighborhood(vertex w).

(ii) Second, wu is a high-degree vertex assum-
ing Invariants 1, 2 and 3 hold. Observe that us-
ing Lemma [5.7} after the invocation of Procedure
Rematch((u,v),t), matching M with probability at least
1 — §/n° is maximal and the running time of Proce-
dure Rematch((u,v),t) when u is a high-degree vertex
is O(log*(n/d)). Since with probability at least 1— 8 /n°
there exists an exposed vertex z € {z1,---,2,}, with
this probability we invoke AddEdgeToMatching((w, z), t).
Lemma then shows that Invariants 1, 2 and 3 hold
after invocation of AddEdgeToMatching((w, 2),t).

5.7 Completing the Proof of Theorem First
we prove the claim for the space complexity of our
algorithm. We maintain at most 2k sketches (for
matched vertices), each one is an x-sample recovery
sketch for @ = 8¢k - log(n/d). From Definition and
the proof of Lemma the space to maintain an z-
sample recovery sketch is O(klog*(n/d)). So, we need
O(k?log*(n/d)) bits of space to maintain the sketches
of matched vertices. The size of data structure T,
i.e., the number of edges stored in T is |T| < (2k)2.
Thus, overall the space complexity of our algorithm is
O(k?log*(n/d)) bits.

Next we prove the update time and query time of
our dynamic algorithm for maximal matching is O(k)
In fact, the deletion or the insertion time of an edge
(u,v) is dominated by the running time of most expen-
sive procedures which are AnnounceNeighborhood(u),
DeleteNeighborhood(u), and Rematch((u,v),t). The
running times of these procedures are dominated by the
time to query at most x edges from sketches S, and S,
plus the time to search for x edges in data structure 7.
The time to query at most = edges from sketches S,
and S, using Lemmais O(klog*(n/d)). The time to
search for x edges in data structure 7 is O(xlogk) =
O(klog®(n/d)) as we assume the insertion, deletion and
query times of 7 are all worst-case O(logk). There-
fore, the update time and query time of our dynamic
algorithm for maximal matching is O(klog*(n/d)).

Finally, we give the correctness proof of Theorem
Observe that since after every time ¢ of stream S,
Invariants 1,2 and 3 hold, the matching M is maximal.
In fact, since Invariant 1 holds, for every edge (u,v) € E;
we have at least one of v € N, or u €] which means
M is maximal. Recall that V), is the set of vertices
of matched edges in M. Note that for every matched
vertex u, we maintain an z-sample recovery sketch S,,.

Next, similar to the algorithm of Theorem
(Section [3) we construct a graph (Gar = (Var, Enr), k).
For every matched vertex v, we extract up to k edges
incident on v from sketch S, and store them in set
Ej. At the end, we run the kernelization algorithm of
Section on instance (Gpr = (Var, Ear), k). The rest
of proof of correctness of Theorem requires showing
that maintaining a maximal matching is sufficient to
obtain a kernel for vertex cover, which is what was
exactly argued in proof of Theorem

6 Dynamic Parameterized
Algorithm (DPSA for VC(k)

In this section we prove Theorem restated below:

Streaming

THEOREM 6.1. Let S be a dynamic parameterized
stream of insertions and deletions of edges of an un-
derlying graph G. There exists a randomized (nk,nk +
200)-DPSA for VC(k) problem.

Proof. Let S be a stream of insertions and deletions of
edges to an underlying graph G(V,E). We maintain
a kn-sample recovery algorithm (Definition , which
processes all the edges seen in the stream; we also keep
a counter to record the degree of the vertex. At the end
of the stream S, we recover a graph G’ by extracting
the at most kn edges from the recovery algorithm
data structure, or outputting “NO” if there are more
than kn edges currently in the graph. We then run
the kernelization algorithm of Section [3.I] on instance
(G k).

Observe that if a graph has a vertex cover of size
at most k, then there can be at most nk edges. Each
node in the cover has degree at most n, and every node
must either be in the cover, or be adjacent to a node
in the cover. Therefore, if the graph has more than nk
edges, it cannot have a vertex cover of size k. We take
advantage of this fact to bound the overall cost of the
algorithm in the dynamic case. We maintain a structure
which allows us to recover at most nk edges from
the input graph, along with a counter for the current
number of “live” edges. This can be implemented
using a k-sample recovery algorithm (Deﬁnition, or
indeed by a deterministic algorithm (e.g. Reed-Solomon
syndromes).

