
1

Histograms and Wavelets

on Probabilistic Data
Graham Cormode, AT&T Labs Research

Minos Garofalakis, Technical University of Crete

Email: graham@research.att.com, minos@acm.org

F

Abstract

There is a growing realization that uncertain information is a first-class citizen in modern database management.

As such, we need techniques to correctly and efficiently process uncertain data in database systems. In particular, data

reduction techniques that can produce concise, accurate synopses of large probabilistic relations are crucial. Similar to

their deterministic relation counterparts, such compact probabilistic data synopses can form the foundation for human

understanding and interactive data exploration, probabilistic query planning and optimization, and fast approximate query

processing in probabilistic database systems.

In this paper, we introduce definitions and algorithms for building histogram- and Haar wavelet-based synopses on

probabilistic data. The core problem is to choose a set of histogram bucket boundaries or wavelet coefficients to optimize

the accuracy of the approximate representation of a collection of probabilistic tuples under a given error metric. For a

variety of different error metrics, we devise efficient algorithms that construct optimal or near optimal size B histogram and

wavelet synopses. This requires careful analysis of the structure of the probability distributions, and novel extensions of

known dynamic-programming-based techniques for the deterministic domain. Our experiments show that this approach

clearly outperforms simple ideas, such as building summaries for samples drawn from the data distribution, while taking

equal or less time.

Index Terms

Histograms, wavelets, uncertain data

1 INTRODUCTION

Modern real-world applications generate massive amounts of data that is often uncertain and imprecise. For

instance, data integration and record linkage tools can produce distinct degrees of confidence for output

data tuples (based on the quality of the match for the underlying entities) [8]; similarly, pervasive multi-

sensor computing applications need to routinely handle noisy sensor/RFID readings [25]. Motivated by

these new application requirements, recent research on probabilistic data management aims to incorporate

uncertainty and probabilistic data as “first-class citizens” in the DBMS.

DRAFT

2

Among different approaches for modeling uncertain data, tuple- and attribute-level uncertainty models

have seen wide adoption both in research papers as well as early system prototypes [1], [2], [3]. In such

models, the attribute values for a data tuple are specified using a probability distribution over different

mutually-exclusive alternatives (that might also include non-existence, i.e., the tuple is not present in the

data), and assuming independence across tuples. The popularity of tuple-/attribute-level uncertainty

models is due to their ability to describe complex dependencies while remaining simple to represent

in current relational systems, with intuitive query semantics. In essence, a probabilistic database is a

concise representation for a probability distribution over an exponentially-large collection of possible

worlds, each representing a possible “grounded” (deterministic) instance of the database (e.g., by flipping

appropriately-biased independent coins to select an instantiation for each uncertain tuple). This “possible-

worlds” semantics also implies clean semantics for queries over a probabilistic database—essentially,

the result of a probabilistic query defines a distribution over possible query results across all possible

worlds [8]. The goal of query answering over uncertain data is to provide the expected value of the

answer, or tail bounds on the distribution of answers.

Unfortunately, despite its intuitive semantics, the paradigm shift towards tuple-level uncertainty also

implies computationally-intractable #P -hard data complexity even for simple query processing opera-

tions [8]. These negative complexity results for query evaluation raise serious practicality concerns for

the applicability of probabilistic database systems in realistic settings. One possible avenue of attack is

via approximate query processing techniques over probabilistic data. As in conventional database systems,

such techniques need to rely on appropriate data reduction methods that can effectively compress large

amounts of data down to concise data synopses while retaining the key statistical traits of the original

data collection [10]. It is then feasible to run more expensive algorithms over the much compressed

representation, and obtain a fast and accurate answer. In addition to enabling fast approximate query

answers, over probabilistic data, such compact synopses can also provide the foundation for human

understanding and interactive data exploration, and probabilistic query planning and optimization.

The data-reduction problem for deterministic databases is well understood, and several different syn-

opsis construction tools exist. Histograms [20] and wavelets [4] are two of the most popular general-purpose

data-reduction methods for conventional data distributions. It is hence meaningful and interesting to build

corresponding histogram and wavelet synopses of probabilistic data. Here, histograms, as on traditional

“deterministic” data, divide the given input data into “buckets” so that all tuples falling in the same

bucket have similar behavior: bucket boundaries are chosen to minimize a given error function that

measures the within-bucket dissimilarity. Likewise, wavelets represent the probabilistic data by choosing

a small number of wavelet basis functions which best describe the data, and contain as much of the

“expected energy” of the data as possible. So, for both histograms and wavelets, the synopses aim

to capture and describe the probabilistic data as accurately as possible given a fixed size of synopsis.

This description is of use both to present to users to compactly show the key components of the data,

DRAFT

3

as well as in approximate query answering and query planning. Clearly, if we can find approximate

representations that compactly represent a much larger data set, then we can evaluate queries on these

summaries to give an approximate answer much more quickly than finding the exact answer. As a more

concrete example, consider the problem of estimating the expected cardinality of a join of two probabilistic

relations (with a join condition on two uncertain attributes): this can be a very expensive operation, as

all possible alternatives for potentially joining uncertain tuples (e.g., OR-tuples in Trio [2]) need to be

carefully considered. On the other hand, the availability of concise, low-error histogram/wavelet synopses

for probabilistic data can naturally enable fast, accurate approximate answers to such queries (in ways

similar to the deterministic case [4], [19]).

Much recent work has explored many different variants of the basic synopsis problem, and we sum-

marize the main contributions in Section 3. Unfortunately, this work is not applicable when moving

to probabilistic data collections that essentially represent a huge set of possible data distributions (i.e.,

“possible worlds”). It may seem that probabilistic data can be thought of defining a weighted instance

of the deterministic problem, but we show empirically and analytically that this yields poor represen-

tations. Thus, building effective histogram or wavelet synopses for such collections of possible-world

data distributions is a challenging problem that mandates novel analyses and algorithmic approaches.

As in the large body of work on synopses for deterministic data, we consider a number of standard error

functions, and show how to find the optimal synopsis relative to this class of function.

Our Contributions. In this paper we give the first formal definitions and algorithmic solutions for

constructing histogram and wavelet synopses over probabilistic data. In particular:

• We define the “probabilistic data reduction problem” over a variety of cumulative and maximum

error objectives, based on natural generalizations of histograms and wavelets from deterministic to

probabilistic data.

• We give efficient techniques to find optimal histograms under all common cumulative error objectives

(such as sum-squared error and sum-relative error), and corresponding maximum error objectives.

Our techniques rely on careful analysis of each objective function in turn, and showing that the cost of

a given bucket, along with its optimal representative value, can be found efficiently from appropriate

precomputed arrays. These results require careful proof, due to the distribution of values each item

can take on, and the potential correlations between items.

• For wavelets, we similarly show optimal techniques for the core sum-squared error (SSE) objec-

tive. Here, it suffices to compute the wavelet transformation of a deterministic input derived from

the probabilistic input. We also show how to extend algorithms from the deterministic setting to

probabilistic data for non-SSE objectives.

• We report on experimental evaluation of our methods, and show that they achieve appreciably better

results than simple heuristics. The space and time costs are always equal or better than the heuristics.

DRAFT

4

• We outline extensions of our results to handle multi-dimensional data; to show that fast approximate

solutions are possible; and to consider richer, probabilistic representations of the data.

Outline. After surveying prior work on uncertain data, we describe the relevant data models and synopsis

objectives in Section 3. Sections 4 and 5 present our results on histogram and wavelet synopses for

uncertain data. We give a thorough experimental analysis of our techniques in Section 6, and discuss

some interesting extensions of our ideas as well as directions for future work in Section 7. Finally, Section 8

concludes the paper.

2 RELATED WORK

There has been significant interest in managing and processing uncertain and probabilistic data within

database systems in recent years. Key ideas in probabilistic databases are presented in tutorials by Dalvi

and Suciu [32], [9], and built on by systems such as Trio [2], MystiQ [3], MCDB [22], and MayBMS [1].

Initial research has focused on how to store and process uncertain data within database systems, and hence

how to answer SQL-style queries. Subsequently, there has been a growing realization that in addition to

storing and processing uncertain data, there is a need to run advanced algorithms to analyze uncertain

data. Recent work has studied how to compute properties of streams of uncertain tuples such as the

expected average and number of distinct items [5], [23], [24]; clustering uncertain data [7]; and finding

frequent items within uncertain data [34].

There has also been work on finding quantiles of unidimensional data [5], [24], which can be thought of

as the equi-depth histogram; the techniques to find these show that it simplifies to the problem of finding

quantiles over weighted data, where the weight of each item is simply its expected frequency. Similarly,

finding frequent items is somewhat related to finding high-biased histograms. Lastly, we can also think of

building a histogram as being a kind of clustering of the data along the domain. However, the nature of

the error objectives on histograms that are induced by the formalizations of clustering are quite different

from here, and so probabilistic clustering techniques [7] do not give good solutions for histograms. To

our knowledge, no prior work has studied problems of building histogram and wavelet synopses of

probabilistic data. Moreover, none of the prior work on building summaries of certain/deterministic

data can be applied to probabilistic data to give meaningful results (the necessary background on this

work is given in in Section 3.2). In parallel to this work, Zheng [35] studied the SSE histogram problem

in the streaming context, and showed similar results to those given in Section 4.1. Lastly, Ré and Suciu

introduce the concept of approximate lineage [29]: where tuples have a complex lineage as a function of

various (probabilistic) events, these lineages can be represented approximately. This is a different notion

of approximate representations of probabilistic data, but is primarily concerned with different models of

uncertainty to those we study here.

DRAFT

5

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 Probabilistic Data Models

A variety of models of probabilistic data have been proposed. The different models capture various levels

of independence between the individual data values described. Each model describes a distribution over

possible worlds: each possible world is a (traditional) relation containing some number of tuples. The

most general model describes the complete correlations between all tuples; effectively, it describes every

possible world and its associated probability explicitly. However, the size of such a model for even a

moderate number of tuples is immense, since the exponentially many possible combinations of values

are spelled out. In practice, finding the (exponentially many) parameters for the fully general model is

infeasible; instead, more compact models are adopted which can reduce the number of parameters by

making independence assumptions between tuples.

The simplest probabilistic model is the basic model, which consists of a sequence of tuples containing

a single value and the probability that it exists in the data. More formally,

Definition 1: The basic model consists of a set of m tuples where the jth tuple consists of a pair 〈tj , pj〉.

Here, tj is an item drawn from a fixed domain, and pj is the probability that tj appears in any possible

world. Each possible world W is formed by the inclusion of a subset of the items tj . We write j ∈ W if

tj is present in the possible world W , and j 6∈ W otherwise. Each tuple is assumed to be independent of

all others, so the probability of possible world W is given by

Pr[W] =
∏

j∈W

pj

∏
j 6∈W

(1− pj).

