
39

On the Tradeoff between Stability and Fit

EDITH COHEN, Tel Aviv University, Israel and Google Research, USA
GRAHAM CORMODE1, University of Warwick, UK.
NICK DUFFIELD, Texas A&M University, TX, USA
CARSTEN LUND, AT&T Labs-Research, NJ, USA

In computing, as in many aspects of life, changes incur cost. Many optimization problems are formulated as a one-time instance starting from
scratch. However, a common case that arises is when we already have a set of prior assignments, and must decide how to respond to a new set of
constraints, given that each change from the current assignment comes at a price. That is, we would like to maximize the fitness or efficiency of our
system, but we need to balance it with the changeout cost from the previous state.

We provide a precise formulation for this tradeoff and analyze the resulting stable extensions of some fundamental problems in measurement
and analytics. Our main technical contribution is a stable extension of Probability Proportional to Size (PPS) weighted random sampling, with
applications to monitoring and anomaly detection problems. We also provide a general framework that applies to top-k, minimum spanning tree,
and assignment. In both cases, we are able to provide exact solutions, and discuss efficient incremental algorithms that can find new solutions as the
input changes.

CCS Concepts: rTheory of computation→Mathematical optimization; Graph algorithms analysis;

Additional Key Words and Phrases: stable weighted samples,stable top-k,stable minimum spanning tree

ACM Reference Format:
Edith Cohen, Graham Cormode, Nick Duffield, and Carsten Lund, 2016. On the Tradeoff between Stability and Fit ACM Trans. Algor. 9, 4,
Article 39 (March 2010), 18 pages.
DOI: 0000001.0000001

1. Introduction

Most textbook optimization problems have a clean statement: given a set of constraints and an optimization target,
we are free to choose any feasible solution, and so can strive for the optimal result. However, when applying these
techniques, we may find that we do not begin with a clean slate. Rather, we often have some (partial) assignment,
perhaps resulting from a previous optimization over a prior input. This assignment is unlikely to be optimal for the
current instance, but each modification to the current assignment can come with a cost. We therefore have to balance
the improvement from a new assignment (the fit) with the cost of changing from the current assignment to the new one
(the stability).

Consider a network operator who is leasing network connections to meet customer demand. When there are no
existing leases, this can be modeled as a standard graph optimization problem. But after an initial solution is found,
customer demand may change. The operator then has to solve a more complex optimization, since there is a (fixed)
cost to breaking an existing lease and establishing a new one. This cannot easily be represented as an instance of the
original problem, due to the mixture of pricing schemes.

Formalizing this setting, we target applications where the input state x ∈ X changes over time. We maintain an
output S ∈ S that can be changed in response to changes in the input. We are interested in the tradeoff between the
fit (or efficiency) of the output with respect to the current input and the changeout cost from the previous output. This
requirement for ‘stability’ arises in a variety of different applications:

— Human-interpretable output: In many settings devoted to monitoring and managing a system, there is a “dashboard”
that presents information to an operator. For example, this could be details of the most congested links in a network,
the heaviest users of the system, locations with anomalous activity, and so on. The underlying information may be
rapidly changing, so that constantly updating the display would lead to a confusing mess of information. Instead, the
operator should be presented with a view which is reasonably stable, so that they can absorb the information, and
track the change in properties of items over time. At the same time, the output should be close to optimal in detailing
the most important items.

— The overhead of change: In a client-server assignment or a routing problem, changes in the output may correspond
to cache swaps, job migration, or modifications to a routing table. In all of these cases, each change incurs a cost, and
very rapid change can lead to poor performance: delays, due to routes changing midway, or low throughput due to
constant reassignment of machines. We are therefore willing to settle for a solution that is sub-optimal at any instant,
but which changes only slowly.

1Supported in part by European Research Council grant ERC-2014-CoG 647557 and a Royal Society Wolfson Research Merit Award.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2010.

— Audience-aware advertising: Consider a roadside electronic billboard that can respond to the set of road users passing
by. We can choose an advertisement to display in response to demographics of the users, but constantly changing the
ad will make it impossible for any of them to absorb.

— Allocating resources to monitoring: Analysis such as change or anomaly detection requires tracking behaviour of
items over time. In high-throughput systems, it is feasible to collect detailed statistics on only a representative subset
of active items. Picking the items to monitor that are currently the most ‘interesting’ (top-k or a random sample) may
fail to keep any around long enough to build sufficient history for particular items, so we prefer to retain monitored
items while they are useful. Moreover, to efficiently store historic summaries for an extended time period, we only
need to record the modifications to the summary made over time, so limiting modifications means that less storage
is required.

Overview of contributions

We formalize and motivate the algorithmic problem of balancing fitness and stability. A precise model is presented in
Section 3. We then study the stable extension of some fundamental problems in measurement and analytics.

In Section 4 we consider a class of optimization problems where the inputs are vectors and the outputs are a subset
of the entries of a specified fixed size k. The class includes top-k set, where entries of the input vector correspond to
elements, Minimum Spanning Tree (MST) where entries correspond to edges of a graph, and Assignment, where entries
correspond to edges of the bipartite graph. The values of the entries are the respective weights of the edges/elements.
The respective sets of outputs are all subsets of size k for top-k, all maximum size bipartite matchings for assignment,
and all spanning trees for MST. The best fit solutions are the output with maximum sum of weights (for MST we look
at negated weights, and thus the minimum sum of edge weights).

The stable extensions of problems in our general class have a fitness function that is additive, expressed as a linear
combination of the weights of included entries. Fit values can be computed to all valid outputs. The changeout cost is
also additive, and expressed as sum of the costs of new entries. With top-k, assignment, and MST, the fitness is the sum
of weights of included entries (negated weights for MST) and the changeout cost is the number of entries we replace
in the output.

We establish a relation between the stable extension of an optimization problem in this class and instances of
the original optimization problem on a parametrically specified modified input. This relation allows us to apply an
algorithm for the original optimization problem as a black box to obtain a stable solution. Moreover, we establish a
mapping between a dynamic version of the stable extension (where we must efficiently modify the output in response
to incremental updates to the input) and the dynamic version of the original optimization problem. This mapping
similarly allows off-the-shelf applications of existing dynamic algorithms to efficiently recompute a stable solution
when the input is modified.

In Sections 5–7 we study sampling with stability, focusing on Probability Proportional to Size (PPS) weighted ran-
dom samples [Hájek 1964]. PPS sampling is probably the oldest and most widely applied weighted sampling scheme.
This is due to its simplicity, being based on independent sampling, and its optimality over independent sampling
schemes.

The input is a vector w of nonnegative numbers which correspond to weights assigned to items in some population.
Consider a sampling scheme specified by a vector p of probabilities. The sample is obtained by including each entry
i independently with probability pi. The expected size of such a sample is the L1 norm of p. We measure the “fit”
of p for an input vector w by the (negated) sum over entries of the variance w2

i (1− 1/pi) of the (inverse probability
[Horvitz and Thompson 1952]) estimate we can obtain from the sample on its weight. This fit corresponds to the
quality of estimates of subset sum statistics that are obtained from the sample.

For a specified expected sample size k, the PPS probabilities p are such that pi ∝ wi (proportional to the weight of
the entry), except that probabilities are truncated to be at most 1. In is known that the PPS probabilities are “optimal”
in that they maximize fit for a given (expected) sample size [Hájek 1964].

Our focus here is on applications where the weights w change over time. In the stable extension, we track the output
vector p together with a sample taken according to p. We measure the changeout cost by the expectation of the set
difference of samples between the two sample distributions. Under the appropriate procedure, we show that the cost
can be kept to the minimal value, which is the L1 difference between the initial and target probability vectors.

This model is suitable for applications with the classic context of survey sampling [Särndal et al. 1992; Singh and
Mangat 1996]: There is a “processing cost” associated with “surveying” the sampled items, but we can maintain the
vector p. The purpose of sampling in this context (think of households or road segments) is to replace the cost of
surveying the full population by that of surveying only sampled items. Change adds another consideration: The best fit
sample for given weights is the PPS sample, but with change, we aim to balance the fitness of a sample with the cost of
modifying it (the number of new items we need to survey). This addresses many of the motivating settings described
above.

2

In terms of efficiency, while stable PPS is naively formulated as a non-linear optimization problem, we first show
how to decompose it into two convex programs with linear constraints, and then, using insights into the structure of the
parametric solution, give an O(n logn) combinatorial algorithm which computes the full tradeoff (the Pareto frontier),
expressed as a piecewise rational function. We also present a dynamic variant with polylogarithmic amortized time per
modified entry in the input.

