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Abstract

Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access
to a massive stream of data to verify a computation that requires large space, by communicating
with a powerful but untrusted prover.

This work initiates the study of zero-knowledge proofs for data streams. We define the notion
of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main
algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and
polynomial evaluation protocols. To the best of our knowledge all known streaming interactive
proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge
SIPs for central streaming problems such as index, point and range queries, median, frequency
moments, and inner product.

Our protocols are efficient in terms of time and space, as well as communication: the verifier
algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random
string of near-linear length, the remaining parameters are no(1).

En route, we develop an algorithmic toolkit for designing zero-knowledge data stream pro-
tocols, consisting of an algebraic streaming commitment protocol and a temporal commitment
protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and re-
ductions from average-case communication complexity.
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1 Introduction

The design and analysis of algorithms in the streaming model is an exceptionally active area of
research, particularly so in recent years (see, e.g., the surveys [Mut05, McG14, Cor23] and references
therein). A streaming algorithm A observes a long data stream x = (x1, . . . , xn), whose size far
exceeds A’s limited memory, one symbol at a time, and computes some pre-specified information
about x (e.g., statistics such as the number of distinct elements). To successfully do so, A maintains
a summary of the stream that is both small and easily updateable. Algorithmic techniques and
data structures that work under such constraints underpin both theoretical progress and real-world
deployment of algorithms for massive datasets.

However, it has long been known that many natural and important problems are hard in the
streaming model [AMS99]. This motivates the study of protocols for delegation of computation,
whereby a streaming algorithm offloads expensive operations to an untrusted party with large
memory, but can still verify (in low space) that the purported result is correct. Accordingly, in-
teractive proofs in the data stream model received a great deal of attention in the last decade
[CTY11, CMT12, CMT13, Tha13, CCGT14, Tha14, CCM+15, DTV15, CH18, CG19, CGT20].

Streaming interactive proofs (SIPs) are delegation-of-computation protocols where the computa-
tionally bounded party is bounded not in its time complexity, but rather in space and input access.
More precisely, an SIP is an interactive protocol between a powerful but untrusted prover P and a
space-bounded streaming verifier V which has sequential, one-pass access to a massive input as well
as the prover’s messages. We note that prover and verifier observe the same stream of bits, which
only the former can store in its entirety.

Remarkably, SIPs allow low-space streaming algorithms to efficiently verify key problems in the
data stream model that are completely intractable without the assistance of a prover. Indeed, the
aforementioned sequence of works constructed SIPs with polylogarithmic-space verifiers for a large
collection of problems, many of which require linear space for a streaming algorithm alone (such
as the index and frequency moment problems). The underlying power that enables exponential
separations between streaming algorithms and SIPs essentially boils down to two powerful protocols:
sumcheck and polynomial evaluation, which can in turn be applied to a plethora of problems.

Determining the extent to which SIPs can be augmented with extra features is the natural
next step to a refined understanding of the complexity landscape around them. Our work focuses
on zero-knowledge: ensuring that the protocol reveals no information besides what it is designed
to compute. We remark that this feature widens the array of computational tasks solvable by
mutually distrusting parties, thus supporting numerous cryptographic protocols currently in use
[BCG+14, BBHR18, BCR+19].

Despite the fundamental role of zero-knowledge in theoretical computer science (see, e.g., [Vad99,
Gol02, Vad07, Gol08] and references therein) and the extensive study of SIPs over the last decade, no
zero-knowledge SIPs were known prior to this work. Indeed, it is not obvious a priori whether they
are at all possible: for instance, while traditional zero-knowledge prevents leakage of information
to a polynomial-time adversary about some hard computation on an input x (e.g., a witness that
certifies x is in a language), in the streaming setting a space-bounded verifier must learn no additional
information about x itself – even if its runtime is unbounded.
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1.1 Zero-knowledge in the streaming model

Recall that in the traditional setting, which deals with polynomial-time algorithms, a protocol is
zero-knowledge if, for every (possibly malicious) verifier Ṽ , there exists a simulator S

Ṽ
whose output

cannot be told apart (either computationally or statistically) from a real interaction between P and
Ṽ by any distinguisher D; and if this holds up to negligibly small error, the protocol can be safely
repeated or composed.

In the streaming model, algorithms are restricted to one-pass sequential access to their input and
the primary resource is space, rather than time. Accordingly, we say that an SIP is zero-knowledge
if Ṽ , S and D are streaming algorithms; when Ṽ has s bits of memory, the simulator has roughly
s space and we allow the distinguisher D to have an arbitrary poly(s) amount of memory. (See
Section 4 for formal definitions.) Albeit similar, this notion is distinct to its poly-time analogue in
two fundamental ways.