Note here that the items tj can be somewhat complex (e.g., a row in a table), but without loss of

generality we will treat them as simple objects. In particular, we will be interested in cases that can be

modeled as when the tjs are drawn from a fixed, ordered domain (such as 1, 2, 3 . . .) of size n, and several

tjs can correspond to occurrences of the same item. We consider two extensions of the basic model, which

each capture dependencies not expressible in the basic model by providing a compact discrete probability

density function (pdf) in place of the single probability.

Definition 2: In the tuple pdf model, instead of a single (item, probability) pair, there is a set of pairs

with probabilities summing to at most 1. That is, the input consists of a sequence of tuples tj ∈ T of

the form 〈(tj1, pj1), . . . (tj`, pj`)〉. Each tuple specifies a set of mutually exclusive possible values for the

ith row of a relation. The sum of the probabilities within a tuple is at most 1; the remaining probability

measures the chance that there is no corresponding item. We interpret this as a discrete pdf for the jth

item in the input: Pr[tj = tj1] = pj1, and so on. Each tuple is assumed to be independent of all others, so

the probability of any possible world can be computed via multiplication of the relevant probabilities.

This model has been widely adopted, and is used in Trio (i.e., OR-tuples) [2], and elsewhere [24]. It

captures the case where an observer makes readings, and has some uncertainty over what was seen. An

DRAFT

6

alternate case is when an observer makes readings of a known item (for example, this could be a sensor

making discrete readings), but has uncertainty over a value or frequency associated with the item:

Definition 3: The value pdf model consists of a sequence of tuples of the form 〈i : (fi1, pi1) . . . (fi`, pi`)〉,

where the probabilities in each tuple sum to at most 1. Each tuple specifies the distribution of frequencies

of a separate item; the distributions of different items are assumed to be independent. This describes a

discrete pdf for the random variable gi giving (say) the distribution of the frequencies of the ith item:

Pr[gi = fi1] = pi1, and so on. Due to the independence, the probability of any possible world is computed

via multiplication of probabilities for the frequency of each item in turn. If probabilities in a tuple sum

to less than one, the remainder is taken to implicitly specify the probability that the frequency is zero,

by analogy with the basic model. Let the set of all values of frequencies used be V , so every (f, p) pair

has f ∈ V .

One can go on to describe more complex models which further describe the interactions between

different items (e.g., via graphical models), but these are complex to instantiate in practice; prior work

on query processing and mining mostly works in the models described here, or variations thereof. For

both the basic and tuple models, the frequency of any given item i within a possible world, gi, is a non-

negative integer, and each occurrence corresponds to a tuple from the input. The value pdf model can

specify arbitrary fractional frequencies, but the number of such frequencies is bounded by the size of the

input, m. In this work we may assume that the frequencies are restricted to integer values, although this

is not necessary for our results. The basic model is a special case of the tuple pdf and value pdf model,

but neither of these two is contained within the other. However, input in the tuple pdf model induces

a distribution over frequencies of each item. We define the induced value pdf which provides Pr[gi = v]

for some v ∈ V and for each item i. The important detail is that, unlike in the value pdf model, these

induced pdfs are not independent; nevertheless, this representation is useful in our subsequent analysis.

For data presented in the tuple pdf format, building the induced value pdf for each value inductively

takes time O(|V|) to update the partial value pdf with each new tuple. The total space required is linear

in the size of the input, O(m).

Definition 4: Given an input in any of these models, let W denote the space of all possible worlds,

and Pr[W] denote the probability associated with possible world W ∈ W . We can then compute the

expectation of various quantities over possible worlds, given a function f which can be evaluated on a

possible world W , as

EW [f] =
∑

W∈W
Pr[W]f(W). (1)

Example 1: Consider the ordered domain containing the three items 1, 2, 3. The input 〈1, 1
2 〉, 〈2, 1

3 〉, 〈2, 1
4 〉, 〈3, 1

2 〉

in the basic model defines the following twelve possible worlds and corresponding probabilities:

W ∅ 1 12 122 123 1223 13 2 22 23 223 3

Pr[W] 1
8

1
8

5
48

1
48

5
48

1
48

1
8

5
48

1
48

5
48

1
48

1
8

DRAFT

7

The input 〈(1, 1
2), (2, 1

3)〉, 〈(2, 1
4), (3, 1

2)〉 in the tuple pdf model defines eight possible worlds:

W ∅ 1 2 3 12 13 22 23

Pr[W] 1
24

1
8

1
8

1
12

1
8

1
4

1
12

1
6

The input 〈1 : (1, 1
2)〉, 〈2 : (1, 1

3), (2, 1
4)〉, 〈3 : (1, 1

2)〉 in the value pdf model defines the pdfs

Pr[g1 = 0] = 1
2 ,Pr[g1 = 1] = 1

2 ,

Pr[g2 = 0] = 5
12 ,Pr[g2 = 1] = 1

3 ,Pr[g2 = 2] = 1
4 ,

Pr[g3 = 0] = 1
2 ,Pr[g3 = 1] = 1

2 ,

and, hence, provides the following distribution over twelve possible worlds:

W ∅ 1 12 122 123 1223 13 2 22 23 223 3

Pr[W] 5
48

5
48

1
12

1
16

1
12

1
16

5
48

1
12

1
16

1
12

1
16

5
48

In all three cases, EW [g1] = 1
2 . In the value pdf case, EW [g2] = 5

6 , for the other two cases EW [g2] = 7
12 .

Although two possible worlds may be formed in different ways, they may be indistinguishable: for

instance, in the basic model example, the world W = {2} can result either from the second or third tuple.

We will typically not distinguish possible worlds based on how they arose, and so treat them as identical.

Our input is then characterized by parameters n, giving the size of the ordered domain from which the

input is drawn, m, the total number of pairs in the input (hence the input can be described with O(m)

pieces of information), and V , the set of values that the frequencies take on. Here |V| ≤ m, but could be

much less. In the all three examples above, we have n = 3,m = 4, and V = {0, 1, 2}.

3.2 Histogram and Wavelet Synopses

In this section, we review key techniques for constructing synopses on deterministic data.

Histograms on Deterministic Data. Consider a one-dimensional data distribution defined (without

loss of generality) over the integer domain [n] = {0, . . . , n − 1}. For each i ∈ [n], let gi denote the

frequency of domain value i in the underlying data set. A histogram synopsis provides a concise, piece-

wise approximate representation of the distribution based on partitioning the ordered domain [n] into B

buckets. Each bucket bk consists of a start and end point, bk = (sk, ek), and approximates the frequencies of

the contiguous subsequence of values {sk, sk + 1, . . . , ek} (termed the span of the bucket) using a single

representative value b̂k. Let nk = ek − sk + 1 denote the width (i.e., number of distinct items) of bucket

bk. The B buckets in a histogram form a partition of [n]; that is, s1 = 0, eB = n− 1, and sk+1 = ek + 1 for

all k = 1, . . . , B − 1.

By using O(B) � n space to represent an O(n)-size data distribution, histograms provide a very

effective means of data reduction, with numerous applications [10]. This data reduction implies approx-

imation errors in the estimation of frequencies, since each gi ∈ bk is estimated as ĝi = b̂k. The histogram

construction problem is, given a storage budget B, build a B-bucket histogram HB that is optimal under

DRAFT

8

some aggregate error metric. The histogram error metrics to minimize include, for instance, the Sum-Squared-

Error

SSE(H) =
n∑

i=1

(gi − ĝi)2 =
B∑

k=1

ek∑
i=sk

(gi − b̂k)2

(which defines the important class of V-optimal histograms [19], [21]) and the Sum-Squared-Relative-Error:

SSRE(H) =
n∑

i=1

(gi − ĝi)2

max{c, |gi|}2

(where constant c in the denominator avoids excessive emphasis being placed on small frequencies [11],

[14]). The Sum-Absolute-Error (SAE) and Sum-Absolute-Relative-Error (SARE) are defined similarly to SSE

and SSRE, replacing the square with an absolute value so that

SAE(H) =
n∑

i=1

|gi − ĝi| ; SARE(H) =
n∑

i=1

|gi − ĝi|
max{c, |gi|}

.

In addition to such cumulative metrics, maximum error metrics provide approximation guarantees on the

relative/absolute error of individual frequency approximations [14]; these include Maximum-Absolute-

Relative-Error

MARE(H) = max
i∈[n]

|gi − ĝi|
max{c, |gi|}

.

Histogram construction satisfies the principle of optimality: If the Bth bucket in the optimal histogram

spans the range [i + 1, n − 1], then the remaining B − 1 buckets must form an optimal histogram for

the range [0, i]. This immediately leads to a Dynamic-Programming (DP) algorithm for computing the

optimal error value OPTH[j, b] for a b-bucket histogram spanning the prefix [1, j] based on the following

recurrence:

OPTH[j, b]= min
0≤l<j

{h(OPTH[l, b− 1],min
b̂
{BE([l + 1, j], b̂)})}, (2)

where BE([x, y], z) denotes the error contribution of a single histogram bucket spanning [x, y] using a

representative value of z to approximate all enclosed frequencies, and h(x, y) is simply x+y (respectively,

max{x, y}) for cumulative (resp., maximum) error objectives. The key to translating the above recurrence

into a fast algorithm lies in being able to quickly find the best representative b̂ and the corresponding

optimal error value BE() for the single-bucket case.

For example, in the case of the SSE objective the representative value minimizing a bucket’s SSE con-

tribution is exactly the average bucket frequency b̂k =
Pek

i=sk
gi

nk
giving an optimal bucket SSE contribution

of:

min
b̂k

{BE(bk = [sk, ek], b̂k)} =
ek∑

i=sk

g2
i −

1
nk

(ek∑
i=sk

gi

)2
.

By precomputing two n-vectors that store the prefix sums
∑j

i=0 gi and
∑j

i=0 g2
i for each j = 0, . . . , n− 1,

the SSE contribution for any bucket bk in the DP recurrence can be computed in O(1) time, giving rise

to an O(n2B) algorithm for building the SSE-optimal (or, V-optimal) B-bucket histogram [21]. Similar

DRAFT

9

l = 3 2 2

−1

1/2

g0 g1 g2 g3 g4 g5 g6 g7

c5

c0

c1 −5/4

0 2 3 5 4 4

−1

0

0 0
c7c6

c3c2

c4

11/4

l = 1

l = 0

l = 2

+

−

+

Fig. 1. Error-tree structure on n = 8 items for data distribution array A = [2, 2, 0, 2, 3, 5, 4, 4] (l = coefficient

resolution levels.)

ideas apply for the other error metrics discussed above. For instance, the optimal MARE contribution for

a single bucket depends only on the maximum/minimum frequencies. Using appropriate precomputed

data structures on dyadic ranges leads to an efficient, O(Bn log2 n) DP algorithm for building MARE-

optimal histograms on deterministic data [14].