An empirical study of our methods (Section 8) demonstrates their advantages over alternative approaches. In Sec-
tion 9, we discuss additional classic problems with natural stable extensions.

2. Related models

Our formulation of computing a stable solution at each step is appropriate when a continuously good fit is required,
as in the motivating scenarios we outlined. There is a very large number of models and approaches to computing over
changing data. These models target different settings and it is not possible to mention all of them. Two hugely popular
models are metrical task systems, where the goal is to maximize average fit per average change [Borodin et al. 1992]
and regret minimization used in decision theory.

A natural first attempt at providing stability of output is to stabilize the input, which is commonly performed using
some time-decayed average (via an exponential, polynomial, or sliding window decay function) over recent input
states [Cohen and Strauss 2006]. Decay models are successful in capturing the current state when inputs can be
modeled as noisy samples from a slowly changing underlying distribution. In this case, the time-decayed (moving)
average better captures the “real” current state than the current input.

When using decay models directly to obtain stability of output, we can compute the best-fit output for the time-
decayed average. This approach lacks, however, when similarity of the input does not guarantee similarity, or stability,
of the output. Moreover, when the output function is insensitive to small perturbations in the input, we cannot fine
tune the tradeoff of fit and stability by controlling the decay parameter: the stability of the output is not necessarily an
increasing function of the decay parameter.

The stability-fit tradeoff can be cast as a multi-objective (bicriteria) optimization problem. The points on the tradeoff
are the Pareto optimal solutions – the set of solutions so that any solution which strictly improves on one objective
would perform strictly worse on the others. Our algorithms can maintain the tradeoff point across a sequence of inputs.
Moreover, the tradeoff or the solution point computation is more efficient when only a small number of entries change
in the input.

A closely related notion is reoptimization, which is also about computing a close to optimal solution with a small
change in the current solution. Reoptimization had mostly been looked at for specific problems, but recently was
defined and studied as a general notion by Shachnai et al. [Shachnai et al. 2012]. An important difference between
their work and the present paper is that we are aiming for the instance-optimal tradeoff whereas the work of [Shachnai
et al. 2012] explores the existence of algorithms (or hardness of finding such algorithms) which guarantee a certain
relation between the approximation factor of the new solution and its cost of change relative to the cost of change
to arrive at an optimal solution. We believe our formulation is better suited for many applications. Also, the positive
results presented in [Shachnai et al. 2012] for the MST and related problems (which we also consider here) are for
computing a new optimal solution with minimum change. This is not satisfying when there is a slightly suboptimal
solution which is much cheaper to change to. Our algorithms compute any solution on the Pareto front.

Proactive re-optimization was explored by Babu et al. [Babu et al. 2005] in the context of query execution plans: The
goal is to come up with plans that are robust to small changes in the parameters and are adjusted when the parameters
deviate enough from the range the plan was optimized for. This line of work is somewhat related as we also seek to
optimize the tradeoff between the cost of change and the fitness of the solution, but the model and context are different.
In particular, we do not make assumptions on how the parameters may change but instead make a plan that allows us
to respond to any possible change of parameters by optimizing the cost of changing the plan against the cost of being
farther from the optimum. We also assume that the new parameters (“input”) are known to us. Moreover, we explore
a different set of optimization problems.

3. Model

The fit of output S ∈ S to input x ∈ X is measured by a fitness function φ : S ×X → R. The best-fit OPT(x) is the
output with maximum fitness for input x:

OPT(x) = argmax
S∈S

φ(S,x) .

Concrete examples of output domains S and corresponding best-fits are assignments (minimum cost assignment),
routing tables (shortest path routing), subsets of size k (top-k set), spanning trees (MST), and sampling distributions
(PPS sampling).

The changeout cost from output S1 to S2 is measured by a distance function on S ×S: d(S1,S2)≥ 0.

3

When presented with a new input x, and a current output S, we are interested in a ∆-stable optimum, which is the
best-fit output subject to a limit D on changeout cost, and its respective fitness:

∆-OPT(S,x,D) = arg max
S′|d(S,S′)≤D

φ(S′,x)

∆-φ(S,x,D) = max
S′|d(S,S′)≤D

φ(S′,x)

When fixing x and S, and varying the allotted change D, we obtain the optimal tradeoff between fit and changeout cost
using the points (D,∆-φ(S,x,D)).

The α-stable optimum α-OPT(S,x,a) is defined with respect to a parameter a, which specifies a linear relation
between changeout cost and improvement in fitness:

α-OPT(S,x,a) = argmax
S′

(
φ(S′,x)−a d(S,S′)

)
(1)

α-φ(S,x,a) = φ(α-OPT(S,x,a),x)

By sweeping the Lagrange multiplier a, we obtain the tradeoff using the points(
d(S,α-OPT(S,x,a)),α-φ(S,x,a)

)
. (2)

The fitness of the α-stable output decreases with a and that of a ∆-optimal one increases with D. For a = 0, we allow
D to be arbitrarily large, and the α-stable optimum is the current best-fit OPT(x). When a is sufficiently large, D is
forced to be small and the α-stable optimum is closer to the previous S. Two desirable properties satisfied by the prob-
lems we consider are concavity and output-monotonicity of the tradeoff. These properties simplify the computation of
the tradeoff and also mean that the choice of the best tradeoff point is predictable and tuneable.

Concave tradeoff: Concavity means that the function ∆-φ(S,x,D) is concave in D, so that the marginal improvement
in fitness for increase in allowed changeout cost is non-increasing. When the function is continuous and differentiable
in D, the marginal improvement is the first derivative ∂∆-φ(S,x,D)

∂D and concavity means ∂ 2∆-φ(S,x,D)
∂ 2D < 0. In this case,

when the parameters satisfy ∆-OPT(S,x,D) = α-OPT(S,x,a), then a = ∂∆-φ(S,x,D)
∂D .

Output monotonicity: When the output can be expressed as a vector, output monotonicity means that each entry
(inclusion, sampling probability, etc.) is monotone when sweeping a and looking at the α-stable optimum (or equiv-
alently, when sweeping D and looking at the ∆-stable optimum). In particular, when output entries are binary, then S
can be viewed as a set. For each i ∈ S, there is at most one threshold value τ so that i 6∈ α-OPT(S,x,a) ⇐⇒ a < τ and
for each i 6∈ S there is at most one threshold value of τ so that i ∈ α-OPT(S,x,a) ⇐⇒ a < τ .

Problem formulations

The applications we target have a sequence of inputs. A natural aim is to seek outputs that are α-stable in each step with
respect to the same parameter a — meaning that we “price” the changeout cost the same across steps. Alternatively or
additionally, we may need to limit the changeout at each step.

Stable solutions and tradeoff: The underlying basic algorithmic problem is to compute, for a given input x and
current output S, the respective ∆-stable and the α-stable optimum solutions.

Incremental updates: When in each step the input is provided as a small update to the previous one, such as a rewrite,
increment, or decrement of a single entry of the vector, we would like to efficiently compute a new α-stable optimum
instead of applying the batch algorithm to compute it from scratch.

4. Additive fitness and changeout cost

We begin by describing a general approach for a broad class of optimization problems. We say an optimization problem
with input domain of the vectors X ⊂ Rn and outputs S that are subsets S ⊂ [n] has additive fitness if its objective is
to maximize the fitness function φ(S,x) = ∑i∈S xi:

OPT(x) = argmax
S∈S ∑

i∈S
xi .

The changeout cost between two outputs is additive if there are constants ci such that d(S,S′) =∑i∈S′\S ci. The constant
ci can be interpreted as the cost of “bringing in” i to the output. When the optimization problem has additive fitness
and changeout cost, the α-stable optimum w.r.t. current output S can be posed as a best-fit instance on a modified input
vector with an appropriate quantity subtracted from entries in i 6∈ S:

4

THEOREM 4.1. Let OPT be an optimization problem with additive fitness and changeout. The α-stable optimum
satisfies α-OPT(S,x,a) = OPT(y) , where yi = xi− Ii6∈Scia and I is the indicator function.

PROOF. From (1),

α-OPT(S,x,a) = argmax
S′∈S

(
−a ∑

i∈S′\S
ci + ∑

i∈S′
xi

)
= argmax

S′∈S
∑
i∈S′

yi = OPT(y) .

We now consider maintaining an α-stable optimum efficiently under incremental updates. We show that this can be
done using an off-the-shelf dynamic OPT algorithm:

THEOREM 4.2. If fitness and changeout are additive, then when the input is modified, the α-stable solution can
be maintained by applying a dynamic OPT algorithm with a corresponding number of modified entries.