Negligible distinguishing bias is a robust notion of security in the setting of polynomial-time
computation because it prevents polynomial-time adversaries from boosting their advantage by re-
peating (polynomially) many executions. However, in the data stream model, the one-pass restric-
tion on input access precludes this strategy altogether; indeed, streaming problems often become
trivial with a single additional pass. We therefore define secure protocols as those achieving o(1)
distinguishing bias, which ensures that the probability of information leakage tends to zero. (See
Remark 4.4 for a more detailed discussion of alternative “hybrid” models and security bounds.)

The second crucial distinction is that the notion of zero-knowledge for SIPs is unconditional, i.e.,
does not rely on computational assumptions, faithfully to the nature of the data stream model. This
differs markedly from past work on zero-knowledge protocols where the verifier is able to process
incoming messages in a streaming fashion (e.g., [GKR08, CMT12]), whose zero-knowledge property
is still with respect to the standard setting: while the honest verifier is a streaming algorithm, the
protocols are only secure against polynomial-time adversaries. In this work, adversaries are also
streaming algorithms.

This paper explores the extent to which zero knowledge streaming interactive proofs (zkSIPs) can
outperform streaming algorithms: does there exist a problem they solve more efficiently? If so, can
they do so for a natural problem such as index, or even more ambitiously, achieve an exponential
reduction in the space complexity for key problems in the data stream model?

1.2 Main results

Our main contribution is a strong positive answer to the questions above, providing the tools to
construct zero-knowledge streaming interactive proofs for essentially any problem within the reach
of current (non-zero-knowledge) SIPs.

In more detail, our main results are zero-knowledge versions of the two building blocks under-
lying all known SIPs: the sumcheck and polynomial evaluation protocols, from which we derive
zkSIPs for central streaming problems in Section 1.3. In doing so, we obtain exponentially smaller
space complexity for the fundamental index and frequency moment problems (among others) when
compared to streaming algorithms alone.

We remark that all our zkSIPs are two-stage protocols with a setup and an interactive stage. The
setup is non-interactive and consists merely of a random string (see Section 2.3), which can be reused
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in multiple interactive executions (of possibly different protocols).1 With this simple preprocessing
step, we achieve essentially optimal time and communication complexities (i.e., subpolynomial or
even polylogarithmic – as do the best non-zero-knowledge SIPs – and dramatically smaller than the
complexity of streaming the input) in the interactive stage.

Sumcheck Zero-Knowledge SIP. In the sumcheck problem, the goal is to compute the sum
of evaluations of a low-degree polynomial over a large structured set (a subcube). Protocols for
sumcheck are some of the most important building blocks for interactive proofs, and are extremely
useful for SIPs in particular.

We state the following theorem in generality, but note that standard parameter settings imply
space complexity s = polylog(n) as well as O(n1+δ) (for any constant δ > 0) and no(1) communica-
tion in the setup and interactive stages, respectively. (The time complexity is of the same order as
the communication in both stages.) This is the case in all of our applications.

Theorem 1.1 (Theorems 7.2 and 7.3, informally stated). There exists a zkSIP for sumcheck
where, for m-variate low-degree polynomials over F, the verifier uses s = O(m2 log |F|) bits of space.
The SIP communicates Õ(|F|m) bits in its setup and |F|log log |F|+O(1) bits in the interactive stage.

The round complexity (the number of messages sent or received by each party throughout the
SIP) is m+O(1), a small constant larger than that of the standard sumcheck protocol.

We stress that while sumcheck is traditionally used (in the polynomial-time setting) to verify
exponentially large sums in polynomial time, this is not the goal of the streaming variant, as sums
of evaluations over a large set can be obtained incrementally for functions computable in low space
(a class that includes polynomials).

Nevertheless, the sumcheck protocol achieves exponential savings in space complexity for prob-
lems that require large space without interaction: it enables efficient verification of sums of polyno-
mials implicitly defined input defines implicitly, which require linear space to compute otherwise.

Polynomial Evaluation Zero-Knowledge SIP. We proceed to our second main result: a zero-
knowledge SIP for the polynomial evaluation problem pep, which consists of computing a low-degree
polynomial at a single point (revealed after the description of the polynomial). It allows a streaming
algorithm to recover data that was seen but not stored, by saving a small fingerprint of the stream.
Similarly to sumcheck, general-purpose pep protocols are widely applicable to the design of SIPs.

