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Privacy-preserving data publishing is an important problem that has been the focus of extensive study. The
state-of-the-art solution for this problem is differential privacy, which offers a strong degree of privacy
protection without making restrictive assumptions about the adversary. Existing techniques using differential
privacy, however, cannot effectively handle the publication of high-dimensional data. In particular, when the
input dataset contains a large number of attributes, existing methods require injecting a prohibitive amount
of noise compared to the signal in the data, which renders the published data next to useless.

To address the deficiency of the existing methods, this paper presents PrivBayes, a differentially private
method for releasing high-dimensional data. Given a dataset D, PrivBayes first constructs a Bayesian network
N , which (i) provides a succinct model of the correlations among the attributes in D and (ii) allows us
to approximate the distribution of data in D using a set P of low-dimensional marginals of D. After that,
PrivBayes injects noise into each marginal in P to ensure differential privacy, and then uses the noisy
marginals and the Bayesian network to construct an approximation of the data distribution in D. Finally,
PrivBayes samples tuples from the approximate distribution to construct a synthetic dataset, and then releases
the synthetic data. Intuitively, PrivBayes circumvents the curse of dimensionality, as it injects noise into the
low-dimensional marginals in P instead of the high-dimensional dataset D. Private construction of Bayesian
networks turns out to be significantly challenging, and we introduce a novel approach that uses a surrogate
function for mutual information to build the model more accurately. We experimentally evaluate PrivBayes
on real data, and demonstrate that it significantly outperforms existing solutions in terms of accuracy.
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1 INTRODUCTION
The problem of privacy-preserving data publishing (PPDP) has become increasingly important in
recent years. Often, we encounter situations where a data owner wishes to make available a data
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set without revealing private, sensitive information. For example, this arises in the case of revealing
detailed demographic information about citizens (census), patients (health data), investors (financial
data), and so on. In each example, there are many potential uses and users for the data: for social
analysis, for medical research, for freedom-of-information and other legal disclosure reasons. The
canonical case in PPDP is when the database can be modeled as a table, where each rowmay contain
information about an individual (say, details of their medical status, or employment information).
Then, the aim is to release some manipulated version of this information so that this can still be
used for the intended purpose, but the privacy of individuals in the database is preserved.
Following many attempts to formally define the requirements of privacy, the current state-of-

the-art solution is to seek the differential privacy guarantee [18]. Informally, this model requires
that what can be learned from the released data is (approximately) the same, whether or not any
particular individual was included in the input database. This model offers strong privacy protection,
and does not make any limiting assumptions about the power of the notional adversary: it remains
a strong model even in the face of an adversary with much background knowledge and reasoning
power.

Putting differential privacy into practice remains a challenging problem. Since its proposal, there
have been many efforts to develop mechanisms and processes for data release for different kinds of
input databases, and for different objectives for the end use. However, it seems that all existing
techniques encounter difficulties when trying to release even moderately high-dimensional data
– that is, an input table with half a dozen columns or more. The reasons for these problems are
two-fold:
- Output Scalability: Most algorithms (see, e.g., [46]) either explicitly or implicitly represent the
database as a histogram (i.e. a vector x) of size equal to the domain size, that is, the product of
cardinalities of the attributes. For many natural data sets, the domain sizem is orders of magnitude
larger than the data size n [15]. Hence, these algorithms become inapplicable for any realistic
dataset with a moderate-to-high number of attributes. For example, a million row table with ten
attributes, each of which has 20 possible values, results in a domain size (and hence an output size)
ofm = 2010 ≈ 10TB, which is very unwieldy and slow to use compared to the input which can be
measured in megabytes.
- Signal-to-noise ratio:When the high dimensional database is represented as a vector x , the average
count in each entry, given by n/m, is typically very small. Once noise is added to x (or some
transformation of it) to obtain another vector x∗, the noise completely dominates the original signal,
making the published vector x∗ next to useless. For example, if the table above has size n = 1M ,
the average entry count is n/m = 10−7. By contrast, the average noise injected to achieve, e.g.,
differential privacy with parameter ε = 0.1 has expected magnitude around 10. Even if the data
is skewed in the domain space, i.e., there are some entries x[i] with high counts, such peaks are
infrequent and so the vast majority of published values x∗[i] are useless.

1.1 Related Work
A full survey of methods to realize differential privacy is beyond the scope of this work. Here, we
identify the most related efforts, and discuss why they cannot fully solve the problems above.
Initial efforts released projections of the data on subsets of dimensions, via Fourier decomposi-

tions [2]. This reduces the impact of higher dimensionality, but requires the data owner to determine
(somehow) which set of dimensions are of interest, and for the data to be mapped into a space where
a Fourier decomposition can be computed. Subsequent work followed this template, for example
by searching for meaningful “subcubes” of the datacube representation to release privately [17].
These can be aggregated to answer lower-dimensional cube queries, where the signal-to-noise



ratio in each cell is significantly higher than in the original domain. A major limitation is that
the running time is exponential in the dimensionality of the domain, making it inapplicable for
all but small sets. Accuracy is improved by additional post-processing of the output to restore
“consistency” of the counts mandated by the structure (e.g., using the fact that counts in a hierarchy
should sum to the count of an ancestor) [2, 17, 27]; however, this improvement does not overcome
the inherent error incurred in high dimensions. Recently, Chen et al. [9] also proposed to utilize
probabilistic graphical models in modelling sensitive high-dimensional datasets. They introduced
the novel sparse vector technique [20, 25] to the private learning of graphical models, resulting in
a significant improvement in utility over previous methods. However, this technique is shown to
be flawed [10], as its privacy analysis is erroneous. This invalidates the solution proposed in [9],
and we have not seen any easy way to address this issue.

Another approach is to use data reduction techniques to avoid dimensionality issues. For example,
Cormode et al. [15] propose various samplingmechanisms to reduce the size of (and time to produce)
the output x∗, while approximately preserving the accuracy of subset-sum queries. However, the
accuracy guarantee is in terms of using the entire vector x∗, rather than the original vector x , which
degrades rapidly with data dimensionality. The approach in [14] tries to keep the domain size of
the output small, and the density of data within the new domain high, by adaptively grouping
some of the attribute values. In the example above, suppose that on each of the ten attributes, we
grouped the 20 values into four groups. Thus, we reduce the output size from 2010 to 410 ≈ 1MB.
This coarser grid representation of the data loses precision, and in this example still leads to small
average counts of the order of 1. Cormode et al. [14] address the latter problem by using spatial
decompositions to define irregular grids over the domain of x , such that the count x[i] in each grid
cell is sufficiently large. This makes sense only for range queries, and requires all attributes to have
an ordering.

Other approaches find other ways to recast the input data and release it, so that the noise from
the privacy transformation has less impact on certain statistics. In particular, Xiao et al. [46] make
use of the wavelet transformation of data. This addresses range queries, and means that the noise
incurred by a range query scales proportionately to the logarithm of its length, rather than to
its length directly. The value of this is confined primarily to low-dimensional databases where
range queries are anticipated. More generally, the matrix mechanism of Li and Miklau [32, 33] and
subsequent related approaches [23, 26, 47, 48] take in a query workload (expressed in terms of a
weighted set of inner-product queries), and seek to release a version of the database that minimizes
the noise for these queries. The cost of this optimization can be high, and critically assumes the
foreknowledge of the query distribution.

The above discussion focuses on methods that produce an output in a general form that can be
used flexibly for a variety of subsequent analyses. There is also a large class of results that instead
generate a description of the output of a specific algorithm computed under privacy, for example
the result of building a classifier for the data. Prominent examples include the work of McSherry
and Mironov [38] to mask the preferences of individual raters in recommendation systems; Rastogi
and Nath [42] to release time-series data based on leading Fourier coefficients; and McSherry and
Mahajan [37] for addressing common queries over network trace data. Differential privacy has also
been applied to other sophisticated data analysis tasks, e.g., coresets for summarizing geometric
data [21], building classifiers in the form of decision trees [22] or support vector machines [43],
and mining the occurrence of frequent patterns [4, 34].
Several frameworks have been proposed to solve specific classes of optimization problems.

For example, Chaudhuri and Monteleoni [7], Chaudhuri et al. [8] and Kifer et al. [29] consider
differentially private convex empirical risk minimization, which can be applied to a wide range



of optimization problems (e.g., logistic regression and support vector machines). Zhang et al. [50]
propose the PrivGene framework, which is a combination of genetic algorithms and an enhanced
version of the exponential mechanism for differentially private model fitting. Nissim et al. [41],
Smith [45] and Mohan et al. [40] respectively present and implement the sample and aggregate
framework that can be used for any analysis task whose results are not affected by the number of
records in the database. While this class of methods obtains generally good results for the target
problem, it requires fixing this objective at the time of data release, and limits the applicability of
the output for other uses.

1.2 Our Contributions
In this paper, we propose a powerful solution to the problem of publishing differentially private
high-dimensional data. Unlike the bulk of prior work, which focuses on optimizing the output for
specific workloads (e.g., range queries, cube queries), we aim to approximate the high-dimensional
distribution of the original data with a data-dependent set of well-chosen low-dimensional distribu-
tions, in the belief that, for a sufficiently accurate approximation, the resulting data will maintain
high accuracy for almost any type of (linear or non-linear) query. The result is an output data
set that is drawn from the obtained model while obeying the same schema and format of the
original input. Since our approach is query-independent, many different queries can be evaluated
(accurately) on the same set of released data. Query-independence means that our approach may
be weaker than approaches that target a particular query set; however, we show empirically that
the gap is small or non-existent in many natural cases. By working in low-dimensional spaces,
we avoid the signal-to-noise problem. Although we compare to the full-dimensional distribution
for evaluation purposes, our approach never needs to compute this explicitly, thus avoiding the
scalability problem.
To achieve this goal, we start from the well-known Bayesian network model, which is widely

studied in the statistical and machine learning communities [30]. Bayesian networks combine
low-dimensional distributions to approximate the full-dimensional distribution of a data set, and
are a simple but powerful example of a graphical model. Our algorithm, dubbed PrivBayes, consists
of the following steps:
1. (Network learning) We describe how to compute a differentially private Bayesian network that
approximates the full-dimensional distribution via the exponential mechanism (EM). This step
requires new theoretical insights, which are described in Section 3. We improve on this basic
approach by defining a new score function for use in EM, which results in significantly better
networks being found. The definition and computation of this function are one of our main technical
contributions; see Section 4.
2. (Distribution learning) We explain how to compute the necessary differentially private distribu-
tions of the data in the subspaces of the Bayesian network, via the Laplace Mechanism.
3. (Data synthesis) We show how to generate synthetic data from the differentially private Bayesian
network, without explicitly materializing the full-dimensional distribution.
In Section 6, we provide an extensive experimental evaluation of the accuracy of the synthetic

datasets generated above, over workloads of linear and non-linear queries. In each case, we compare
to prior methods specifically designed to optimize the accuracy for that type of workload. Our
experiments show that PrivBayes is often more accurate than any prior method, even though it
is not optimized for any specific type of query. When PrivBayes is less accurate than some prior
method, the accuracy loss is small and, we believe, an acceptable tradeoff, since PrivBayes offers a
generic solution that does not require prior knowledge of the workload and works well on many
different types of queries.
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Fig. 1. A Bayesian network N1 over five attributes

1.3 Relation to the Preliminary Version
A preliminary version of this article appeared in [49]. Compared to the preliminary version [49],
the current version contains three significant extensions. First, the solution in the preliminary
version requires each attribute in the input data be transformed into a set of binary attributes (i.e.,
the domain of each attribute is {0, 1}), which destroys the semantics of natural attributes in the
dataset and degrades the utility of the output data; in contrast, the current version presents several
advanced techniques that enable PrivBayes to handle attributes with general domains without
requiring the binary transformation (see Section 5). Second, the current version presents extensive
experiments that evaluate the extended PrivBayes, and demonstrate that, in terms of data utility,
it significantly outperforms the preliminary version of PrivBayes that binarizes attributes. The
current version also includes new experiments on the impact of PrivBayes’s internal parameters β
and θ (see Section 6). Finally, the current version includes more detailed explanations and proofs that
were omitted in the preliminary version (much of this additional detail appears in the appendix).

2 PRELIMINARIES
This section reviews two concepts closely related to our work, namely, differential privacy and
Bayesian networks.

2.1 Differential Privacy
Let D be a sensitive dataset to be published. Differential privacy requires that any release of
information about D should be done via a randomized algorithm G , such that the output ofG does
not reveal much information about any particular tuple in D. The formal definition of differential
privacy is as follows:

Definition 2.1 (ε-Differential Privacy [19]). A randomized algorithm G satisfies ε-differential
privacy, if for any two datasets D1 and D2 that differ only in one tuple, and for any possible output
O of G, we have

Pr
[
G(D1) = O

]
≤ eε · Pr

[
G(D2) = O

]
, (1)

where Pr[·] denotes the probability of an event.

In what follows, we say that two datasets are neighboring if they differ in only one tuple, i.e., the
values of one tuple are changed while the rest are identical. While there are many approaches to
achieving differential privacy, we rely on the two best known and most-widely used, namely, the
Laplace mechanism [19] and the exponential mechanism [39].
The Laplace mechanism releases the result of a function F that takes as input a dataset and

outputs a set of numeric values. Given F , the Laplace mechanism transforms F into a differentially
private algorithm, by adding i.i.d. noise (denoted as η) into each output value of F . The noise η is
sampled from a Laplace distribution Lap(λ) with the following pdf: Pr[η = x] = 1

2λ e
−|x |/λ . Dwork



Table 1. The attribute-parent pairs in N1

i Xi Πi

1 age ∅

2 education {age}
3 workclass {age, education}
4 title {age, workclass}
5 income {workclass, title}

et al. [19] prove that the Laplace mechanism ensures ε-differential privacy if λ ≥ S(F )/ε , where
S(F ) is the sensitivity of F :

Definition 2.2 (Sensitivity [19]). Let F be a function that maps a dataset into a fixed-size vector of
real numbers. The sensitivity of F is defined as

S(F ) = max
D1,D2

∥F (D1) − F (D2)∥1 , (2)

where ∥·∥1 denotes the L1 norm, and D1 and D2 are any two neighboring datasets.