PROOF. For an input x and current output S, we consider the vector y such that yi = xi− Ii6∈Saci. Recall that the
α-stable optimum is the best-fit with respect to input y. It therefore suffices to translate the modifications in x to the
modifications in y. When an entry of x is modified, we apply a corresponding modification to the same entry in y.
When the algorithm modifies the output, we increase by aci the value of new entries inserted to S and decrease by aci
the value of entries that are deleted from S. The total number of updated entries in y is the sum of the updates to the
input and the size of the set difference between the α-stable outputs.

Fixed-size output and uniform costs. We now study problems that possess additional structure, namely fixed-size
output, ∀S∈S, |S|= k and uniform costs ci = 1. In particular, this formulation applies to matroids. We can equivalently
treat changeout costs as those of excluding entries currently in the output. Examples of such problems include Top-k,
MST, and assignment, which we study individually below.

Specializing Theorems 4.1 and 4.2, the α-stable optimum can be computed by applying OPT to a vector y obtained
by taking x and adding the value a to entries that are in S: α-OPT(S,x,a) = OPT(y) , where yi = xi + Ii∈Sa:

α-OPT(S,x,a) = argmax
S′∈S

(
−a|S′ \S|+ ∑

i∈S′
xi

)
= argmax

S′∈S

(
a|S′∩S|+ ∑

i∈S′
xi

)
= argmax

S′∈S
∑
i∈S′

yi = OPT(y) .

We can use this reduction when the input domain includes y≥ x when it includes x.
We now consider the structure of the objective of α-OPT as a function of a:

LEMMA 4.3. The function maxS′∈S
(

∑i∈S′ xi +a|S∩S′|
)

is the maximum of at most k+1 linear functions. Thus,
it is convex and piecewise linear with at most k breakpoints.

PROOF. The objective is a (restricted) parametric version of the original optimization problem [Megiddo 1979;
Karp 1978; Karp and Orlin 1981; Gallo et al. 1989; Gusfield 1983]. In a solution with respect to a parameter a, the
weight of each entry is replaced by the linear function xi + a when i ∈ S and is fixed to xi otherwise. The value of a
particular output S′ with respect to S and a is ∑i∈S′ xi+a|S∩S′|. The optimal solution as a function of a is the maximum
over all S′ ∈ S. These are linear functions with at most k+ 1 different slopes, corresponding to the intersection size
|S∩S′|. For each intersection size {0, . . . ,k}, there is one dominant linear function. The maximum of linear functions
with slopes {0, . . . ,k} is such that each function dominates in at most one piece and the slopes are increasing.

If we explicitly compute a representation of the objective function, we can obtain a ∆-stable optimum, by identifying a
corresponding value of the parameter a: The breakpoints of the function correspond to decreasing changeout (increas-
ing slopes) from changeout k (slope 0) to changeout 0 (slope k). The marginal gain in fitness from each unit increase
in changeout is the respective value of a at the breakpoint. Hence:

COROLLARY 4.4. When the problem has additive fitness, additive and uniform changeout, and fixed-size output,
the tradeoff is concave.

There are at most k+ 1 different α-stable solutions (eliminating duplications) and thus all can be specified in O(k2)
space. When the tradeoff is output-monotone, then this description requires only O(k) space. This is because there
are at most 2k entries involved in total, and each has a single exit or entry point as we sweep the parameter. We next
explore three basic problems: Top-k, MST, and assignment. We will see that output-monotonicity holds for Top-k and
MST but not for assignment.

4.1. Stable top-k

The top-k problem has input domain X ⊂ Rn so that xi is the ‘weight’ of i. The permitted outputs S are all subsets
S ⊂ [n] of size k, and the goal is to maximize φ , the sum of weights of the selected subset. The problem satisfies the

5

conditions of Theorem 4.1 and therefore the α-stable top-k with respect to input x and current set S is α-top-k(S,x,a)≡
top-k(y), where yi = xi + Ii∈Sa.

LEMMA 4.5. The stability-fit tradeoff for stable top-k is output-monotone and can be found in O(n+k logk) time.

PROOF. Consider the sequence of swaps made by α-top-k(S,x,a) while sweeping a. For sufficiently small a ≥ 0,
α-top-k(S,x,a)= S. For sufficiently large a, α-top-k(S,x,a)= top-k(x). The total number of swaps is the set difference
d(S, top-k(x)). The swaps are between the lightest i ∈ S and the heaviest i 6∈ S.

To compute all tradeoff points, we sort the entries in S by increasing xi to obtain the order (i1, . . . , ik), and sort the
top-k entries i 6∈ S in decreasing order (j1, . . . , jk). This obtains the stated time bounds. Let H = argmaxh xih < x jh .
For h ≤ H, the most beneficial swap of at most h items, swaps-in items j1, . . . , jh and swaps-out items i1, . . . , ih. The
α-stable swap uses the maximum h≤H such that x jh−xih ≥ a. The tradeoff is clearly output-monotone, as each entry
is swapped in or out at one particular value.

Incremental algorithm: The problem also satisfies the conditions of Theorem 4.2 and therefore to obtain an incre-
mental algorithm, we outline a simple dynamic algorithm for maintaining a top-k set. We use two heap data structures.
The first heap is a min-heap of the k cached entries (we call it the “in-heap”). The second heap is a max-heap of the
remaining n− k entries (“out-heap”). Weight updates are performed as updates to the weights of the corresponding
elements in the heap. Swaps cause the deletion of the minimum item in the in-heap and the maximum item in the
out-heap, and their reinsertion in the other heap. Swaps are performed when xi−x j ≥ α , where i is the maximum item
in the out-heap and j is the minimum item in the in-heap. In this algorithm each update has an overhead of O(logn)
— note that an update of a single value can result in at most a single swap.

Example: Consider an input vector x = 〈1,4,7,5〉 and k = 2. The top-2 set contains the entries {3,4}. Suppose now
that the current output is the first two entries S = {1,2}. The best swap is 1↔ 3 (swapping the smallest cached value
with the largest uncached value) and the second most beneficial swap is 2↔ 4 (swapping 2nd smallest cached with
2nd largest uncached). The optimal tradeoff has 3 points: performing no swap, only the first swap, or both swaps.
Looking at α-stable solution, the first swap has utility gain 7−1 = 6 and the second swap has utility gain 5−4 = 1.
Thus the first swap is performed when a≤ 6 and both when a≤ 1.

A simple but potentially useful observation is that our results extend to fitness function of the more general form
φ(S,x) =∑i∈S ψi(xi), where ψi are some functions we apply the the input. The extension is obtained by simply treating
ψ(x) as the input. One usage example is to measure fitness by Lp

p: ∑i∈S |x|p. We next demonstrate how the choice of p
may affect the result when we process a sequence of inputs using the same a value: Augmenting our example, consider
the α-stable outputs for two inputs: x = 〈1,4,7,5〉 and another vector z = 〈2,3,8,4〉. In both cases, the current output
is the first two entries {1,2}. The vector z has the same tradeoff curve as x when using the L1 norm. If we want to use
the L2 norm for fitness, we use ψ(x) = x2. In this case, the two most valuable swaps have utility gains of 72−12 = 48
and 52− 42 = 9 on x and 82− 22 = 60 and 42− 32 = 7 on z. Therefore, on the same a, and looking at both vectors
together, it is possible that only the first swap is performed on the x (60≥ a > 48), only the first swaps are performed
on both (48≥ a > 9), the two swaps on x and only the first swap on z (9≥ a > 7), or all four swaps (a≤ 7).

4.2. Stable MST

In the stable MST problem, the inputs are a set of edge weights and the outputs are spanning trees. The fit of a tree
is its negated weight. The change cost between two trees is the set difference of included edges. The problem clearly
satisfies the conditions of Theorem 4.1, hence, an α-stable MST can be obtained by adding a to the edge weights
of edges in the current output tree and computing an MST. Applying Theorem 4.2, dynamic α-stable MST can be
handled using off-the-shelf dynamic MST algorithms [Holm et al. 2001].

LEMMA 4.6. The tradeoff for stable MST is output monotone.

PROOF. Consider starting from an optimal MST and slowly increasing a, obtaining a sequence of α-stable MSTs.
An edge is removed when it is the heaviest edge in some cycle. This can only happen if this edge is not a member of
the output S (because weights of all members of S decrease by the same amount and all weights of other edges stay
the same). Once this happen, weights of other edges in the cycle either keep decreasing or stay the same, so the edge
remains the heaviest in that cycle and out of the MST. Similarly, an edge is inserted into the α-stable MST when it has
smallest weight in some cut. Such an edge must be a member of S and its weight remains the smallest in its cut as a
increases. Thus the tradeoff is output monotone.

The tradeoff can be computed using a parametric MST algorithm [Agarwal et al. 1998], but the computation can be
made more efficient for this special case.

