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ABSTRACT
Random sampling has been proven time and time again to
be a powerful tool for working with large data. Queries over
the full dataset are replaced by approximate queries over the
smaller (and hence easier to store and manipulate) sample.
The sample constitutes a flexible summary that supports a
wide class of queries. But in many applications, datasets
are modified with time, and it is desirable to update sam-
ples without requiring access to the full underlying datasets.
In this paper, we introduce and analyze novel techniques for
sampling over dynamic data, modeled as a stream of modi-
fications to weights associated with each key.

While sampling schemes designed for stream applications
can often readily accommodate positive updates to the dataset,
much less is known for the case of negative updates, where
weights are reduced or items deleted altogether. We primar-
ily consider the turnstile model of streams, and extend clas-
sic schemes to incorporate negative updates. Perhaps sur-
prisingly, the modifications to handle negative updates turn
out to be natural and seamless extensions of the well-known
positive update-only algorithms. We show that they pro-
duce unbiased estimators, and we relate their performance
to the behavior of corresponding algorithms on insert-only
streams with different parameters. A careful analysis is ne-
cessitated, in order to account for the fact that sampling
choices for one key now depend on the choices made for
other keys.

In practice, our solutions turn out to be efficient and accu-
rate. Compared to recent algorithms for Lp sampling which
can be applied to this problem, they are significantly more
reliable, and dramatically faster.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic Algorithms
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1. INTRODUCTION
Random sampling has repeatedly been proven to be a

powerful and effective technique for dealing with massive
data. The case for working with samples is compelling: in
many cases, to estimate a function over the full data, it suf-
fices to evaluate the same function over the much smaller
sample. Consequently, sampling techniques have found ap-
plications in areas such as network monitoring, database
management, and web data analysis. Complementing this,
there is a rich theory of sampling, based on demonstrating
that different techniques produce unbiased estimators with
low or optimal variance.

Initial work on sampling from large datasets focused on a
random access model: the data is static, and disk resident,
and we want to build an effective sample with a minimal
number of probes to the data. However, in modern appli-
cations we do not think of the data as static, but rather as
constantly changing. In this setting, we can conceive of the
data as being defined by a stream of transactions, and we
get to see each transaction that modifies the current state.
For concreteness we describe some motivating scenarios:

• First, we consider the case when the stream is a se-
quence of financial transactions, each of which updates
an account balance. It is important to be able to
maintain a sample over current balances, which de-
scribes the overall state of the system, and to provide
a snapshot of the system against which to quickly test
for anomalies without having to traverse the entire ac-
count database.

• Internet Service Providers (ISPs) witness streams in
the form of network activities. These can set up or
tear down (stateful) network connections. It is not
practical for the ISP to centrally keep a complete list
of all current and active connections. It is nevertheless
helpful to draw a sample of these connections, so that
the ISP can keep statistics on quality of service, round-
trip delay, nature of traffic in its network and so on.
Such statistics are needed to show that its agreements
with customers are being met, and for traffic shaping
and planning purposes.

• Updates to a database generate a stream of trans-
actions, to insert or delete records to tables. The
database management system needs to keep statistics
on each attribute within a table, to determine what
indices to keep, and how to optimize query processing.
Currently, deployed systems track only simple aggre-
gates online (e.g. number of records in a table), and



must periodically rebuild more complex statistics with
a complete scan, which makes this approach unsuitable
for (near) real-time systems.

In all these examples, and others like them, we can ex-
tract a central problem. We are seeing a stream of weighted
updates to a set of keys, and we wish to maintain a sample
that reflects the current weights of the keyset. Specifically,
we aim to support queries over the total weight associated
with a subset of keys (subset-sum queries), which are the ba-
sis of most complex queries [6]. If the set of keys ever seen
is tiny, then we could just retain the weights of these keys,
but in general there are many active keys at any one time,
and so we want to maintain just a small sample. From this
sample, we should be able to accurately address the prob-
lems in the above examples, such as fraud detection, finding
anomalies, and reporting behavior trends.

The core problem of sampling from a stream of distinct,
unweighted keys is one of the earliest examples of what we
now think of as streaming algorithms [22]. In this paper,
we tackle a much more general version of the problem: each
key may appear multiple times in the stream. Each occur-
rence is associated with a weight, and the total weight of a
key is the sum of its associated weights. Moreover, the up-
dates to the weights are allowed to be negative. This models
various queuing and arrival/departure processes which can
arise in the above applications. Despite the naturalness and
generality of this problem, there has been minimal study of
sampling when the updates may be negative. Through our
analysis, we are able to show that there are quite intuitive
algorithms to maintain a sample under such updates, that
offer unbiased estimators, and whose performance can be
bounded in terms of the performance of a comparable algo-
rithm on an update stream with positive updates only. We
next make precise the general model of streams we adopt
in this paper, and go on to describe prior work in this area
and why it does not provide a satisfactory solution. At the
end of this section, we summarize our contributions in this
work, and outline our approach.

Streaming Model. We primarily consider the turnstile
stream model, where each entry is a (positive or negative)
update to the value of a key i. Here, the data is a stream
of updates of the form (i,∆), where i is a key and ∆ ∈ R.
The value vi of key i is initially 0 and is modified with every
update, but we do not allow the aggregate value to become
negative. Formally, the value of key i is initially vi = 0 and
after update (i,∆),

vi ← max{0, vi + ∆} . (1)

1.1 Prior Work on Stream Sampling
The simplest form of sampling is Bernoulli sampling, where

each occurrence of an (unweighted) key is included in the
sample with probability q. More generally, Poisson sampling
includes key i in the sample with probability qi (depending
on i but independent of other keys). The expected sample
size is

∑
i qi. However, typically we wish to fix a desired

sample size k, and draw a sample of exactly this size.
To draw a uniform sample of size k from a stream of

(distinct) keys, the so-called reservoir sampling algorithm
chooses to sample the ith key with probability 1/i, and over-
write one of the existing k keys uniformly [18]. This algo-
rithm, attributed to Waterman, was refined and extended
by Vitter [22].

Gibbons and Matias proposed two generalizations in the
form of counting samples and concise samples for when the
stream can contain multiple occurrences of the same (unit
weight) key [14]. Concise samples are Bernoulli samples
where multiple occurrences of the same key are replaced in
the sample with one occurrence and a count, obtaining a
larger effective sample. This approach is used in networking
as the basis of the “sampled netflow” format (http://www.
cisco.com/en/US/docs/ios/12_0s/feature/guide/12s_sanf.

html). In the case of counting samples, however, the sam-
pling scheme is altered to count all subsequent occurrences
of a sampled key. The same idea was referred to as Sample
and Hold (SH) by Estan and Varghese, who applied it to
network data with integral weights, and provided unbiased
estimators [10].