Wavelets on Deterministic Data. Haar wavelet synopses [4], [12], [15], [33] provide another data reduction

tool based on the Haar Discrete Wavelet Decomposition (DWT) [31] for hierarchically decomposing

functions. At a high level, the Haar DWT of a data distribution over [n] consists of a coarse overall

approximation (the average of all frequencies) together with n− 1 detail coefficients (constructed through

recursive pairwise averaging and differencing) that influence the reconstruction of frequency values at

different scales. The Haar DWT process can be visualized through a binary coefficient tree structure, as in

Figure 1. Leaf nodes gi correspond to the original data distribution values in A[]. The root node c0 is the

overall average frequency, whereas each internal node ci (i = 1, . . . , 7) is a detail coefficient computed

as the half the difference between the average of frequencies in ci’s left child subtree and the average of

frequencies in ci’s right child subtree (e.g., c3 = 1
2 (3+5

2 − 4+4
2) = 0). Coefficients in level l are normalized

by a factor of
√

2l: this makes the transform an orthonormal basis [31], so that the sum of squares of

coefficients equals the sum of squares of the original data values, by Parseval’s theorem.

Any data value gi can be reconstructed as a function of the coefficients which are proper ancestors

of the corresponding node in the coefficient tree: the reconstructed value can be found by summing

DRAFT

10

appropriately scaled multiples of these log N + 1 coefficients alone. For example, in Figure 1, g4 = c0 −

c1 + c6 = 11
4 − (− 5

4)+ (−1) = 3. The support of a coefficient ci is defined as the interval of data values

that ci is used to reconstruct; it is a dyadic interval of size 2log n−l for a coefficient at resolution level l (see

Fig. 1).

Given limited space for maintaining a wavelet synopsis a thresholding procedure retains B � n Haar coeffi-

cients as a highly-compressed approximate representation of the data (remaining coefficients are implicitly

set to 0). As with histogram construction, the aim is to determine the “best” subset of B coefficients to

retain, so that some overall error measure is minimized. By orthonormality of the normalized Haar basis,

greedily picking the B largest coefficients (based on absolute normalized value) is optimal for SSE error [31].

Recent work proposes schemes for optimal and approximate thresholding under different error metrics.

These schemes formulate a dynamic program over the coefficient-tree structure that tabulates the optimal

solution for a subtree rooted at node cj given the contribution from the choices made at proper-ancestor nodes

of cj in the tree. This idea handles a broad class of distributive error metrics (including all error measures

discussed above), as well as weighted Lp-norm error for arbitrary p) [12], [15].

There are two distinct versions of the thresholding problem for non-SSE error metrics. In the restricted

version the thresholding algorithm is forced to select values for the synopsis from the standard Haar

coefficient values (computed as discussed above). Such a restriction, however, may make little sense when

optimizing for non-SSE error, and can, in fact, lead to sub-optimal synopses for non-SSE error [15]. In

the unrestricted version of the problem, retained coefficient values are chosen to optimize the target error

metric [15]. Let OPTW[j, b, v] denote the optimal error contribution across all frequencies gi in the support

(i.e., subtree) of coefficient cj assuming a total space budget of b coefficients retained in cj ’s subtree; and,

a (partial) reconstructed value of v based on the choices made at proper ancestors of cj . Then, based on

the Haar DWT reconstruction process, we can compute OPTW[j, b, v] as the minimum of two alternative

error values at cj :

(1) Optimal error when retaining the best value for cj , found by minimizing over all values vj for cj and

allotments of the remaining budget across the left and right child of cj , i.e.,

OPTWr[j, b, v] = min
vj ,0≤b′≤b−1

{h(OPTW[2j, b′, v + vj], OPTW[2j + 1, b−b′−1, v−vj])}.

(2) Optimal error when not retaining cj , computed similarly:

OPTWnr[j, b, v] = min
vj ,0≤b′≤b

{h(OPTW[2j, b′, v], OPTW[2j + 1, b− b′, v])},

where h() stands for summation (max{}) for cumulative (resp., maximum) error-metric objectives. In the

restricted problem, minimization over vj is eliminated (since the value for cj is fixed), and the values for

the “incoming” contribution v can be computed by stepping through all possible subsets of ancestors for

cj — since the depth of the tree is O(log n), this implies an O(n2) thresholding algorithm [12]. In the

unrestricted case, Guha and Harb propose efficient approximation schemes that employ techniques for

bounding and approximating the range of possible v values [15].

DRAFT

11

3.3 Probabilistic Data Reduction Problem

The key difference in the probabilistic data setting is that data-distribution frequencies gi (and the Haar

DWT coefficients) are now random variables. We use gi(W) (ci(W)) to denote the (instantiated) frequency

of the ith item (resp., value of the ith Haar coefficient) in possible world W—we can omit the explicit

dependence on W for the sake of conciseness. The error of a given data synopsis is also a random variable

over the collection of possible worlds. Our goal becomes that of constructing a data synopsis (histogram

or wavelet) that optimizes an expected measure of the target error objective over possible worlds. More formally,

let err(gi, ĝi) denote the error of approximating gi by ĝi (e.g., squared error or absolute relative error for

item i); then, our problem can be formulated as follows.

[Synopsis Construction for Probabilistic Data] Given a collection of probabilistic attribute values, a

synopsis space budget B, and a target (cumulative or maximum) error metric, determine a histogram

synopsis with B buckets or a wavelet synopsis comprising B Haar coefficients that minimizes either (1)

the expected cumulative error over all possible worlds, i.e., EW [
∑

i err(gi, ĝi)] (in the case of a cumulative

error objective); or, (2) the maximum value of the per-item expected error over all possible worlds, i.e.,

maxi{EW [err(gi, ĝi)]} (for a maximum error objective).

A natural first attempt to solve the probabilistic data reduction problem is to look to prior work, and

ask whether techniques based on sampling, or building a weighted deterministic data set could apply.

More precisely, one could try the Monte-Carlo approach of sampling a possible world W with probability

Pr[W] and building the optimal synopsis for W (similar to [22]); or for each item i finding EW [gi], and

building the synopsis of the “expected” data. Our subsequent analysis shows that such attempts are

insufficient. We give precise formulations of the optimal solution to the problem under a variety of error

metrics, and one can verify by inspection that they do not in general correspond to any of these simple

solutions. Further, we compare the optimal solution to these solutions in our experimental evaluation,

and observe that the quality of the solution found is substantially poorer. This stands in contrast to prior

work on estimating functions such as expected number of distinct items [5], [24], which analyze the

number of samples needed to give an accurate estimate. This is largely because synopses are not scalar

values—it is not meaningful to find the “average” of multiple synopses.

4 HISTOGRAMS ON UNCERTAIN DATA

We first consider producing optimal histograms for probabilistic data under cumulative error objectives

which minimize the expected cost of the histogram over all possible worlds. Our techniques are based

on applying the dynamic programming approach. Most of our effort is in showing how to compute the

optimal b̂ for a bucket b under a given error objective, and also to compute the corresponding value of

EW [BE(b, b̂)]. Here, we observe that the principle of optimality still holds even under uncertain data: since

the expectation of the sum of costs of each bucket is equal to the sum of the expectations, removing the

DRAFT

12

final bucket should leave an optimal B − 1 bucket histogram over the prefix of the domain. Hence, we

will be able to invoke equation (2), and find a solution which evaluates O(Bn2) possibilities.

4.1 Sum-squared error Histograms

The sum-squared error measure SSE is the sum of the squared differences between the values within

a bucket bk and the representative value of the bucket, b̂k. For a fixed possible world W , the optimal

value for b̂i is the mean of the frequencies gi in the bucket and the measure reduces to a multiple of

the sample variance of the values within the bucket. This holds true even under probabilistic data, as

we show below. For deterministic data, it is straightforward to quickly compute the (sample) variance

within a given bucket, and therefore use dynamic programming to select the optimum bucketing [21].

In order to use the DP approach on uncertain data, which specifies exponentially many possible worlds,

we must be able to efficiently compute the variance in a given bucket b specified by start point s and

end point e.

Fact 1: Under the sum-squared error measure, the cost is minimized by setting b̂ = 1
nb

EW [
∑e

i=s gi] = b̄.

Proof: The cost of the bucket is

SSE(b, b̂) =EW [
e∑

i=s

(gi − b̂)2] = EW [
e∑

i=s

(gi − b̄ + b̂− b̄)2]

=
e∑

i=s

EW [(gi − b̄)2] + EW [2(b̂− b̄)(gi − b̄) + (b̂− b̄)2]

=
e∑

i=s

(EW [g2
i] + EW [b̄2 − 2gib̄](b̂− b̄)2) + 2(b̂− b̄)(EW [

e∑
i=s

(gi − b̄)])

=
e∑

i=s

(EW [g2
i]− b̄2 + (b̂− b̄)2).

Since the last term is always positive, it is minimized by setting b̂ = b̄.

We can then write SSE(b, b̄) as the combination of two terms:

SSE(b, b̄) =
e∑

i=s

EW [g2
i]− 1

nb
EW

[e∑
i=s

gi

]2
. (3)

The first term is the expectation (over possible worlds) of the sum of squares of frequencies of each

item in the bucket. The second term can be interpreted as the square of the expected weight of the bucket,

scaled by the span of the bucket. We show how to compute each term efficiently in our different models.

Value pdf model. In the value pdf model, we have a distribution for each item i over frequency values

vj ∈ V giving Pr[gi = vj]. By independence of the pdfs, we have
e∑

i=s

EW [g2
i] =

e∑
i=s

∑
vj∈V

Pr[gi = vj]v2
j .

DRAFT

13

Meanwhile, for the second term, we can find

EW [
e∑

i=s

gi] =
e∑

i=s

∑
vj∈V

Pr[gi = vj]vj .

Combining these two expressions, we obtain:

SSE(b, b̄) =
e∑

i=s

∑
vj∈V

Pr[gi = vj]v2
j −

1
nb

(e∑
i=s

∑
vj∈V

Pr[gi = vj]vj

)2
.

Tuple pdf model. In the tuple pdf case, things seem more involved, due to interactions between items

in the same tuple. As shown by equation (3), we need to compute EW [g2
i] and EW [(

∑
i gi)]2. Let the set

of tuples in the input be T = {tj}, so each tuple has an associated pdf giving Pr[tj = i], from which we

can derive Pr[a ≤ tj ≤ b], the probability that the ith tuple in the input is falls between a and b in the

input domain.