6

3

a

9

5+a

9 1

9

a

5+a5+a

9

Fig. 1. Example demonstrating non-monotonicity of assignment

4.3. Stable assignment

In the stable assignment problem, the inputs are weights of edges in a complete bipartite graph and the outputs are
maximum matchings. The problem satisfies the conditions of Theorem 4.1, and hence, an α-stable solution can be
computed by adding a to all the weights of edges present in the current matching and then finding a maximum-
weight assignment (maximum weight bipartite matching). We also know there are at most n+1 distinct stable optimal
assignments (assuming a single optimal assignment is used). From Theorem 4.2, dynamic α-stable assignment reduces
to dynamic maximum bipartite matching [Sankowski 2007]. However, unlike the previous problems, the tradeoff is
not output monotone. Specifically, Figure 1 shows a simple example of an assignment problem which is not output-
monotone in its inclusion of edges. It shows a 10 node bipartite weighted graphs (where missing edges are assumed
to have weight zero). A matching from the previous timestep causes five edges to have their (current) scores increased
by a. We can find the tradeoff by considering solutions which include different numbers of the previous edges, as
per Lemma 4.3. The solution that picks none of the previous edges has weight 31. The solution that picks one of the
previous edges picks the top edge, and has weight 30+ a. The solution that picks three previous edges has weight
24+3a, and picks the three edges with weight 5+a. Lastly, the solution that picks all five previous edges has weight
15+ 5a. The cases of two and four previous edges are dominated by these solutions. The α-OPT objective is the
maximum of the four linear equations: y = 31, y = 30+ 1a, y = 24+ 3a, y = 15+ 5a, and each dominates the other
three for a different range of a. Further, note that the top a edge is included for a ∈ (1,3) and not for a ∈ (0,1) and
(3,4.5). Therefore, the tradeoff is not output monotone.

5. Stable PPS sample

In this section we consider the stable extension of PPS sampling. The input domain X consists of real non-negative
vectors w ∈ Rn

+ and the output domain S contains probability distributions specified by all vectors p ∈ [0,1]n such that
∑

n
i=1 pi = k. Together with the distribution, we maintain a random sample where entry i is sampled with probability pi

and different entries are sampled independently.

Fitness function: When the ith entry is sampled with probability pi, the unbiased non-negative estimator with mini-
mum variance on the weight wi of the entry is the Horvitz-Thompson estimator [Horvitz and Thompson 1952], i.e. wi

pi

when the entry is sampled and 0 otherwise. The variance is w2
i (1/pi−1).

We measure the quality of a sample distribution p for input w by the negated sum of variances ∑i w2
i (1/pi−1). We

can omit the additive term −∑i w2
i (which does not depend on p) and obtain the fitness function

φ(p,w) =−∑
i

w2
i

pi
.

The best-fit for a sample of expected size k is the distribution with minimum sum of variances. This distribution
is the PPS sampling probabilities, p = pps(k,w), obtained by solving for τ the following equation, and using pi =
min{1,wi/τ}:

∑
i

min{1,wi/τ}= k . (3)

7

Algorithm 1 SUBSAMPLE procedure
1: procedure SUBSAMPLE(S, p,q)
2: for i ∈ [n] do
3: if i 6∈ S and qi > pi then
4: if RAND()< qi−pi

1−pi
then

5: S← S∪{i} . i is sampled-in with probability qi−pi
1−pi

6: if i ∈ S and qi < pi then
7: if RAND()> qi

pi
then

8: S← S\{i} . i is sampled-out with probability 1− qi
pi

9: return S

Changeout cost: The random sample is a set of entries and our distance function measures the expected set difference
between the samples. The distance therefore depends on the particular subsampling procedure we employ to move
from a sample S drawn from probability distribution p to a new one drawn from q. Clearly, the distance must be at
least ‖p−q‖1 = ∑i |pi−qi|. We can use a SUBSAMPLE procedure (pseudo-code in Algorithm 1), which has distance
exactly d(p,q) = ‖p−q‖1 and is therefore minimal. We note that we can implement SUBSAMPLE using VarOpt (see
details in [Cohen et al. 2011]), which can ensure that the number of inclusions and exclusions are each between the
floor and ceiling of their expectation. Alternatively, we can associate a permanent random number (PRN) [Brewer
et al. 1972] ui ∈U [0,1] so that i ∈ S ⇐⇒ ui ≤ pi.

Example 5.1. Consider sampling a set of expected size 2 from 6 entries. Suppose we have a current sample S,
drawn according to a uniform distribution p, where pi = 1/3 for i ∈ [6]. This distribution has the best fit when all
entries in the input have the same weight.

Suppose that the new input weights are w = (2,4,1,5,6,0) . The PPS sampling probabilities for a sample of size 2,
obtained with threshold τ = 9, are

pps(2,w) =
(

2
9
,

4
9
,

1
9
,

5
9
,

2
3
,0
)
. (4)

The expected changeout cost of modifying the sample from one drawn according to the uniform p to one drawn
according to pps(2,w) is ‖p−pps(2,w)‖1 =

4
3 .

The actual changeout to the sampling distribution pps(2,w) depends on our initial sample S and the randomization
when subsampling. Suppose S = {3,4}, that is, contains the third and fourth entries. Entries {1,6} are not in S and
have reduced sampling probabilities and therefore will not be included in the new sample. Entry 4 is in S and has
increased inclusion probability and therefore will be included in the new sample. Entries {2,5} which are not in S but
for which inclusion probabilities increased, need to be sampled for inclusion with respective probabilities {1/6,1/2}.
Entry 3 which is in S but has a reduced inclusion probability is sampled out with probability 2/3. Therefore, the new
sample will include entry 4 and will not include entries {1,6} but may include any subset of entries {2,3,5}.

The stability-fit tradeoff includes a sequence of distributions that are between p (higher variance, no changeout cost)
and pps(2,w) (high changeout cost, minimum variance). In the sequel, we will see how the tradeoff is computed for
this example.

6. Computing the stability/fit tradeoff for stable PPS

In this section we establish the following:

THEOREM 6.1. An α-stable PPS distribution, ∆-stable PPS distribution, and a description of the tradeoff map-
ping parameter values to fitness and vice versa, can be computed in O(n logn) time. Moreover, the tradeoff is concave
and output-monotone.

8

Let p be the initial output and w the current weights. The ∆-stable distribution q is the solution of the following
(nonlinear) optimization problem:

minimize∑
i

w2
i

qi
(5)

∀i, 1≥ qi ≥ 0

∑
i

qi = k

∑
i
|qi− pi| ≤ D

We are interested in efficiently solving the problem for a particular value of the changeout D and also in computing a
compact representation of all solutions.

We reduce (5) to two simpler convex optimization problems with linear constraints. BEST-INCREASE computes, for
any value x, the most beneficial total increase of x to current sampling probabilities, i.e., that would bring the biggest
reduction in the sum of variances. Similarly, BEST-DECREASE computes the least detrimental total decrease of x, i.e.,
the decrease that results in the minimum increase of the sum of variances. We show that descriptions of both functions
can be found in time O(n logn). Last, we show how to fully describe the ∆-stable PPS distributions and α-stable
distributions in time O(n logn) by using these functions.

6.1. The most beneficial increase (BEST-INCREASE).

The most beneficial increase for x ∈ (0,∑i(1− pi)] is δ which solves the following convex program.

minimize∑
i

w2
i

pi +δi
(6)

∀i, 1− pi ≥ δi ≥ 0

∑
i

δi = x

LEMMA 6.2. For any increase x ∈ (0,∑i(1− pi)] there is a threshold value y ≡ τ(x) such that the solution of
(6) is δi = min{1,max{pi,wi/y}}− pi. The function τ(x) and its inverse ∆+(y) are continuous and decreasing and
piecewise with at most 2n breakpoints, where each piece is a hyperbola. Moreover, a representation of both functions
can be computed in O(n logn) time.

PROOF. From convexity, the solution is unique and the Karush-Kuhn-Tucker conditions [Kuhn and Tucker 1951]

specify its form: The partial derivatives
∂

w2
i

pi+δi
∂δi

=− w2
i

(pi+δi)2 are equal for all i such that 1− pi > δi > 0. We denote this
common value of wi

pi+δi
by τ(x). For i where δi = 0, we have wi

pi
≤ τ(x) and when 0 < δi = 1− pi, we have wi ≥ τ(x).