In detail, the SH algorithm maintains a cache S of keys
and a counter ci for each cached key i ∈ S. The (true) value
vi of a key i is initially zero and each stream occurrence
increments vi. When an increment of key i is processed,
then if i ∈ S (the key is already cached), its counter is
incremented ci ← ci + 1. Otherwise, i is inserted into the
cache with (fixed) probability q and ci is initialized to 0.
Clearly, the probability that a key is not cached is (1− q)vi
and when cached the distribution of vi − ci is geometric
with parameter q. SH is particularly effective when multiple
occurrences are likely. Because once a key is cached, all
subsequent occurrences are counted, the resulting sample
is more informative than “packet” sampling, where only a q
fraction of the updates are sampled and the count of each key
is the number of sampled updates for this key. It therefore
offers lower variance than a concise sample for the same
cache size k.

A drawback of SH is the fixed sampling rate q, which
means that it is not possible to exactly control cache size.
An adaptive version of sample and hold (aSH) was proposed
in [14, 10] where subsampling is used to adaptively decrease
q so that the number of cached keys does not exceed some
fixed limit k. Subsampling is applied to the current cache
content and the result mimics an application of SH with
respect to the new lower q′ < q. A very similar idea with
geometric step sizes was proposed by Manku and Motwani
in the form of “sticky sampling” [19].

Estan and Varghese [10] showed that with SH, v̂i = 1/q+
ci − 1 if i ∈ S and 0 otherwise is an unbiased estimate of
vi. Thus, an unbiased estimate on the total value of se-
lected keys (based on a selection predicate P ) is the sum of
v̂i over cached (sampled) keys that satisfy P . With aSH,
however, the analysis is complicated by dependence of the
rate adjustments in the randomization. Only in subsequent
work were unbiased estimators for aSH presented, as well
as estimators over SH and aSH counts for other queries in-
cluding “flow size” distribution and secondary weights [6, 5].
The technique used to get around the dependence was to
consider each key after “fixing” the randomization used for
other keys. This could then be used to establish that the
dependence actually works in the method’s favor, as corre-
lations are zero or non-positive.

We review (increment-only) aSH as presented in [6, 5]:
new keys are cached until the cache contains k + 1 keys.
The sampling rate is then “smoothly” decreased, such that
the cache content simulates the lower rate, until one key is
ejected. Subsequent processing of the stream is subjected
to the new rate. When a new key is cached, the sampling



rate is again decreased until one key is ejected. The sam-
pling rate of this process is monotone non-increasing. The
set of keys cached by aSH is a PPSWR sample (sampling
probability proportional to size without replacement), also
known as bottom-k (order) sampling with exponentially dis-
tributed ranks [21, 7, 8]. Here, keys are successively sampled
with probability proportional to their value and without re-
placement until k keys are selected. Since (when there are
multiple updates per key) the exact values vi of sampled
keys are not readily available, we need to apply different
(weaker) estimators than PPSWR estimators.

All the stream sampling techniques described so far, how-
ever, rely on the fact that all weights are positive: they
do not allow the negative weights that arise in the moti-
vating examples. In fact, there has been only very limited
prior work on sampling in the turnstile model, also known
as sampling with deletions. Gemulla et al. gave a gener-
alization of reservoir sampling for the unweighted, distinct
key case [12]. They subsequently studied maintaining a SH-
style sample under signed unit updates [13], and proposed
an algorithm that resembles SH and adds support for unit
decrements by maintaining an additional “tracking counter”
for each cached key. Our results are more general, and apply
to arbitrary updates as well as to the much harder adaptive
Sample and Hold case.

Other models. Under the regime of “distinct” sampling
(also known as L0 sampling), the aim is to draw a sample
uniformly over the set of keys with non-zero counts [15].
This can be achieved under a model allowing increments
and decrements of weights by maintaining data structures
based on hashing, but this requires a considerable overhead,
with factors logarithmic in the size of the domain from which
keys are drawn [9, 11].

More recently, the notions of “Lp sampling” and “precision
sampling” have been proposed, which allow each key to be
sampled with probability proportional to the pth power of
its weight (0 < p < 2) [20, 1, 17]. These techniques rely
on sketch data structures to recover keys and can tolerate
arbitrary weight fluctuations. Our problem can be seen as
related to the p = 1 case. In our setting, we do not allow the
aggregate weight of a key to fall below 0. In contrast, the
sketch-based techniques for Lp sampling can sample a key
whose aggregate weight is negative, with probability propor-
tional to the pth power of the absolute value of the aggregate
weight.

The sketch-based sampling techniques have limitations
even when the aggregate weights do not fall below zero:
They incur space factors logarithmic in the size of the do-
main of keys, which is not favorable for applications with
structured key domains (IP addresses, flow keys) that are
much larger than the number of active keys. Extracting the
sample from the sketches is a very costly process, since it re-
quires enumerating the entire domain for each sketch. Our
methods operate in a comparison model, and so can work
on keys drawn from arbitrary domains, such as strings or
real values (although they do still need to store the sam-
pled keys) and the space usage is proportional to the sample
size. The space factors in the sketch-based methods also
grow polynomially with the inverse of the bias, whereas our
samples are unbiased, and thus allow the relative error to
diminish with aggregation. Lastly, the weighted sampling
performed is “with replacement,” which suffers when the
weights are highly skewed compared with our “without re-

placement” sampling. Consequently, sketch-based methods
are very slow to work with, and require a lot of space to pro-
vide an accurate sample, as we see in our later experimental
study.

A different model of deletions arises from the “sliding win-
dow” model. In the time-based case, keys above a fixed age
are considered deleted, while in the sequence-based case,
only the W most recent keys are considered active [2, 3].
However, results in this model are not comparable to the
model we study, which has explicit modifications to key
weights.

1.2 Our Results
We present a turnstile stream sampling algorithm that

efficiently handles signed weighted updates, where the num-
ber of cached keys is at most k. The presence of negative
updates, the efficient handling of weighted (versus unit) up-
dates, and an adaptive implementation which allows for full
utilization of bounded storage, pose several challenges and
we therefore develop our algorithm in two stages:

• SH with signed weighted updates. (Section 2)
We first provide a generalization of Sample and Hold
which allows arbitrary updates. When working with
weighted updates, we find it convenient to work with
a parameter we call the sampling threshold, which cor-
responds to the inverse of the sampling rate when up-
dates are one unit (τ ≡ 1/q). The sampling threshold
is an unbiased estimator on the portion of the total
value that is not accounted for in ci.

We quantify the impact of negative updates on perfor-
mance, and specifically on the storage used. Although
the final sample only depends on vi, the occupancy of
the sample at intermediate points may be much larger,
due to keys which are subject to many decrements.
We relate the probability that a key is cached at some
point but not at the end to the aggregate sum of pos-
itive updates.