Intuitively, S(F ) measures the maximum possible change in F ’s output when we modify one
arbitrary tuple in F ’s input.
When F ’s output is categorical instead of numeric, the Laplace mechanism does not apply,

but the exponential mechanism [39] can be used instead. The exponential mechanism releases a
differentially private version of F , by sampling from F ’s output domain Ω. The sampling probability
for each ω ∈ Ω is determined based on a user-specified score function fs , which takes as input
any dataset D and any element ω ∈ Ω, and outputs a numeric score fs (D,ω) that measures the
quality of ω: a larger score indicates that ω is a better output with respect to D. More specifically,
given a dataset D, the exponential mechanism samples ω ∈ Ω with a probability proportional
to exp(fs (D,ω)/2∆), where ∆ is a scaling factor that controls the degree of privacy protection.
McSherry and Talwar [39] show that the exponential mechanism achieves ε-differential privacy if
∆ ≥ S(fs )/ε , where S(fs ) is defined as:

S(fs ) = max
D1,D2,ω′

| fs (D1,ω
′) − fs (D2,ω

′)| , (3)

for D1 and D2 any two neighboring datasets, and ω ′ any element in Ω. For convenience, we also
refer to S(fs ) as the sensitivity of fs , as it is similar in form to sensitivity as defined above.
Both mechanisms can be applied quite generally; however, to be effective we seek to ensure

that the noise introduced does not outweigh the signal in the data, and that it is computationally
efficient to apply the mechanism. This requires a careful design of what functions to use in the
mechanisms.

2.2 Bayesian Network
Let A be the set of attributes on a dataset D. We regard D as a joint probability distribution over
the cross-product of A’s attribute domains. A Bayesian network on A is a way to compactly
describe this distribution, by specifying conditional independence among certain attributes in A.
In particular, a Bayesian network is a directed acyclic graph (DAG) that (i) represents each attribute
in A as a node, and (ii) models conditional independence among attributes in A using directed
edges. As an example, Figure 1 shows a Bayesian network over a set A of five attributes, namely,
age, education, workclass, title, and income. For any two attributes X ,Y ∈ A, there exist three
possibilities for the relationship between X and Y :



Case 1: direct dependence. There is an edge between X and Y , say, from Y to X . This indicates
that for any tuple in D, its distribution on X is determined (in part) by its value on Y . We define Y
as a parent of X , and refer to the set of all parents of X as its parent set. For example, in Figure 1,
the edge from workclass to income indicates that the income distribution depends on the type of
job (and also on title).

Case 2: weak conditional independence. There is a path (but no edge) betweenY andX . Assume
without loss of generality that the path goes fromY toX . Then,X andY are conditionally independent
given X ’s parent set. For instance, in Figure 1, there is a two-hop path from age to income, and
the parent set of income is {workclass, title}. This indicates that, given workclass and job title of an
individual, her income and age are conditionally independent.

Case 3: strong conditional independence. There is no path between Y and X . Then, X and Y
are conditionally independent given any of X ’s and Y ’s parent sets.

Let d denote the size of A. Formally, a Bayesian network N over A is defined as a set of d
attribute-parent (AP) pairs, (X1,Π1), . . . , (Xd ,Πd ), such that
1. Each Xi is a unique attribute in A;
2. Each Πi is a subset of the attributes in A \ {Xi }. We say that Πi is the parent set of Xi in N ;
3. For any 1 ≤ i < j ≤ d , we have X j < Πi , i.e., there is no edge from X j to Xi in N . This ensures
that the network is acyclic, namely, it is a DAG.

We define the degree of N as the maximum size of any parent set Πi in N . For example, Table 1
shows the AP pairs in the Bayesian network N1 in Figure 1; N1’s degree equals 2, since the parent
set of any attribute in N1 has a size at most two.
Let Pr[A] denote the full distribution of tuples in database D. The d AP pairs in N essentially

define a way to approximate Pr[A] with d conditional distributions Pr[X1 | Π1], Pr[X2 | Π2], . . . ,
Pr[Xd | Πd ]. In particular, under the assumption that any Xi and any X j < Πi are conditionally
independent given Πi , we have

Pr[A] = Pr[X1,X2, . . . ,Xd ]

= Pr[X1] · Pr[X2 | X1] · Pr[X3 | X1,X2] . . . Pr[Xd | X1, . . .Xd−1]

=

d∏
i=1

Pr[Xi | Πi ]. (4)

Let PrN[A] =
∏d

i=1 Pr[Xi | Πi ] be the above approximation of Pr[A] defined by N . Intu-
itively, if N accurately captures the conditional independence among the attributes in A, then
PrN[A] would be a good approximation of Pr[A]. In addition, if the degree of N is small, then
the computation of PrN[A] is relatively simple as it requires only d low-dimensional distributions
Pr[X1 | Π1], Pr[X2 | Π2], . . . , Pr[Xd | Πd ]. Low-degree Bayesian networks are the core of our solu-
tion to release high-dimensional data. Table 2 shows notations that will be frequently used in this
paper.

3 SOLUTION OVERVIEW
This section presents an overview of PrivBayes, our solution for releasing a high-dimensional
dataset D in a differentially private manner. PrivBayes runs in three phases:
1. Construct a k-degree Bayesian network N over the attributes in D, using an ε1-differentially
private method. (k is a small value that can be chosen automatically by PrivBayes.)



Table 2. Table of notations

Notation Description
D A sensitive dataset to be published
n The number of tuples in D
A The set of attributes in D
d The number of attributes in A

N A Bayesian network over A
Pr[A] The distribution of tuples in D
PrN[A] An approximation of Pr[A] defined by N

dom(X ) The domain of random variable X

2. Use an ε2-differentially private algorithm to generate a set of conditional distributions of D,
such that for each AP pair (Xi ,Πi ) in N , we have a noisy version of the conditional distribution
Pr[Xi | Πi ]. (We denote this noisy distribution as Pr∗[Xi | Πi ].)
3. Use the Bayesian networkN (constructed in the first phase) and the d noisy conditional distribu-
tions (constructed in the second phase) to derive an approximate distribution of the tuples in D,
and then sample tuples from the approximate distribution to generate a synthetic dataset D∗.

In short, PrivBayes utilizes a low-degree Bayesian networkN to generate a synthetic dataset D∗

that approximates the high dimensional input data D. The construction of N is highly non-trivial,
as it requires carefully selecting AP pairs and the value of k to derive a close approximation of
D without violating differential privacy. By contrast, the second and third phases of PrivBayes
are relatively straightforward. In the following, we will clarify the details of these latter phases,
and prove the privacy guarantee of PrivBayes; the algorithm for PrivBayes’s first phase will be
elaborated in Section 4.

Generation of noisy conditional distributions. Suppose that we are given a k-degree Bayesian
networkN . To construct the approximate distribution PrN[A], we need d conditional distributions
Pr[Xi | Πi ] (i ∈ [1,d]), as shown in Equation (4). Algorithm 1 illustrates how the distributions
specified by our algorithm can be derived in a differentially private manner. In particular, for any
i ∈ [k + 1,d], the algorithm first materializes the joint distribution Pr[Xi ,Πi ] (Line 3), and then
injects Laplace noise into Pr[Xi ,Πi ] to obtain a noisy distribution Pr∗[Xi ,Πi ] (Lines 4-5). To enforce
the fact that these are probability distributions, all negative numbers in Pr∗[Xi ,Πi ] are set to zero,
then all values are normalized to maintain a total probability mass of 1 (Line 5).1 After that, based on
Pr∗[Xi ,Πi ], the algorithm derives a noisy version of the conditional distribution Pr[Xi | Πi ], denoted
as Pr∗[Xi | Πi ] (Line 6). The scale of the Laplace noise added to Pr[Xi ,Πi ] is set to 2(d − k)/nε2,
which ensures that the generation of Pr∗[Xi ,Πi ] satisfies (ε2/(d − k))-differential privacy, since
Pr[Xi ,Πi ] has sensitivity 2/n. Meanwhile, the derivation of Pr∗[Xi | Πi ] from Pr∗[Xi ,Πi ] does not
incur any privacy cost, as it only relies on Pr∗[Xi ,Πi ] instead of the input data D.
Overall, Lines 2-6 of Algorithm 1 construct d − k noisy conditional distributions Pr∗[Xi | Πi ]

(i ∈ [k + 1,d]), and they satisfy ε2-differential privacy, since each Pr∗[Xi | Πi ] is (ε2/(d − k))-
differentially private. This is due to the composability property of differential privacy [18]. In
particular, composability indicates that when a set ofm algorithms satisfy differential privacy with

1More generally, we could apply additional post-processing of distributions, in the spirit of [2, 17, 27], to reflect the fact
that lower degree distributions should be consistent. For simplicity and brevity, we omit such optimizations from this
presentation.



Algorithm 1: NoisyConditionals (D, N , k): returns P∗

1 initialize P∗ = ∅;
2 for i = k + 1 to d do
3 materialize the joint distribution Pr[Xi ,Πi ];
4 generate differentially private Pr∗[Xi ,Πi ] by adding noise Lap

(
2(d−k )
nε2

)
;

5 set negative values in Pr∗[Xi ,Πi ] to 0 and normalize;
6 derive Pr∗[Xi | Πi ] from Pr∗[Xi ,Πi ]; add it to P∗;
7 for i = 1 to k do
8 derive Pr∗[Xi | Πi ] from Pr∗[Xk+1,Πk+1]; add it to P∗;
9 return P∗;

parameters ε1, ε2, . . . , εm , respectively, the set of algorithms as a whole satisfies (
∑

i εi )-differential
privacy.
After Pr∗[Xk+1 | Πk+1], . . . , Pr∗[Xd | Πd ] are constructed, Algorithm 1 proceeds to generate

Pr∗[Xi | Πi ] (i ∈ [1,k]). This generation, however, does not require any additional information from
the input data D. Instead, we derive Pr∗[Xi | Πi ] (i ∈ [1,k]) directly from Pr∗[Xk+1,Πk+1], which
has been computed in Lines 2-6 of Algorithm 1. Such derivation is feasible, since our algorithm
for constructing the Bayesian network N (to be clarified in Section 4) ensures that Xi ∈ Πk+1 and
Πi ⊂ Πk+1 for any i ∈ [1,k]. Since each Pr∗[Xi | Πi ] (i ∈ [1,k]) is derived from Pr∗[Xk+1,Πk+1]

without inspecting D, the construction of Pr∗[Xi | Πi ] does not incur any privacy overhead.
Therefore, Algorithm 1 as a whole is ε2-differentially private. Example 3.1 illustrates Algorithm 1.

Example 3.1. Given the Bayesian networkN1 in Figure 1, Algorithm 1 constructs three noisy joint
distributions Pr∗[a, e,w], Pr∗[a,w, t] and Pr∗[w, t , i] (attributes are denoted by their initials). Based
on Pr∗[a,w, t] and Pr∗[w, t , i], Algorithm 1 derives noisy conditional distributions Pr∗[t | a,w] and
Pr∗[i | w, t], respectively. In addition, the algorithm uses Pr∗[a, e,w] to derive three other conditional
distributions Pr∗[a], Pr∗[e | a], and Pr∗[w | a, e]. Given these five conditional distributions, the
input tuple distribution is approximated as

Pr∗N1
[a, e,w, t , i] = Pr∗[a] · Pr∗[e | a] · Pr∗[w | a, e] · Pr∗[t | a,w] · Pr∗[i | w, t].

Generation of synthetic data. Even with the simple closed-form expression in Equation 4, it
is still time and space consuming to directly sample from Pr∗

N
[A] by computing the probability

for each element in the domain of A. Fortunately, the Bayesian network N provides a means to
perform sampling efficiently without materializing Pr∗

N
[A]. As shown in Equation (4), we can

sample each Xi from the conditional distribution Pr∗[Xi | Πi ] independently, without considering
any attribute not in Πi ∪ {Xi }. Furthermore, the properties of N (discussed in Section 2.2) ensure
that X j < Πi for any j > i . Therefore, if we sample Xi (i ∈ [1,d]) in increasing order of i , then by
the time X j (j ∈ [2,d]) is to be sampled, we must have sampled all attributes in Πj , i.e., we will be
able to sample X j from Pr∗[X j | Πj ] given the previously sampled attributes. That is to say, the
sampling of X j does not require the full distribution Pr∗

N
[A].

With the above sampling approach, we can generate an arbitrary number of tuples from Pr∗
N
[A]

to construct a synthetic databaseD∗. In this paper, we consider the size ofD∗ is set to n, i.e., the same
as the number of tuples in the input data D. The dataset D∗ can then be used for analysis; clearly, it
may be better suited for some tasks than others, which we study in our experimental evaluation.
Sampling the same number of tuples means that we have a synthetic database that is directly



comparable with the input. If the modeling assumption is valid (i.e. the data is well-modeled by a
Bayesian network), then we can imagine that the original input D is also a sample of n tuples from
a Bayesian model, so the choice to sample this many tuples is appropriate. For some applications, it
may be possible to answer queries directly from the model, or results may be improved by drawing
a larger sample. For simplicity, however, we adopt the sample of size n for our experimental study.

Privacy guarantee. The correctness of PrivBayes directly follows the composability property
of differential privacy [18]. In particular, the first and second phases of PrivBayes require direct
access to the input database, and each consumes ε1 and ε2 privacy budget, respectively. No access to
the original database is invoked during the third (sampling) phase. The results of first two steps, i.e.,
the Bayesian network N and the set of noisy conditional distributions, are sufficient to generate
the synthetic database D∗. Therefore, we have the following theorem.

Theorem 3.2. PrivBayes satisfies (ε1 + ε2)-differential privacy.

This theorem implies a partitioning of the total privacy budget ε for end-to-end ε-differential
privacy into ε1 and ε2. To recast in these terms, we add a parameter β to PrivBayes, which assigns
ε1 = βε and ε2 = (1 − β)ε . Intuitively, β should balance the quality of network learning and
distribution learning phases in PrivBayes; therefore, we might believe that an even split would be
a good starting point. We refine this view by providing an empirical analysis of suitable choices of
β in Section 6.4.

4 PRIVATE BAYESIAN NETWORKS
This section presents our solution for constructing differentially private Bayesian networks. We will
first introduce a non-private algorithm for Bayesian network construction (in Section 4.1), and then
explain how the algorithm can be converted into a differentially private solution (in Sections 4.2
and 4.3).

4.1 Non-Private Methods
Suppose that we aim to construct a k-degree Bayesian networkN on a dataset D containing a setA
of attributes. Ideally,N should provide an accurate approximation of the tuple distribution in D, i.e.,
PrN[A] should be close to Pr[A]. A natural question is under what condition will PrN[A] closely
approximate Pr[A]?Wemake use of standard notions from information theory to measure this. The
entropy of a random variable X over its domain dom(X ) is denoted by H (X ) = −

∑
x ∈dom(X ) Pr[X =

x] log Pr[X = x],2 and I (·, ·) denotes the mutual information between two variables as:

I (X ,Π) =
∑

x ∈dom(X )

∑
π ∈dom(Π)

Pr[X = x ,Π = π ] log
Pr[X = x ,Π = π ]

Pr[X = x] Pr[Π = π ]
, (5)

where Pr[X ,Π] is the joint distribution of X and Π, and Pr[X ] and Pr[Π] are the marginal dis-
tributions of X and Π respectively. The KL-divergence [16] from PrN[A] to Pr[A] measures the
difference between the two probability distributions, and is defined by:

DKL(Pr[A] ∥ PrN[A]) = −

d∑
i=1

I (Xi ,Πi ) +

d∑
i=1

H (Xi ) − H (A). (6)

We seek a Bayesian network representation so that the approximate distribution has a small KL-
divergence to the original distribution. In Equation (6), the term

∑d
i=1H (Xi )−H (A) is solely decided

by Pr[A], which is fixed once the input databaseD is given. Hence, the KL-divergence from PrN[A]

2All logarithms used in this paper are to the base 2.