Using this, we can now consider the solution as a function of x. We first sort all items with 0 < pi < 1 in decreasing
order of wi/pi and place items with pi = 0 and wi > 0 at the head of the sorted list. The list is processed in order: we first
increase δ1 until w1

p1+δ1
= w2

p2
. We then increase both δ1 and δ2 so that the ratios are all equal until w1

p1+δ1
= w2

p2+δ2
= w3

p3
and so on (but we stop increasing a probability once it is equal to 1). At any point, the ratios wi

pi+δi
on the prefix 1, . . . ,h

we have processed are all equal to some value y except for items where pi reached 1. The threshold y ≡ τ(x) can be
interpreted as the rate of decrease of the sum of variances per unit increase in expected sample size after implementing
optimally a total increase of x. It is a decreasing function of x and satisfies y ∈ (wh+1/ph+1,wh/ph], where h is the last
processed entry on our sorted list. The new sampling probabilities q = p+ δ satisfy qi(y) = min{1,max{pi,wi/y}}.
Observe that the probabilities q(y) are PPS of size ∑

h
i=1 pi + x of the prefix of the list

(q1, . . . ,qh)← pps(
h

∑
i=1

pi + x,(w1, . . . ,wh)) ,

and y is the threshold value of these PPS probabilities.
Consider the (at most 2n) points defined by the ratios wi/pi (when pi < 1 and wi > 0) and the weights wi. Con-

sider the relation between x and y = τ(x). The function is a hyperbola x = a+ b/y for some constants a,b between
consecutive breakpoints.

9

The inverse function of τ(x), which we call ∆+(y), maps threshold values to probability increases, and satisfies

x = ∆
+(y) = ∑

i
qi(y)− pi = ∑

i
min{1,max{pi,wi/y}}− pi .

It is continuous and decreasing with range [mini|pi<1 wi,R), where R = ∞ if ∃i with wi > 0 and pi = 0 and R =

maxi|pi<1
wi
pi

otherwise. It is piecewise where each piece is a hyperbola.
Algorithm 2 computes a representation of the functions ∆+(y) and τ(x) each as a sorted list of pieces of the form

(I, f (y)) where I are intervals that partition the domain and f is the function for values on that interval. For ∆+(y),
the pieces have the form f (y) = a+ b/y. The inverse function τ(x) is simultaneously produced by the algorithm by
inverting each piece (I,a+b/y) to obtain a respective interval where end point v of I is mapped to end point f (v) =
a+ b/v (left end points are mapped to right end points and vice versa). The inverse function on the corresponding
interval is τ(x) = f−1(x) = b

x−a .
For each i with wi > 0 and pi < 1, Algorithm 2 creates an entry point with value wi

pi
and for each item with positive

wi, creates an exit point with value wi. These (at most 2n) points are the breakpoints of ∆+(y). The breakpoints are
processed in order to compute the functions ∆+(y) and τ . The computation is performed in linear time after sorting
the breakpoints.

Algorithm 2 The function ∆+(y) and its inverse τ(x) for w and p
1: procedure BEST-INCREASE(w, p)
2: W ← 0 . weight of active items
3: D← 0 . Contribution to difference of items that exited and negated sum of initial probabilities of active items
4: L← /0 . Initialize L as an empty max-heap
5: for i ∈ [n] do
6: if (wi > 0) then
7: if (pi < 1) then
8: (A.v,A.t,A.i)← (wi

pi
,”entry”, i) . value, breakpoint type, item

9: L← L∪A . add entry record to L
10: else if pi = 0 then
11: W ←W +wi
12: (A.v,A.t,A.i)← (wi,”exit”, i) . value, breakpoint type, item
13: L← L∪A . add exit record to L
14: A← GETMAX(L) . Pull Record with largest A.v in L
15: if W > 0 then
16: ∆+←{([A.v,∞), W

y)} . “Rightmost” piece of Function ∆+(y)

17: τ ←{((0, W
A.v],

W
x)} . “Leftmost” piece of Function τ(x)

18: else
19: ∆+← /0, τ ← /0
20: r← A.v . definition boundary so far of ∆+

21: `← W
A.v . definition boundary so far of τ

22: while L 6= /0 do
23: A← GETMAX(L)
24: i← A.i
25: if A.t = ”entry” then
26: W ←W +wi
27: D← D− pi
28: else . A is an exit point
29: W ←W −wi
30: D← D+1
31: ∆+← ∆+∪ ([A.v,r],D+ W

y) . Function ∆+ from A.v to next breakpoint
32: r← A.v
33: τ ← τ ∪{((`,D+ W

A.v],
W

x−D)} . Function τ from previous to current breakpoint
34: `← D+ W

A.v
35: return ∆+, τ

The following example shows how BEST-INCREASE is computed for the instance in Example 5.1:

10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6
th

re
s
h
o
ld

 v
a
lu

e
changeout

x increase threshold
x decrease threshold

pps threshold

Fig. 2. The thresholds τ and τ as a function of changeout x for Example 5.1. PPS threshold with maximum changeout (4/3) is provided as a
reference.

Example 6.3. Returning to Example 5.1, we consider the best increase for w and the uniform p. Since probabilities
are uniform, Algorithm 2 processes entries in order of decreasing weight. The first entry on our list is entry 5, which
has weight of 6. The best increase is applied only to this entry until the ratio matches the ratio of the second entry on
the list, which happens when 6/(1/3+δ) = 5/(1/3), that is, when δ = 1/15. So the first piece of our function is for
the interval x∈ (0,1/15]. The corresponding distribution has entry 5 with probability 1/3+x (and all other entries with
the original 1/3). The algorithm has active weight W = 6 and thus produces the threshold function τ = 6/(1/3+ x).
We can verify that the inclusion probability for changeout x is q5 = 6/τ(x) = 1/3+x. The second piece of the function
associates increases for both entry 5, and the second entry on our list, which is entry 4. They are increased until the
ratios are equal to the third entry on our list, which is entry 2. This happens when the increase to entry 5 is 1/6,
according to 6/(1/3+ δ) = 4/(1/3) and when the increase to entry 4 is 1/12 according to 5/(1/3+ δ) = 4/(1/3).
The total increase from entries {4,5} is 1/6+ 1/12 = 1/4 and we obtain that the second piece of the function is
for x ∈ (1/15,1/4), and both entries {4,5} are increased. Algorithm 2 computes the active weight W = 6+5 and the
threshold τ(x) = 11/(x+2/3). Thus for an increase of x, entry 5 is sampled with probability 6/τ(x) = (6/11)(x+2/3)
and entry 4 with probability 5/τ(x) = (6/11)(x+2/3). The third piece would have 3 active entries {2,4,5} (the three
largest entries.). The active weight is W = 15 and the threshold is accordingly τ(x) = 15/(x+1). The interval for this
third piece is (1/4,2/3].

6.2. The least detrimental decrease (BEST-DECREASE)

We now discuss the complementary BEST-DECREASE problem: Computing the best decrease to the probabilities. For
x ∈ [0,∑i pi], it is the solution of the optimization problem

minimize ∑
i|wi>0

w2
i

pi−δi
(7)

∀i, pi ≥ δi ≥ 0

∑
i

δi = x

We first observe that any total decrease x ≤ D0, where D0 = ∑i|wi=0 pi can be arbitrarily applied to probabilities of
items with zero weight and does not increase the sum of variances.

LEMMA 6.4. For any decrease x ∈ (D0,∑i pi], there is a threshold y ≡ τ(x) such that the solution of (7) has the
form δi = pi−min{pi,wi/y}. The function τ(x) and its inverse ∆−(y) are increasing, continuous, and piecewise with
at most n breakpoints where each piece is a hyperbola. Moreover, a representation of both functions can be computed
in O(n logn) time.

PROOF. For any decrease x ∈ (D0,∑i pi], the solution is unique and specified by the Karush-Kuhn-Tucker condi-
tions [Kuhn and Tucker 1951]. For all i where wi = 0 we must have δi = pi. For all i such that δi ∈ (0, pi), the partial

11

Algorithm 3 The function ∆−(y) : (0,∞) and its (extended) inverse τ : (0,∑i pi) for w and p
1: procedure BEST-DECREASE(w, p)
2: W ← 0 . Initial active weight W
3: D← 0
4: ∆−← /0, τ ← /0
5: for i ∈ [n] do
6: if (wi > 0) then
7: (A.v,A.i)← (wi

pi
, i) . value, item

8: L← L∪A . add entry record to L
9: else, D← D+ pi . wi = 0

10: τ ← ((0,D],0) . Threshold function is 0 for y≤ D
11: `← D . Left boundary of current definition of τ

12: r← ∞ . Right boundary of current definition of ∆−1

13: while L 6= /0 do
14: A← GETMIN(L) . Pull out record with minimum A.v
15: i← A.i
16: W ←W +wi
17: D← D+ pi
18: ∆−← ∆−∪ ([A.v,r),D− W

y)

19: r← D− W
A.v

20: τ ← τ ∪ ((`,D− W
A.v],

W
D−x)

21: `← D− W
A.v

22: return ∆−, τ

derivatives

∂
w2

i
pi−δi

∂δi
=− w2

i
(pi−δi)2

are equal and we denote the common value of wi
pi−δi

by τ(x). When δi = 0, we must have wi
pi
≥ τ(x).