When restricted to signed unit weight updates, our al-
gorithm maintains a single counter ci for each cached
key i ∈ S and the distribution of the counter ci is ex-
actly the same as (increment-only) SH with value vi.
This gives the benefit of using “off the shelf” SH esti-
mators, and simplifies and improves over the previous
efforts of Gemulla et al. [13].

• aSH with signed weighted updates. In Section 3
we present aSH with signed weighted updates. Our
algorithm generalizes reservoir sampling [22] (single
unit update for each key), PPSWR sampling (single
weighted positive update for each key) [21, 7, 8] and
aSH [14, 10, 6, 5] (multiple unit positive updates for
each key).

We work with a bounded size cache which can store at
most k keys. At the same time, we want to ensure that
we obtain maximum benefit of this cache by keeping
it as full as possible. Hence, we allow the “effective”
sampling threshold for entering the cache to vary: it
increases after processing positive updates but can also
decrease after processing negative updates. At the ex-
treme, when negative updates cause ejections so there
are fewer than k cached keys, the “effective” sampling
threshold is zero.



As a precursor to presenting the adaptive algorithm,
we study sampling changes that are randomization-
independent. Specifically, we show how to efficiently
subsample weighted data, that is, how to modify counter
values of cached keys (possibly ejecting some keys) so
that we mimic an increase in the sampling threshold
from (fixed) τ to a (fixed) τ ′ > τ .

The analysis of our aSH with signed weighted updates
is delicate and complicated by the dependence of the
“effective” sampling threshold on the randomization,
on other keys, and on the implementation of “smooth”
adaptation of sampling threshold to facilitate ejecting
exactly one key when the cache is full. Nevertheless, we
show that it provides unbiased estimates with bounded
variance that is a function of the effective sampling
rate. Along the way, we show how to handle a vary-
ing sampling threshold that can decrease as well as
increase. When the sampling threshold decreases, we
cannot “recover” information about keys which have
gone by, but we can “remember” the effective sampling
threshold for the keys which are stored in the cache.
Then for subsequent keys, a lower threshold makes it
is easier for them to enter the cache.

To better understand the behavior of these algorithms, we
perform an experimental study in Section 4. We compare
the more general solution, aSH with signed weighted up-
dates, to the only comparable technique, L1 sampling, over
data drawn from a networking application. We show that,
given the space budget, aSH is more accurate, and faster to
process streams and extract samples.

Lastly, in Section 5, we conclude by briefly remarking
upon alternate models of stream updates, where instead of
incrementing values, a reappearance of a key “overwrites”
the previous value. In contrast to many other problems in
this streaming model, we note some positive results for sam-
pling.

2. SH WITH SIGNED WEIGHTED UPDATES
We present an extension of the SH procedure to the case

when the stream consists of signed, weighted updates. The
algorithm maintains a cache S of keys and associated coun-
ters ci, based on a sampling rate q ≡ 1/τ . Increments to key
i are handled in a similar way as arrivals in the original (un-
weighted) SH setting: if i is already in S, then its counter ci
is incremented. Otherwise, i is included in S if ∆ exceeds a
draw from an exponential distribution with parameter 1/τ .

Processing a decrement of key i can be seen as undoing
prior increments. If i is not in the cache S, no action is
needed. But if i is in the cache, we decrement its associated
counter ci. If this counter becomes negative, we remove i
from S. The estimation procedure is unchanged from the
increment-only case. This procedure is formalized in Algo-
rithm 1.

To simplify exposition, every key i is associated with a
count ci: keys that are not cached (i 6∈ S) have ci = 0.
To show the unbiasedness of this procedure, we derive the
distribution of ci and show that it depends only on vi, and
not any other function of the pattern of updates.

Theorem 2.1. The distribution of ci for a key i with
value vi is

[vi − Expτ ]+ (2)

Algorithm 1 Sample and Hold with signed weighted up-
dates. Sampling rate q ≡ 1/τ

1: procedure Update(i,∆) . vi ← [vi + ∆]+

2: if i ∈ S then
3: ci ← ci + ∆
4: if ci ≤ 0 then
5: S ← S \ {i} . eject i from cache

6: else . case i 6∈ S
7: r ← Expτ

. Exponential distribution with mean τ
8: if r < ∆ then
9: S ← S ∪ {i}, ci ← ∆− r

10: procedure SubsetSumEst(P )
. Estimate

∑
i:P (i) vi for a selection predicate P

11: s← 0
12: for i ∈ S do
13: if P (i) then
14: s← s+ τ + ci
15: return s

where Expτ is exponentially distributed with mean τ . We
make use of the notation [x]+ to indicate the function max{x, 0}.

Proof. We establish the result by computing the changes
in ci in response to the updates of vi. We consider a fixed
key i, whose label we henceforth omit, and let {∆(n) : n =
1, 2, . . .} be its updates, yielding corresponding values v(0) =

0 and v(n+1) = [v(n)+∆(n)]
+. The value of vi at a given time

is the cumulative result of the updates that have occurred
up to that time.

According to Algorithm 1, the corresponding counter val-
ues are c(0) = 0 with

c(n+1) = I(c(n) > 0)[c(n)+∆(n)]
++I(c(n) = 0)[∆(n)−Exp(n)]

+

(3)
where the {Exp(n) : n = 0, 1, 2, . . .} are i.i.d. exponential
random variables of mean τ , and I is the indicator function.
Recall that a counter value c = 0 of zero corresponds to the
counter not being maintained for the key in question. In
particular, c(n) = 0 corresponds to no counter being kept
prior to the update ∆(n), while taking the positive part

[c(n) + ∆(n)]
+ encodes that when the update due to ∆(n)

yields a non-positive counter value, that counter is deleted
from storage.

We show that for each n = 0, 1, . . .,

c(n) =d [v(n) − Exp]+ (4)

where =d denotes equality in distribution, and Exp is an-
other exponential random variable of mean τ independent
of {Exp(n′) : n′ ≥ n}. (4) is trivially true for n = 0. We
establish the general case by induction. Assuming (4), then
by (3)

c(n+1) = c̃(n+1) := I(v(n) > Exp)[v(n) − Exp + ∆(n)]
+ (5)

+ I(v(n) ≤ Exp)[∆(n) − Exp(n)]
+

To complete the proof, we need to show that

c̃(n+1) =d c′(n+1) =d [[v(n) + ∆(n)]
+ − Exp′]+

where Exp′ is an independent copy of Exp. When v(n) +
∆(n) ≤ 0 then c′(n+1) = c̃(n+1) = 0. When v(n) + ∆(n) > 0,



the complementary cumulative distribution function (CCDF)
of c′(n+1) is

Pr[c′(n+1) > z] = Pr[Exp < [v(n) + ∆(n) − z]+])

= 1− e−[v(n)+∆(n)−z]
+/τ , for z ≥ 0.