EW [g2
i] = VarW [gi] + (EW [gi])2 =

∑
tj∈T

Pr[tj = i](1− Pr[tj = i]) + (
∑
tj∈T

Pr[tj = i])2.

Here, we rely on the fact that variance of each gi is the sum of the variances arising from each tuple in

the input. Observe that although there are dependencies between particular items, these do not affect the

computation of the expectations for individual items, which can be then be summed to find the overall

answer. For the second term, we treat all items in the same bucket together as a single item and compute

its expected square by iterating over all tuples in the input T :

EW [
e∑

i=s

gi]2 = (
∑
tj∈T

Pr[s ≤ tj ≤ e])2.

Combining these,

SSE(b, b̄) =
e∑

i=s

 ∑
tj∈T

Pr[tj = i](1− Pr[tj = i]) + (
∑
tj∈T

Pr[tj = i])2

− 1
nb

(
∑
tj∈T

Pr[s ≤ tj ≤ e])2.

Efficient Computation. The above development shows how to find the cost of a specified bucket.

Computing the minimum cost histogram requires comparing the cost of many different choices of buckets.

As in the deterministic case, since the cost is the sum of the costs of the buckets, the dynamic programming

solution can find the optimal cost. This computes the cost of the optimal j bucket solution up to position

` combined with the cost of the optimal k−j bucket solution over positions `+1 to n. This means finding

the cost of O(n2) buckets. By analyzing the form of the above expressions for the cost of a bucket, we

can precompute enough information to allow the cost of any specified bucket to be found in time O(1).

DRAFT

14

For the tuple pdf model (the value pdf model is similar but simpler) we precompute arrays of length

n:

A[e] =
e∑

i=1

(∑
tj∈T

Pr[tj = i](1− Pr[tj = i]) + (
∑
tj∈T

Pr[tj = i])2
)

B[e] =
∑
tj∈T

Pr[tj ≤ e],

for 1 ≤ e ≤ s, and set A[0] = B[0] = 0. Then, the cost SSE((s, e), b̄) is given by

A[e]−A[s− 1]− (B[e]−B[s−1])2

(e−s+1) .

With the input in sorted order, these three arrays can be computed with a linear pass over the input.

In summary:

Theorem 1: Optimal SSE histograms can be computed over probabilistic data presented in the value

pdf or tuple pdf models in time O(m + Bn2).

4.2 Sum-Squared-Relative-Error Histograms

The sum of squares of relative errors measure, SSRE over deterministic data computes the difference

between b̂, the representative value for the bucket, and each value within the bucket, and reports the

square of this difference as a ratio to the square of the corresponding value. Typically, an additional

‘sanity’ parameter c is used to limit the value of this quantity in case some values in the bucket are very

small. With probabilistic data, we take the expected value of this quantity over all possible worlds. So,

given a bucket b, the cost is

SSRE(b, b̂) = EW

[
e∑

i=s

(gi − b̂)2

max(c2, g2
i)

]
.

By linearity of expectation, the cost given b̂ can be computed by evaluating at all values of gi which have

a non-zero probability (i.e. at all v ∈ V).

Value pdf model. We write the SSRE cost in terms of the probability that, over all possible worlds, the

ith item has frequency vj ∈ V . Then,

SSRE(b, b̂) =
e∑

i=s

∑
vj∈V

Pr[gi = vj]
(vj − b̂)2

max(c2, v2
j)

. (4)

We rewrite this using the function w(x) = 1/ max(c2, x2), which is a fixed value once x is specified.

Now, our cost is

SSRE(b, b̂) =
e∑

i=s

∑
vj∈V

(
Pr[gi = vj]w(vj)v2

j

− 2 Pr[gi = vj]w(vj)vj b̂ + Pr[gi = vj]w(vj)b̂2
)
,

DRAFT

15

which is a quadratic in b̂. Simple calculus demonstrates that the optimal value of b̂ to minimize this cost

is

b̂ =

∑e
i=s

∑
vj∈V Pr[gi = vj]vjw(vj)∑e

i=s

∑
vj∈V Pr[gi = vj]w(vj)

.

Substituting this value of b̂ gives SSRE(b, b̂) =
eX

i=s

X
vj∈V

Pr[gi = vj]v
2
j w(vj)−

(
Pe

i=s

P
vj∈V Pr[gi = vj]vjw(vj))

2Pe
i=s

P
vj∈V Pr[gi = vj]w(vj)

.

Define the following arrays:

X[e] =
∑e

i=1

∑
vj∈V Pr[gi = vj]v2

j w(vj)

Y [e] =
∑e

i=1

∑
vj∈V Pr[gi = vj]vjw(vj)

Z[e] =
∑e

i=1

∑
vj∈V Pr[gi = vj]w(vj).

The cost of any bucket specified by s and e is found in constant time from these as:

min
b̂

SSE((s, e), b̂) = X[e]−X[s− 1]− (Y [e]− Y [s− 1])2

Z[e]− Z[s− 1]
.

Dynamic programming then finds the optimal set of buckets. One can also verify that if we fix w(v) = 1

for all v, corresponding to the sum of squared errors, then after rearrangement and simplification, this

expression reduces to that in Section 4.1. It also solves the deterministic version of the problem in the

case where each value pdf gives certainty of achieving a particular frequency.

Tuple pdf model. For this cost measure, the cost for the bucket b given by equation (4) is the sum of

costs obtained by each item in the bucket. We can focus solely on the contribution to the cost made by a

single item i, and observe that equation (4) depends only on the (induced) distribution giving Pr[gi = vj]:

there is no dependency on any other item. So we compute the induced value pdf (Section 3.1) for each

item independently, and apply the above analysis.

Theorem 2: Optimal SSRE histograms be can computed over probabilistic data presented in the value

pdf model in time O(m + Bn2) and O(m|V|+ Bn2) in the tuple pdf model.

4.3 Sum-Absolute-Error Histograms

Let V be the set of possible values taken on by the gis, indexed so that v1 ≤ v2 ≤ . . . ≤ v|V|. Given some

b̂, let j′ satisfy vj′ ≤ b̂ < vj′+1 (we can insert ‘dummy’ values of v0 = 0 and v|V|+1 = ∞ if b̂ falls outside

DRAFT

16

of v1 . . . v|V|). The sum of absolute errors is given by

SAE(b, b̂) =
e∑

i=s

∑
vj∈V

Pr[gi = vj]|b̂− vj |

=
e∑

i=s

(b̂− vj′) Pr[gi ≤ vj′] + (vj′+1 − b̂) Pr[gi ≥ vj′+1]

+
∑
vj∈V

Pr[gi ≤ vj](vj+1 − vj) if vj < vj′

Pr[gi > vj](vj+1 − vj) if vj ≥ vj′ .

The contribution of the first two terms can be written as

(vj′+1 − vj′) Pr[gi ≤ vj′] + (b̂− vj′+1)(Pr[gi ≤ vj′]− Pr[gi ≥ vj′+1]).

This gives a quantity that is independent of b̂ added to one that depends linearly on Pr[gi ≤ vj′]−Pr[gi >

vj′+1], which we define as ∆j′ . So if ∆j′ > 0, we can reduce the cost by making b̂ closer to vj′+1; if ∆j′ < 0,

we can reduce the cost by making b̂ closer to vj′ . Therefore, the optimal value of b̂ occurs when we make

it equal to some vj value (since, when ∆j′ = 0, we have the same result when setting b̂ to either vj′ or

vj′+1, or anywhere in between). So, we assume that b̂ = vj′ for some vj′ ∈ V and can state

SAE(b, b̂) =
e∑

i=s

∑
vj∈V

Pr[gi ≤ vj](vj+1 − vj) if b̂ > vj

Pr[gi > vj](vj+1 − vj) if b̂ ≤ vj .

Now, set

Pj,s,e =
e∑

i=s

Pr[gi ≤ vj] and P ∗
j,s,e =

e∑
i=s

Pr[gi > vj].

Observe that Pj,s,e is monotone increasing in j while P ∗
j,s,e is monotone decreasing in j. So, we have

SAE(b, b̂) =
∑
vj<b̂

Pj,s,e(vj+1 − vj) +
∑
vj≥b̂

(P ∗
j,s,e)(vj+1 − vj). (5)

There is a contribution of (vj+1−vj) for all j values, multiplied by either P [j, s, e] or P ∗[j, s, e]. Consider

the effect on SAE if we step b̂ through values v1, v2 . . . v|V|. We have

SAE(b, v`+1)− SAE(b, v`) = (P`,s,e − P ∗
`+1,s,e)(v`+1 − v`).

Because Pj,s,e is monotone increasing in j, and P ∗
j,s,e is monotone decreasing in j, the quantity P`,s,e −

P ∗
`+1,s,e is monotone increasing in `. Thus SAE(b, b̂) can have a single minimum value as b̂ is varied, and

is increasing in both directions away from this value. Importantly, this minimum does not depend on the

vj values themselves; instead, it occurs (approximately) when Pj,s,e ≈ P ∗
j,s,e ≈ nb/2, where nb = (e−s+1)

as before. It therefore suffices to find the v′j value defined by

v′j = arg min
v`∈V

∑
vj<v`∈V

Pj,s,e +
∑

vj>v`∈V
P ∗

j,s,e,

and then set b̂ = vj′ to obtain the optimal SAE cost.

DRAFT

17

Tuple and Value pdf models. In the value pdf case, it is straightforward to compute the P and P ∗ values

directly from the input pdfs. For the tuple pdf case, observe that from the form of the expression for

SAE, there are no interactions between different gi values: although the input specifies interactions and

(anti)correlations between different variables, for computing the error in a bucket we can treat each item

independently in turn. We therefore convert to the induced value pdf (at an additional cost of O(m|V|)),

and use this in our subsequent computations.

Efficient Computation. To quickly find the cost of a given bucket b, we first find the optimal b̂. We

precompute
∑

vj<` Pj,1,e(vj+1 − vj) and
∑

vj≥` P ∗
j,1,e(vj+1 − vj) values for all v` ∈ V and e ∈ [n]. Now

SAE(b, b̂) for any b̂ ∈ V can be computed (from (5)) as the sum of two differences of precomputed values.

The minimum value attainable by any b̂ can then be found by a ternary search over the values V , using

O(log |V|) probes. Finally, the cost for the bucket using this b̂ is also found from the same information.