Theorem 1.2 (Theorems 6.2 and 6.3, informally stated). There exists a zkSIP for pep where, for
m-variate low-degree polynomials over F, the verifier uses O(m log |F|) bits of space. The commu-
nication complexity is Õ(|F|m) in the setup and poly(|F|) bits in the interactive stage.

As in Theorem 1.1, standard parameter settings imply zkSIPs with polylogarithmic space, no(1)

time and communication complexity (in the interactive stage)2 as well as near-linear communication
in the setup. The round complexity is O(1).

1We also remark that omitting the setup yields an honest-verifier (but not malicious-verifier) zkSIP with no(1)

communication complexity.
2A nontrivial security guarantee still holds with polylog(n) communication, but with no(1) the protocol becomes

secure against arbitrary polylog(n)-space adversaries; see Remark 6.5.
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1.2.1 Streaming commitment protocols

En route to proving Theorems 1.1 and 1.2, we construct tools for the design of zkSIPs which we
find of independent interest. Namely, we provide two types of commitment protocols for streaming
algorithms.

We remark that in the polynomial-time setting, the existence of secure commitment schemes is
equivalent to the existence of one-way functions [IL89, Nao91, HILL99], so it may seem surprising
that our results hold unconditionally. However, in the incomparable model of streaming algorithms,
which are not time-bounded, but are instead severely constrained with respect to space and input
access, we show that no cryptographic assumption is needed.3

Streaming algebraic commitment protocol. The following result shows that not only does a
streaming commitment protocol exist, but that it can be made linear ; that is, the sender may commit
to a sequence of messages and decommit to a linear combination thereof, with linear coefficients of
the receiver’s choosing.

Theorem 1.3 (Theorem 5.8, informally stated). There exists a commitment protocol whereby an
unbounded-space sender commits a tuple α ∈ F` to a streaming receiver and decommits to a linear
combination α ·β, with linear coefficients β chosen by the receiver. The receiver’s space complexity
is O(` log |F|) and the protocol communicates Õ

(
|F|3`

)
bits.

Temporal commitment protocol. The second component is a new notion of a streaming com-
mitment, which we call temporal. This protocol allows a streaming verifier to “timestamp” its
message, providing evidence that it was chosen before streaming a particular input.

Theorem 1.4 (Theorem 5.17, informally stated). Let Γ be an alphabet and A a space-s streaming
algorithm with s = polylog |Γ|. If A streams z ∼ Γv and v is large enough, the following holds:
independently of its computation after z, with high probability A can output at most s symbol-
certificate pairs (α, i) ∈ Γ× [v] such that α = zi.

In other words, A(z) cannot remember more than s symbol-certificate pairs for the string z; and
the bound is unchanged if A obtains information uncorrelated with z after reading the stream.

1.3 Applications

Recall that Theorems 1.1 and 1.2 provide zero-knowledge versions of the general tools that essentially
underlie all known SIPs, namely, the sumcheck and polynomial evaluation protocols. We demon-
strate the power and flexibility of our tools by deriving from them explicit zkSIPs for streaming
problems of fundamental importance: index and frequency-moment, as well as point-query,
range-count, selection and inner-product.

As mentioned in the previous section, while the following statements highlight space complexi-
ties, the communication complexities are no(1) in the interactive stage and O(n1+δ) for arbitrarily
small δ in the setup stage.

In the index problem, a streaming algorithm reads a length-n string x followed by an index
j ∈ [n], and its goal is to output xj . index is a hard problem for streaming algorithms, requiring

3We refer to commitment protocols rather than schemes in the streaming model to avoid ambiguity with the
polynomial-time analogue; see Definition 5.1.
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linear space to solve [RY20]. By instantiating our zkSIP for polynomial evaluation with respect to
the low-degree extension of the input evaluated at the index j, we obtain the following.

Corollary 1.5 (Corollary 6.6, informally stated). There exists a zkSIP for index with logarithmic
verifier space complexity.

Note that this matches the space complexity of the non-zero-knowledge SIP of [CCM+15, CCM+19].
In the frequency-momentk (or Fk) problem, an algorithm streams x ∈ [`]n and its task is to

compute Fk(x) =
∑

i∈[`] ϕ
k
i , the k

th moment of the frequency vector (ϕ1, . . . , ϕ`), where ϕi is the
number of occurrences of i in x. This is a central problem in the streaming literature, which is well
known to require linear space to compute [AMS99]; by instantiating our sumcheck protocol with
respect to the low-degree extension of the frequency vector, we obtain a zero knowledge protocol for
the exact computation of Fk.