The CCDF of c̃(n+1) can be derived from (5) as

Pr[c̃(n+1) > z] = Pr[Exp < min{v(n), [v(n) + ∆(n) − z]+}]+
Pr[v(n) ≤ Exp] Pr[Exp(n) < [∆(n) − z]+]

(6)

When ∆(n) < z, the first term in (6) is

Pr[Exp < [v(n) + ∆(n) − z]+] = Pr[c′(n+1) > z]

and the second is zero. When ∆(n) ≥ z, then

Pr[c̃(n+1) > z]

= Pr[Exp < v(n)] + Pr[Exp ≥ v(n)) Pr[Exp(n) < ∆(n) − z]

= (1− e−v(n)/τ ) + e−v(n)/τ (1− e−(∆(n)−z)/τ )

= 1− e−(v(n)+∆(n)−z)/τ

= 1− e−[v(n)+∆(n)−z]
+)/τ

= Pr[c′(n+1) > z]

Theorem 2.1 shows that the distribution of the counter ci
depends only on the actual sum vi, and is exactly captured
by a truncated exponential distribution. This is a powerful
result, since it means that the sampling procedure is iden-
tical in distribution to one where each key is unique, and
occurs only once with weight vi. From this, we can provide
unbiased estimators for subset sums and bound the variance.
In SubsetSumEst (Algorithm 1), each key is assigned an
adjusted weight v̂i, which is τ + ci if i ∈ S, and 0 otherwise.
Using the convention ci = 0 for deleted counters, this can
be expressed succinctly as

v̂i = I(ci > 0)(ci + τ)

Given a selection predicate P , we estimate the subset sum∑
i:P (i) vi with

∑
i:P (i) v̂i, the sum of adjusted weights of

keys in the cache which satisfy P . It suffices to show v̂i is
an unbiased estimate of vi.

Lemma 2.2. v̂i is an unbiased estimate of vi.

Lemma 2.2 turns out to be a special case of the more general
Theorem 3.1 that we state and prove later in context.

2.1 Special case: unit updates
We briefly consider the special case of unit updates, i.e.

where each ∆ ∈ {−1,+1}. In this case, we can adopt a
simplified variant: note that the test of ∆ against an expo-
nential distribution succeeds only when ∆ = +1, and does
so with probability q = 1/τ . When this occurs, we choose
to initialize ci = 0. Here, ci is integral and can be initial-
ized with value ≥ 0 or uninitialized (when i is not cached).
It is easy to see the correctness of this procedure: observe
that if an i is sampled, then it will only remain in the cache
if there is no corresponding decrement later in the stream.
Thus we can“pair off” increments which are erased by decre-
ments, and leave only vi “unpaired” increments. The key i
only remains in the cache if it is sampled during one of these

unpaired increments, and therefore has count ci with prob-
ability q(1 − q)vi−ci , and is not sampled with probability
(1− q)vi . That is, it exactly corresponds to a SH procedure
on an increment-only input. Correctness, and unbiasedness
of the SubsetSumEst procedure follows immediately as a
result. This improves over the result of [13], by removing the
need to keep additional tracking counters for cached keys.

2.2 Cache occupancy
From our analysis, it is clear that the distribution of the

final count ci depends only on vi. In particular, the proba-
bility that the key is cached at termination is 1−exp(−vi/τ).
With the presence of negative updates in the update stream,
however, a key may be cached at some point during the ex-
ecution and then ejected. The key i is never cached if and
only if the independent exponential random variables r gen-
erated at line 7 of Algorithm 1 all exceed their corresponding
update ∆(n). This observation immediately establishes:

Lemma 2.3. The probability that key i is cached at some
point during the execution is 1 − exp(−Σ∆+(i)/τ), where
Σ∆+(i) ≡

∑
t max{0,∆(n)} is the sum of positive updates

for key i.

When Σ∆+(i) � τ , the probability that a key ever gets
cached is small, and is approximately Σ∆+(i)/τ . The prob-
ability that it is cached at termination is ≈ vi/τ . Summing
over all keys, the worst-case cache utilization (which is ob-
served after all negative updates occur at the end), is the
ratio of the sum of positive updates to the sum of values,∑

∆+(i) : vi.

3. ASH WITH SIGNED WEIGHTED UPDATES
In this section, we describe an adaptive form of Sample

and Hold (aSH), generalized to allow updates that are both
weighted and signed, while ensuring that the total number
of keys cached does not exceed a specified bound k.

3.1 Increasing the sampling threshold
In order to bound the number of keys cached, we need a

mechanism to eject keys, by effectively increasing the sam-
pling threshold τ . We show how to efficiently increase from
τ0 to τ1 > τ0 so that we achieve the same output distribu-
tion as if the sampling threshold had been τ1 throughout.
Algorithm 2 shows the procedure for a single key i ∈ S.
With probability τ0/τ1, no changes are made; otherwise ci
is reduced by a value drawn from an exponential distribu-
tion with mean τ1, and ejected if this is now below 0. We
can formalize this as follows. Let c ≥ 0, 0 ≤ τ0, τ1, u be a
random variable uniformly distributed in (0, 1], and Expτ1
be an exponential random variable of mean τ1 independent
of u. Then define the random variable

Θ(c, τ0, τ1) = I(uτ1 > τ0)[c− Expτ1 ]+ + I(uτ1 ≤ τ0)c

Note Θ(c, τ0, τ1) = c when τ1 ≤ τ0. We give an algorithmic
formulation of Θ in Algorithm 2 as SampThreshInc, which
replaces ci by the value Θ(ci, τ0, τ1) if this value is positive,
and otherwise deletes the key i.

We now show that Θ preserves unbiasedness, and in par-
ticular that the distribution of an updated count ci under Θ
is that of a fixed-rate SH procedure with threshold τ1:

Theorem 3.1. Let 0 ≤ τ0 < τ1 and c̃ = Θ(c, τ0, τ1).



Algorithm 2 Adjust sampling threshold from τ0 to τ1 for
key i

Require: τ1 > τ0, i ∈ S
1: procedure SampThreshInc(i, ci, τ0, τ1)
2: u← rand()
3: if τ1 >

τ0
u

then
4: z ← rand()
5: r ← (− ln(z))τ1 . r ← Expτ1
6: ci ← ci − r
7: if ci ≤ 0 then S ← S \ {i}

(i) E[I(c̃ > 0)(c̃+ τ1)|c] = c+ τ0

(ii) If c =d [v − Expτ0 ]+, then c̃ =d [v − Expτ1 ]+.