The algorithm now proceeds as follows. To test
for a vertex cover of size k, we first test whether the
number of edges is above nk: if so, there can be no such
cover, and we can immediately reject. Otherwise, we
can recover the full graph, get the kernel and then run
the algorithm of Chen et al. [I0] (see Section [3.1). The
total time for this algorithm is then O(nk +29%)) and
the space used is that to store the k-sample recovery

algorithm, which is O(nk).

This assumes that each edge is inserted at most once,
i.e. the same edge is not inserted multiple times without
intervening deletion. This assumption can be removed,
if we replace the edge counter with a data structure
which counts the (approximate) number of distinct
edges currently in the data structure. This can provide
a constant factor approximation with polylogarithmic
space. This is sufficient to determine if the number of
edges is greater than nk, and if not, to recover the at
most (say) 1.0lnk edges in the graph from the data
structure storing the edges, and apply the kernelization
algorithm of Section [3.1

7 Feedback Vertex Set

In the Feedback Vertex Set (F'V.S(k)) problem we are
given a graph G = (V, E) and an integer k. The question
is whether there exists a set V' C V such that G\ V'

has no cycles. We can show the following results for
FVS(k).

THEOREM 7.1. There is a deterministic PSA for
FV S(k) which uses O(nk) space.

THEOREM 7.2. Any (randomized) PSA for FV S(k) re-
quires Q(n) space.

7.1 Parameterized
(PSA) for FVS(k)

Proof. To prove Theorem [7.1] we use the following
lemma to bound the number of edges of a graph with
small feedback vertex set.

Streaming Algorithm

LEMMA 7.1. Any graph with a feedback vertex set of
size at most k can have at most n(k + 1) edges, where
n is the number of vertices of the graph.

Proof. Let the graph be V = (G, E) and S C V be the
feedback vertex set of size at most k. Then the graph
G\ S is a forest, and hence has at most n—|S|—1 edges.
Now each of the vertices in .S is adjacent to at most n—1
vertices in GG. Hence the total number of edges of G is at
most (n—|S|—1)+(n—1)|S| = n+(n—2)|S|—1 < n+nk
since |S| < k.

The PSA algorithm for FV S(k) runs as follows:
e Store all the edges that appear in the stream.
o If the number of edges exceeds n(k+1), output NO.

e Otherwise the total number of edges (and hence
the space complexity) is n+nk. Now that we have
stored the entire graph, use any one of the various
known FPT algorithms [, 23] to solve the FV S(k)
problem.

This concludes the proof of Theorem

7.2 Q(n) Lower Bound for FVS(k) Here, we prove
Theorem

Proof. We show the proof by reduction to the
Disjointness problem in communication complexity.

DiISJOINTNESS

Input: Alice has a string z € {0,1}" given by
1T ...Tnp.

Bob has a string y € {0,1}".

Question: Bob wants to check if Ji: z; =y, = 1.

There is a lower bound of Q(n) bits of communica-
tion between Alice and Bob, even allowing randomiza-
tion [24].

Given an instance of Disjointness, we create a graph
on 8n nodes as follows. We create nodes a;, b;, ... h;,
and insert edges (b, g:), (¢i, €;), (di, fi) for all . We also
create edges (h;,a;4+1) for 1 <i < n. This is illustrated
in the first graph in Figure

For each i, we add 2 edges corresponding to x;, and
two according to y;. If ; = 0, we add (a;,¢;) and
(bi, d;); else we add (a;,b;) and (¢;,d;). If y; = 0, we
add (fi, h;) and (e;, g;); else we add (f;, e;) and (g5, h;).

We now observe that the resulting graph is a tree (in
fact it is a path) if the two strings are disjoint, but it has
at least one cycle if there is any ¢ such that x; = y; = 1.
This can be seen by inspecting Figure[I} which shows the
configuration for each possibility for x; and y;. Thus,
any streaming algorithm that can determine whether a
graph stream is cycle-free or has one (or more) cycles
implies a communication protocol for DISJOINTNESS,
and hence requires Q(n) space.