Algorithm 2: GreedyBayes (D, k): returns N
1 initialize N = ∅ and V = ∅;
2 randomly select an attribute X1 from A; add (X1, ∅) to N ; add X1 to V ;
3 for i = 2 to d do
4 initialize Ω = ∅;
5 for each X ∈ A\V and each Π ∈

(V
k

)
, add (X ,Π) to Ω;

6 select a pair (Xi ,Πi ) from Ω with the maximal mutual information I (Xi ,Πi );
7 add (Xi ,Πi ) to N ; add Xi to V ;
8 return N ;

to Pr[A] is small (in which case they closely approximate each other), if and only if
∑d

i=1 I (Xi ,Πi )

is maximized. Therefore, the construction of N can be modeled as an optimization problem, where
we aim to choose a parent set Πi for each attribute Xi in D to maximize

∑d
i=1 I (Xi ,Πi ).

For the case when k = 1, Chow and Liu show that greedily picking the next edge based on the
maximum mutual information is optimal, leading to the celebrated notion of Chow-Liu trees [12].
However, as shown in [11], this optimization problem is NP-hard when k > 1. For this reason,
heuristic algorithms (e.g., hill-climbing, genetic algorithms, and simulated annealing) are often
employed in practice [36]. In the context of differential privacy, however, a different calculus applies:
these methods incur a high cost in terms of sensitivity and so incur a large amount of noise. That is,
these algorithms make many queries to the data, so that making them differentially private entails
large perturbations which lead to poor overall accuracy. Therefore, we seek a new method that
will imply less noise, and so give a better overall approximation when the noise is added. Thus
we propose a greedy algorithm that makes fewer probes to the data, by extending the Chow-Liu
approach to higher degrees, described in Algorithm 2.

In the beginning of the algorithm (Line 1), we initialize the Bayesian networkN to an empty list
of AP pairs. LetV be a set that contains all attributes whose parent sets have been fixed in the partial
construction ofN . As a next step, the algorithm randomly selects an attribute (denoted as X1) from
A, and sets its parent set Π1 to ∅ (Line 2). The rest of the algorithm consists of d − 1 iterations
(Lines 3-7), in each of which we greedily add into N an AP pair with a large mutual information.
Specifically, the AP pair in each iteration is selected from a candidate set Ω that contains every AP
pair (X ,Π) satisfying two requirements:

1. |Π | ≤ k , which ensures that N is a k-degree Bayesian network. This is ensured by choosing Π

only from
(V
k

)
, where

(V
k

)
denotes the set of all subsets of V with size min(k, |V |) (Lines 5-6).

2. N contains no edge from Xi to X j for any j < i , which guarantees that N is a DAG. We ensure
this condition by requiring that in the beginning of any iteration, V only contains the attributes
whose parent sets have been decided in the previous iterations (Line 7). In other words, the parent
set of Xi can only be a subset of {X1,X2, . . . ,Xi−1}, as a consequence of which N cannot contain
any edge from Xi to X j for any j < i .

Once the parent set of each attribute is decided, the algorithm terminates and returns the Bayesian
networkN (Line 8). The number of pairs considered in iteration i is (d − i)

( i
k

)
, so summing over all

iterations the cost is bounded by d
∑d

i=1
( i
k

)
= d

(d+1
k+1

)
. This determines the asymptotic cost of the

procedure. Note that when k = 1, the above algorithm is equivalent to Chow and Liu’s method
[12] for constructing optimal 1-degree Bayesian networks.



4.2 A First-Cut Solution
Observe that in Algorithm 2, there is only one place where we interact directly with the input
dataset D, namely, the greedy selection of an AP pair (Xi ,Πi ) in each iteration of the algorithm
(Line 6). Therefore, if we are to make Algorithm 2 differentially private, we only need to replace
Line 6 of Algorithm 2 with a procedure that selects (Xi ,Πi ) from Ω in a private manner. Such a
procedure can be implemented with the exponential mechanism outlined in Section 2.1, using
the mutual information function I as the score function. Specifically, we first inspect each AP
pair (X ,Π) ∈ Ω, and calculate the mutual information I (X ,Π) between X and Π. After that, we
sample an AP pair from Ω, such that the sampling probability of any pair (X ,Π) is proportional to
exp(I (X ,Π)/2∆), where ∆ is a scaling factor.
The value of ∆ is set as follows. As mentioned in Section 3, PrivBayes requires that the con-

struction of the Bayesian network N should satisfy ε1-differential privacy. Accordingly, we set
∆ = (d − 1)S(I )/ε1, where S(I ) denotes the sensitivity of the mutual information function I (see
Equation (3)). This ensures that each invocation of the exponential mechanism satisfies (ε1/(d − 1))-
differential privacy. Given the composability property of differential privacy [18] and the fact that
we only invoke the exponential mechanism d − 1 times during the construction of N , it can be
verified that the overall process of constructing N is ε1-differentially private.

Last, we calculate the sensitivity, S(I ).

Lemma 4.1.

S(I (X ,Π)) =


1
n log(n) + n−1

n log
( n
n−1

)
, if X or Π is binary;

2
n log

( n+1
2
)
+ n−1

n log
( n+1
n−1

)
, otherwise,

where n is the number of tuples in D.

This can be shown by considering the maximum change in mutual information based on its
definition (5), as the various probabilities are changed by the alteration of one tuple. We defer the
full proof to the appendix for brevity, but the maximum difference in mutual information between
binary variables is achieved by this example:

X\Π 0 1
0 0 0
1 0 1

X\Π 0 1
0 1

n 0
1 0 n−1

n

The mutual information of the left distribution is 0, and that of the right one is 1
n log(n) +

n−1
n log

( n
n−1

)
.

4.3 An Improved Solution
The method in Section 4.2 is simple and intuitive, but may not achieve the best results: Observe
that S(I ) > 1

n log(n); this can be large compared to the range of I . For example, range(I ) = 1 for
binary distributions. As a consequence, the scaling factor ∆ = (d − 1)S(I )/ε1 tends to be large, and
so the exponential mechanism is still quite likely to sample (from Ω) an AP pair with a small mutual
information. In that case, the Bayesian network N constructed using the exponential mechanism
will offer a weak approximation of Pr[A], resulting in a low-quality output from PrivBayes. To
improve over this solution, we propose to avoid using I as the score function in the exponential
mechanism. Instead, we define a novel function F that maps each AP pair (X ,Π) ∈ Ω to a score,
such that
1. F ’s sensitivity is small (with respect to the range of F ).



2. If F (X ,Π) is large, then I (X ,Π) tends to be large.
The rationale is that since S(F ) is small with respect to range(F ), the scaling factor ∆ = (d−1)S(F )/ε1
will also be small, and hence, the exponential mechanism has a high probability to select an AP
pair (X ,Π) with a large F (X ,Π). In turn, such an AP pair tends to have a large mutual information
between X and Π, which helps improve the quality of the Bayesian network N .
In what follows, we will clarify our construction of F . To achieve property 2 above, we set F to

its maximum value (i.e., 0) when I is greatest. To achieve property 1, we make F (X ,Π) decrease
linearly in proportion to the L1 distance from Pr[X ,Π] to a distribution that maximizes F , since
linear functions ensure that the sensitivity is controlled: the function does not change sharply
anywhere in its domain. We first introduce the concept of maximum joint distribution, which will
be used to define the peaks of F , and then characterize such distributions:

Definition 4.2 (Maximum Joint Distribution). Given an AP pair (X ,Π), a maximum joint dis-
tribution Pr⋄[X ,Π] for X and Π is one that maximizes the mutual information between X and
Π.

Lemma 4.3. Assume that |dom(X )| ≤ |dom(Π)|. A distribution Pr⋄[X ,Π] is a maximum joint
distribution if and only if
(1) Pr⋄[X = x] = 1/|dom(X )|, for any x ∈ dom(X );
(2) For any π ∈ dom(Π), there is at most one x ∈ dom(X ) with Pr⋄[X = x ,Π = π ] > 0.

Proofs in this section are deferred to the appendix. We illustrate Definition 4.2 and Lemma 4.3
with an example:

Example 4.4. Consider a binary variableX with dom(X ) = {0, 1} and a variable Π with dom(Π) =
{a,b, c}. Consider two joint distributions between X and Π as follows:

X\Π a b c
0 .5 0 0
1 0 .5 0

X\Π a b c
0 0 .2 .3
1 .5 0 0

By Lemma 4.3, both of the above distributions are maximum joint distributions, with I (X ,Π) = 1.

Let (X ,Π) be an AP pair, and P⋄[X ,Π] be the set of all maximum joint distributions for X and Π.
Our score function F (for evaluating the quality of (X ,Π)) is defined as

F (X ,Π) = −
1
2

min
Pr⋄∈P⋄

 Pr[X ,Π] − Pr⋄[X ,Π]

1
. (7)

If F (X ,Π) is large, then Pr[X ,Π] must have a small L1 distance to one of the maximum joint
distributions inP⋄[X ,Π], and vice-versa. In turn, if Pr[X ,Π] is close to a maximum joint distribution
in P⋄[X ,Π], then intuitively, Pr[X ,Π] is likely to give a large mutual information between X and
Π. In other words, the value of F (X ,Π) tends to be positively correlated with I (X ,Π). This explains
why F could be a good score function to replace I . In addition, F has a much smaller sensitivity
than I , as shown in the following theorem:

Theorem 4.5. S(F ) = 1/n.

This follows immediately from considering the L1 distance between neighboring distributions.
Observe that S(F ) < S(I )/logn, where n is the number of tuples in the input data. Meanwhile, the
ranges of F and I are comparable; for example, range(I ) = 1 and range(F ) = 0.5 for binary domains.
Therefore, when n is large (as is often the case), the sensitivity-to-range ratio of F is significantly
smaller than that of I , which makes F a favorable score function over I for selecting AP pairs in the
Bayesian network N .



Table 3. An example of joint distributions

X\Π 00 01 10 11
0 .6 0 0 0
1 .1 .1 .1 .1

X\Π 00 01 10 11
0 .5 0 0 0
1 0 .3 .1 .1

(a) input joint distribution (b) maximum joint distribution

4.4 Computation of F
While (7) defines the function F , it still remains unclear how we can calculate F (X ,Π) given
Pr[X ,Π]. In this subsection, we use dynamic programming to solve the problem for the case when
all attributes in Π ∪ {X } have binary domains; we address the case of non-binary domains in
Section 5.

Let (X ,Π) be an AP pair where |Π | = k . Then, the joint distribution Pr[X ,Π] can be represented
by a 2 × 2k matrix where the sum of all elements is 1. For example, Table 3(a) illustrates a joint
distribution Pr[X ,Π] with |Π | = 2. To compute F (X ,Π), we need to identify the minimum L1
distance between Pr[X ,Π] and a maximum joint distribution Pr⋄[X ,Π] ∈ P⋄[X ,Π]. Table 3(b)
illustrates one such maximum joint distribution, whose L1 distance to the distribution in Table 3(a)
equals 0.4. To derive the minimum L1 distance, a naive approach is to enumerate all maximum joint
distributions in P⋄[X ,Π]; however, since P⋄[X ,Π] may contain an infinite number of maximum
joint distributions, a brute-force enumeration of P⋄ is infeasible. To address this issue, we will first
introduce an exponential-time algorithm for computing F (X ,Π), which will serve as the basis of
our dynamic programming solution.

The basic idea of our exponential-time algorithm is to (i) partition the distributions in P⋄ into a
finite number of equivalence classes, and then (ii) compute F (X ,Π) by processing each equivalence
class individually. By Lemma 4.3, any maximum joint distribution Pr⋄[X ,Π] has the following
property: for any π ∈ dom(Π), either Pr⋄[X = 0,Π = π ] = 0 or Pr⋄[X = 1,Π = π ] = 0. In other
words, for each column in the matrix representation of Pr⋄[X ,Π] (where a column corresponds
to a value in dom(Π)), there should be at most one non-zero entry. For example, the gray cells in
Table 3(b) indicate the positions of non-zeros in the given maximum joint distribution.

For any two distributions in P⋄, we say that they are equivalent if (i) their matrix representations
have the same number of non-zero entries, and (ii) the positions of the non-zero entries are the same
in the two matrices. Suppose that we divide the distributions in P⋄ into equivalence classes, each
of which contains a maximal subset of equivalent distributions. Then, there are O(32k ) equivalent
classes. As we show below, one can easily calculate the minimum L1 distance from Pr[X ,Π] to each
equivalence class.

To explain, consider a particular equivalence class E. Let Z− be the set of pairs (x ,π ), such that
Pr⋄[X = x ,Π = π ] = 0 for any Pr⋄[X ,Π] ∈ E. That is, Z− captures the positions of all zero entries
in the matrix representation of Pr⋄[X = x ,Π = π ]. Similarly, we define the sets of non-zero entries
in row X = 0 and X = 1 as

Z+0 =
{
(0,π ) | Pr⋄[X = 0,Π = π ] > 0

}
and Z+1 =

{
(1,π ) | Pr⋄[X = 1,Π = π ] > 0

}
. (8)

For convenience, we also abuse notation and define

Pr[Z−] =
∑

(x,π )∈Z−
Pr[X = x ,Π = π ],

Pr[Z+0 ] =
∑

(x,π )∈Z+0
Pr[X = x ,Π = π ],

Pr[Z+1 ] =
∑

(x,π )∈Z+1
Pr[X = x ,Π = π ].