Proof. (i)

E[I(c̃ > 0)(c̃+ τ1)|c]

= (1− τ0/τ1)

∫ c

0

e−x/τ1(c− x+ τ1) dx + (τ0/τ1)(c+ τ1)

= (1− τ0/τ1)c+ (τ0/τ1)(c+ τ1) = c+ τ0

(ii) Let c =d [v−Expτ0 ]+. Then Θ(c, τ0, τ1) can be rewrit-
ten as [v −W ]+ where

W = I(τ1u > τ0)(Expτ0 + Expτ1) + I(τ1u ≤ τ0)Expτ1

A direct computation of convolution of distributions shows
that Expτ0 + Expτ1 has distribution function

x 7→ (τ1Expτ1(x)− τ0Expτ0(x))/(τ1 − τ0).

Hence, using Pr[τ1u > τ0] = 1 − τ0/τ1, one computes that
W has distribution function

W (x) = Pr[τ1u > τ0](Expτ0 + Expτ1)(x) +

+ Pr[τ1u ≤ τ0]Expτ1(x)

= Expτ1(x)

Proof of Lemma 2.2.
From Theorem 2.1, ci =d [vi − Expτ ]+ = Θ(vi, 0, τ).
Hence E[v̂i] = E[I(ci > 0)(ci + τ)] = vi as a special case of
Theorem 3.1(i).

3.2 Maintaining a fixed size cache
We are now ready to present Algorithm 3, which main-

tains at most k cached keys at any given time. For each
cached key i, the algorithm stores a count ci and the key’s
effective sampling threshold τi. This τi is set to the sam-
pling threshold in force during the ejection following the
most recent entry of that key into the cache. It may also
be adjusted upward due to the ejection of another key, a
process we explain below.

When the cache is not full, a new key i is admitted with
sampling threshold τi = 0. When the cache is full, in the
sense that it contains k keys, a new key is provisionally
admitted, then one of the k + 1 keys is selected for ejec-
tion. The procedure EjectOne adjusts the minimum sam-
pling threshold τ∗ to the lowest value for which one key
will be ejected. This is implemented by considering the po-
tential action of SampThreshInc on all counts ci simul-
taneously, fixing a independent randomization of the vari-
ates ui, zi for each i, and finding the smallest threshold τ∗

Algorithm 3 aSH with signed weighted updates

1: procedure Update(i,∆)
. Update weight of key i by ∆

2: if i ∈ S then
3: ci ← ci + ∆
4: if ci ≤ 0 then
5: S ← S \ {i} . i ejected from cache.

6: else if ∆ > 0 then . i 6∈ S
7: S ← S ∪ {i}, τi ← 0, ci ← ∆

. Insert i with sampling threshold 0
8: if |S| = k + 1 then
9: EjectOne(S)

10: procedure SubsetSumEst(P ) . Estimate
∑
i:P (i) vi

11: s← 0
12: for i ∈ S do
13: if P (i) then
14: s← s+ τi + ci . estimate

return s

15: procedure EjectOne(S)
. Subroutine to increase sampling threshold so one key
is ejected

16: for i ∈ S do
17: ui ← rand(), zi ← rand()
18: Ti ← max{ τi

ui
, ci
− log(zi)

}
. Ti is the sampling threshold that would eject i

19: τ∗ ← mini∈S Ti
. τ∗ is the new minimum sampling threshold

20: for i ∈ S do
21: if Ti = τ∗ then S ← S \ {i}
22: else
23: if τi ≤ τ∗ then
24: if τ∗ui > τi then
25: ci ← ci + τ∗ log zi

. Given Ti > τ∗ and τ∗ui > τi, then ci + τ∗ log zi > 0
. Given Ti > τ∗ and τ∗ui ≤ τi, then ci is unchanged.

26: τi ← τ∗

for which c̃i = Θ(ci, τi, τ
∗) = 0 for some i. This key is

ejected, while the thresholds of surviving keys are adjusted
as (ci, τi) ← (c̃i, τ

∗) if τi ≤ τ∗, and are otherwise left un-
changed.

Lemma 3.2. v̂i retains its expectation under the action of
EjectOne.

Proof. We choose a particular key i, and fix all cj , and
also fix for j 6= i the random variates uj , zj from line 17 of
Algorithm 3. This fixes the effect of random past selections
and updates. Let Tj = max{τj/uj , cj/(− log zj)} and τ ′ =
minj 6=i Tj , which are hence also treated as fixed. Then the
update to ci is c̃i = Θ(ci, τi, τ

′); we will establish that ṽi =
I(c̃i > 0)(c̃i + τ ′) is a (conditionally) unbiased estimator of
vi for any fixed τ ′, and hence unbiased.

We first check c̃i corresponds to the action on ci described
in Algorithm 3. For clarity we state

c̃i = I(τ ′ui > τi)[ci − Expτ ′ ]
+ + I(τ ′ui ≤ τi)ci

and observe that −τ ′ log zi is the random variable Expτ ′
employed. When Ti < τ ′, i is selected for deletion. This
corresponds to the case {τ ′ > τi/ui} ∩ {τ ′ > ci/(− log zi)}.



The condition τ ′ > τi/ui selects the first term in the expres-
sion for c̃i, while the condition τ ′ > ci/(− log zi) makes that
term zero, i.e. c̃i = 0 and the key is deleted. Otherwise, if
Ti ≥ τ ′, the first or second term in c̃i may be selected, but
both cannot be zero.

Let ṽi denote the estimate of vi based on c̃i = Θ(ci, τi, τ
′).

Then from Theorem 3.1(i)

E[ṽi|τ ′, ci > 0] = E[I(c̃i > 0)(c̃i + τ ′)|τ ′, ci > 0] = ci + τi

independent of τ ′. Hence

E[ṽi] = E[I(ci > 0)(ci + τi)] = vi.

Theorem 3.3. v̂i is an unbiased estimator of vi

Proof. Initially, the cache is empty and both vi = 0 and
v̂i = 0. We need to show that the estimate remains unbiased
after an update operation. The first part of a positive update
∆ > 0 clearly preserves the expectation: τi is not modified
(or initialized to 0 if i was not cached) and c is increased by
∆. Hence v̂i increases by exactly ∆. Unbiasedness under
the second part, performing EjectOne if the cache is full,
follows from Lemma 3.2.

To conclude the proof of the unbiasedness of the estima-
tor, we invoke Lemma 3.6(i), which is stated and proved
below. This Lemma uses a ‘pairing’ argument to pair off
the negative update with a prior positive update, and so re-
duces to a stream with only positive updates, which yields
the same v̂i. Therefore, the result follows from the above
argument on positive updates.

3.3 Estimation Variance
It is important to be able to establish likely errors on

the unbiased estimators v̂i resulting from Algorithm 3. A
straightforward calculation shows that when ci =d [vi −
Expτ ]+, the unbiased estimate v̂i = I(ci > 0)(ci + τi) has
variance

Var[v̂i] = τ2
i (1− e−vi/τi)

Moreover, Var[v̂i] itself has an unbiased estimator s2
i that

does not depend explicitly on the value vi:

s2
i = I(ci > 0)τ2

i .