Since FVS(k) must, in the extreme case k = 0,
determine whether G is acyclic, then Q(n) space is
required for this problem also. This generalizes to
any constant k by simply adding k triangles on 3k
new nodes to the graph: one node from each must
be removed, leaving the question whether the original
graph is acyclic.

8 Concluding Remarks

By combining techniques of kernelization with random-
ized sketch structures, we have initiated the study of
parameterized streaming algorithms. We considered the
widely-studied Vertex Cover problem, and obtained re-
sults in three models: insertion only streams, dynamic
streams and promised dynamic streams. There are sev-
eral natural directions for further study. We mention
some of the below.

Dynamic Algorithms. Recent work has uncovered
connections between streaming algorithms and dynamic
algorithms [22]. It is natural to ask whether we can
make the algorithms provided dynamic: that is, ensure

a
h
4. .7
c f
d e
o————oO
b g b g b

Figure 1: Gadget for reduction to Disjointness

that after each step they provide a current answer to the
desired problem. The current algorithm for maximal
matching sometimes takes time polynomial in k& to
process an update: can this be made sublinear in k?
Our main algorithm in Section [5] applies in the case
where there is a promise on the size of the maximal
matching. Can this requirement be relaxed? That is,
the main open question is whether there exists a dy-
namic algorithm that will succeed in finding a maximal
matching of size k at time ¢, even if some intermediate
maximal matching has exceeded this bound? Or can
the cost be made proportional to the largest maximal
matching encountered, i.e. remove the requirement for
k to be specified at the time, and allow the algorithm
to adapt to the input instance.
Other Problems. In this paper, we primarily studied
the related problems of Maximal Matching and Vertex
Cover. It follows to consider other NP-hard problems in
the framework of parameterized streaming, where ker-
nelization algorithms can also be helpful. In some cases,
one might be able to obtain parameterized streaming
algorithms with small modifications of the existing ker-
nelization methods. This is the case for the Feedback
Vertex Set (FVS(k)) problem for which we obtain pa-
rameterized streaming as discussed in Section
Acknowledgments: The third author would like to
thank Marek Cygan for fruitful discussion on early
stages of this project in a Dagstuhl workshop. We thank
Catalin Stefan Tiseanu for some useful discussions re-
garding the Feedback Vertex Set problem.

References

[1] List of open problems in sublinear algorithms. http:
//sublinear.info/|

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
graph structure via linear measurements. In Proceed-
ings of the 28rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 459-467, 2012.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGre-
gor. Graph sketches: sparsification, spanners, and sub-
graphs. In ACM Principles of Database Systems, 2012.

[4] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.

(5]

(6]

(7]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

Journal of Computer and System Sciences, 58(1):137—
147, 1999.

Neta Barkay, Ely Porat, and Bar Shalem. Efficient
sampling of non-strict turnstile data streams. In
Fundamentals of Computation Theory, pages 48-59,
2013.

S. Baswana, M. Gupta, and S. Sen. Fully dynamic
maximal matching in O(logn) update time. In Pro-
ceedings of the 52nd IEEE Symposium on Foundations
of Computer Science (FOCS), pages 383-392, 2011.

J. F. Buss and J. Goldsmith. Nondeterminism within
P. SIAM Journal on Computing, 22(3):560-572, 1993.
Yixin Cao, Jianer Chen, and Yang Liu. On feedback
vertex set new measure and new structures. In SWAT,
pages 93-104, 2010.

L. Carter and M. N. Wegman. Universal classes of
hash functions (extended abstract). In Proceedings
of the 9th Annual ACM Symposium on Theory of
Computing (STOC), pages 106-112, 1977.

Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved
upper bounds for vertex cover. Theor. Comput. Sci.,
411(40-42):3736-3756, 2010.

Holger Dell and Dieter van Melkebeek. Satisfiability al-
lows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. In STOC, pages 251-260,
2010.

R. G. Downey and M. R. Fellows.
Complexity. Springer, New York, 1999.
Sebastian Eggert, Lasse Kliemann, Peter Munster-
mann, and Anand Srivastav. Bipartite matching in the
semi-streaming model. Algorithmica, 63(1-2):490-508,
2012.