By Lemma 4.3, we have Pr⋄[Z−] = 0, Pr⋄[Z+0 ] = 1/2, and Pr⋄[Z+1 ] = 1/2 for any Pr⋄[X ,Π] ∈ E.
Then, for any Pr[X ,Π], its L1 distance to a distribution Pr⋄[X ,Π] ∈ E is bounded by: Pr[X ,Π] − Pr⋄[X ,Π]


1
≥ Pr[Z−] +

��� Pr[Z+0 ] − 1
2

��� + ��� Pr[Z+1 ] − 1
2

���.
To simplify the expressions, we make use of the notation (x)+ to denote max(0,x). Given that
Pr[Z−] + Pr[Z+0 ] + Pr[Z

+
1 ] = 1, the above inequality can be simplified to Pr[X ,Π] − Pr⋄[X ,Π]


1
≥ 2 ·

[(
1
2 − Pr[Z+0 ]

)
+
+
(
1
2 − Pr[Z+1 ]

)
+

]
. (9)

Furthermore, there always exists a Pr⋄[X ,Π] ∈ E that makes the equality hold. In other words, once
the positions of the non-zero entries in Pr⋄[X ,Π] are fixed, we can use (9) to derive the minimum
L1 distance from any Pr[X ,Π] to E, with a linear scan of the entries in the matrix representation of
Pr[X ,Π]. By enumerating all O(32k ) equivalence classes of P⋄, we can then derive F (X ,Π).
The above procedure for calculating F is impractical when k ≥ 4, as the exhaustive search

over all possible equivalence classes of P⋄ is prohibitive. To tackle this problem, we propose a
dynamic-programming-based optimization that reduces computation costs by taking advantage of
the fact that the distributions are induced by n items.
Based on (9), our target is to find a combination of Z+0 and Z+1 (which therefore determine Z−)

that minimizes ( 1
2
− Pr[Z+0 ]

)
+
+
( 1
2
− Pr[Z+1 ]

)
+
.

We define the probability mass associated with Z+0 and Z+1 as K0 and K1 respectively. Initially,
K0 = K1 = 0. For each π ∈ dom(Π), we can either increase K0 by Pr[X = 0,Π = π ] (by assigning
(0,π ) to Z+0 ) or increase K1 by Pr[X = 1,Π = π ] (by assigning (1,π ) to Z+1 ). We index π ∈ dom(Π)
as π1,π2, . . . ,π2k . We use C(i,a,b) to indicate if K0 = a/n and K1 = b/n is reachable by using
the first i π ’s, i.e., π1,π2, . . . ,πi . It can be verified that (i) C(i,a,b) = true if i = a = b = 0, (ii)
C(i,a,b) = false if i < 0 or a < 0 or b < 0, and (iii) otherwise,

C(i,a,b) = C(i − 1,a − n Pr[X = 0,Π = πi ],b) ∨C(i − 1,a,b − n Pr[X = 1,Π = πi ]). (10)

Given an input dataset D with n tuples, each cell in Pr[X ,Π] must be a multiple of 1/n. Thus, we
only consider the case when a and b are integers in the range [0,n]. Thus, the total number of states
C(i,a,b) is n22k . A direct traversal of all states takes O(n22k ) time. To reduce this time complexity,
we introduce the following concept:

Definition 4.6 (Dominated State). A state C(i,a1,b1) is dominated by C(i,a2,b2) if and only if
a1 ≤ a2 and b1 ≤ b2.

Note that a dominated state can always be ignored without affecting the correctness of final
result. Consequently, we maintain the set of at most n non-dominated reachable states for each
i ∈ [1, 2k ]. The function F can be calculated by

F (X ,Π) = − min
C(2k ,a,b)=true

( 1
2
−
a

n

)
+
+
( 1
2
−
b

n

)
+
.

As such, the total number of states that need to be traversed is n2k , and thus the complexity of
the algorithm is reduced to O(n2k ). Note that k is small in practice, since we only need to consider
low-degree Bayesian networks. If we treat k as a (small) constant, the running time is linear in n.



4.5 Choice of k and θ -usefulness.
We have discussed how to build a k-degree Bayesian network under differential privacy, where k is
considered as a given input to the algorithm. However, k is usually unknown in real applications
and should be chosen carefully. The choice of k is non-trivial for PrivBayes. Intuitively, a Bayesian
network with a larger k keeps more information from the full dimensional distribution Pr[A], e.g.,
a (d − 1)-degree Bayesian network approximates Pr[A] perfectly without having any information
loss. On the other hand, the downside of using large k is that it forces PrivBayes to anonymize a set
of high-dimensional marginal distributions in the second phase, which are very vulnerable to noise
due to their domains of large size. These noisy distributions are less useful after anonymization
especially when the privacy budget ε is small, leading to a synthetic database full of random
perturbation. With very small values of ϵ , the best choice may be to pick k = 0, i.e. to model all
attributes as independent. Hence, the choice of k should balance the informativeness of a Bayesian
network and the robustness of marginal distributions. This balancing act is affected by three
parameters: the total privacy budget ε , the total number of tuples n in database, and usefulness θ of
each noisy marginal distribution in the second phase. We quantify this in the following definition.

Definition 4.7 (θ -usefulness). A noisy distribution is θ -useful if the ratio of average scale of
information to average scale of noise is no less than θ .

Lemma 4.8. The noisy distributions in Algorithm 1 are
(

n · ε2

(d − k) · 2k+2

)
-useful.

Proof. In Algorithm 1, where k is a fixed parameter, each marginal distribution is (k + 1)-
dimensional with a total domain size 2k+1. Therefore, the average scale of information in each cell
is 1/2k+1 (making a simplifying uniformity assumption for this calculation).
For the scale of noise, we have (d − k) marginal distributions to be anonymized and each of

them consumes an equal fraction of the privacy budget for this task, i.e. ε2/(d − k). The sensitivity
of each marginal distribution is 2/n, i.e., (working with probabilities) the maximum contribution
of changing any individual’s information is to add 1/n to one probability corresponding to their
new values and to subtract 1/n from their old probability. When using the Laplace mechanism, the
Laplace noise η injected to each cell is drawn from distribution Lap (2(d − k)/nε2)where the average
scale of noise is E(|η |) = 2(d − k)/nε2. As a consequence, we obtain that the ratio of information to
noise behaves as (1/2k+1)/(2(d − k)/nε2) = nε2/(d − k)2k+2 as claimed. □

The notion of θ -usefulness provides a more intuitive way to choose k automatically without
closely studying the specific instance of the input database. Generally speaking, we believe a
0.5-useful noisy distribution is not good because the scale of noise is twice that of information,
while a 5-useful one is more reliable due to its large information to noise ratio. In practice, we set up
a threshold θ , then choose the largest positive integer k that guarantees θ -usefulness in distribution
learning (note, this is independent of the data, as it depends only on the non-private values ϵ,θ ,n
and d). If such a k does not exist, k is set to the minimum value, 0. In the experimental section, we
will show that the performance of PrivBayes is not sensitive to the choice of θ ; therefore, we have
a wide range of values to select from.

5 EXTENSIONS TO GENERAL DOMAINS
The dynamic programming approach in Section 4.4 and the notion of θ -usefulness in Section 4.5
both assume that all attributes in the input data D are binary. In this section, we extend our solution
to the case when D contains non-binary attributes.



5.1 Encodings of Non-binary Attributes
First, we study how to represent non-binary attributes in PrivBayes. We present four different
approaches, starting with the application of a standard encoding idea.

Binary encoding. Following the common practice in the literature [47], our first approach to
handling non-binary attributes is to convert each of them into a set of binary attributes. In particular,
for each categorical attribute X whose domain size equals ℓ, we first encode each value in X ’s
domain into a binary representation with ⌈log ℓ⌉ bits; after that, we convert X into ⌈log ℓ⌉ binary
attributes X1,X2, . . . ,X ⌈log ℓ⌉ , such that Xi corresponds to the i-th bit in the binary representation.
Meanwhile, for each continuous attribute Y , we first discretize the domain of Y into a fixed number
b of equi-width bins3, and then convert Y into ⌈logb⌉ binary attributes, using a similar approach
to the transformation of X . Figures 2 and 3 give examples of binary encoding on continuous and
categorical attributes, respectively. Figure 2 shows how we might encode the attribute “age”. First,
it is broken into b = 8 (for the purpose of illustration) ranges of ten years each. Then the index for
each range is represented as three binary bits (i.e. log2 8), 0002 for the first, 1112 for the last. For
the categorical attribute in Figure 3, any linearization of the attribute values to order them can be
used before the binary encoding is applied. After the transformation, D can be encoded to form a
new database Db in the binary domain. Then, we apply PrivBayes on Db to generate a synthetic
dataset D∗

b , then decode it to get D∗ in the original domain.
The strength of this approach is that it allows the direct use of θ -usefulness and the advanced

score function F . Moreover, the binary decomposition of attributes provides a high level of flexibility
in constructing Bayesian networks. For instance, assume that the value of a binary attribute “is
retired” is true, if and only if the value of “age” (as in Figure 2) is larger than 60. To fully preserve
this correlation, PrivBayes with binary encoding requires to use the binary attribute “is retired”
and merely the first two bits of “age”. The reason is that the first two bits actually discretize the
domain of “age” into four bins, i.e., (0, 20], (20, 40], (40, 60] and (60, 80], which is sufficient for the
purpose. Data utility is then improved, as the corresponding joint distribution of “is retired” and
“age” contains only 8 cells, instead of 16 if all bits are included; thus, it is more robust against noise.

Although the binary encoding provides high flexibility, it comes at the cost of some redundancy.
The semantics of the new binary attributes in isolation is not always very clear. For example, the
second bit of “age” in Figure 2 represents whether a person’s age is in (20, 40] ∪ (60, 80]. This alone
does not make too much sense, until the most significant bit is taken into account as well. As for
the categorical attribute “workclass” (in Figure 3), each bit alone eventually splits all values in the
domain into two subsets. But there is no semantics behind those partitions, unless all three bits
(and partitions) are combined together. In the construction of a Bayesian network, however, all
these bits are treated as natural attributes of independent interest, leading to the consideration
of a large number of redundant AP pairs with artificial meanings. This would hurt the quality of
Bayesian networks, if any redundant AP pair is selected, which may often be the case when ε is
small.

Gray encoding. Our second approach is a variant of binary encoding, namely, Gray encoding [24].
It is a binary encoding system where two successive values differ in only one bit. See examples in
Figures 2 and 3: the same set of binary identifiers are generated, but in a different order compared to
the sequence of the attribute values. When combined with PrivBayes, it inherits some of the pros
and cons of the natural binary encoding, but potentially brings some advantages. As successive
values share most bits, Gray encoding can be more robust to noise. Take the value (30, 40] of
attribute “age” as an example (Figure 2. If the perturbation in PrivBayes happens to change the
3We use b = 16 in experiments, and b = 8 in the example in Figure 2 for simplicity of presentation.
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Fig. 3. Four encodings on a categorical attribute “workclass”

first or the last bit of its code 0102, the noisy code (i.e., 1102 or 0112) will correspond to a value
adjacent to the original one. Thus, the distortion of information is reduced. In contrast, the natural
binary encoding does not have this property. Therefore, Gray encoding is a competitive alternative
to the natural binary encoding.

Vanilla encoding. To circumvent the redundancy problem of binary encodings, we propose
another approach that keeps all attributes intact during the construction of Bayesian networks. So
for an attribute which takes on ℓ different values, instead of trying to encode it with ⌈log2 ℓ⌉ bits,
we directly represent it as a discrete variable with ℓ possible values. Figures 2 and 3 present two
examples of vanilla encoding. Under vanilla encoding, the domain of each attribute is considered
to be indivisible. Intuitively, this preserves the semantics of non-binary attributes and avoids
generating extra attributes with artificial meaning, which help reduce the uncertainty in learning
Bayesian networks.
However, applying vanilla encoding on PrivBayes turns out to be challenging. First, we need

to revise our notion of θ -usefulness principle and modify the definition of score function F to
attributes with general domains. In the following Sections 5.2 and 5.3, we will clarify how each
component of PrivBayes can be updated or redesigned to fit in with non-binary attributes. These
effects make the use of non-binary encoding possible within the framework of PrivBayes. Another
issue of vanilla encoding is lack of flexibility: attribute inclusion is an “all or nothing” decision. As
the domain of each attribute can not be partially encoded, preserving a correlation with a high
cardinality can be costly. Recall the “is retired” example in binary encoding. PrivBayes with vanilla
encoding has to build a joint distribution of full size 16, because all values of “age” must be present.
Due to the θ -usefulness criterion, PrivBayes may choose to discard this distribution of large size
when the privacy budget ε is small.



Hierarchical encoding. Last, we present hierarchical encoding, a flexible encoding scheme aware
of the semantics of attributes. The main idea is to generalize the domain of each attribute using a
taxonomy tree. In Figures 2 and 3, we illustrate taxonomy trees (roots are omitted) for continuous
and categorical attributes, respectively. To each continuous attribute whose domain is partitioned
into b bins, we build a binary tree of height ⌈logb⌉ (excluding the root), where each intermediate
node represents the concatenation of bins in its leaves. For each categorical attribute, we require a
specific taxonomy tree based on domain knowledge. The tree is built based only on knowledge
of the relevant domain; in many cases, there are natural hierarchies based on organizations (e.g.
city, region, country, continent) that are inherent to the attribute, or can be easily specified. It is
common in prior work on data anonymization to assume the existence of such a hierarchy, for
example efforts on k-anonymization [3, 28]. The leaf nodes describe all the possible specific values
in the domain, which are then recursively generalized at each subsequent level of the tree. For
concreteness, take attribute “workclass” in Figure 3 as an example. Working for federal, state, or
local government are three values in the original domain, which can be generalized to working
for government at the upper level of the taxonomy tree. Similarly, the attribute “country” can be
generalized to geographical regions, then to continents, according to the CIA World Factbook [13].
It is also worth mentioning that vanilla encoding can be seen as a special case of hierarchical
encoding, where each taxonomy tree consists of leaf nodes only.
To apply hierarchical encoding on PrivBayes, we first formalize the concept of generalized

attribute. Let height(X ) denote the height of attribute X ’s taxonomy tree. For each integer i ∈

[0, height(X )), the nodes at level i (leaves at level 0) of the taxonomy tree define the domain of a
generalized version of X , denoted as X (i). The larger i is, the more generalized the attribute will
be. Note that X = X (0). With hierarchical encoding, each attribute can provide multiple choices
in the construction of Bayesian networks. The tradeoff of attribute generalization is that a less
generalized attribute is more informative, yet the more generalized one is more flexible due to its
domain of small size. To balance this tradeoff, we resort to the θ -usefulness principle. Following
the intuitions in Section 4.5, we always prefer the less generalized attributes under the condition
that θ -usefulness is guaranteed. In the next section, we will specify how to integrate θ -usefulness
with the hierarchical encoding. To avoid a combinatorial explosion of possibilities, we restrict to
considering generalizations where we pick a single level i to apply across one attribute, i.e. we do
not allow generalizations where different branches of the generalization tree are represented at
different levels. Removing this assumption is feasible within our framework, but entails a much
larger set of possibilities to search, with a comensurate drain on the privacy budget. Consequently,
we choose to make this restriction.