The intuition behind s2
i is clear: for a key in S, the uncer-

tainty concerning vi is determined by the estimated unsam-
pled increments, which are exponentially distributed with
mean τi and variance τ2

i . Observe that both Var[v̂i] and s2
i

are increasing functions of τi.
Note that the estimated variance associated with a given

key is non-decreasing while the key is stored in the cache,
then drops to zero when the key is ejected, possibly growing
again after further updates for that key. Since s2

i is increas-
ing in τi, a simple upper bound on the variance is obtained
using the maximum threshold encountered over all instances
of EjectOne. This is because one of these instances must
have given rise to the largest threshold associated with each
particular key.

Lemma 3.4. For any two keys i 6= j, E[v̂iv̂j ] is invariant
under EjectOne.

Proof. Reusing notation from the proof of Lemma 3.2,
let Tj = max{τj/uj , cj/(− log zj)} . We fix cj and τ ′ =

minh 6=i,j Th. The update to ch (h ∈ {i, j}) is c̃h = Θ(ch, τh, τ
′),

and (when c̃h > 0) the update to τh is τ̃h = min{τ ′, Ti, Tj}.
It suffices to show that

E[I(c̃i > 0, c̃j > 0)(c̃i + τ̃i)(c̃j + τ̃j)]

= I(ci > 0, cj > 0)(ci + τi)(cj + τj)] .

We observe that

E[I(c̃i > 0, c̃j > 0)(c̃i + τ̃i)(c̃j + τ̃j)]

= E[I(c̃i > 0, c̃j > 0)(c̃i + τ ′)(c̃j + τ ′)],

which holds because there can be a positive contribution to
the expectation only when Ti, Tj > τ ′. Under this condition-
ing, however, τ ′ essentially functions as a fixed threshold.
Thus, we can apply Theorem 3.1 (i) and obtain

E[I(c̃i > 0, c̃j > 0)(c̃i + τ ′)(c̃j + τ ′)]

= I(ci > 0, cj > 0)(ci + τi)(cj + τj).

Consequently, we are able to show that the covariance
between the estimates of any pair of distinct keys is zero.

Theorem 3.5. For any two keys i 6= j, Cov[v̂i, v̂j ] = 0.

Proof. We show inductively on the actions of Update
in Algorithm 3 that E[v̂iv̂j ] = vivj .

For a positive update (i,∆), the claim is clear following
c ← c + ∆ (line 3 in Algorithm 3), when i is in the cache.
Both vi and v̂i = I(ci > 0)τi + ci increase by ∆ and both
vj and v̂j are unchanged. Hence, if prior to the update
we had E[v̂iv̂j ] = vivj then this holds after the update. A
positive update may also result in EjectOne and we apply
Lemma 3.4 to show that E[v̂iv̂j ] is unchanged.

To complete the proof, we also need to handle negative up-
dates. We argue that the expectation E[v̂iv̂j ] is the same as
if we remove the negative update and a prior matching pos-
itive update, leaving a stream of positive updates only. The
details of this argument are provided in Lemma 3.6(ii).

A consequence of this property is that the variance on sub-
set sum estimate is the sum of single-key variances, just as
with independent sampling: Var[

∑
i:P (i) v̂i] =

∑
i:P (i) Var[v̂i].

In particular,
∑
i:P (i) I(ci > 0)τ2

i =
∑
i∈S:P (i) τ

2
i is an unbi-

ased estimate on
∑
i:P (i) vi.

3.4 Analysis of negative updates under aSH
Our analysis in Theorems 3.3 and 3.5 relies on replacing

a stream with a mixture of positive and negative weight up-
dates with one which has positive weight updates only, and
then arguing that certain properties of this positive stream
match those of the original input. This generalizes the“pair-
ing” argument outlined in Section 2.1 for the special case of
unit weighted updates. In this section, we provide more
details of this pairing transformation, and prove that this
preserves the required properties of the estimates.

Pairing Process. In our pairing process, each negative up-
date is placed in correspondence (“paired”) with preceding,
previously unpaired, positive updates. We then go on to re-
late the state to that on a stream with both paired updates
omitted. Figure 1 gives a schematic view of the pairing pro-
cess for a key, which we describe in more detail below.
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Figure 1: Value of key with time. Unpaired and
paired positive update and paired negative updates
are marked.

Specifically, a negative update of key i is paired with the
most recent unpaired positive update of i. If there is no such
update, the negative update is unpaired. This occurs when
the aggregate weight before the update is zero, in which
case according to (1), vi remains zero, and we can ignore
this update.

Since updates are weighted, a negative update (i,−∆)
may be paired with multiple positive updates, or with a
fraction of a positive update. Without loss of generality,
each negative update will be paired with a “suffix” of a pos-
itive update, followed by zero or more “complete” positive
updates. If vi < ∆, the negative update only has its vi
“prefix” paired and vi −∆ “suffix” unpaired.

To aid analysis, we observe that we can “split” updates
without altering the state distribution. More precisely, let
σ be an update stream terminating with an update (i,∆).
Let σ′ be the same stream with the last update replaced
by two consecutive updates (i,∆1) and (i,∆2) such that
∆1 + ∆2 = ∆, and sign(∆1) = sign(∆2) = sign(∆). Then
the distribution of the state of the algorithm after processing
σ or σ′, conditioned on the initial state, is the same. This
means that by splitting updates, we can replace the original
sequence by another sequence (where each original update
is now a subsequence of updates), on which the algorithm
has the same final state but all updates are fully paired or
fully unpaired.

We next prove the lemma we require to replace the original
stream with a positive-only stream.

Lemma 3.6. Consider an update stream where the `’th
update is a negative update (i,−∆) and a modified stream
with the negative update, and all positive update(s) paired
with it (if any) omitted. Then

(i) E[v̂i] and

(ii) for j 6= i, E[v̂iv̂j ]

are the same for both streams.

Proof. We observe that a negative update can be un-
paired if and only if vi = 0 just prior to the current negative

update. Since the counter ci ≤ vi, this means that i is
not cached and thus the processing of the unpaired negative
update has no effect on the state of the algorithm.

For paired negative updates, let σ0 be the prefix of the
stream up to the corresponding paired positive update, σ
be the suffix including and after the positive update, and
σ′ ⊂ σ be an alternative suffix with the negative update and
its paired positive update all omitted. Fix the execution of
the algorithm on σ0. To complete the proof, we show that

(i) The distributions of (τi, ci) for key i after processing
σ and σ′ are the same.