The solution thus has the form

δi = pi−min{pi,wi/y}= max{0, pi−wi/y} .

We obtain the relation

x = ∑
i

δi = ∑
i|wi/y<pi

(pi−wi/y) ,

which defines the functions y ≡ τ(x) and its inverse x ≡ ∆−(y). Both τ(x) and its inverse ∆−(y) are continuous and
decreasing. The range of τ(x) (domain of ∆−(y)) is [mini|pi>0 wi/pi,∞). Both are piecewise with at most n breakpoints
which correspond to the values of the ratios wi/pi. Algorithm 3 computes a representation of these two functions. It
first orders the items as in Algorithm 2 and the proof of Lemma 6.2, according to the ratios wi/pi and processes this
list in reverse order, generating the pieces of the two functions. Each function is represented as a list of consecutive
pieces of the form (I, f (y)), where I is an interval. For convenience, we define τ(x) = 0 for x ≤ D0. For ∆−(y), f (y)
has the form f (y) = a− b/y. The algorithm inverts f (y) to obtain the corresponding piece of the function τ(x): an
end point v of I is mapped to end point a−b/v (left end points are mapped to right end points and vice versa) and the
function is b/(a− x).

The probabilities q← p−δ computed for a given x are PPS with threshold is y:

(qt , . . . ,qn)← pps(
n

∑
i=t

pi− x,(wt , . . . ,wn)) .

Example 6.5. We compute the Best-decrease function for Example 5.1 using Algorithm 3. We obtain that for
x ∈ (0,1/3] we only decrease the probability for entry 6, which has weight of 0. We then decrease only the second
smallest entry, which is entry 3 with weight 1. The interval of the second piece is accordingly x ∈ (1/3,1/2], we have
active weight 1, τ(x) = 1/(2/3− x), and q6 = 0 and q2 = 1/τ(x) = 2/3− x. The third piece x ∈ (1/2,2/3] involves

12

Algorithm 4 Compute the distribution ∆-OPT(w, p,D)

function OPT(w, p,D)
x← D/2
T ← τ(x)
T ← τ(x)
if T = 0 then R← x
for i ∈ [n] do

if pi ≤ wi
T then

qi← wi
T

else if T = 0 then
if R > 0 and wi = 0 then

qi←max{0, pi−R}
R← R− pi

else if pi <
wi
T

then . T > 0 and pi ∈ [wi
T
, wi

T)

qi← wi
T

else . T > 0, pi ∈ [wi
T
, wi

T)
qi← pi

return q

entries {1,3}. The active weight is W = 3 and τ(x) = 3
1−x . Accordingly, the probabilities are q6 = 0, q2 = 2/τ(x), and

q1 = 1/τ(x).

6.3. Computing a ∆-stable PPS distribution.

We consider computing ∆-OPT(w, p,D), which is the distribution with maximum fitness (minimum variance) φ(q,w),
amongst q that are within distance D from p (‖p− q‖1 ≤ D). The applicable values of D are in the interval
[0,‖pps(k,w)− p‖1] and clearly ∆-OPT(w, p,0) = p and ∆-OPT(w, p,‖pps(k,w)− p‖1) = pps(k,w). For general D,
we obtain the distribution by combining the best increase of D/2 and the best decrease of D/2. The two are disjoint
for D≤ ‖pps(k,w)− p‖1. Pseudocode is provided in Algorithm 4.

LEMMA 6.6. A representation of ∆-OPT(w, p,D) can be computed in O(n logn) time. The representation supports
computing the output distribution for a particular value D in time linear in the number of entries with pi 6= qi.

PROOF. Algorithm 4 computes ∆-OPT(w, p,D) in O(n) time after computing the thresholds τ(x) and τ(x) for
x = D/2, using Algorithms 2 and 3. If we are interested in a particular D, the algorithms can be stopped once the piece
of the function containing x = D/2 is computed. This takes O(n logn) time from Algorithms 2 and 3. The complete
representation is the combination of the representations of τ(x) and τ(x). If it is precomputed, Algorithm 4 returns the
distribution in time linear in the number of modified entries.

We now show how to compute the ∆-stable distribution for the instance in Example 5.1.

Example 6.7. On Example 5.1, the optimal PPS has changeout 4/3 and thus we are interested in the ∆-stable
distribution for D < 4/3. We do this by combining the best increase of D/2, which affects a prefix of the entries
{5,4,2} with the best decrease of D/2, which affects a prefix of the entries {6,3,1}. If D = 1, the best increase of
x = 0.5 involves all three entries. We have τ = 7.5 and accordingly the entries {5,4,2}, which have weights {6,5,4},
have q5 = 6/7.5= 0.8, q4 = 5/7.5= 2/3, and q2 = 4/7.5= 8/15. The best decrease of x= 0.5 has τ = 6. Accordingly,
q6 = 0, q3 = 1/6, and q1 = 2/6 = 1/3. Therefore, the ∆-stable distribution for D = 1 is

q =

(
1
3
,

8
15

,
1
6
,

2
3
,

4
5
,0
)
.

Figure 2 illustrates the thresholds τ and τ as a function of the changeout x. When the changeout is D = 4/3, the
increase and decrease are D/2 = 2/3 and both thresholds meet the PPS threshold, reflecting that the ∆-stable solution
is the best-fit PPS (4).

6.4. Computing an α-stable PPS distribution.

For a given stable solution, we can consider its changeout D from the starting distribution and the Lagrange multiplier
a, which is the rate of decrease of the sum of variances per unit change after implementing a total change of D in
sampling probabilities. The relation between the two is α(D)≡ a = τ(D/2)2− τ(D/2)2.

13

LEMMA 6.8. A description of the function α(D), and a solution for an equation α(D) = a, can be computed in
O(n logn) time.

PROOF. The function α(D) is a piecewise rational expression which is decreasing with D. Its breakpoints are the
union of the breakpoints of τ and τ . For each piece, we can compute the respective range of D values and of a values.
To compute the α-stable distribution for a given a, we locate the piece in which a is in the range and solve for x the
equation a = τ(x)2−τ(x)2. Within a specified piece, this yields a quartic equation (finding the root of a polynomial of
degree 4), and we take the root x that lies in the domain of the piece.

Once x is computed, we have the changeout D = 2x which corresponds to a and the thresholds τ(x) and τ(x). We
can substitute the thresholds in the initialization of Algorithm 4 and apply it to compute the α-stable distribution.

Combining these pieces provides the result claimed by Theorem 6.1.

7. Incremental stable PPS

We show how we can efficiently maintain an α-stable distribution when modifications to the weight vector are made
one entry at a time.

THEOREM 7.1. An α-stable PPS distribution, and a corresponding sample, can be maintained in amortized
poly log(n) time per modification.

Consider an α-stable distribution and the set of ratios wi/pi. Following the notation we used in the batch case, let
τ be the largest ratio with pi < 1; and let τ be 0 if there is an entry with zero weight and positive probability and
otherwise the smallest ratio with wi > 0. The difference of the squares is at most a: τ2− τ

2 ≤ a. When the weight of
an entry i is modified, its ratio changes. If this results in a maximum difference of squares exceeding a, we need to
recompute the α-stable distribution. This event can happen only when either pi < 1 and wi/pi > τ or pi = 0, wi > 0
and τ > 0 or wi/pi < τ . The modification that involves the modified entry itself must be at one end of the ordered ratios
list and a sequence of entries from the other end of the ordered ratios. We increase τ to simultaneously compensate
for decreasing τ or vice versa, but noticing we never need to exceed the original threshold value at the affected end.
The total number of modified probabilities, however, can be large, even when we modify the weight of a single entry.
On the other hand, the expectation of the change in the sample (the L1 distance between initial and final α-stable
distributions) is at most 1 and we can ensure (as we outlined in the subsampling discussion) that there is at most one
insertion and one deletion from the sample.

Our treatment of the incremental problem introduces a representation of the α-stable distribution, which allows
for efficient tracking and modifications of sampling probabilities of sets of entries and also efficient maintenance of
a corresponding sample. This is combined together with amortized analysis which charges the modifications to the
representation to previous modifications in the input.