The time cost is O(|V|n) preprocessing to build tables of prefix sums, and O(log |V|) to find the optimal

cost of a given bucket. Therefore,

Theorem 3: Optimal SAE histograms can be computed over probabilistic data presented in the (induced)

value pdf model in time O(n(|V|+ Bn + n log |V|)).

For all of models of probabilistic data, |V| ≤ m is polynomial in the size of the input, so the total cost

is also polynomial.

4.4 Sum-Absolute-Relative-Error Histograms

For sum of absolute relative errors, bucket cost SARE(b, b̂) is

EW(
e∑

i=s

|gi − b̂|
max(c, gi)

) =
e∑

i=s

∑
vj∈V

Pr[gi = vj]
max(c, vj)

|vj − b̂| =
e∑

i=s

∑
vj∈V

wi,j |vj − b̂|,

where we define wi,j = Pr[gi=vj]
max(c,vj)

. But, more generally, the wi,j can be arbitrary non-negative weights.

This expression is more complicated than the squared relative error version due to the absolute value in

the numerator. Setting j′ so that vj′ ≤ b̂ ≤ vj′+1, we can write the cost as

e∑
i=s

∑
vj∈V

wi,j(b̂− vj) if vj < b̂

wi,j(vj − b̂) if vj ≥ b̂

=
e∑

i=s

∑
vj∈V

wi,j(b̂− vj′ +
∑

vj≤v`<vj′ v`+1 − v`) if vj < b̂

wi,j(vj′ − b̂ +
∑

vj′≤v`<vj
v`+1 − v`) if vj ≥ b̂.

(6)

We define Wi,j =
∑j

r=1 wi,r and W ∗
i,j =

∑|V |
r=j+1 wi,r, so that, rearranging the previous sum, the cost is

SARE(b, b̂) =
e∑

i=s

Wi,j′(b̂− vj′)−W ∗
i,j(b̂− vj′+1) +

∑
vj∈V

Wi,j(vj+1 − vj) for vj′ > vj

W ∗
i,j(vj − vj−1) for vj′ ≤ vj .

DRAFT

18

The same style of argument as above suffices to show that the optimal choice of b̂ is when b̂ = vj′ for

some j′. We define Pj,s,e =
∑e

i=s Wi,` and P ∗
j,s,e =

∑e
i=s W ∗

i,`, so we have

SARE(b, b̂) =
∑

vj′>vj∈V

Pj,s,e(vj+1 − vj) +
∑

vj′≤vj∈V

P ∗
j,s,e(vj+1 − vj).

Observe that this matches the form of (5). As in Section 4.3, Pj,s,e is monotone increasing in j, and

P ∗
j,s,e is decreasing in j. Therefore, the same argument holds to show that there is a unique minimum

value of SARE, and it can be found by a ternary search over the range. Likewise, the form of the cost in

equation (6) shows that there are no interactions between different items, so we work in the (induced)

value pdf model. By building corresponding data structures based on tabulating prefix sums of the new

P and P ∗ functions, we conclude:

Theorem 4: Optimal SARE histograms can be computed over probabilistic data presented in the tuple

and value pdf models in time O(n(|V|+ Bn + n log |V| log n)).

4.5 Max-Absolute-Error and Max-Absolute-Relative-Error

Thus far, we have relied on the linearity of expectation and related properties such as summability of

variance to simplify the expressions of cost and aid in the analysis. When we consider other error metrics,

such as the maximum error and maximum relative error, we cannot immediately use such linearity

properties, and so the task becomes more involved. Here, we provide results for maximum absolute

error and maximum absolute relative error, MAE and MARE. Over a deterministic input, the maximum

error in a bucket b is MAE(b, b̂) = maxs≤i≤e |gi − b̂|, and the maximum relative error is MARE(b, b̂) =

maxs≤i≤e
|gi−b̂|

max(c,gi)
. We focus on bounding the maximum value of the per-item expected error1. Here, we

consider the frequency of each item in the bucket in turn for the expectation, and then take the maximum

over these costs. So, we can write the costs as

MAE(b, b̂) = max
s≤i≤e

∑
vj∈V

Pr[gi = vj]|vj − b̂|

MARE(b, b̂) = max
s≤i≤e

∑
vj∈V

Pr[gi = vj]
max(c, vj)

|vj − b̂|.

We can represent these both as maxs≤i≤e

∑|V |
j=1 wi,j |vj − b̂|, where wi,j are non-negative weights indepen-

dent of b̂. Now observe that we have the maximum over what can be thought of as nb parallel instances of

a sum-absolute relative error (SARE) problem, one for each i value. Following the analysis in Section 4.4,

we observe that each function fi(b) =
∑|V|

j=1 |vj − b̂| has a single minimum value, and is increasing away

from its minimum. It follows that the upper envelope of these functions, given by maxs≤i≤e fi(b) also

has a single minimum value, and is increasing as we move away from this minimum. So we can perform

1. The alternate formulation, where we seek to minimize the expectation of the maximum error, is also plausible, and worthy of

further study.

DRAFT

19

a ternary search over the values of vj to find j′ such that the optimal b̂ lies between vj′ and vj′+1. Each

evaluation for a chosen value of b̂ can be completed in time O(nb): that is, O(1) for each value of i,

by creating the appropriate prefix sums as discussed in Section 4.4 (it is possible to improve this cost

by appropriate precomputations, but this will not significantly alter the asymptotic cost of the whole

operation). The ternary search over the values in V takes O(log |V|) evaluations, giving a total cost of

O(nb log |V|).

Knowing that b̂ must lie in this range, the cost is of the form

MARE(b, b̂) = max
s≤i≤e

αi(b̂− vj′) + βi(vj′+1 − b̂) + γi = max
s≤i≤e

b̂(αi − βi) + (γi + βivj′+1 − αivj′),

where the αi, βi, γi values are determined solely by j′, the wi,j ’s and the vjs, and are independent of b̂.

This means we must now minimize the maximum value of a set of univariate linear functions in the

range vj′ ≤ b̂ ≤ vj′+1. A divide-and-conquer approach, based on recursively finding the intersection of

convex hulls of subsets of the linear functions yields an O(nb log nb) time algorithm2. Combining these,

we determine that evaluating the optimal b̂ and the corresponding cost for a given bucket takes time

O(nb log nb|V|). We can then apply the dynamic programming solution, since the principle of optimality

holds over this error objective. Because of the structure of the cost function, it suffices to move from the

tuple pdf model to the induced value pdf, and so we conclude,

Theorem 5: The optimal B bucket histogram under maximum-absolute-error (MAE) and maximum-

absolute-relative-error (MARE) over data in either the tuple or value pdf models can be found in time

O(n2(B + n log n|V|)).

5 HAAR WAVELETS ON PROBABILISTIC DATA

We first present our results on the core problem of finding the B term optimal wavelet representation

under sum-squared error, and then discuss extensions to other error objectives.

5.1 SSE-Optimal Wavelet Synopses

Any input defining a distribution over original gi values immediately implies a distribution over Haar

wavelet coefficients ci. Assume that we are already in the transformed Haar wavelet space; that is, we

have a possible-worlds distribution over Haar DWT coefficients, with ci(W) denoting the instantiation

of ci in world W (defined by the gi(W)s). Our goal is to pick B coefficient indices I and corresponding

coefficient values ĉi for each i ∈ I to minimize the expected SSE in the data approximation. By Parseval’s

theorem [31] and linearity of the Haar transform in each possible world, the SSE of the data approximation

is the SSE in the approximation of the normalized wavelet coefficients. By linearity of expectation, the

2. The same underlying optimization problem arises in a weighted histogram context—see [17] for the full details.

DRAFT

20

expected SSE for the resulting synopsis Sw(I) is:

EW [SSE(Sw(I))] =
∑
i∈I

EW [(ci − ĉi)2] +
∑
i 6∈I

E[(ci)2].

Suppose we are to include i in our index set I of selected coefficients. Then, the optimal setting of ĉi is

the expected value of the ith (normalized) Haar wavelet coefficient, by the same argument style as Fact 1.

That is,

µci = EW [ci] =
∑
wj

Pr[ci = wj] · wj ,

computed over the set of values taken on by the coefficients, wj . Further, by linearity of expectation and

the fact that the Haar wavelet transform can be thought of as a linear operator H applied to the input

vector A, we have

µci = EW [Hi(A)] = Hi(EW [A]).

In other words, we can find the µci ’s by computing the wavelet transform of the expected frequencies,

EW(gi). So, the µci
’s can be computed with linear effort from the input, in either tuple pdf or value pdf

form. Based on the above observation, we can rewrite the expected SSE as:

EW [SSE(Sw(I))] =
∑
i∈I

σ2
ci

+
∑
i 6∈I

E[(ci)2],

where σ2
ci

= VarW [ci] is the variance of ci. From the above expression, it is clear that the optimal strategy is

to pick the B coefficients giving the largest reduction in the expected SSE (since there are no interactions

across coefficients); furthermore, the “benefit” of selecting coefficient i is exactly E[(ci)2]−σ2
ci

= µ2
ci

. Thus,

the thresholding scheme that optimizes expected SSE is to simply select the B Haar coefficients with

the largest (absolute) expected normalized value. (This scheme naturally generalizes the conventional

deterministic SSE thresholding case (Section 3.2).)

Theorem 6: With O(n) time and space, we can compute the optimal SSE wavelet representation of

probabilistic data in the tuple and value pdf models.

Example. Suppose again that we have a distribution on wavelet coefficients (1, 2, 3), defined by the tuples

(1, 1
2), (2, 1

3), (2, 1
4), (3, 1

2). 2 has the largest absolute mean, of 7
12 . Picking this as the k = 1 coefficient

representation incurs expected error σ2
1 + 1

212 + 1
212 = 1 + 708

123 = 1.4097.

5.2 Wavelet Synopses for non-SSE Error

The DP recurrence formulated over the Haar coefficient error tree for non-SSE error metrics in the

deterministic case (Section 3.2) extends naturally to the case of probabilistic data. The only change is

that we now define OPTW[j, b, v] to denote the expected optimal value for the error metric of interest

under the same conditions as the deterministic case. The recursive computation steps remain exactly the

same. The interesting point with the coefficient-tree DP recurrence is that almost all of the actual error

DRAFT

21

computation takes place at the leaf (i.e., data) nodes of the tree — the DP recurrences combine these

computed error values appropriately in a bottom-up fashion. For deterministic data, the error at a leaf

node i with an incoming value of v from its parents is just the point error metric of interest with ĝi = v;

that is, for leaf i, we compute OPTW[i, 0, v] = err(gi, v) which can be done in O(1) time (note that leaf

entries in OPTW[] are only defined for b = 0 since space is never allocated to leaves).