5.2 Extension of θ -usefulness
In this subsection, we extend the notion of θ -usefulness to the non-binary encodings, i.e., vanilla
and hierarchical encodings. This requires us to handle non-binary attributes (both encodings) and
generalized attributes (hierarchical encoding only). For easy understanding, we will first present
how each component of PrivBayes can be updated to fit in with non-binary attributes, under the
criterion of θ -usefulness; the algorithms for generalized attributes will be elaborated at the end of
this subsection.

Non-binary attributes. Recall that, in the proof of Lemma 4.8, all (k + 1)-dimensional marginals
have the same domain size 2k+1, such that we can bound the average scale of information in each
cell by simply limiting k . However, that is no longer the case when the domain sizes of attributes
vary. In particular, marginal distributions of the same dimensionality may have very different sizes;
for example, the joint distribution of two binary attributes has 4 cells, while that of two attributes



Algorithm 3: NoisyConditionals (D, N ): returns P∗

1 initialize P∗ = ∅;
2 for i = 1 to d do
3 materialize the joint distribution Pr[Xi ,Πi ];
4 generate differentially private Pr∗[Xi ,Πi ] by adding noise Lap

(
2d
nε2

)
;

5 set negative values in Pr∗[Xi ,Πi ] to 0 and normalize;
6 derive Pr∗[Xi | Πi ] from Pr∗[Xi ,Πi ]; add it to P∗;

7 return P∗;

Algorithm 4: GreedyBayes (D, θ ): returns N
1 initialize N = ∅ and V = ∅;
2 randomly select an attribute X1 from A; add (X1, ∅) to N ; add X1 to V ;
3 for i = 2 to d do
4 initialize Ω = ∅;
5 foreach X ∈ A\V do
6 find all maximal parent sets of X , i.e., ⊤(X ) = MaximalParentSets

(
V , nε2

2dθ |dom(X ) |

)
;

7 if ⊤(X ) = ∅ then
8 add (X , ∅) to Ω;
9 else

10 foreach Π ∈ ⊤(X ) do add (X ,Π) to Ω;

11 select (Xi ,Πi ) from Ω, using the exponential mechanism with privacy budget ε1/(d − 1);
12 add (Xi ,Πi ) to N ; add Xi to V ;
13 return N ;

with cardinality four each has 16. Therefore, a single k is not sufficient to guarantee θ -usefulness
anymore: we should also take the domain size of each attribute into account. Towards this end, we
revise Algorithms 1 and 2 as follows.
First, in Algorithm 1, we set k = 0, i.e., we materialize all d marginal distributions associated

with the Bayesian network N . The privacy budget of this process (i.e., ε2) is evenly divided into d
portions, each of which is spent on a marginal. In other words, the Laplace noise added to each cell
of each marginal is Lap( 2d

nε2
). Algorithm 3 presents the revised version of Algorithm 1, with the

places that have changed underlined to show the difference.
Now consider Algorithm 2. Observe that, in Algorithm 2, Line 5 is the only place where we

interact directly with k , and it generates a candidate set Ω, which contains all eligible AP pairs for
the next round of selection. Specifically, for each attribute X ∈ A\V , the intention of Line 5 is to
help identify every subset Π of V that satisfies the following two requirements:
(i) Pr[X ,Π] is θ -useful. The motivation of this requirement is to ensure that the information in
Pr[X ,Π] will not be overwhelmed by the noise introduced in the distribution learning phase, as we
explain in Section 4.5;
(ii) Π is maximal, i.e., there is no subset Π′ of V such that Pr[X ,Π′] is θ -useful and Π ⊂ Π′. The
requirement of maximality of Π relies on the monotonicity of the mutual information I . Given two



Algorithm 5: MaximalParentSets (V , τ ): returns S
1 if τ < 1 then return ∅;
2 if V = ∅ then return {∅};
3 pick an arbitrary attribute X from V ;
4 initialize S = MaximalParentSets (V \ {X } ,τ );
5 foreach Z ∈ MaximalParentSets

(
V \ {X } , τ

| dom(X ) |

)
do

6 if Z ∈ S then remove Z from S;
7 add Z ∪ {X } to S;
8 return S;

sets Π and Π′ such that Π ⊆ Π′, we always have I (X ,Π) ≤ I (X ,Π′) for any attribute X . Therefore,
with respect to the informativeness of the Bayesian network, a larger Π is always preferred.
We refer to a subset Π satisfying the above two conditions as a maximal parent set of X . Finding all
maximal parent sets of a particular attribute is simple when all attributes are binary. In particular,
with Lemma 4.8, one can easily find the appropriate value of k such that all subsets of V with size
min(k, |V |) meet the requirements4.
However, when some attributes are non-binary, a different calculus applies. Given an AP pair

(X ,Π) withm cells in Pr[X ,Π], the average scale of information in each cell ism−1. On the other
hand, the average scale of noise is 2d/nε2 with our updates in Algorithm 3. Therefore, Pr[X ,Π] is
θ -useful only ifm ≤ nε2/2dθ . In other words, given an attribute X , we are only interested in those
maximal subsets of V whose domain sizes are no greater than nε2

2dθ |dom(X ) |
.

Based on the above discussion, we present Algorithm 4, which is a revised version of Algorithm 2.
The initialization and outer loop stay the same, but compared to Algorithm 2, it adopts a new
procedure to generate the candidate set Ω (Lines 5-10). Specifically, for each attribute X ∈ A\V ,
we first invoke the MaximalParentSets algorithm (Line 6), which identifies a set ⊤(X ) that contains
all maximal parent sets of X . (We will elaborate MaximalParentSets shortly.) After constructing
⊤(X ), we add AP pair (X ,Π) to Ω for each Π ∈ ⊤(X ) (Line 10). In Lines 7-8, we also consider an
extreme case that⊤(X ) is empty, which implies that even Pr[X ] violates θ -usefulness. Following the
common practice discussed in Section 4.5, we add (X , ∅) to Ω in order to ensure that every attribute
is modeled (at least as an independent attribute) in the Bayesian network. Once the candidate set Ω
is ready to be selected from, we invoke the exponential mechanism to privately choose an AP pair,
then add it to N (Lines 11-12).

We now clarify the details of the MaximalParentSets method. Algorithm 5 shows the pseudo-code
of MaximalParentSets. It takes as input a set of attributes V and an upper bound of domain size
τ , and outputs a set S that contains all maximal subsets of V with domain sizes no larger than
τ . The main idea of the algorithm is to recursively build two sets of maximal subsets, with and
without a particular attribute X ∈ V , respectively, and then merge them to get the final result.
More specifically, we first initialize S as the set of maximal subsets without attribute X (Line 4).
To construct the ones with X , the algorithm utilizes the attribute set V \X and the upper bound
τ/| dom(X )|, to ensure that addingX to each returned subset still guarantees the maximality without
violating the restriction on domain sizes. In Lines 6-7, the algorithm updates S by removing the
non-maximal duplications (as Z is a subset of Z ∪ {X }), and then adding the maximal subsets that
include the attribute X . Finally, the algorithm has two terminating conditions:

4When k > |V |, the only maximal parent set is V itself.



Algorithm 6: MaximalParentSets∗ (V , τ ): returns S
1 if τ < 1 then return ∅;
2 if V = ∅ then return {∅};
3 pick an arbitrary attribute X from V ;
4 initialize S = ∅,U = ∅;
5 for i = 0 to height(X ) − 1 do
6 foreach Z ∈ MaximalParentSets∗

(
V \ {X } , τ

| dom(X (i )) |

)
do

7 if Z ∈ U then continue;
8 add Z to U; add Z ∪

{
X (i)

}
to S;

9 foreach Z ∈ MaximalParentSets∗ (V \ {X } ,τ ) do
10 if Z ∈ U then continue;
11 add Z to S;

12 return S;

(i) τ < 1. Given that the minimum size of a domain is dom(∅) = 1, this condition indicates that no
subset of V meets the restriction on domain size. In that case, the algorithm simply returns the
empty set;
(ii) V = ∅. Given that τ ≥ 1 and V is empty, ∅ is the only subset of V that satisfies the requirement
on the domain size. Therefore, the algorithm returns a singleton set {∅}.

Generalized attributes. Last, we show how to utilize generalized attributes in the framework of
PrivBayes. Recall that the intuition of attribute generalization is to provide high flexibility in the
construction of Bayesian networks. In particular, given an AP pair (X ,Π) whose joint distribution
Pr[X ,Π] violates θ -usefulness, we aim to generalize some attributes in Π to satisfy the restriction
on domain size, while preserving as much information between X and Π as possible. Towards this
end, we extend the definition of maximal parent sets to allow generalized attributes.

First, we define a generalized subset as a subset in which attributes are generalized. Note that the
original attribute can be seen as a generalized attribute of itself. Then, for each attribute X ∈ A\V ,
the maximal parent set Π is a generalized subset of V that satisfies: (i) Pr[X ,Π] is θ -useful; (ii) Π is
maximal, i.e., there is no generalized subset Π′ of V such that Pr[X ,Π′] is θ -useful and Π′ contains
any extra attribute not in Π, or any shared attribute but with a lower generalization level.

By this definition, we update the MaximalParentSets method as in Algorithm 6. In Lines 6-8, the
algorithm generates maximal parent sets that contain attribute X (i). By utilizing the attribute set
V \X and the upper bound τ/| dom(X (i))|, we ensure that the union of X (i) and each returned subset
Z satisfies the requirement on domain size. Before adding Z ∪

{
X (i)

}
to S, we check its maximality

with setU, as Z ∈ U implies that the union of Z and a less generalized X is already included in S;
therefore, we have to discard the non-maximal Z ∪

{
X (i)

}
. By enumerating generalization levels

of X (Line 5), we construct all maximal parent sets with the particular attribute X . In the end, we
process the remaining cases in which X is excluded (Lines 9-11).

Although the construction of maximal parent sets is complicated, applying generalized attributes
to other parts of PrivBayes is surprisingly simple. No additional change is required in Algorithms 3
and 4. In both algorithms, the only place where we interact with generalized attributes is to ma-
terialize the non-private joint distribution (in order to inject noise and compute score function,
respectively). This can be done by generalizing tuples in the input data accordingly. As for data



synthesis, the properties of Bayesian networks ensure that each attribute is sampled before appear-
ing in any parent set. Therefore, to sample X from the conditional distribution Pr∗[X | Π], all we
need is to make sure that the previously sampled attributes in Π are generalized properly.

5.3 Alternative Score Function
To facilitate the above extension of θ -usefulness to non-binary encodings, there is one missing piece
of the puzzle: we need to identify a score function to be used within the exponential mechanism
to select AP pairs. One natural choice, as in the case of binary domains (see Section 4.2), is the
mutual information function I in Equation (5). Observe that I does not have any restriction on
the domain sizes of attributes; therefore, it can be directly applied on general domains. As for the
more advanced score function F defined in Section 4.3, however, it is not immediately clear how
we may extend F to general domains, since the dynamic programming algorithm for computing F
in Section 4.4 requires that all input domains are binary. In what follows, we will prove that the
extension of F is infeasible, and an alternative score function R will be proposed to work on general
domains instead.

First, we observe that computing F is hard in general (proof provided in the Appendix).
Theorem 5.1. The problem of determining whether F (X ,Π) = t is NP-hard, given a joint distribution

Pr[X ,Π] and a real number t .

Given the above NP-hardness result, we know that there is no efficient way to calculate F .
Fortunately, we have shown how a pseudo-polynomial dynamic programming solution can be
designed to compute F (in Section 4.4), by utilizing a special property of PrivBayes. That is, all
numbers in the joint distribution are multiples of 1/n, which provides a possibility to represent the
states of dynamic programming at a cost polynomial in n. However, the extension of this solution
to general domains has time complexity O(| dom(Π)| · n |dom(x ) |−1); therefore, it is not efficient for
any non-binary X .
Recall that F measures the L1 distance from the input Pr[X ,Π] to a joint distribution that

maximizes I (X ,Π). The rationale behind this design is two-fold: (i) the L1 distance measurement
guarantees a relatively small sensitivity, i.e., S(F ) = O(1/n), and (ii) if Pr[X ,Π] is close to a joint dis-
tribution of maximum I (X ,Π), then intuitively, Pr[X ,Π] is likely to give a large mutual information
between X and Π. Now we borrow the ideas from F , and propose an alternative score function R
which can be computed efficiently on non-binary domains. The main difference of R is that it relies
on the L1 distance from Pr[X ,Π] to a joint distribution that minimizes I (X ,Π). In the following, we
specify the construction of R.
Lemma 5.2. If I (X ,Π) = 0, then Pr[X = x ,Π = π ] = Pr[X = x] · Pr[Π = π ] for any pair of

x ∈ dom(X ) and π ∈ dom(Π).

The proof is rather straightforward given that I (X ,Π) = 0 implies mutual independence between
X and Π, so is omitted here. With Lemma 5.2, one can easily generate a joint distribution, denoted
as Pr[X ,Π], that satisfies I (X ,Π) = 0. In particular, for any x ∈ dom(X ),π ∈ dom(Π), we have

Pr[X = x ,Π = π ] = Pr[X = x] · Pr[Π = π ],

where Pr[X ] and Pr[Π] are marginal distributions derived from Pr[X ,Π]. Then, our new score
function to evaluating AP pair (X ,Π) is defined as:

R(X ,Π) =
1
2

 Pr[X ,Π] − Pr[X ,Π]

1
. (11)

Intuitively, if R(X ,Π) is small, then Pr[X ,Π] must be close to Pr[X ,Π]; therefore, the mutual
information between X and Π is likely to be small. On the other hand, a large R(X ,Π) indicates a



Table 4. Properties of score functions

Function Range Sensitivity Time complexity
I (X ,Π) O(1) O(logn/n) O(| dom(X )| · | dom(Π)|)

F (X ,Π) O(1) O(1/n) O(| dom(Π)| · n |dom(x ) |−1)

R(X ,Π) O(1) O(1/n) O(| dom(X )| · | dom(Π)|)

large scale of distortion between Pr[X ,Π] and Pr[X ,Π], which implies a strong correlation (and
a large I ) between X and Π. Note that R can be interpreted as the total variation distance to a
distribution whose mutual information is zero. This can be formalized by the following inequality
between R and I :

R(X ,Π) =
1
2

 Pr[X ,Π] − Pr[X ,Π]

1

≤

√
ln 2
2

DKL(Pr[X ,Π] ∥ Pr[X ,Π]) (by Pinsker’s inequality)

=

√
ln 2
2

DKL(Pr[X ,Π] ∥ Pr[X ] Pr[Π]) =
√

ln 2
2

I (X ,Π),

where DKL(· ∥ ·) is the KL-divergence defined in Equation (6). In summary, the value of R(X ,Π)
tends to grow with I (X ,Π), albeit at most with a square-root relationship. Last, we prove that R
has a small sensitivity.