Sebastian Eggert, Lasse Kliemann, and Anand Srivas-
tav. Bipartite graph matchings in the semi-streaming
model. In ESA, pages 492-503, 2009.

J. Feigenbaum, S. Kannan, McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. Theoretical Computer Science, 348(2-3):207—
216, 2005.

J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximate [1-difference algo-
rithm for massive data streams. SIAM Journal on
Computing, 32(1):131-151, 2002.

J. Flum and M. Grohe. Parameterized Complexity
Theory. Springer, 2006.

G. Frahling, P. Indyk, and C. Sohler. Sampling in dy-
namic data streams and applications. In Proceedings
of the 21st Annual Symposium on Computational Ge-

Parameterized

http://sublinear.info/
http://sublinear.info/

(19]

20]

(21]

(22]

23]

24]

25]

[26]

27]

(28]

29]

(30]

31]

32]

ometry (SoCG), pages 142-149, 2005.

Michael R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Macmillan Higher Education, 1979.

P. Indyk. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. Jour-
nal of the ACM, 53(3):307-323, 2006.

H. Jowhari, M. Saglam, and G Tardos. Tight bounds
for L, samplers, finding duplicates in streams, and re-
lated problems. In Proceedings of the 17th ACM SIG-
MOD Symposium on Principles of Database Systems
(PODS), pages 49-58, 2011.

B. Kapron, V. King, and Mountjoy. Dynamic graph
connectivity in polylogarithmic worst case time. In
Proceedings of the 24th Annual ACM-SIAM Sympo-
stum on Discrete Algorithms (SODA), pages 1131—
1142, 2013.

Tomasz Kociumaka and Marcin Pilipczuk. Faster
deterministic feedback vertex set. Inf. Process. Lett.,
114(10):556-560, 2014.

E. Kushilevitz and N. Nisan. Communication Com-
plexity. Cambridge University Press, 1997.

Andrew McGregor. Finding graph matchings in data
streams. In APPROX-RANDOM, pages 170-181,
2005.

Andrew McGregor. Graph mining on streams. In
Encyclopedia of Database Systems, pages 1271-1275.
Springer, 2009.

M. Monemizadeh and D. Woodruff. 1-Pass Relative-
Error L,-Sampling with Applications. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1143-1160, 2010.

O. Neiman and S. Solomon. Simple deterministic algo-
rithms for fully dynamic maximal matching. Proceed-
ings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), 2013.

K. Onak and R. Rubinfeld. Maintaining a large
matching and a small vertex cover. In Proceedings
of the 42nd Annual ACM Symposium on Theory of
Computing (STOC), pages 457-464, 2010.

Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt
Rubinfeld. A near-optimal sublinear-time algorithm
for approximating the minimum vertex cover size. In
SODA, pages 1123-1131, 2012.

Michal Parnas and Dana Ron. Approximating the min-
imum vertex cover in sublinear time and a connection
to distributed algorithms. Theor. Comput. Sci., 381(1-
3):183-196, 2007.

A. Das Sarma, S. Gollapudi, and Rina Panigrahy.
Estimating pagerank on graph streams. In Proceedings
of the 14th ACM SIGMOD Symposium on Principles
of Database Systems (PODS), pages 69-78, 2008.

	Introduction
	Parameterized Complexity
	Parameterized Streaming Algorithms: Our Results
	Related Work

	Preliminaries
	Parameterized Streaming Algorithm (PSA) for VC(k)
	Kernel for VC(k)
	(k2, 2O(k))-PSA for VC(k)

	(k2) Lower Bound for VC(k)
	Promised Dynamic Parameterized Streaming Algorithm (PDPSA) for VC(k)
	Outline
	Notations, Data Structures and Invariants
	Adding an Edge to Matching M
	Maintenance of Data Structure T
	Announcement and Deletion of Neighborhood of a Vertex
	Rematching Matched Vertices
	Analyzing Rematching of a Low-Degree Vertex.
	Analyzing Rematching of a High-Degree Vertex.

	Completing the Proof of Theorem 1.3

	Dynamic Parameterized Streaming Algorithm (DPSA for VC(k)
	Feedback Vertex Set
	Parameterized Streaming Algorithm (PSA) for FVS(k)
	(n) Lower Bound for FVS(k)

	Concluding Remarks

