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ABSTRACT

A fundamental challenge in processing the massive quantities of
information generated by modern applications is in extracting suit-
able representations of the data that can be stored, manipulated and
interrogated on a single machine. A promising approach is in the
design and analysis of compact summaries: data structures which
capture key features of the data, and which can be created effec-
tively over distributed data sets. Popular summary structures in-
clude the count distinct algorithms, which compactly approximate
item set cardinalities, and sketches which allow vector norms and
products to be estimated. These are very attractive, since they can
be computed in parallel and combined to yield a single, compact
summary of the data. This tutorial introduces the concepts and ex-
amples of compact summaries.
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1. INTRODUCTION

Business and scientific communities all agree that “big data”
holds both tremendous promise, and substantial challenges [_8]. There
is much potential for extracting useful intelligence and actionable
information from the large quantities of data generated and cap-
tured by modern information processing systems. Big data chal-
lenges involve not only the sheer volume of the data, but the fact
that it can represent a complex variety of entities and interactions
between them, and new observations that arrive, often across mul-
tiple locations, at high velocity. Examples of applications that gen-
erate big data include:

Physical Data from sensor deployments and scientific experiments—
astronomy data from modern telescopes generates terabytes of data
each night, while the data collected from a single particle physics
experiment is too big to store;

Medical Data, as we can now sequence whole genomes economi-
cally, generating data sets of the order of 200TB in one example [7[];

Activity Data, as human activity data is captured and stored in ever
greater quantities and detail: interactions from online social net-
works, locations from GPS, Internet activity etc.

Across all of these disparate settings, certain common themes
emerge. The data in question is large, and growing. The appli-
cations seek to extract patterns, trends or descriptions of the data.
Ensuring the scalability of systems, and the timeliness and veracity
of the analysis is vital in many of these applications. In order to
realize the promise of these sources of data, we need new methods
that can handle them effectively.

While such sources of big data are becoming increasingly com-
mon, the resources to process them (chiefly, processor speed, fast
memory and slower disk) are growing at a slower pace. The conse-
quence of this trend is that there is an urgent need for more effort
directed towards capturing and processing data in many critical ap-
plications. Careful planning and scalable architectures are needed
to fulfill the requirements of analysis and information extraction on
big data. In response to these needs, new computational paradigms
are being adopted to deal with the challenge of big data. Large
scale distributed computation is a central piece: the scope of the
computation can exceed what is feasible on a single machine, and
so clusters of machines work together in parallel. On top of these
architectures, parallel algorithms are designed which can take the
complex task and break it into independent pieces suitable for dis-
tribution over multiple machines.

A central challenge within any such system is how to compute
and represent complex features of big data in a way that can be pro-
cessed by many single machines in parallel. A vital component is
to be able to build and manipulate a compact summary of a large
amount of data. This powerful notion of a small summary, in all
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its many and varied forms, is the subject of this tutorial. The idea
of a summary is a natural and familiar one. It should represent
something large and complex in a compact fashion. Inevitably, a
summary must dispense with some of the detail and nuance of the
object which it is summarizing. However, it should also preserve
some key features of the object in a very accurate fashion. Effec-
tive compact summaries are often approximate in their answers to
queries and randomized.

The theory of compact summaries can be traced back over four
decades. A first example is the Morris Approximate Counter, which

approximately counts quantities up to magnitude n using O(log log n)

bits, rather than the [logn] bits to count exactly [[15]. Subse-
quently, there has been much interest in summaries in the context of
streaming algorithms: these are algorithms that process data in the
form of a stream of updates, and whose associated data structures
can be seen as a compact summary [[16]. More recently, the more
general notion of mergeable summaries has arisen: summaries that
can be computed on different portions of a dataset in isolation, then
subsequently combined to form a summary of the union of the in-
puts [1]]. It turns out that a large number streaming algorithms entail
a mergeable summary, hence making this class of objects a large
and interesting one.

There has been much effort expended on summary techniques
over recent years, leading to the invention of powerful and effec-
tive summaries which have found applications in Internet Service
Providers [5], Search Engines [17}12], and beyond.

2. TUTORIAL OUTLINE

This short tutorial will introduce the notion of summaries, and
outline ideas behind some of the most prominent examples, which
may include:

e Counts, approximate counts [[15[, and approximate frequen-
cies [[14]

e Count distinct, set cardinality, and set operations [9} |10]

e Random projections with low-independence vectors to give
sketch data structures [3} 4} 6]

e Summaries for medians and order statistics [[11}/13]]

e Linear summaries for graphs: connectivity, bipartiteness and
sparsification [2]

e Summaries for matrix and linear algebra operations [|18]]

e Problems for which no compact summary can exist, via com-
munication complexity lower bounds.
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