Theorem 5.3. S(R) ≤ 3/n + 2/n2.

Therefore, we conclude that R is a feasible score function for PrivBayes.
Last, we compare R with its predecessors I and F . Table 4 summarizes the properties of the three

score functions. Among all choices, F is the most competitive one in term of sensitivity, i.e., S(F ) is
less than 1/3 of S(R) (comparing the constants in Theorems 4.5 and 5.3) and both of them are much
smaller than S(I ). This makes F preferable to the other two functions, but only in the case of binary
domains. As for non-binary attributes, R is the score function of first choice. In the experimental
section, we will empirically evaluate the performance of different score functions in constructing
Bayesian networks.

6 EXPERIMENTS
6.1 Experimental Settings

Datasets.We make use of four real datasets5 in our experiments: (i) NLTCS [35], which contains
records of 21, 574 individuals participated in the National Long Term Care Survey, (ii) ACS [44],
47, 461 rows of personal information obtained from 2013 and 2014 ACS sample sets in IPUMS-USA,
(iii) Adult [1], which includes the information of 45, 222 individuals extracted from the 1994 US
Census, and (iv) BR2000 [44], which consists of 38, 000 census records collected from Brazil in
year 2000. The first two datasets contain only binary attributes, while the last two have both
continuous and categorical attributes, for which we also provide taxonomy trees derived from
common knowledge on country locations, work classes, school grades, marriage status and so on.
Table 5 illustrates main properties of the datasets.
Tasks. We evaluate the performance of PrivBayes on two different tasks. The first task is to build
all α-way marginals of a dataset [2]. For convenience, we use Qα to denote the set of all α-way
5The PrivBayes code and datasets (with taxonomy trees) are available at https://sourceforge.net/projects/privbayes.

https://sourceforge.net/projects/privbayes


Table 5. Dataset characteristics

Dataset Cardinality Dimensionality Domain size
NLTCS 21, 574 16 ≈ 216
ACS 47, 461 23 ≈ 223
Adult 45, 222 15 ≈ 252
BR2000 38, 000 14 ≈ 232

marginals. We evaluate Q3 and Q4 on binary datasets NLTCS and ACS, but examine Q2 and Q3
instead on the remaining two datasets, since each of those datasets leads to a prohibitively large
number of queries in Q4. We measure the accuracy of each noisy marginal by the total variation
distance [16] between itself and the noise-free marginal (i.e., half of the L1 distance between the
two marginals, when both of them are treated as probability distributions). We use the average
accuracy over all marginals as the final error metric for Qα .

The second task that we consider is to simultaneously train multiple SVM classifiers on a dataset,
where each classifier predicts one attribute in the data based on all other attributes. Specifically,
on NLTCS, we construct four classifiers to predict whether a person (i) is unable to get outside,
(ii) is unable to manage money, (iii) is unable to bathe, and (iv) is unable to travel, respectively.
Meanwhile, on ACS, we train four classifiers to predict whether an individual (i) owns a private
dwelling, (ii) has a mortgage loan, (iii) lives in a multi-generation family, and (iv) attends school,
respectively. On Adult, four classifiers are trained to predict whether an individual (i) is a female, (ii)
makes over 50K a year, (iii) holds a post-secondary degree, and (iv) has never married, respectively.
Last, on BR2000, we train four classifiers to predict whether an individual (i) is a Catholic, (ii)
owns at least one car, (iii) has at least one child, and (iv) is older than 20, respectively. For each
classification task, we use 80% of the tuples in the data as the training set, and the other 20% as
the testing set. We apply PrivBayes on the training data to generate a synthetic dataset, and then
use the synthetic data to construct SVM classifiers. The quality of each classifier is measured by
its misclassification rate on the testing set, i.e., the fraction of tuples in the testing data that are
incorrectly classified.

For each of the aforementioned tasks, we repeat each experiment on each method 100 times, and
we report the average measurements in our experimental results.

Baselines. For the task of answering count queries in Qα , we compare PrivBayes with five
approaches: (i) Laplace [19], which generates all α-way marginals of a dataset and then injects
Laplace noise directly into each cell of the marginals, (ii) Fourier [2], which transforms the input data
D into the Fourier domain, adds Laplace noise to a subset of Fourier coefficients and uses the noisy
coefficients to construct α-way marginals, (iii) MWEM [26], which maintains an approximation
to the input data that is repeatedly improved to answer the query set better, and (iv) Contingency,
which first builds the noisy contingency table, and then projects it onto attribute subsets to compute
marginals. However, MWEM and Contingency are only applicable to NLTCS and ACS since their
computational cost is proportional to the total domain size of input data (which grows exponentially
in the number of attributes). We also considered several other existing approaches [17, 31, 32, 48]
for answering count queries under differential privacy, but find them inapplicable due to our
datasets’ large total domain size, which is orders of magnitude larger than the dataset size. Last,
we compare to a trivial baseline (v) Uniform, that simply returns a uniform distribution to any
marginal query. For fair comparison, we adopt two consistency techniques sequentially to boost
the accuracies of baselines: non-negativity, which rounds all negative counts in a noisy marginal to
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0, then normalization, which applies non-negativity and then linearly rescales the non-negative
counts in a noisy marginal to make them sum to n.

For the task of training multiple SVM classifiers, we compare PrivBayes against four methods:
PrivateERM [8], PrivGene [50], NoPrivacy, and Majority. In particular, PrivateERM and PrivGene
are two state-of-the-art methods for SVM classification under differential privacy. NoPrivacy
constructs classifiers directly on the input data without any privacy protection. Majority is a naïve
classification method under differential privacy that works as follows. LetY = {0, 1} be the attribute
to be classified, and n be the number of tuples in the training data.Majority first counts the number
of tuples in the training data with Y = 1, and then adds Laplace noise (with scale 1/ε) into the count
to ensure ε-differential privacy. If the noisy count is larger than n/2, then Majority predicts that
all tuples in the testing data should have Y = 1; otherwise, Majority predicts Y = 0 for all tuples.
For PrivBayes, PrivGene, and NoPrivacy, we adopt the standard hinge-loss C-SVM model [6] with
C = 1; for PrivateERM, we adopt a slightly different SVM model with Huber loss [8], as it does not
support the hinge-loss model.

6.2 Effect of Score Functions
In the first set of experiments, we evaluate the effectiveness of score functions F (in Section 4.3) and
R (in Section 5.3), against the mutual information function I . We introduce an additional baseline
which we dub “NoPrivacy”. This function shows the sum of mutual information of the optimal
k-degree Bayesian network, without any perturbation affecting the choice of model. The value of
k is chosen by the same θ -usefulness criterion, hence the behavior does vary as a function of ε :
all results for a given ε are working with the same parameter k for ease of comparison. Figure 4
illustrates the performance of PrivBayes when combined with F , R, and I , respectively, as well



as the best k-degree network. The performance of each method is evaluated by the sum of the
mutual information of every AP pair in the Bayesian networkN , i.e.,

∑d
i=1 I (Xi ,Πi ). The parameter

of θ -usefulness is set to 4, which is our default baseline.
The general trend that we observe in Figure 4 is that as the privacy budget ε increases, the quality

(captured by the sum of mutual information of the model) increases, and this trend is followed by all
the choices of target function (I , R, or F ). The exact behavior varies across data sets, where in some
case it asymptotes, while in others it has more of an s-shape. It appears that this behavior is mostly
due to the innate ability of Bayesian networks of differing arity to capture the data distribution, as
demonstrated by the NoPrivacy line, which the other lines tend to mimic. Recall that this method is
capturing the consequence of varying k , determined indirectly as a function of ε via θ -usefulness.
For binary datasets NLTCS and ACS, Figure 4 shows that F and R consistently outperform I

in all cases. This is consistent with our analysis in Sections 4.3 and 5.3 that these advanced score
functions help improve the quality of the Bayesian network constructed by PrivBayes. Compare
score functions F and R. They achieve almost identical results on large ε (e.g., ε ≥ 0.4), while F
becomes preferable on small ε . The reason is that F and R share the same range (e.g., 0.5 for binary
attributes), but the sensitivity of F is only 1/3 of that of R. This leads to better utility of F especially
when the scale of perturbation in selecting AP pairs is large. In short, F is the best score function
for PrivBayes when all attributes are binary. As for the non-private method, it performs better
with larger privacy budget ε , as the θ -usefulness allows it to build higher degree Bayesian networks.
However, the quality of networks converges when ε ≥ 0.4, which provides the key insight in
designing PrivBayes that a network of low degree is sufficient to approximate the data. As a
consequence, we set up a strict θ -usefulness criterion to limit the network degree (see Section 6.4),
as a large degree may not help much in network learning, but make marginals more vulnerable to
noise. On the other hand, the performance gap between NoPrivacy and PrivBayes methods shrinks
rapidly as ε increases. Therefore, we consider the noisy networks learnt by PrivBayes to be of high
quality.
On datasets Adult and BR2000, we adopt a different setting in order to test the performance of

score functions in non-binary cases. In particular, the vanilla encoding is applied on both continuous
and categorical attributes of these datasets. As a consequence, we have to omit F because it is
hard to compute in general domains (see proof in Section 5.3). The experimental results again
support the superiority of R to I . Therefore, we will adopt R as the score function of PrivBayes,
when non-binary attributes are included. It is also worth noting that all methods behave quite
differently compared to the binary cases. To explain, recall that non-binary attributes convey more
information than binary ones, but are more likely to be rejected by θ -usefulness due to their large
domain sizes. As ε increases, some informative relations among attributes of large domains will be
included in the network, resulting in a large quality improvement. This explains why the curves
are not as smooth as in binary cases.

Last, regarding the efficiency of computing score functions, F is significantlymore time-consuming
than the other two, since it takes O(n2k ) for one AP pair. Functions R and I , in contrast, only take
O(2k ). For small k values (i.e., k = 0, 1, 2), the time taken to construct a Bayesian network with F
is less than 1 minute and is negligible. For larger values of k , the time taken is typically higher,
e.g., a few hours in the case of k = 6 on NLTCS and about 40 minutes for k = 4 on ACS. Note that
this does not represent a major concern for the applicability of these methods, since we do not
consider data release to be a real-time problem. The computation of F for different combinations of
attributes can be easily parallelized if higher levels of performance are required.
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Fig. 5. Comparison among different encodings (α-way marginals on Adult)
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Fig. 6. Comparison among different encodings (α-way marginals on BR2000)

6.3 Encodings on Non-binary Attributes
As discussed in Section 5.1, we implement four encodings for datasets with non-binary attributes.
Figures 5–8 show all experimental results over count and classification tasks, on non-binary datasets
Adult and BR2000. The name of each reported method indicates the type of encoding and the
score function used in the exponential mechanism, e.g., Hierarchical-R stands for the hierarchical
encoding and the score function R. We set parameters of PrivBayes to their default values: β = 0.3
and θ = 4, which will be justified in the next set of experiments.
On the results of count queries in Figures 5 and 6, non-binary encodings are clearly superior

to binary ones when ε is small, but the gap shrinks as ε increases. It implies that, in the binary
encodings, the information loss caused by the redundant attributes overwhelms the gain of flexible
encoding, especially when the perturbation in networking learning is large. This matches our
analysis on the drawbacks of binary encoding in Section 5.1. Between two non-binary encodings,
Hierarchical-R and Vanilla-R achieve almost identical results, which again proves that the count
queries in low-dimensional marginals are not sensitive to the flexibility of encoding.
The second set of tasks that we evaluate is training SVM classifiers (see Figures 7 and 8). In

summary, Hierarchical-R achieves the best overall performance among all methods, and its per-
formance is quite stable over different tasks. The reason is that Hierarchical-R is the only method
that provides flexible encoding while preserving the semantics of attributes. Take the tasks in
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Fig. 7. Comparison among different encodings (multiple SVM classifiers on Adult)

Figures 7(a) and 7(c) as examples. The former task is to predict the gender of an individual. As
the predicted attribute is the most flexible in nature (a binary attribute), the advantage of flexible
encoding becomes insignificant. As a consequence, the encodings aware of attribute semantics are
more preferable. In contrast, the latter task requires to predict the value of a categorical attribute of
large domain size (i.e., 16), for which Vanilla-R fails to preserve any correlation until ε > 0.8.

To conclude, we strongly recommend to use the hierarchical encoding on datasets with general
domains. In the rest of experiments, we use Hierarchical-R as the routine of PrivBayes on datasets
Adult and BR2000.

6.4 Choice of Parameters
Recall that PrivBayes has two internal parameters: the budget allocation parameter, β and the
usefulness of noisy marginals, θ . In this set of experiments, we quantify their impact to the
performance of PrivBayes.
The parameter β controls the portion of privacy budget assigned to the network learning and

distribution learning phases. To evaluate the effect of β on PrivBayes, we pick one counting and
one classification task for each dataset. For instance, in the case of NLTCS, these are counting
query Q4 and the classification query to predict disabilities on getting outside. We examine the
performance of PrivBayes (on θ = 4) in answering these queries, with varying β and ε . Figure 9
presents the error metrics for these two tasks (the average variation distance on counting and
the misclassification rate on classification, respectively) as β varies. Observe that the error tends
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Fig. 8. Comparison among different encodings (multiple SVM classifiers on BR2000)

to be higher when β is very small or very large6. This is because (i) small β leads to very noisy
Bayesian network in the first phase of PrivBayes, which makes the synthetic dataset drastically
different from the input data, and (ii) large β makes it difficult for PrivBayes to construct high
quality marginals in its second phase, which also leads to inferior synthetic data. However, we
observe that in general there is a good range of β values where the error is comparable to the
minimum. This tends to occur below the mid-point, i.e. we should allocate a greater proportion
of the budget to parameter setting than to the choice of model. We believe that this is the case
because for these datasets, the tasks are quite robust to a slightly suboptimal choice of model, and
we are better off to devote our budget to learning a good-enough model with greater fidelity. Based
on Figure 9, we surmise that an appropriate value for β should be in the range of [0.2, 0.5]. For all
subsequent experiments, we set β = 0.3.
The second set of experiments is on the tuning of θ . As discussed in Section 4.5, we adopt the

θ -usefulness criterion to automatically select the degree of the Bayesian network, based on the
number of tuples in the input data D as well as the domains of the attributes in D. To evaluate,
we adopt the same set of tasks as in Figure 9, with β set to our new default value 0.3. Figure 10
illustrates the results as a function of θ and ε . Similar to its behaviors on tuning β , PrivBayes
achieves the near-best performance on a quite wide range of values of θ , which is consistent with
our analysis in Section 4.5. In particular, the results suggest an appropriate value should be within
[3, 6]. In the following experiments, we will use θ = 4 as the default value.