In the case of probabilistic data, such leaf-error computations are a little more complicated since we

now need to compute the expected point-error value

EW [err(gi, v)] =
∑
W

Pr[W] · err(gi(W), v),

over all possible worlds W ∈ W . But this computation can still be done in O(1) time assuming pre-

computed data structures similar to those we have derived for error objectives in the histogram case. To

illustrate the main ideas, consider the case of absolute relative error metrics, i.e., err(gi, ĝi) = w(gi) · |gi− ĝi|

where w(gi) = 1/ max{c, |gi|}. Then, we can expand the expected error at gi as follows:

OPTW[i, 0, v] = EW [w(gi) · |gi − v|] =
∑
vj∈V

Pr[gi = vj]w(vj) ·

(v − vj) if v > vj

(vj − v) if v ≤ vj ,

where, as earlier, V denotes the set of possible values for any frequency random variable gi. So, we have

an instance of a sum-absolute-relative-error problem, since the form of this optimization matches that in

Section 4.3. By precomputing appropriate arrays of size O(|V|) for each i, we can search for the optimal

“split point” vj′ ∈ V in time O(log |V|).

We can do the above computation in O(log |V|) time by precomputing two O(n|V|) arrays A[i, x], B[i, x],

and two O(n) arrays C[i], D[i], defined as follows:

A[i, x] =
∑
v′≤x

Pr[gi = v′]w(v′) C[i] =
∑
v′

Pr[gi = v′]w(v′)

B[i, x] =
∑
v′≤x

Pr[gi = v′]v′w(v′) D[i] =
∑
v′

Pr[gi = v′]v′w(v′),

for all i ∈ [n] and all possible “split points” x ∈ V . Then, given an incoming contribution v from ancestor

nodes, we perform a logarithmic search to recover the largest value xv ∈ V such that xv ≤ v, and compute

the expected error as:

EW [w(gi) · |gi − v|] = v(2A[i, xv]− C[i]) + D[i]− 2B[i, xv].

The above precomputation ideas naturally extend to other error metrics as well, and allow us to

easily carry over the algorithms and results (modulo the small O(log |V|) factor above) for the restricted

case, where all coefficient values are fixed, e.g., to their expected values as required for expected SSE

minimization. The following theorem summarizes:

DRAFT

22

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum squared errror, n=10
4

Probabilistic
Expectation

Sampled World

(a) Squared error

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum of Absolute Error n=10
4

Probabilistic
Expectation

Sampled World

(b) Absolute error

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

T
im

e
 /
 s

Buckets

Sum Squared Relative Error Time Cost, n=10
4

(c) Time as B varies

Fig. 2. Results on Histogram Computation

Theorem 7: Optimal restricted wavelet synopses for non-SSE error metrics can be computed over data

presented in the (induced) value pdf model in time O(n(|V|+ n log |V|)).

For the unrestricted case, additional work is needed in order to effectively bound and quantize the range

of possible coefficient values to consider in the case of probabilistic data at the leaf nodes of the tree.

One option is to consider pessimistic coefficient-range estimates (e.g., based on the minimum/maximum

possible frequency values) — this implies a guaranteed range of coefficient values, and the techniques of

Guha and Harb [15] can be directly applied to restrict the search space of the unrestricted DP. Another

option would be to employ some tail bounds on the gi’s (e.g., Chernoff bounds since tuples can be seen

as binomial variables) to derive tighter, high-probability ranges for coefficient values (which can then be

quantized and approximated as in [15]) — this approach effectively trades off a faster DP for a small

probability of error.

DRAFT

23

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum squared relative error, n=10
4
, c=0.1

Probabilistic
Expectation

Sampled World

(a) Squared relative error with c = 0.1

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum squared relative error, n=10
4
, c=0.5

Probabilistic
Expectation

Sampled World

(b) Squared relative error with c = 0.5

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum squared relative error, n=10
4
, c=1.0

Probabilistic
Expectation

Sampled World

(c) Squared relative error with c = 1.0

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum of Relative Errors, n=10
4
, c=0.1

Probabilistic
Expectation

Sampled World

(d) Relative error with c = 0.1

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum of Relative Errors, n=10
4
, c=0.5

Probabilistic
Expectation

Sampled World

(e) Relative error with c = 0.5

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Buckets

Sum of Relative Errors, n=10
4
 c=1.0

Probabilistic
Expectation

Sampled World

(f) Relative error with c = 1.0

Fig. 3. Results on Histogram Computation with Relative Error

DRAFT

24

6 EXPERIMENTS

We implemented our algorithms in C, and carried out a set of experiments to compare the quality and

scalability of our results against those from naively applying methods designed for deterministic data.

Experiments were performed on a desktop 2.4GHz machine with 2GB RAM.

Data Sets. We experimented using a mixture of real and synthetic data sets. The real dataset came from

the MystiQ project3 which includes approximately m = 127, 000 tuples describing 27, 700 distinct items.

These correspond to links between a movie database and an e-commerce inventory, so the tuples for each

item define the distribution of the number of expected matches. This uncertain data provides input in the

basic model. Synthetic data was generated using the MayBMS [1] extension to the TPC-H generator 4. We

used the lineitem-partkey relation, where the multiple possibilities for each uncertain item are interpreted

as tuples with uniform probability over the set of values in the tuple pdf model.

Sampled Worlds and Expectation. We compare our methods to the two naive methods of building a

synopsis for uncertain data using deterministic techniques discussed in Section 3.3. The first is to simply

sample a possible world, and compute the (optimal) synopsis for this deterministic sample, as in [22]. The

second is to compute the expected frequency of each item, and build the synopsis of this deterministic

input. This can be thought of as equivalent to sampling many possible worlds, combining and scaling

the frequencies of these, and building the summary of the result. For consistency, we use the same code

to compute the respective synopses over both probabilistic and certain data, since deterministic data is

a special case of probabilistic data in the value pdf model.

6.1 Histograms on Probabilistic Data

We use our methods described in Section 4 to build the histogram over n items using B buckets, and

compute the cost of the histograms under the relevant metric (e.g. SSE, SARE, etc.). Observe that, unlike

in the deterministic case, a histogram with B = n buckets does not have zero error: we have to choose a

fixed representative b̂ for each bucket, so any bucket with some uncertainty will have a contribution to

the expected cost. We therefore compute the percentage error of a given histogram as the fraction of the

cost difference between the one bucket histogram (largest achievable error) and the n bucket histogram

(smallest achievable error).

Quality. For uniformity, we show results for the MystiQ movie data set; results on synthetic data were

similar, and are omitted for brevity. The quality of the different methods on the same n = 10, 000 distinct

data items is shown in Figures 2 and 3. In each case, we measured the cost for using up to 1000 buckets

over the four cumulative error measures: SSE, SSRE, SAE, and SARE. We show two values of the sanity

3. http://www.cs.washington.edu/homes/suciu/project-mystiq.html

4. http://www.cs.cornell.edu/database/maybms/

DRAFT

25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

T
im

e
 /
 s

n

Sum Squared Relative Error Time Cost, B=200

(a) Time as n varies

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

E
rr

o
r

%

Coefficients

SSE Wavelets, Movie data, n=2
15

Probabilistic
Sample

(b) Wavelets on real data

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

E
rr

o
r

%

Coefficients

SSE Wavelets, Synthetic Data, n=2
15

Probabilistic
Sample

(c) Wavelets on synthetic data

Fig. 4. Histogram timing costs and results on Wavelet Computation

constant for relative error, c = 0.5 and c = 1.0. Since our results show that the dynamic programming

finds the optimum set of buckets, there is no surprise that the cost is always smaller than the two naive

methods. Figure 3(b) shows a typical case for relative error: the probabilistic method is appreciably better

than using the expected costs, which in turn is somewhat better than building the histogram of a sampled

world. We show the results for three independent samples to show that there is fairly little variation in

the cost. For SSE and SAE (Figure 2(a) and 2(b)), while using a sampled world is still poor, the cost of

using the expectation is very close to that of our probabilistic method. The reason is that the histogram

obtains the most benefit by putting items with similar behavior in the same bucket, and on this data,

the expectation is a good indicator of behavioral similarity. This is not always the case, and indeed,

Figure 2(b) shows that while our method obtains the smallest possible error with about 600 buckets,

using the expectation never finds this solution. Other values of c tend to vary smoothly between two

DRAFT

26

extremes: increasing c allows the expectation method to get closer to the probabilistic solution (as in

Figure 3(f)). This is because as c approaches the maximum achievable frequency of any item, there is

no longer any dependency on the frequency, only on c, and so the cost function is essentially a scaled

version of the squared error or absolute error respectively. Reducing c towards 0 further disadvantages

the expectation method, and it has close to 100% error even when a very large number of buckets are

provided; meanwhile, the probabilistic method smoothly reduces in error down to zero.

Scalability. Figures 2(c) and 4(a) show the time cost of our methods. We show the results for SSE,

although the results are very similar for other metrics, due to a shared code base. We see a strong linear

dependency on the number of buckets, B, and a close to quadratic dependency on n (since as n doubles,

the time cost slightly less than quadruples). This confirms our analysis that shows the cost is dominated

by an O(Bn2) term. The time to apply the naive methods is almost identical, since they both ultimately

rely on solving a dynamic program of the same size, which dwarfs any reduced linear preprocessing

cost. Therefore, the cost is essentially the same as for deterministic data. The time cost is acceptable, but

it suggests that for larger relations it will be advantageous to pursue the faster approximate solutions

outlined in Section 7.2.

6.2 Wavelets on Probabilistic Data

We implemented our methods for computing wavelets under the SSE objective. Here, the analysis shows

that the optimal solution is to compute the wavelet representation of the expected data (since this is

equivalent to generating the expected values of the coefficients, due to linearity of the wavelet transform

function), and then pick the B largest coefficients. We contrast to the effect of sampling possible worlds

and picking the coefficients corresponding to the largest coefficients of the sampled data. We measure the

error by computing the sum of the square of the µci ’s not picked by the method, and expressing this as a

percentage of the sum of all such µci
’s, since our analysis demonstrates that this is the range of possible

error (Section 5.1). Figures 4(b) and 4(c) shows the effect of varying the number of coefficients B on the

real and synthetic data sets: while increasing the number of coefficients improves the cost in the sampled

case, it is much more expensive than the optimal solution. Both approaches take the same amount of

time, since they rely on computing a standard Haar wavelet transform of certain deterministic data: it

takes linear time to produce the expected values and then compute the coefficients; these are sorted to

find the B largest. This took much less than a second on our experimental set up.