(ii) For a key j 6= i, if ci > 0, then the distribution of
(τj , cj) conditioned on the final (τi, ci) when ci > 0 is
the same: (τj , cj)|σ, τi, ci =d (τj , cj)|σ′, τi, ci

Since the actual splitting point of updates does not affect
the state distribution, we can treat vi as defined by the
update stream projected on i as a contiguous function of
“time”. Initially, before any updates of i are processed, the
time is 0. If the time is t0 prior to processing an update
(i,∆), then for t ∈ [t0, t0 + |∆|], we interpolate the value
vi as a function of time as vi(t) = [vi(t0) + t − t0]+. After
processing the update, the time is t0+|∆|. Any point in time
now has a gradient, depending on whether vi is increasing
or decreasing at that time. Pairing is between intervals of
equal size and opposite gradient. Figure 1 shows the value
vi as a function of time and distinguishes between updates
that are paired and unpaired with respect to the final state.

Tracking the state of key i during execution, we map
an interval [0, ci] to positive update intervals in a length-
preserving manner. The mapping corresponds to the pos-
itive updates which contributed to the count ci, that is,
the most recent unpaired positive update intervals of (to-
tal) length ci. We refer to the point that 0 is mapped to as
the (most recent) entry point of key i into the cache. Upon a
positive update, the counter is incremented by ∆ > 0. The
mapping of [0, ci] is unchanged and the interval [ci, ci + ∆]
maps to the interval [t0, t0 + ∆] of the current update on
the time axis. An EjectOne operation which reduces the
counter ci by r removes an r “prefix” of the counter interval:
a positive update time previously paired with y ∈ [0, c] such
that y > r is paired with the point y − r in the updated
interval. A negative update of ∆ results in c ← [c − ∆]+.
A ∆ “suffix” of [0, c] is removed (reflecting that the positive
update points this suffix was mapped to are now paired)
and the mapping of the remaining [0, [c−∆]+] prefix is un-
changed. Note that the positive update interval removed is
the one that is paired with the negative update just pro-
cessed.

We now consider a negative update of ∆, and compare
the execution of the algorithm on suffixes σ and σ′.

• If i is not cached after σ0, then it would not be cached
after any execution of either σ or σ′, since all positive
updates of i are paired. If i was cached at the end of σ0

and ejected during σ, we fix the randomization in each
EjectOne performed when processing σ. We then
look at executions of σ′ that follow that randomization
until (and if) the set of cached keys diverges. Under σ′,
i has a lower c value (by ∆) than under σ. Thus, when
i is removed by an EjectOne at σ, it would also be
removed under σ′, unless it was removed already under



a prior EjectOne. As all positive updates of i in σ
and σ′ are paired, once i is removed, then even if it re-
enters the cache it will not be cached at termination
for either σ′ or σ. Thus, the outcome for i under σ
and σ′ is the same.

• If i is cached after σ, its most recent entry point must
be in σ0. We again fix the execution of the algorithm
on σ, fixing all random draws when performing Ejec-
tOne procedures. We will show that if the execution
of σ′ follows these random draws, then i will not be
ejected and will have the same τi, ci values at termi-
nation of σ′. Consider the execution of the algorithm
on σ′ and let τ ′i , c

′
i be the parameters for i. Initially,

c′i = ci − ∆. Clearly, any EjectOne where c is not
changed, retains i under both σ and σ′. If c is reduced
under σ, it still must be such that ci > ∆ for i to be
cached at the end, since all subsequent positive up-
dates are paired, and the last update is of −∆. Thus,
it would also remain cached under the corresponding
EjectOne in σ′. Moreover, all other keys cached un-
der σ would also be cached (and have the same (τj , cj)
values) under σ′.

Lastly, we consider (τj , cj) for j 6= i conditioned on (τi, ci)
when ci > 0. If i is not cached after σ, it is also not cached
under σ′ and thus ci = 0. If i is cached after σ, it has
the same state (τi, ci) as under σ′ (fixing randomization).
Furthermore, the state (τj , cj) for any key and j 6= i is the
same.

From these observations, we can conclude that the expec-
tation of the estimate for any key, and for any pair of dis-
tinct keys (and likewise for higher moments), are the same
for both streams.

Note that once we have the above lemma, we can apply
it repeatedly to remove all negative updates, and result in
a “positive-only” stream. The distributions of the state of
algorithm on these paired streams are identical.

4. EXPERIMENTS
In this section we exhibit the action of aSH on a stream

of signed updates, and compare its performance against a
comparable state-of-the-art method, namely Lp sampling.

4.1 Implementation Issues.
Our reference comparison was with Lp sampling. The Lp

sampling procedure builds on the idea of sketch data struc-
tures, which summarize a d-entry vector x. A sketch built
with parameter ε can provide an estimate of any xi with
error ε‖x‖2, using space O(ε−2 log d) [4]. In outline, for L1

sampling, we build a sketch of the vector xi = vi/ui, where
vi are the aggregate weights for key i, and each ui is a fixed
uniform random variable in the range [0, 1] [17]. To draw a
sample, we find the entry of this vector which is estimated
as having largest xi value by the sketch. To obtain the cor-
rect sampling distribution, we have to reject samples whose
xi value does not exceed a fixed threshold as a function of
‖v‖1, which in our case is just the sum of all update weights.
As a result, the procedure requires a lot of space per sample:
O(log2 d), even using a large constant value of ε. Further,
the time to extract a sample can be high, since we have to
enumerate all keys in the domain. The search time could be
reduced using standard tricks, but this would increase the

space by further factors of log d. We implemented both L1

sampling and our adaptive Sample and Hold algorithm in
interpreted languages (Perl, Python); we expect optimized
implementations to have the same relative performance, but
improved scalability. To ensure comparability, we fix the
space used by aSH to draw a sample of size k (i.e. k tu-
ples of (i, ci, τi, ui, zi)), and allocate this much space to Lp
sampling to be used for sketch data structures. Based on
our parameter settings, the sketch used by Lp sampling to
extract a single sample equates to the space for 10 samples
under aSH.

4.2 Data Description
We tested our methods on data corresponding to the ISP

network monitoring scenario described in the Introduction.
The update stream was derived from arrival and departures
at a queue. The queue was driven by a synthetic arrival
process, comprising keyed items with sizes drawn indepen-
dently from a Pareto(1.1) distribution. The arrival times
and key values were derived from an IP network trace of 106

packets. We simulated a FIFO queue in which each item
remains at the head of the queue for a time equal to its size,
and converted the trace into a stream of 2 × 106 updates
(i, s), where i is a key and s is positive for an arriving item
and negative of the same magnitude when that item has
completed service for a departure, the stream items having
the corresponding event order as for the queue. Thus the
values vi correspond to the total size of items of key i in the
queue at a given time. We evaluate the methods based on
their ability to accurately summarize the queue occupancy
distribution of different subsets of keys.

4.3 Parametrization
We parametrized different runs of the simulation as fol-

lows.

• Key Granularity: The trace contained about 110,000
unique keys. These were mapped to smaller keys sets
as i 7→ β = h(i) mod b with h a hash function and b
taking values 1, 000, 10, 000 and 100, 000. This is the
granularity of keys in the sample set. Note that the
time for our aSH algorithm does not depend explicitly
on the key granularity, but Lp sampling incurs a cost
linear in b; hence, we focus on moderate values of b to
bound the experimental duration.