We now provide full details of the data structures we use. To gain intuition, we first consider the special case (a = 0)
of maintaining a PPS distribution. Conceptually, entries are maintained in a sorted order according to their weight
and we also track the respective τ value. We use a structure, such as Fenwick tree [Fenwick 1994], that supports
prefix sums, lookups, insertions and deletions in O(logn) time. When an entry is modified, it is deleted from its
previous position and reinserted with its new weight. If the weight decreased (increased), the threshold can only
decrease (respectively, increase). The respective new τ (new solution of (3)) can be computed with a logarithmic
number of lookups. An actual sample can be maintained using permanent random numbers (PRN). This is facilitated
by maintaining another sorted order according to the ratios wi/ui (where ui is the PRN of entry i). The sample includes
all entries with wi/ui ≥ τ . For this, we use a data structure that supports insertions, deletions, and lookups (of the
smallest ratio that is larger than a value) in O(logn) time such as a self adjusting binary tree [Sleator and Tarjan 1985].

In the case of maintaining a stable sample for general a, probabilities in the stable sample only need to be modified
when the ratio wi/pi of a modified input entry is outside the current (τ,τ) range. In the batch algorithm we worked
with the ordered list of ratios wi/pi. The prefix and suffix of this list formed PPS samples, and thus, within the suffix
and prefix of the ordered ratios list, the ratio order corresponds to the weights order. But in the middle range, for ratios
in (τ,τ), the order of ratios may not correspond to the order of weights.

A critical observation for our analysis is that once two entries are “processed together” in a prefix or suffix of the
sorted ratios list, and thus the heavier one precedes the lighter one, their relative position remains the same in the sorted
ratios list, even if they are no longer members of the prefix or suffix (have ratios below τ or above τ). This situation
only changes, i.e. wi > w j and wi/pi < w j/p j when the weight of at least one of the entries is modified. Intuitively, in
our analysis, we charge the cost of “correcting” this order when an entry works its way back into a prefix or suffix to
the modifications in the input.

The main structure that we use to support this analysis is what we call a stretch, which maintains a subset of entries.
The stretch supports the following operations in O(logn) time: deletion of an entry, splitting a stretch into two stretches

14

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 100 200 300 400 500 600 700

s
q

rt
(t

o
ta

l
v
a

ri
a

n
c
e

)

changeout

EWMA PPS: Indep.
EWMA PPS: PRN

Stable PPS: Indep.
Stable PPS: PRN

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180

fi
t

d
e

fi
c
it

changeout

EWMA top-k
Stable top-k

Fig. 3. Left: Stable PPS uniformly and noticeably outperforms EWMA PPS. Permanent Random Numbers (PRN) improve both methods. Right:
Similar performance for Stable and EWMA top-k, although computational aspects favor Stable top-k.

that include all entries with weights that are respectively below and above some value, merging two stretches with non-
overlapping weight ranges, performing a lookup of the smallest/largest weight above some value, and returning the
weight of all entries that are below or above a certain value. Consequently, two stretches with overlapping weight
ranges can be merged in time proportional to log(n) times the number of interleaved segments in their joint sorted
order.

Instead of treating entries as single entities, they are grouped to stretches. All entries currently in the same stretch
share the same ratio τ = wi/pi (which we refer to as the threshold of the stretch) or else have wi > τ and pi = 1. We
thus assign a ratio to a stretch as the range that spans its threshold and its largest weight. All stretches are maintained
in a structure which supports insertion, deletion, and accessing stretches with maximum or minimum threshold in
O(logn) time. This structure corresponds to the “sorted list of ratios” in the batch algorithm.

When an entry is modified, it is deleted from its current stretch and inserted as a single-entry stretch. To recompute
the distribution in response to the modification, we apply an extension of our batch algorithm that can manipulate
stretches: If the update produces a higher maximum ratio or lower minimum ratio and α-stability is violated, we
obtain new values for τ and τ while processing stretches by decreasing and increasing ratios, as done (for single
entries) by the batch algorithm.

As the prefix (and suffix) of the “sorted” ratios are processed in decreasing ratio order, stretches are merged into
a single prefix (or a single suffix) stretch. We stop when the difference of squares is exactly a. The cost of merging
stretches depends on the number of interleaved sorted segments of stretches, and each segment can be “charged” to a
modification of an item.

8. Illustration and Comparison with Time Decay

We provide a brief illustrative performance comparison of Stable PPS and Stable top-k against their time-decayed
counterparts. We can think of an application where the input is a demand or load vector of a system. A dashboard is
shown to a user monitoring the system. We refer to the content of the dashboard, which is a set of contributors (aiming
for top-k or a representative sample), as a summary. A top-k set shows the heaviest contributors whereas a PPS sample
shows representative contributors.

We would like the dashboard to show an accurate view of the current “state” (good fit) while minimizing fluctuations
(changeout). We may want to be able to optimize a combination of both (α-stability) or simply limit changeout in a
time interval (∆-stability).

Our algorithms for the respective stable problems compute a precise optimal tradeoff of fit and stability of the output.
We compare with another method: Computing a best fit for an Exponentially Weighted Moving Average (EWMA) of
the input. The EWMA method achieves some tradeoff indirectly, by smoothing the input. The tradeoff with EWMA
is obtained by controlling the geometric decay parameter. A slower decay makes for a smoother input which is less
similar to the current input state, but we expect to have lower changeout cost. The disadvantages of EWMA is that it
provides no guarantees on quality and does not necessarily produce an optimal or even a monotone tradeoff. Moreover,
to be able to control changeout we may need to work with a range of decay parameters at the same time, requiring us
to store and maintain a large state.

Experimental Set-up. The data comprises IP flow records aggregated over the 144 ten-minute periods over the span
of a day, obtained from a large ISP. On average, there were 61,292 (anonymized) keys in each period t, from a total of
2,516,594 unique keys. The results shown are for a summary size of k = 1,000 in each case.

15

For the time decayed version we constructed for each key i an EWMA x̃i,t of the process xi,t . In EWMA PPS, at
each time period t, we perform PPS selection over the keys present but using EWMA weights, i.e., the weight set
{x̃i,t : xi,t > 0}, and formed the Horvitz-Thompson estimate of the true weight as an auxiliary variable, i.e., xi,t/p̃i,t for
selected items, where p̃i,t is the selection probability. In EWMA Top-k we selected at each time t the set S̃t of k items
of highest EWMA weight x̃i,t , and as measure of fit computed the corresponding sum of original weights ∑i∈S̃t

xi,t .
By controlling the geometric decay parameter of EWMA we achieve some tradeoff of fit and changeout. With faster
decay, the quantities x̃i,t are closer to xi,t and we expect better fit but also higher changeout cost, since faster decay also
makes x̃i,t less similar to x̃i,t ′ for t ′ < t.

PPS Sampling: Fit is measured as the square root of sum of weight estimation variances. Fit and changeout costs are
averaged over the 144 periods. For EWMA PPS we swept the mean m of the geometric decay from 1 (no history) to
64 periods. We computed the ∆-stable PPS distributions sweeping target maximal changeout cost D between 0 and the
target sample size k = 1,000. We evaluate independent (pseudo)random number generation and coordinated random-
ization, using permanent random numbers (PRN) [Brewer et al. 1972], for each key. These methods determine how
the sample changes when the probabilities change. With PRN, we use subsampling (Algorithm 1) to make the samples
as similar as possible when probabilities change (This is the stable PPS algorithm we presented). With independent
sampling, the sample is redrawn. Independent sampling is thus expected to yield worse tradeoffs and is presented for
comparison and to evaluate the benefits of subsampling.

Figure 3 shows the stability-fit tradeoffs for Stable PPS and EWMA PPS. We can see that EWMA PPS with in-
dependent random numbers has much larger changeout cost (in the range 620–650) than the other methods. Using
PRN with EWMA PPS much reduces the change cost. Stable PPS performs noticeably better, achieving very small
changeout (around 50 for the PRN variant) with relatively little growth in error as changeout is reduced (about 15%
growth compared with about 70% growth for EWMA). PRN has little impact on variance because, for a given input
set, marginal variance is unchanged.
Top-k: Figure 3 shows stability-fit tradeoffs for Stable top-k and EWMA top-k, where fit is represented by the deficit

between the total weight of the top-k estimate, and the true total top-k weight. Fit and changeout are again averaged
over the 144 periods. The performance of both are similar, although the stable version does obtain a better tradeoff.
Nevertheless, we note that stable methods are preferable to EWMA methods for both the theoretical guarantees of an
optimal tradeoff and for computation reasons, when we would like the ability to control the tradeoff at each iteration.
With the stable algorithms, the stability or flexibility parameters can be modified directly at each iteration, whereas
with time-decay these parameters can be controlled only indirectly through the decay parameters. Changing decay
parameters, however, requires extensive historical data to be retained, and rescanned for each change.