7 EXTENSIONS

7.1 Multi-Dimensional Histograms

In this paper, we primarily consider summarizing one-dimensional probabilistic relations, since even

these can be sufficiently large to merit summarization. But, probabilistic databases can also contain rela-

tions which are multi-dimensional: these capture information about the correlation between the uncertain

DRAFT

27

attribute and multiple data dimensions. The description of such relations are naturally even larger, and

so even more deserving of summarization.

Our one-dimensional data can be thought of as defining a conditional distribution: given a value i,

we have a random variable X whose distribution is conditioned on i. Extending this to more complex

data, we have a random variable X whose distribution is conditioned on d other values: i, j, k This

naturally presents us with a multi-dimensional setting. In one dimension we argued that the typical case

is that similar values of i lead to similar distributions, which can be grouped together and replaced with

a single representative Similarly, the assumption is that similar regions in the multi-dimensional space

will have similar distributions, and so can be replaced by a common representative. Now, instead of

ranges of pdfs, the buckets will correspond to axis-aligned (hyper)rectangles in d-dimensional space.

More formally, in this setting each tuple tj is drawn from the cross-product of d ordered domains.

Without loss of generality, these can be thought of as defining d dimensional arrays, where each entry

consists of a probability distribution describing the behavior of the corresponding item. The goal is then to

partition this array into B (hyper)rectangles, and to retain a single representative of each (hyper)rectangle.

Our primary results above translate to this situation: given a (hyper)rectangle of pdfs, the optimal

representative for each error metric obeys the same properties. The intuition behind this is that while

the choice of a bucket depends on the ordered dimensions, the error within a bucket (and, hence, the

optimal representative) depends only on the set of pdfs which are within the bucket. For example, the

optimal representative for SSE is still the mean value of all the pdfs in the bucket. However, due to the

layout of the data, employing dynamic programming becomes more costly: firstly, because the dynamic

program has to consider a greater space of possible partitionings, and, secondly, because it may be more

difficult to quickly find the representative of a given (hyper)rectangle.

Consider the case of two-dimensional data under SSE. To find the cost of any given rectangular bucket,

we need to find the cost as given by (3). For the one-dimensional case, this can be done in constant time

by writing this expression as a function of a small number of terms, each of which can be computed for

the bucket based on prefix sums. The same concept applies in two-dimensions: given a bucket defined

by (s1, e1, s2, e2), we can find the sum of probabilities within the bucket in the tuple pdf model (say) by

precomputing B[e1, e2] =
∑

tj∈T Pr[tj ∈ (0, e1, 0, e2)], i.e. the sum of probabilities that tuples fall in the

rectangle (0, e1, 0, e2). Then, the sum of probabilities for only the bucket is given by∑
tj∈T

Pr[tj ∈ (s1, e1, s2, e2)] = B[e1, e2]−B[e1, s2 − 1]−B[s1 − 1, e2] + B[s1 − 1, s2 − 1].

Similar calculations follow naturally for other quantities (these are spelled out in detail in [18]). The

same principle extends to higher dimensions for finding the sum of values within any axis-aligned

(hyper)rectangle by evaluating an expression of 2d terms based on the Inclusion-Exclusion Principle (the

above case illustrates this for d = 2). This requires precomputing and storing a number of sums that is

linear in the size of the multi-dimensional domain.

DRAFT

28

Fig. 5. Hierarchical partitioning of 2-dimensional data into B = 7 buckets

For a multi-dimensional space, the expression of the dynamic program becomes more complex. As

already demonstrated for conventional histograms by Muthukrishnan et al. [28], even in two dimensions,

it becomes much more challenging to consider all possible bucketings. Here, we restrict our attention to

“hierarchical” bucketings: these are partitions which can be formed by first “cutting” the space either

top-to-bottom or left-to-right to give two rectangles. These, in turn, are both sub-partitioned by cuts which

split the rectangle into two (see Figure 5). A dynamic program can then consider the optimal highest

level split (left-to-right or top-to-bottom) by considering all possible splits and allocations of b buckets to

one side and B − b to the other (the central split in Figure 5 allocates 5 buckets to the left and 2 to the

right). These in turn are computed recursively from smaller rectangles. The cost of this dynamic program

is polynomial in the size of the input domains, but somewhat high: given an n× n input domain, there

are O(n4) possible rectangles to consider, each of which has O(n) possible ways to split. Of course, as

the dimensionality of the input space increases, this cost only grows higher.

7.2 Approximate and Heuristic Histogram Computations

As observed in the experimental study, for moderately large probabilistic relations, it can become very

expensive and time-consuming to build these summaries for larger data sets. Indeed, the same issues arise

in the context of histograms over deterministic data, and for the same reason: the dynamic programming

approach incurs a cost that is quadratic in the size of the data domain, n. Consequently, our results so far

all cost at least Ω(Bn2) due to the use of dynamic programming to find the optimal bucket boundaries.

As has been observed in prior work, it is not always profitable to expend so much effort when the

resulting histogram only approximates original input; clearly, if we tolerate some approximation in this

way, then we should also be able to tolerate a histogram which achieves close to the optimal cost rather

than exactly the optimal. In particular, we should be happy to find a histogram whose cost is at most

(1 + ε) times the cost of the optimal histogram in time much faster than Ω(Bn2).

DRAFT

29

Here, we adopt the approach of Guha et al. [13], [16]. Instead of considering every possible bucket, we

use properties of the error measure, and consider only a subset of possible buckets, much accelerating the

search. We observe that the following conditions hold for all the previously considered error measures:

(1) The error of a bucket only depends on the size of the bucket and the distributions of the items falling

within it; (2) The overall error is the sum of the errors across all buckets; (3) We can maintain information

so that given any bucket b the best representative b̂ and corresponding error can be computed efficiently;

(4) The error is monotone, so that the error for any interval of items is no less than the error of any

contained subinterval; and, (5) The total error cost is bounded as a polynomial in the size of the input.

Most of our work so far has been in giving analysis and techniques to support point (3) above; the

remainder of the points are simple consequences of the definition of the error measure. As a result of

these properties, we invoke Theorem 6 of [16], and state

Theorem 8: With preprocessing as described above, we find a (1 + ε)-approximation to the optimal

histogram for SSE, SSRE, SAE and SARE, with O(1
ε B2n log n) bucket cost evaluations using the algorithm

given in [16].

This has the potential to be very practical since, for large enough values of n, it is likely that 1
ε B �

n/ log n, making the approximate computation asymptotically better. Based on picking ε as a constant (say,

ε = 0.1) and B of the order of a few hundred, this suggests that for n in the range of tens of thousands and

above would show clear improvements. It remains to validate this tradeoff experimentally, but based on

the increasing cost as n increases of the exact approach, it seems likely that some form of approximation

or heuristics would be necessary to implement such histograms scalably within a practical system.

An alternative is to look for efficient heuristics to allow us to define the histograms. In contrast to

the approximation approach, these would give no strict guarantee on the quality of the result, but can

be potentially much simpler to implement robustly within a probabilistic database management system.

Indeed, over deterministic data, the majority of deployed systems use some form of heuristic to determine

histogram boundaries. We explain how these can be adapted to the probabilistic setting:

• Equi-width histograms. The equi-width histogram is the simplest bucketing schemes: it simply

divides the range of of the data into B buckets each of width n/B. Within a bucket, we can quickly

find a representative using whichever of the metrics we prefer: SSE, SSRE etc.

• Equi-depth histograms. Over a deterministic data set, the boundaries of the buckets of an equi-

depth histogram correspond to the quantiles of the overall data distribution. In our setting, we have

a pdf for each position, a naive application of this concept would be equivalent to the equi-width

histogram, i.e. would uniformly divide up the range. However, a natural extension of our scenario

allows some values to be missing a pdf; more generally, we could allow a “workload” to tell us

the relative importance of different parts of the domain. Based on either of these, it is then natural

to uniformly divide up the range based on the workload or number of present pdfs, to provide

a equi-depth probabilistic histogram. As above, we can then use our method of choice to pick a

DRAFT

30

(a) Original distribution c (b) Approximate distribution ĉ (c) Cumulative distribution

function Fĉ

Fig. 6. Representing a coefficient distribution with an approximate distribution

representative for each bucket.

• Singleton-bucket histograms. Another concept from deterministic data is to identify a small number

of locations where the data value is very different from that of the neighbors, and separately represent

these within “singleton-buckets”. These include high-biased histograms, which pick out the largest

frequency values, and end-biased histograms which pick out both the largest and smallest frequency

values. A similar concept can be applied to probabilistic data, but it is less clear what notion to use to

identify the “outlier” pdfs to represent separately. One simple notion is to take the mean or median

value in each pdf and apply the end-biased or high-biased heuristic to these: pdfs with a much

higher or lower mean (or median) are assumed to be unlike their neighbors, and more appropriate

to represent separately.

7.3 Probabilistic Bucket Representatives

Our summaries adopt the traditional representation of histograms and wavelets, which do not contain

any probabilistic information. This is convenient from the perspective of using the resulting summaries,

since they can be immediately used by any system which expects such well-understood summaries.

However, this also limits the extent to which more complex queries can be answered approximately by

the synopses. A natural question is to understand how such summaries can be enhanced by storing more

probabilistic information. In particular, one can imagine replacing the single bucket representative value

with a (compact, perhaps also a histogram) bucket pdf. In this case, new techniques are needed to find

the best such bucket pdf, and for working with summaries of this form.

Consider, for example, the case of wavelets under SSE. When we “pick” a coefficient value and store

its expected value, this is essentially equivalent to choosing a distribution all of whose mass is placed

at a single location. We could instead consider choosing other distributions where the mass is spread

over multiple different locations. This is illustrated in Figure 6: the mean of the pdf in Figure 6(a) is far

from the mass of the distribution, so would contribute a large SSE even if the coefficient were chosen.

DRAFT

31

Suppose we choose to represent the ith coefficient with an (approximate) pdf ĉi which indicates that

Pr[ĉi = vj] = pj for some set of k values vj . For example, Figure 6(b) shows an approximate pdf ĉ that

better captures the shape of Figure 6(a). We can denote the cumulative distribution function (cdf) of c as

Fc, and similarly for ĉ as Fĉ. For the sum squared error in this setting, we obtain

EW [(ci − ĉi)2] =
∑

x

Pr[c = x](x− F−1
ĉ (Fc(x)))2

That is, the cost of moving probability mass Pr[c = x] from x to where it is represented by ĉ, which is

given by F−1
ĉ (Fc(x)). This generalizes the previous case where all the mass was placed at a single location

ĉ: there, the implicit cdf was such that F−1
ĉ (p) = ĉ for all probabilities p. Figure 6(c) shows that the cdf

of the approximate distribution in Figure 6(b). This definition can also be thought of as a special case

of the “Earth Mover’s Distance”, which measures the cost of moving probability mass within a metric

space. This distance has been used widely in comparing distributions over an ordered domain, and is

the natural extension of SSE to the case of a summarizing pdf [30], [27].