• Query Granularity: For determination of estimation
accuracy, we divide the keyspace into a different classes,
and use the recovered sample to estimate the weight
distribution across these classes. Specifically, we as-
signing each key β to a bin by β 7→ α = β mod a.
(Note that the sampling methods are not aware of this
fixed mapping, and so are unable to take advantage of
it.) We used values 10, 100, and 1, 000 for a.

• Sample Size: we selected roughly geometric sample
sizes k from 30, 100, 300 and 1, 000 for aSH, and allo-
cated the equivalent space to Lp sampling, as described
above.

Our subsequent experiments compare the performance in
time and accuracy across the different combinations of these
settings of a, b, and sample size k.
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Figure 2: CDF of Estimation Error as a function of sample size k for aSH and Lp; key granularity b = 1, 000
and 100, 000. Query granularity a = 10, 100 and 1, 000. aSH is consistently more accurate than Lp.

4.4 Results
Query Accuracy. Each time we probe the samples, we
obtain the estimated weights of the a different bins. We
measure the accuracy by comparing the induced frequency
distribution to the true distribution computed offline. That
is, let w(α) and ŵ(α) the total and estimated weighted in
each query aggregate labeled by α = 1, 2 . . . a. Then accu-
racy is measured by the distribution error

1

2

∑
α

|w(α)

W
− ŵ(α)

Ŵ
| ∈ [0, 1] (7)

where W =
∑
α w(α) and Ŵ =

∑
α ŵ(α).

This distribution error was computed for each positive
update for aSH and every 1000 updates in Lp sampling.

Figure 2 shows the empirical cumulative distributions of the
errors computed for each method, using key granularity b =
1, 000 and 100, 000 and query granularity a = 10, 100 and
1, 000.

On these plots, an ideal summary reaches the top left hand
corner (i.e. if all queries have zero error). For aSH with
k=1000, this is indeed achieved in the case b = 1000. That
is, when there are only 1000 distinct keys, the sample of size
1000 is able to represent this distribution exactly, and hence
can answer any query perfectly. In more realistic situations,
k is less than b (often, much less than b). However, we see
even for k = 100, corresponding to 10% of the active keys,
we see that aSH does a good job of answering the query. This
holds even for b = 100, 000, meaning the sample can capture
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Figure 3: Timing results for stream processing and querying

only 0.1% of the keyspace. We note the accuracy tends to
improve as a decreases, meaning that there are fewer bins
for the query, and hence more keys in each bin. In this case,
almost every query is answered with high accuracy.

In contrast, the accuracy from Lp sampling is quite low.
The main reason is the much higher space overhead of this
method. As noted above, even with space corresponding
to k = 1000, Lp sampling only has room to recover up to
100 samples. Moreover, each attempt to recover a sample
from the sketch fails with constant probability (this is an
integral part of the method, which is needed to achieve the
correct sample distribution). In practice, we were only able
to recover a small number of samples, often only in the single
figures. As a result, we observe that Lp sampling with space
for k = 1000 is often outperformed by aSH with k = 30, i.e.
aSH is more accurate even with a much smaller summary
size.

Update Processing Time. Both aSH and Lp sampling
were run using interpreted languages on the same system.
We measured the total processing time associated with pro-
cessing the update stream. The update processing times is
largely independent of key granularity, and was observed to
grow roughly linearly as a function of the sample size k; see
Figure 3(a) which shows the cost on logarithmic axes. Under
this implementation, Lp sampling is roughly half an order
magnitude (i.e. five times) slower than aSH.

Asymptotically, Lp sampling is truly linear in k: it up-
dates O(k) different sketches, taking constant time for each.
Hence, we do not expect to be able to improve substantially
on this. The time cost for aSH includes the time to per-
form EjectOne for every update. We note that the update
time could be improved for aSH, at the expense of slightly
increased space, by deferring this step. That is, suppose we
buffer c arrivals, then perform c steps of EjectOne, one
after another. This can be shown to be equivalent to de-
termining a new threshold τ∗c which is sufficient to eject c
keys. Then we can perform a single pass over the c+ k keys
and track the c’th largest threshold in a heap. Thus, setting
c = O(k) means that the update time could be reduced to
O(log k), allowing larger samples to be drawn efficiently.

Query Answering Time. For the aSH summary, answer-
ing queries is trivial: we just have to read the explicitly

maintained counts and thresholds, and use these within the
SubsetSumEst routine. In our experiments, this time was
essentially nil. However, this is not the case for the Lp sam-
pling case, due to the need to test the sketch-estimated count
each potential key value. Figure 3(b) displays the time to
answer perform this extraction as a function of key granular-
ity b for different buffer sizes k. The results are in accordance
with the asymptotic cost, growing as O(bk). At the extreme
end, the cost is of the order of 45 minutes to extract a sam-
ple over a domain of b = 106, making real time analysis
infeasible. We would argue that this is not a particularly
large domain (e.g. IP addresses span a domain 3 orders of
magnitude larger). From this, we conclude that the time
cost of working with Lp sampling is too high for anything
above a moderate sized domain. In contrast, the time cost
for working with aSH sampling is independent of b.

5. CONCLUDING REMARKS
In many situations, data is presented in the form of streams

of updates which can include negative weights. When these
streams become large, it is important to be able to accu-
rately maintain a sample over them. We have introduced an
aSH sampling technique for such streams of weighted, signed
updates, which is unbiased and has zero co-variance between
estimated keys. The procedure is easy to implement. In
our experimental study, we observed that its performs sub-
stantially better than the Lp sampling technique based on
sketches: given the same amount of space, aSH is more ac-
curate, faster to process the stream, and dramatically faster
to answer queries.

Looking beyond this work, we note that other models of
streaming arrivals are also of interest, but have similarly
received relatively little attention. One important case is
that of the overwrite streams model, where an update of the
form (i, v) means that the weight associated with key i is
updated to v. The update (i, 0) corresponds to deletion of
the key. This model captures a simple notion of “updating”
information about a key. It is also of interest since many
natural streaming problems are hard in this setting, meaning
that they require space linear in the size of the input; see
e.g. [16].



In contrast, a sampling algorithm for constant rate q =
1/τ is straightforward: if a key is observed which is already
stored in the cache, eject it. Then independently decide
whether to retain the current key, based on its weight v and
τ . Correctness—i.e., that this is distributed as a Poisson
sample on the final values for each key—is immediate. It
is more challenging to manage a fixed-sized cache S. Here,
again, overwrites deplete the cache, but arrivals can cause
the cache size to be exceeded. In this case, we must choose
a key to eject, in a similar way to EjectOne, based on a
local τi for each. We leave further study of this model to
future work.
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