6One exception is with ACS, Q4 at β = 0.9, where the θ -usefulness sets the degree of Bayesian networks to 0, i.e. we just
materialize all one-way marginals. In this case, β is automatically reset to 0 as there is only one possible network to be
learnt.
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Fig. 9. Choice of β

After finalizing the default values of β and θ , we conduct the last set of experiments aiming to
distinguish the approximation error from network learning and distribution learning phases. To-
ward this end, we introduce two alternatives of PrivBayes, namely, BestNetwork and BestMarginal.
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Fig. 10. Choice of θ

BestNetwork is an instance of PrivBayes with unlimited budget for network learning phase, while
BestMarginal is an instance with unlimited budget for distribution learning. Therefore, the perfor-
mance gap between PrivBayes and BestNetwork (resp. BestMarginal) indicates the error introduced
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Fig. 11. Source of error

by network learning (resp. distribution learning) phase. Figure 11 illustrates the performance of
three methods on our battery of eight tasks. In summary, the error in counting queries mainly comes
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Fig. 13. Comparison to baselines (α-way marginals on ACS)

from the noise introducted in materializing private marginals, as the BestMarginal significantly
outperforms the other two methods especially on non-binary datasets Adult and BR2000. This is
consistent with the results on tuning β and θ : counting queries lead to a choice of a small β (i.e.,
less noise in marginals) and large θ (i.e., low-degree marginals that are robust against noise). In
contrast, classification tasks suffer more from noisy networks, resulting in a slight preference to
relatively larger β and smaller θ . However, across all these experiments, we are satisified with the
choice of β = 0.3, θ = 4 as defaults for a range of tasks.

6.5 α -way Marginals
This section compares PrivBayes with the Laplace, Fourier and Uniform approaches on eight sets
of marginals over four datasets. We additionally compare Contingency, MWEM on four sets of
marginals over NLTCS and ACS. As noted earlier, these methods do not scale to the full collection
of datasets used. Figures 12–15 show the average variation distance of each method for each query
set Qα , varying the privacy budget ε . PrivBayes clearly outperforms the other five baselines in all
cases. The relative superiority of PrivBayes is more pronounced when (i) ε decreases or (ii) the
value of α increases. To explain, observe that when ε is small, PrivBayes chooses to construct a very
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low-degree Bayesian network (down to k = 0), due to the θ -usefulness criterion. As a consequence,
the marginal distributions in the second phase of PrivBayes will be more robust against noise
injection, which ensures the quality of the synthetic data will not degrade too significantly. In
contrast, the performance of Laplace and Fourier is highly sensitive to ε , owing to which they
incur considerable errors when ε decreases. The simple Contingency approach generates inaccurate
marginals with low privacy budget, with performance improving slightly as ε increases. On ACS,
it achieves almost identical results to the naive Uniform method, which implies the noise in the
released data is overwhelming. MWEM also suffers when ε is small, as the number of iterations
to improve the approximation is highly limited. Specifically, we change the budget consumed in
each iteration of MWEM from 1.0 (the default value by authors) to 0.05, to ensure that at least one
round of improvement occurs. But even with this modification, the performance of MWEM does
not significantly surpass the naive Uniform when ε < 0.2.

Meanwhile, when α increases, the query setQα corresponds to a larger set of marginals, in which
case the queries Qα have a higher sensitivity. Therefore, Laplace needs to inject a larger amount
of noise into Qα for privacy protection, leading to higher query errors. Fourier also suffers from
a similar issue. On the other hand, the error of PrivBayes is not sensitive to α , as the Bayesian
network constructed (once) by PrivBayes enables it to nicely capture the correlations among
attributes. Consequently, it can closely approximate the marginals pertinent to Qα even when α
increases.
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Fig. 16. Comparison to baselines (multiple SVM classifiers on NLTCS)

6.6 Multiple SVM Classifiers
In the last set of experiments, we evaluate different methods for SVM classification. As explained
in Section 6.1, on each dataset, we train four SVM classifiers simultaneously. For PrivBayes, we
apply it to generate only one synthetic dataset D∗ from each training set, and then use D∗ to train
all four classifiers required. The other differentially private methods (i.e., PrivateERM, PrivGene,
and Majority) can only produce one classifier at a time. Therefore, for each of those method, we
evenly divide the privacy budget ε into four parts, and use ε/4 budget to train each classifier. To
illustrate the performance of PrivateERM when building a single classifier, we include an additional
baseline referred to as “PrivateERM (Single)”. This baseline is identical to PrivateERM, expect that it
uses a privacy budget of ε (instead of ε/4) in training each classifier.

Figures 16–19 show the misclassification rate of each method as a function of the overall ε . The
error of NoPrivacy remains unchanged for all ε , since it does not enforce ε-differential privacy—it
represents the best case to aim for. The accuracy of Majority is insensitive to ε , since (i) it performs
classification only by checking whether there exists more than 50% tuples in the training set with a
certain label, and (ii) this check is quite robust against noise injection when the number of tuples
in the training set is large (as is the case in our experiments). As for the other methods, PrivBayes
consistently outperforms PrivateERM and PrivGene in almost all datasets, except for a few settings
in Figures 16. Interestingly, in Figure 18(b), the misclassification rate of PrivBayes increases when
ε changes from 0.05 to 0.1. The reason is that we have tuned the parameters for PrivBayes based
on the overall performance among all datasets, and hence, our choices of β and θ do not always
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Fig. 17. Comparison to baselines (multiple SVM classifiers on ACS)

guarantee the best performance for PrivBayes on every specific task. Overall, PrivBayes is superior
to both PrivateERM and PrivGene on the classification task.

On the other hand, PrivBayes is outperformed by PrivateERM (Single)7 in most cases (except on
Adult). This is reasonable given that PrivateERM is designed solely for SVM classification, whereas
PrivBayes does not specifically optimize for SVM classification when it generates the synthetic
data. In general, the fact that PrivBayes can support multiple analytical tasks (without incurring
extra privacy overhead) makes it highly favorable in the common case when the user does not have
a specific task in mind and would like to conduct exploratory data analysis by experimenting with
various tasks.

7 CONCLUDING REMARKS
The model of Bayesian networks has proven a powerful way to represent correlated data approx-
imately. We have seen that it is also highly effective as a model to release data while respecting
privacy. We see that data released this way is very accurate, and indeed offers better accuracy
than customized mechanisms for particular objectives, such as classification. A crucial part of
our approach is the crafting of novel score functions as surrogates for mutual information, which
dramatically improve the quality of the released data. Our results show that the sampled data is
generally useful; one direction for exploration is whether certain questions could be answered
directly from the materialized model and its parameters, rather than via random sampling.

7The behavior of PrivateERM (Single) on Adult with ε = 1.6 is an artifact of the algorithm itself: it computes an internal
parameter ε ′p as a function of ε , which yields a sub-optimal choice when ε = 1.6.
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Fig. 18. Comparison to baselines (multiple SVM classifiers on Adult)

The natural next step is to extend this work to databases over multiple tables. The approach of
building a graphical model and releasing this privately applies here also. However, care is needed:
in the examples we consider, each individual affects a single row of the initial database table. As we
consider more complex schemas, the impact of an individual (and hence the scale of noise needed
for privacy) may grow very large, and a more careful analysis is needed to ensure that noise does
not outweigh the signal.
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ONLINE APPENDIX TO
PRIVBAYES: PRIVATE DATA RELEASE VIA BAYESIAN NETWORKS

This online appendix contains proofs for Lemma 4.1, Lemma 4.3, Theorem 4.5, Theorem 5.1 and
Theorem 5.3.

Proof of Lemma 4.1. To calculate the sensitivity of mutual information I , we first model the
sensitivity of entropy H . The rationale is that the mutual information between variables X and Π
can be rewritten as a function of entropy of X , Π and their joint (X ,Π), i.e.,

I (X ,Π) = H (X ) + H (Π) − H (X ,Π). (12)

Therefore, the change of I (X ,Π) can be decomposed into the changes of H (X ),H (Π) and H (X ,Π).
Recall the definition of the entropy of variable X :

H (X ) =
∑

x ∈dom(X )

Pr[X = x] log
1

Pr[X = x]
.

Modifying an arbitrary tuple t in the input will only affect two terms in the above expression. For
example, if the value of X in t is modified from x2 to x1, the value of Pr[X = x1] (resp. Pr[X = x2])
will increase (resp. decrease) by 1/n, while others remain unchanged. Formally, letD1 andD2 be any
pair of neighboring databases, and t1 and t2 denote the differing tuples in D1 and D2 respectively.
Without loss of generality, we assume that X = x1 in tuple t1, and X = x2 in tuple t2. Let HD (X ) be
the entropy of X given the input database D. We can express the change of H (X ) given inputs D1
and D2 as follows:

∆H (X ) = HD1 (X ) − HD2 (X ) =

(
a + 1
n

log
n

a + 1
+
b − 1
n

log
n

b − 1

)
−

(
a

n
log

n

a
+
b

n
log

n

b

)
, (13)

where a (resp. b) is the number of tuples with X = x1 (resp. X = x2) in D2. To further simplify the
expression of ∆H (X ), we define a new function

f (x) =
x + 1
n

log
n

x + 1
−
x

n
log

n

x
,

and revise Equation (13) as
∆H (X ) = f (a) − f (b − 1). (14)

In what follows, we list a few properties of the function f .
(1) The domain of f consists of integers between 0 and n − 1 inclusively;
(2) f (x) is a monotonically decreasing function over its domain, i.e., fmax = f (0) = logn

n and
fmin = f (n − 1) = n−1

n log n−1
n ;

(3) f (x) is a convex function, as f ′′(x) = 1
n(x 2+x ) ≥ 0. Therefore, we have lemmas

max
x

[f (x) − f (x + c)] = f (0) − f (c)

and
min
x

[f (x) + f (c − x)] = 2f (c/2),

where c is a constant integer in [0,n − 1].
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Fig. 20. Visualization of the change of I (X ,Π)

General case. Next we try to express the change of I (X ,Π) between neighboring datasets D1 and
D2, as a function of f . Again, let t1 and t2 denote the differing tuples in D1 and D2 respectively, and
we assume that (X ,Π) = (x1,π1) in t1 and (X ,Π) = (x2,π2) in t2. Figure 20(a) visualizes all variables
that we are about to use in analysis. The table in black represents the joint distribution Pr[X ,Π]
with input D2. The row marked by the top red line consists of cells with X = x1, which covers a
total number of a tuples in D2. Similarly, we denote by b the total number of tuples with X = x2
(the bottom red row), by c the total number of tuples with Π = π1 (the left blue column), by d the
total number of tuples with Π = π2 (the right blue column), by p the total number of tuples with
(X ,Π) = (x1,π1) (the top-left orange dot), and by q the total number of tuples with (X ,Π) = (x2,π2)
(the bottom-right orange dot). Replacing the input D2 with D1 is equivalent to moving a tuple from
cell (x2,π2) to cell (x1,π1). As a consequence, the values of a, c and p (resp. b,d and q) will increase
(resp. decrease) by 1. Therefore, combined with Equations (12) and (14), we have

∆I (X ,Π) = ∆H (X ) + ∆H (Π) − ∆H (X ,Π)

=
(
f (a) − f (b − 1)

)
+
(
f (c) − f (d − 1)

)
−

(
f (p) − f (q − 1)

)
. (15)

Computing the sensitivity of I (X ,Π) is equivalent to finding the maximum value of Equation (15).
To solve this optimization problem, we need to make use of the properties of function f , and ensure
that the solution respects all the constraints among variables:

• p ≤ a ≤ min(n − b,n + p − c); • q ≤ b ≤ min(n − a,n + q − d);
• p ≤ c ≤ min(n − d,n + p − a); • q ≤ d ≤ min(n − c,n + q − b);
• max(0,a + c − n) ≤ p ≤ min(a, c); • max(1,b + d − n) ≤ q ≤ min(b,d).

In what follows, we show how to find the maximum of Equation (15) in four steps.

Step 1: a = c = p = 0. Given the property (2) of f , we have f (a) ≤ f (0) and f (c) − f (p) ≤ 0 as
c ≥ p. Therefore, ∆I (X ,Π) ≤ f (0) − f (b − 1) − f (d − 1) + f (q − 1) and the equation holds when
a = c = p = 0. Meanwhile, by setting a, c,p to 0, the ranges of b,d and q are relaxed to

• q ≤ b ≤ n + q − d ; • q ≤ d ≤ n + q − b; • max(1,b + d − n) ≤ q ≤ min(b,d).

Step 2: d = n + q − b. Given the constraint that d ≤ n + q − b and the property (2) of f , we
have f (d − 1) ≥ f (n + q − b − 1). This inequality further extends the upper bound of ∆I (X ,Π) to
f (0) − f (b − 1) − f (n + q − b − 1) + f (q − 1), which is reachable when d = n + q − b. This setting
also relaxes the ranges of b and q to 1 ≤ q ≤ b ≤ n.

Step 3: q = 1. Given the property (3) of f , we have f (q − 1) − f (q − 1 + n − b) ≤ f (0) − f (n − b),
which makes ∆I (X ,Π) ≤ 2f (0) − f (b − 1) − f (n −b) and the equation holds when q = 1. The range
of b after this step is 1 ≤ b ≤ n.



Table 6. An example that achieves the sensitivity of I

X\Π 0 1 2
0 1/n 0 0
1 0 0 (n − 1)/2n
2 0 (n − 1)/2n 0

X\Π 0 1 2
0 0 0 0
1 0 0 (n − 1)/2n
2 0 (n − 1)/2n 1/n

(a) Pr[X ,Π] on D1 (b) Pr[X ,Π] on D2

Step 4: b = (n + 1)/2. The last step utilizes the property (3) of f to minimize f (b − 1) + f (n − b).
It is easy to observe that the minimum value is achieved when b = (n + 1)/2. Therefore, the final
upper bound of Equation (15), i.e., the sensitivity of I (X ,Π), is

2f (0) − 2f
(
n + 1
2

)
=

2
n
log

n + 1
2
+
n − 1
n

log
n + 1
n − 1

,

which is reachable at a = 0,b = n+1
2 , c = 0,d = n+1

2 ,p = 0 and q = 1. Table 6 gives an example that
achieves the sensitivity of I . The numbers in bold indicate the differing tuples in D1 and D2.