To optimize this error measure, observe that if we set v1 so that Pr[ĉ = v1] = p1 for a particular p1

and try to choose the best v1, the optimal v1 is given by v1 =
∑

v:Fc(v)≤p1
Pr[c = v]v/p1, i.e. the weighted

average of the first p1 mass of probability from the distribution c (this is a natural generalization of Fact

1). Having found the optimal first representative, we can then “remove” the first p1 of probability mass

from c and continue on the remainder. This approach naturally lends itself to a dynamic programming

solution to find the optimal B term representation of a single coefficient c, where the choice is made over

the total probability mass allocated to the first b terms. The cost of this can be bounded by observing

that we only need consider probability values which occur within the distribution c, i.e. only over the

(discrete) values of F (c). Since c itself is formed from the Haar wavelet transform of the input, there

are at most O(|V| log n) such values. Hence, the dynamic programming can find these costs for a single

coefficient in time O(B|V| log n).

However, our goal is to find the optimal wavelet representation of all coefficients. Again, we can turn

to dynamic programming over the number of terms allocated, b, to summarize the first i coefficients

while minimizing the sum squared error. To do this, we first carry out the above dynamic programming

for all coefficients, and then consider allocating 0 . . . B terms to represent the ith coefficient in turn.

Accordingly, the total time to find the best probabilistic wavelet representation with a total of B terms

is O(Bn|V| log n + B2n).

The case for finding optimal histograms with pdfs to represent the buckets adds similar new challenges.

Some recent results in this direction are documented in [6].

8 CONCLUDING REMARKS

We have introduced the probabilistic data reduction problem, and given results for a variety of cumulative

and maximum error objectives, for both histograms and wavelets. Empirically, we see that the optimal

DRAFT

32

synopses can accurately summarize the data and are significantly better than simple heuristics. It remains

to better understand how to approximately represent and process probabilistic data, and to extend our

results to even more expressive models. So far, we have focused on the foundational one-dimensional

problem, but is also important to study multi-dimensional generalizations in greater detail. The error

objective formulations we have analyzed implicitly assume uniform workloads for point queries, and

so it remains to address the case when in addition to a distribution over the input data, there is also a

distribution over the queries to be answered.

Another direction for further research is in modeling and summarizing data which contains correlations

between tuples. Our work so far has assumed tuple independence: the input data treats all tuples (in the

tuple pdf model) or frequencies (in the value pdf model) as independent random variables. In some

situations, there are non-trivial correlations between tuples, which are not captured by these models.

One example of a more complex model which captures tuple dependencies is a Markov model where

the probability distribution of tuple depends on a recent history of previous tuples—for example, for

time-based data, the probability of the next tuple is conditioned on a constant number of the d most

recent tuples preceding it [26]. It is certainly possible to extend the approaches advocated here for more

compactly representing this data: we can think of each of the d values that the distribution depends on

as defining a point in d-dimensional space. If we can assume that the distributions conditioned on points

that are close in this space are similar, then we can apply the histogramming approach to more compactly

represent the full description of the distribution. However, this still leaves open the question of accurately

answering queries over such data: now, queries may be of the form “given an initial marginal distribution,

approximate the distribution n steps in the future” or, “given a current distribution, approximate the

probability that a certain event (or sequence of events) happened within the last n steps” [26]. For such

queries, new approaches to answering are needed, which may require new summarization methods.

Acknowledgments

We thank Sudipto Guha for some useful suggestions; Dan Suciu for the MystiQ data, and Dan Olteanu

for synthetic data from the MayBMS system.

DRAFT

33

REFERENCES

[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and simple relational processing of uncertain data,” in IEEE International

Conference on Data Engineering, 2008.

[2] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widomn, “An introduction to ULDBs and the Trio system,” IEEE Data

Engineering Bulletin, vol. 29, no. 1, pp. 5–16, Mar. 2006.

[3] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu, “Mystiq: A system for finding more answers by using

probabilities,” in ACM SIGMOD International Conference on Management of Data, 2005.

[4] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate query processing using wavelets,” in International

Conference on Very Large Data Bases, 2000.

[5] G. Cormode and M. Garofalakis, “Sketching probabilistic data streams,” in ACM SIGMOD International Conference on

Management of Data, 2007.

[6] G. Cormode, A. Deligiannakis, M. Garofalakis, and A. McGregor, “Probabilistic histograms for probabilistic data,” in

International Conference on Very Large Data Bases, 2009.

[7] G. Cormode and A. McGregor, “Approximation algorithms for clustering uncertain data,” in ACM Principles of Database Systems,

2008.

[8] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic databases,” in International Conference on Very Large Data

Bases, 2004.

[9] N. N. Dalvi and D. Suciu, “Management of probabilistic data: foundations and challenges,” in ACM Principles of Database

Systems, 2007.

[10] M. Garofalakis and P. B. Gibbons, “Approximate query processing: Taming the terabytes,” in International Conference on Very

Large Data Bases, 2001.

[11] ——, “Probabilistic wavelet synopses,” ACM Transactions on Database Systems, vol. 29, no. 1, Mar. 2004.

[12] M. Garofalakis and A. Kumar, “Wavelet synopses for general error metrics,” ACM Transactions on Database Systems, vol. 30,

no. 4, Dec. 2005.

[13] S. Guha, N. Koudas, and K. Shim, “Data streams and histograms,” in ACM Symposium on Theory of Computing, 2001, pp.

471–475.

[14] S. Guha, K. Shim, and J. Woo, “REHIST: Relative error histogram construction algorithms,” in International Conference on Very

Large Data Bases, 2004.

[15] S. Guha and B. Harb, “Wavelet synopsis for data streams: minimizing non-euclidean error,” in ACM SIGKDD, 2005.

[16] S. Guha, N. Koudas, and K. Shim, “Approximation and streaming algorithms for histogram construction problems,” ACM

Transactions on Database Systems, vol. 31, no. 1, pp. 396–438, 2006.

[17] S. Guha and K. Shim, “A note on linear time algorithms for maximum error histograms,” IEEE Transactions on Knowledge and

Data Engineering, vol. 19, no. 7, pp. 993–997, 2007.

[18] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, “Range queries in olap data cubes,” in ACM SIGMOD International Conference

on Management of Data, 1997.

[19] Y. E. Ioannidis and V. Poosala, “Balancing histogram optimality and practicality for query result size estimation,” in ACM

SIGMOD International Conference on Management of Data, 1995, pp. 233–244.

[20] Y. E. Ioannidis, “The history of histograms (abridged),” in International Conference on Very Large Data Bases, 2003.

[21] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel, “Optimal histograms with quality guarantees,”

in International Conference on Very Large Data Bases, 1998.

[22] R. Jampani, L. L. Perez, F. Xu, C. Jermaine, M. Wi, and P. Haas, “MCDB: A monte carlo approach to managing uncertain

data,” in ACM SIGMOD International Conference on Management of Data, 2008.

[23] T. S. Jayram, S. Kale, and E. Vee, “Efficient aggregation algorithms for probabilistic data,” in ACM-SIAM Symposium on Discrete

Algorithms, 2007.

[24] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee, “Estimating statistical aggregates on probabilistic data streams,” in

ACM Principles of Database Systems, 2007.

DRAFT

34

[25] N. Khoussainova, M. Balazinska, and D. Suciu, “Towards correcting input data errors probabilistically using integrity

constraints,” in ACM Workshop on Data Engineering for Wireless and Mobile Access (MobiDE), 2006.

[26] J. Letchner, C. Re, M. Balazinska, and M. Philipose, “Access methods for markovian streams,” in IEEE International Conference

on Data Engineering, 2009.

[27] E. Levina and P. Bickel, “The earth mover’s distance is the mallows distance: some insights from statistics,” in IEEE International

Converence on Computer Vision, 2001.

[28] S. Muthukrishnan, V. Poosala, and T. Suel, “On rectangular partitionings in two dimensions: Algorithms, complexity, and

applications,” in International Conference on Database Theory, 1999, pp. 236–256.

[29] C. Ré and D. Suciu, “Approximate lineage for probabilistic databases,” in International Conference on Very Large Data Bases,

2008.

[30] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with applications to image databases,” in IEEE International

Conference on Computer Vision, 1998.

[31] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for Computer Graphics – Theory and Applications”. San Francisco, CA:

Morgan Kaufmann Publishers, 1996.

[32] D. Suciu and N. N. Dalvi, “Foundations of probabilistic answers to queries,” in ACM SIGMOD International Conference on

Management of Data, 2005.

[33] J. S. Vitter and M. Wang, “Approximate computation of multidimensional aggregates of sparse data using wavelets,” in ACM

SIGMOD International Conference on Management of Data, 1999.

[34] Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic data,” in ACM SIGMOD International Conference on

Management of Data, 2008.

[35] X. Zheng, “Topics in massive data summarization,” Ph.D. dissertation, University of Michigan, Aug. 2008.

Graham Cormode is a Principal Member of Technical Staff in the Database Research Department at AT&T

Labs-Research. His Ph.D. is from the University of Warwick, and he completed postdoctoral studies at the DI-

MACS Center in Rutgers University. He works on data stream algorithms, large-scale data mining, and applied

algorithms, with applications to databases, networks, and fundamentals of communications and computation.

Minos Garofalakis is a Professor of Computer Science at the Electronic and Computer Engineering (ECE)

Department of the Technical University of Crete (TUC), and the Director of the Software Technology and

Network Applications Lab (SoftNet) at TUC. He received the MSc and PhD degrees in Computer Science from

the Univ. of Wisconsin-Madison in 1994 and 1998, respectively. He has worked as a Member of Technical Staff

at Bell Labs, Lucent Technologies (1998-2005), as a Senior Researcher at Intel Research Berkeley (2005-

2007), and as a Principal Research Scientist at Yahoo! Research (2007-2008). In parallel, he also held an

Adjunct Associate Professor position at the EECS Dept. of the Univ. of California, Berkeley (2006-2008). He

currently serves as an Associate Editor for ACM Trans. on Database Systems (ACM TODS) and IEEE Trans. on Knowledge and

Data Engineering (IEEE TKDE), and as an Editorial Board Member for Foundations and Trends in Databases and the Proceedings

of the VLDB Endowment (PVLDB). He was the Core Database Technology PC Chair for VLDB’2007, and recently completed a term

as an Associate Editor for the IEEE Data Engineering Bulletin (2004-2006). His current research interests include data streaming,

probabilistic databases, approximate query processing, network-data management, and cloud databases.

DRAFT