9. Stable Extensions of Optimization Problems

In general, we can consider the stable extension of almost any optimization problem. Theorem 4.1 shows that for a
natural class of problems, α-stability reduces to a single modified instance of the original optimization problem. How-
ever, there are many other problems which do not admit such a reduction. We considered the case of PPS sampling, and
showed procedures which find the optimal solution. Also of interest are those problems where the original optimiza-
tion is known to be hard: then we seek approximation algorithms for the stable extension (making use of Theorem 4.1
if possible). In this section, we provide further examples of problems that naturally admit stable extensions:

— In the 0/1 knapsack problem, items have values xi and weights wi, and we have a parameter W . The goal is to
find a set of items of maximum value, subject to an upper bound of W on the sum of their weights, ∑i∈S wi ≤W .
Under additive changeout cost, this fits the requirement of Theorem 4.1, and so any approximation algorithm for 0/1
knapsack provides the corresponding approximation for the α-stable version of the problem.

— In shortest-paths routing the output is a tree routing to a single destination. The fitness is the (weighted) sum, over
nodes, of the path length to the root. The changeout cost between two trees is the set difference (viewing trees as
directed to the destination), which corresponds to the number of modifications to the routing table for the destination.

— The k-set cover problem is, given a fixed collection of sets, to pick at most k to maximize coverage of x. The fitness
is the sum of weights of covered items, and we consider the uniform changeout cost function. We show that the
α-stable k-cover is hard by outlining a reduction to the optimum k-cover on a modified input. Our modified instance
contains all the original items and sets. It also contains a new item that is unique for each set in the current output S.
The new items have weights a. We argue that a cover is α-stable for a if and only if it is an optimal k-cover of the
modified input.

16

9.1. k-center Clustering

It is natural to consider the stable extension of various clustering problems. Here, we wish to minimize the cost of
the new clustering plus the cost of switching out some of the cluster centers. In this section, we show how to find a
constant factor approximation for the k-center objective in this setting.

Given the stable extension of any optimization problem, an α-optimal solution can always be computed by exhaus-
tive search on possible outputs. A method with smaller search space is to first construct an algorithm for an extended
version of the optimization problem which allows a part of the output to be fixed. This extension is a special case of the
stable extension. We can then perform a smaller search over all subsets of the current output, and apply the (restricted)
extended algorithm to each instance. Some problems naturally yield to such extensions: for covering problems, we
remove items covered by the fixed component and apply the (approximate) covering algorithm to what remains.

A less straightforward case arises in the context of clustering. Here, we want to extend a given subset of cluster
centers with some additional centers to minimize a particular cluster objective. For the k-center objective, the existing
2-approximation algorithm can be extended to handle fixed facilities (this “restricted” extension is also interesting in
itself). More formally, for points in a metric space m, we have:

LEMMA 9.1. Given a fixed set of centers F and a set of n points P, we can find a set of clusters C of size s that
guarantees to 2-approximate the k-center objective, i.e.

max
p∈P

min
c∈C∪F

m(p,c)≤ 2 min
C:|C|=s

max
p∈P

min
c∈C∪F

m(p,c)

PROOF. Here, we adapt the 2-approximation algorithm due to Gonzalez [Gonzalez 1985]. Starting with C = /0, we
pick the point from the input that is furthest from the current centers in C∪F , i.e.

C←C∪{argmax
p∈P

min
c∈C∪F

m(p,c)}

and iterate until |C|= s. This requires O((|F |+ s)n) distance computations.
To see the approximation guarantee, consider the next point q that would be added to S if we continued the algorithm

for one more iteration. This is some distance d from its closest center in C∪F . Therefore, we have that all points in
C∪{q} are separated by d, and further that every point in C∪{q} is at least d from every point in F . This can be seen
by contradiction: if any point in C were closer than d, then it would not have been picked as the furthest point ahead
of q.

This provides a witness for the cost of the clustering. There are two cases: (i) some point in C∪{q} is assigned to
some center in F under the optimal clustering; or (ii) some pair of points in C∪{q} are assigned to the same center
under the optimal clustering. If (i) holds, then immediately we have that the cost of the optimal clustering is at least
d. If (ii) holds, then we have two points separated by distance d in the same cluster. Then the cost of the optimal
clustering is at least d/2, which happens when their cluster center is distance d/2 from each (it cannot be closer to
both without violating the triangle inequality).

On the other hand, since q is the furthest from its closest center in C∪F , it follows that all points are within d of
their closest center, and therefore the cost of the clustering found by the algorithm is d, which is at most twice the
optimal cost.

This indicates that we can find a 2-approximation for the stable extension by considering all subsets of the current
clustering, and applying the above lemma. However, for subsets larger than k/2, we can simply work with the (approx-
imate) solution that switches out all k centers for the optimal k-center clustering on the current set: this at most doubles
the changeout cost, while improving the clustering cost. Thus, we only need to consider subsets of size at most k/2.

10. Concluding Remarks

We formalized a model of stability and fit, where the benefits of an improved solution have to be traded off against the
costs of changing from the current status quo. In particular, our model was inspired by the need to improve the perfor-
mance of a production application management system, making changing performance and usage data presented in a
dashboard monitored by people. From this motivation, we provide stable extensions of PPS sampling and algorithms
for some basic optimization problems (top-k, MST, and assignment). Our solutions are efficient and also apply to a
dynamic version where we wish to efficiently maintain a tradeoff when the input is only slightly modified at each step.

REFERENCES
P. K. Agarwal, D. Eppstein, L. J. Guibas, and M. R. Henzinger. 1998. Parametric and Kinetic Minimum Spanning Trees. In FOCS.
S. Babu, P. Bizarro, and D. J. DeWitt. 2005. Proactive Re-optimization. In ACM SIGMOD.
A. Borodin, N. Linial, and M. E. Saks. 1992. An Optimal On-Line Algorithm for Metrical Task System. J. ACM 39, 4 (1992), 745–763.

17

K. R. W. Brewer, L. J. Early, and S. F. Joyce. 1972. Selecting Several Samples from a Single Population. Australian Journal of Statistics 14, 3
(1972), 231–239.

E. Cohen, N. Duffield, C. Lund, M. Thorup, and H. Kaplan. 2011. Efficient Stream Sampling for Variance-Optimal Estimation of Subset Sums.
SIAM J. Comput. 40, 5 (2011).

E. Cohen and M. Strauss. 2006. Maintaining Time-Decaying Stream Aggregates. J. Algorithms 59 (2006), 19–36.
P. M. Fenwick. 1994. A new data structure for cumulative frequency tables. Softw. Pract. Exper. 24, 3 (1994), 327–336.
G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18 (1989),

30–55.
T. F. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 2-3 (1985), 293–306.
D. Gusfield. 1983. Parametric combinatorial computing and a problem of program module distribution. J. Assoc. Comput. Mach. 30 (1983), 551–

563.
J. Hájek. 1964. Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population. The Annals of Mathematical Statistics

35, 4 (1964), 1491–1523. http://www.jstor.org/stable/2238287
J. Holm, K. de Lichtenberg, and M. Thorup. 2001. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning

tree, 2-edge, and biconnectivity. J. ACM 48, 4 (2001).
D. G. Horvitz and D. J. Thompson. 1952. A Generalization of Sampling Without Replacement From a Finite Universe. J. Amer. Statist. Assoc. 47,

260 (1952), 663–685.
R. M. Karp. 1978. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23 (1978), 309–311.
R. M. Karp and J. B. Orlin. 1981. Parametric shortest path algorithms with an application to cyclic staffing. Discrete Applied Mathematics 3 (1981),

37–45.
H. W. Kuhn and A. W. Tucker. 1951. Nonlinear Programming. In Proc. of the Second Berkeley Symposium on Mathematical Statistics and Proba-

bility. University of California Press, Berkeley, Calif., 481–492. http://projecteuclid.org/euclid.bsmsp/1200500249
N. Megiddo. 1979. Combinatorial optimization with rational objective functions. Math. of Oper. Res. 4 (1979), 414–424.
P. Sankowski. 2007. Faster dynamic matchings and vertex connectivity. In SODA. 118–126.
C-E. Särndal, B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling. Springer.
H. Shachnai, G. Tamir, and T. Tamir. 2012. A Theory and Algorithms for Combinatorial Reoptimization. In LATIN.
R. Singh and N. S. Mangat. 1996. Elements of survey sampling. Springer-Verlag, New York.
D. D. Sleator and R. E. Tarjan. 1985. Self-adjusting binary search trees. J. ACM 32, 3 (July 1985), 652–686.

18