Binary case. The above discussion analyzes the sensitivity of I without putting any restriction on
the domain size ofX or Π. However, the example obtaining the worst case bound requires attributes
of cardinality at least 3. A natural question is: does I (X ,Π) have a smaller sensitivity if X or Π is
binary? Without loss of generality, we assume that X is binary. Let a (resp. c , d , p, q) be the number
of tuples with X = x1 (resp. (X ,Π) = (x2,π1), (X ,Π) = (x1,π2), (X ,Π) = (x1,π1), (X ,Π) = (x2,π2))
in D2; see Figure 20(b) for details. The change of mutual information ∆I (X ,Π) in binary case can
be expressed as:

∆I (X ,Π) = ∆H (X ) + ∆H (Π) − ∆H (X ,Π)

=
(
f (a) − f (n − a − 1)

)
+
(
f (c + p) − f (d + q − 1)

)
−

(
f (p) − f (q − 1)

)
,

with the following constraints among variables

• p + d ≤ a ≤ n − c − q; • 0 ≤ c ≤ n − a − q; • 0 ≤ d ≤ a − p;
• 0 ≤ p ≤ a − d ; • 1 ≤ q ≤ n − a − c .

Similar to the proof in general case, we solve this optimization problem within four steps of
relaxations.

Step 1: c = p = 0. By the property (2) of f , we have f (c + p) − f (p) ≤ 0 since c ≥ 0. Therefore,
∆I (X ,Π) ≤ f (a) − f (n − a − 1) − f (d + q − 1) + f (q − 1) and the equation holds when c = p = 0. In
the mean while, by setting c and p to 0, we relax the ranges of a,d,q to

• 0 ≤ d ≤ a ≤ n − q; • 1 ≤ q ≤ n − a.

Step 2:d = a. Given the constraint thatd ≤ a and the property (2) of f , we have f (d+q−1) ≥ f (a+q−
1). By settingd = a, we extend the upper bound of∆I (X ,Π) to f (a)− f (n−a−1)− f (a+q−1)+ f (q−1).
This setting also relaxes the ranges of a and q to 0 ≤ a ≤ n − q and 1 ≤ q ≤ n − a, respectively.

Step 3: q = 1. Given the property (3) of f , we have f (q − 1) − f (q − 1 + a) ≤ f (0) − f (a), which
makes ∆I (X ,Π) ≤ f (0) − f (n − a − 1) and the equation holds when q = 1. The range of a after this
step is 1 ≤ a ≤ n − 1.



Table 7. An example that achieves the sensitivity of I (binary case)

X\Π 0 1 2
0 1/n 0 0
1 0 (n − 1)/n 0

X\Π 0 1 2
0 0 0 0
1 0 (n − 1)/n 1/n

(a) Pr[X ,Π] on D1 (b) Pr[X ,Π] on D2

Step 4: a = 0. In the last step, we simply employ the property (2) of f to maximize ∆I (X ,Π), that is
∆I (X ,Π) = f (0) − f (n − 1) when a = 0. Hence, the final upper bound of ∆I (X ,Π) is

f (0) − f (n − 1) =
1
n
logn +

n − 1
n

log
n

n − 1
,

which is achieved at a = c = d = p = 0 and q = 1. Table 7 presents one such example, in which the
numbers in bold indicate the differing tuples in D1 and D2. Note that this bound is always no larger
than the bound in general case, for any n ≥ 1.

Other cases. Last, we discuss other cases that have not been covered yet. First of all, in our analyses
of general and binary cases, we assume that the values of X and Π in t1 and t2 are different, i.e.,
x1 , x2 and π1 , π2. Now we take care of two special cases (i) x1 = x2 and π1 = π2, and (ii) x1 , x2
and π1 = π2. We omit the case of x1 = x2 and π1 , π2, as it is analogous to (ii). The case (i) is
quite straightforward, as it implies no change in the joint distribution Pr[X ,Π]. Therefore, it is easy
to have ∆I (X ,Π) = 0. The case (ii) requires similar analysis to the general and binary cases. As
shown in Figure 20(c), let a (resp. b, p, q) denote the number of tuples with X = x1 (resp. X = x2,
(X ,Π) = (x1,π1), (X ,Π) = (x2,π1)) in D2. Then, the change of I is

∆I (X ,Π) = ∆H (X ) + ∆H (Π) − ∆H (X ,Π) =
(
f (a) − f (b − 1)

)
−

(
f (p) − f (q − 1)

)
,

with constraints 0 ≤ p ≤ a ≤ n − b and 1 ≤ q ≤ b ≤ n − a. Following three steps of relaxations, i.e.,
(i) a = p = 0, (ii) q = 1 and (iii) b = n, we have ∆I (X ,Π) ≤ f (0) − f (n − 1), which is no larger than
any upper bound of ∆I (X ,Π) in previous cases. Therefore, we complete the proof. □

Proof of Lemma 4.3. The maximum mutual information between variables X and Π is

max I (X ,Π) =min {maxH (X ),maxH (Π)}

=min {log |dom(X )| , log |dom(Π)|} = log |dom(X )| ,

given that |dom(X )| ≤ |dom(Π)|. Therefore, the maximum joint distribution for X and Π should be
a joint distribution for X and Π with mutual information log |dom(X )|.

Suppose that Pr⋄(X ,Π) is a joint distribution satisfying the two properties in Lemma 4.3. Given
basic results in information theory, the two properties are equivalent to
(1) H (X ) = log |dom(X )|;
(2) H (X | Π) = 0.

Thus, the mutual information of Pr⋄(X ,Π) is

I (X ,Π) = H (X ) − H (X | Π) = log |dom(X )| .

By definition, Pr⋄(X ,Π) is a maximum joint distribution.
On the other hand, suppose that Pr⋄(X ,Π) is a maximum joint distribution with mutual informa-

tion log |dom(X )|. The mutual information can be expressed as:

I (X ,Π) = log |dom(X )| = H (X ) − H (X | Π),



where H (X ) ≤ log |dom(X )| and H (X | Π) ≥ 0 always hold. Thus, we conclude that I is maximized
in the (achievable) case that
(1) H (X ) = log |dom(X )|, which is achieved only by the uniform distribution over dom(X );
(2) H (X | Π) = 0, which implies that there is an x for each π such that Pr[X = x | Π = π ] = 1.

The above two conditions are equivalent to the properties in the statement of Lemma 4.3. □

Proof of Theorem 4.5. Let FD (X ,Π) be the F function for variables X and Π given input
database D, i.e,

FD (X ,Π) = −
1
2

min
Pr⋄∈P⋄

∥PrD [X ,Π] − Pr⋄[X ,Π]∥1.

Notice that P⋄[X ,Π] is independent of the input database D. Now consider a pair of neighboring
databases D1 and D2. We have

∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1 = 2/n. (16)

Assume that Pr ∈ P⋄[X ,Π] is the closest maximum joint distribution to PrD1 [X ,Π]. We have

FD1 (X ,Π) = −1/2 · ∥PrD1 [X ,Π] − Pr ∥1.

Combined with Equation (16), the L1 distance between PrD2 [X ,Π] and Pr can be upper bounded
using the triangle inequality:

∥PrD2 [X ,Π] − Pr ∥1 ≤ ∥PrD1 [X ,Π] − Pr ∥1 + ∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1

= −2 · FD1 (X ,Π) + 2/n.

On the other hand, recall that Pr is a maximum joint distribution in P⋄[X ,Π]. Therefore,

FD2 (X ,Π) = −
1
2

min
Pr⋄∈P⋄

∥PrD2 [X ,Π] − Pr⋄[X ,Π]∥1

≥ −
1
2
∥PrD2 [X ,Π] − Pr ∥1

≥ −
1
2

(
−2 · FD1 (X ,Π) +

2
n

)
= FD1 (X ,Π) −

1
n
.

Thus, FD1 (X ,Π) − FD2 (X ,Π) ≤ 1/n. □

Proof of Theorem 5.1. We prove this theorem by showing that an instance of the number
partitioning problem [5] is polynomial-time reducible to an instance of determining if F = −0.5.
The number partitioning problem asks whether a given multiset S of positive integers can be
partitioned into two subsets Sa and Sb , such that the sum of the numbers in Sa equals the sum
of the numbers in Sb . The problem is known to be NP-hard [5]. Given an instance of partition
problem, i.e., S =

{
s1, s2, . . . , s |S |

}
, we construct a joint distribution Pr[X ,Π] that

(i) dom(X ) = {a,b, c,d} and dom(Π) = {1, 2, . . . , |S |};
(ii) Letm =

∑ |S |
π=1 sπ . For each π ∈ [1, |S |], set

Pr[X = a,Π = π ] = Pr[X = b,Π = π ] =
sπ
2m

and
Pr[X = c,Π = π ] = Pr[X = d,Π = π ] = 0.

Hence, we have
Pr[X = a] = Pr[X = b] = 0.5



and
Pr[X = c] = Pr[X = d] = 0.

This is an eligible input to computing F as all numbers in Pr[X ,Π] sum up to 1. By the definition
of F in Equation (7), computing F is equivalent to finding the minimum L1 distance between the
input and a maximum joint distribution Pr⋄[X ,Π]. And Pr⋄[X ,Π] has the following properties:

(i) Pr⋄[X = x] = 1/| dom(X )| = 0.25 for any x ∈ dom(X );
(ii) For any π ∈ [1, |S |], there is at most one x ∈ dom(X ) with Pr⋄[X = x ,Π = π ] > 0.

By the property (i) of Pr⋄[X ,Π] and Pr[X = c] = 0, it is easy to calculate the sum of L1 distance on
the cells of X = c , that is

|S |∑
π=1

�� Pr[X = c,Π = π ] − Pr⋄[X = c,Π = π ]
�� = 0.25.

The same result applies on the cells of X = d .
The sum of L1 distance on cells ofX = a or b requires more careful analysis. LetA (resp. B) be the

set of π ∈ dom(Π) such that Pr⋄[X = a,Π = π ] > 0 (resp. Pr⋄[X = b,Π = π ] > 0). For convenience,
we also abuse notation and define

Pr[A] =
∑
π ∈A

Pr[X = a,Π = π ] and Pr[B] =
∑
π ∈B

Pr[X = b,Π = π ].

Then the minimum sum of L1 distance on cells of X = a or b can be expressed as

| Pr[A] − 0.25 | + (0.5 − Pr[A])+ | Pr[B] − 0.25 | + (0.5 − Pr[B]) . (17)

Given the property (ii) of Pr⋄[X ,Π], we have A ∩ B = ∅. Combined with the following two facts
that

(i) Pr[X = a,Π = π ] = Pr[X = b,Π = π ] for any π ∈ dom(Π), and
(ii) Pr[X = a] = Pr[X = b] = 0.5,

we get the bound that Pr[A] + Pr[B] ≤ 0.5. Therefore, the minimum value of Equation (17) is
achieved if and only if Pr[A] = Pr[B] = 0.25, which indeed implies an even partition of multiset S .
Specifically, for each π in A (resp. B), we add sπ to subset Sa (resp. Sb ). The sum of numbers in each
subset is 0.25 · 2m = 0.5m, wherem is the sum of all numbers in S . Since that A ∩ B = ∅ and all
numbers in S are positive, it is easy to prove that SB = S\SA. Thus, it is an even partition of S .

Combining all the analyses above with Equation (7), we draw the conclusion that if and only if
F (X ,Π) = −0.5, there exists an even partition of S . Therefore, the decision problem in the statement
of this theorem is at least as hard as the number partitioning problem. □

Proof of Theorem 5.3. Let RD (X ,Π) be the score function for AP pair (X ,Π), when the input
database is D, i.e.,

RD (X ,Π) =
1
2

PrD [X ,Π] − PrD [X ,Π]

1
.

Now consider a pair of neighboring databases D1 and D2. It is easy to prove thatPrD1 [X ,Π] − PrD2 [X ,Π]

1
=

2
n
.



Combined with this equation and the triangle inequality, the sensitivity of R can be rewritten as
follows:

2 ·
(
RD1 (X ,Π) − RD2 (X ,Π)

)
= ∥PrD1 [X ,Π] − PrD1 [X ,Π]∥1 − ∥PrD2 [X ,Π] − PrD2 [X ,Π]∥1

≤ ∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1 + ∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1

=
2
n
+ ∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1. (18)

Next we discuss how to bound the second half of Equation (18). Without loss of generality, let t1
and t2 denote the only differing tuples in D1 and D2 respectively, and assume that (X ,Π) = (x1,π1)
on t1 and (X ,Π) = (x2,π2) on t2. Then we have

• PrD1 [X = x1] = PrD2 [X = x1] +
1
n ; • PrD1 [X = x2] = PrD2 [X = x2] −

1
n ;

• PrD1 [Π = π1] = PrD2 [Π = π1] +
1
n ; • PrD1 [Π = π2] = PrD2 [Π = π2] −

1
n .

Therefore, only the probabilities at positions (x ,π ) that x ∈ {x1,x2} or π ∈ {π1,π2} are different
between PrD1 [X ,Π] and PrD2 [X ,Π]. We can further divide these positions into two groups: (i) the
ones with x ∈ {x1,x2} and π ∈ {π1,π2}, and (ii) the rest.
To the positions in group (ii), computing the sum of difference is quite straightforward. Take

positions with x = x1 as an example. We have∑
π<{π1,π2 }

��PrD1 [X = x1,Π = π ] − PrD2 [X = x1,Π = π ]
��

=
∑

π<{π1,π2 }

��PrD1 [X = x1]PrD1 [Π = π ] − PrD2 [X = x1]PrD2 [Π = π ]
��

=
1
n
·

∑
π<{π1,π2 }

PrD1 [Π = π ].

The same result can be obtained for positions with x = x2. In the case of π = π1 or π2, the sum
of difference is bounded by 1

n ·
∑

x<{x1,x2 } PrD1 [X = x]. On the other hand, there are only four
positions in group (i), and again we take one of them, i.e., (X ,Π) = (x1,π1) as an example:��PrD1 [X = x1,Π = π1] − PrD2 [X = x1,Π = π1]

��
=
��PrD1 [X = x1]PrD1 [Π = π1] − PrD2 [X = x1]PrD2 [Π = π1]

��
=
��PrD1 [X = x1]PrD1 [Π = π1] − (PrD1 [X = x1] −

1
n
)(PrD1 [Π = π1] −

1
n
)
��

≤ 1
n · PrD1 [X = x1] +

1
n · PrD1 [Π = π1] +

1
n2

Putting all bounds together, we get an upper bound for ∥PrD1 [X ,Π] − PrD2 [X ,Π]∥1 as follows.PrD1 [X ,Π] − PrD2 [X ,Π]

1

≤
2
n
·
∑
π

PrD1 [Π = π ] +
2
n
·
∑
x

PrD1 [X = x] +
4
n2

=
4
n
+

4
n2
.

Thus, RD1 (X ,Π) − RD2 (X ,Π) ≤
3
n +

2
n2 . □
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