Corollary 1.6 (Corollary 7.5, informally stated). For every ` ∈ [n] and k, there exists a zkSIP that
computes Fk with polylog(n) verifier space complexity.

Lastly, we illustrate the flexibility of our protocols by constructing additional zkSIPs for several
other problems: point-query (where the input is a stream of integer updates to an `-dimensional
vector y followed by an index j and the task is to output yj); range-count (where the input
is a sequence of points in [`] followed by a range R ⊆ [`] and the task is to output the number
of occurrences in R); selection (which generalises the computation of the median); and inner-
product (where the task is to output the inner product between the frequency vectors of a pair of
streams).

Corollary 1.7 (Corollaries 6.8, 6.10, 6.12 and 7.7, informally stated). There exist polylog(n)-space
zkSIPs for point-query, range-count, selection and inner-product.

1.4 Related work

This work builds on the line of research on streaming interactive proofs, initiated by [CCM09,
CCMT14] and actively investigated over the last decade [CMT13, CTY11, CMT12, CCGT14,
Tha14, GR15, CCM+15, DTV15, ADRV16, CH18, CCM+19, Gho20, CGT20]. These sublinear
interactive proofs are also closely related to proofs of proximity [RVW13, Gur17, GR17, GR18,
GGR18, RR20, CG18, GG21, GLR21, DGRMT22].

Indeed, our two main results can be seen as zero-knowledge versions of the main techniques in
[CCM+19] and [CMT12]: respectively, a polynomial evaluation and a sumcheck protocol. (We note
that while [CFGS22] construct a zero-knowledge sumcheck protocol via an algebraic commitment
scheme, their model and techniques are completely different.)

Past work has studied zero-knowledge protocols where the verifier is able to process incoming
messages in a streaming fashion (e.g., [GKR08, CMT12]), but their zero-knowledge property is with
respect to the standard, polynomial-time, setting; that is, while the honest verifier is a streaming al-
gorithm, the security of the protocol holds against polynomial-time adversaries, whereas we consider
adversaries that are also streaming algorithms.

We note that while unconditional cryptographic primitives such as bit commitments and key
agreement are achievable in the bounded-storage model (see, e.g., [GZ19] and references therein),
the security guarantees are weaker, allowing at most a quadratic, rather than arbitrary polynomial,
gap between honest and malicious parties. Recent work on the streaming variant of the model
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[DQW22, DQW23] is more closely related to ours. However, they do not construct commitment
schemes and, more importantly, these results assume bounds on the space of both parties; therefore,
they do not immediately apply to statistically sound proof systems such as those considered in this
work.

We also note that while zero-knowledge proofs within sublinear models of computation have
been actively explored in the last decade (e.g., [BRV18, IW14]), our work is the first to do so in the
streaming model.

1.5 Open problems

This work opens several avenues for future research; in this short section, we highlight four partic-
ularly compelling directions.

Achieving zero-knowledge versions of the main building blocks in the SIP literature suggests
a natural question: can all SIPs be endowed with zero-knowledge? That is, denoting by SIP
(respectively, zkSIP) the class of languages that admit SIPs (respectively, zkSIPs) with polylog(n)
space complexity, we raise the following problem.

Open problem 1. Is SIP equal to zkSIP?

In our two-stage protocols, the communication complexity is dominated by the setup (a reusable
random string of near-linear length); the remainder of the protocol is extremely efficient, with no(1)

(or even polylog n) communication and time complexity. Making this parameter sublinear would
be a major step towards practical applicability.

Open problem 2. Can zero-knowledge SIPs achieve sublinear communication complexity?

Lastly, recall that the notion of security in this work is (unconditional and) computational,
where streaming adversaries detect a simulation with at most o(1) bias. It is natural to ask whether
stronger notions are achievable – both with respect to an adversary’s capabilities and feasible security
bounds.

Open problem 3. Are there SIPs with statistical (or even perfect) zero-knowledge?

Open problem 4. Can security bounds of 1
poly(n) or 1

nω(1) be obtained for computational zkSIPs?

Organisation

The rest of the paper is organised as follows. In Section 2 we give a high-level overview of the
challenges and the techniques we use to endow SIPs with zero-knowledge. We briefly discuss the
preliminaries for the technical sections in Section 3, and, in Section 4, formally define the notion
of streaming zero-knowledge and discuss key conceptual points. In Section 5 we construct the
two commitment protocols that comprise the main components for our polynomial evaluation and
sumcheck protocols. We construct the protocols, prove their zero-knowledge property and show
applications for them in Sections 6 and 7, respectively.
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2 Technical overview

We provide a high-level overview of the techniques we use and build upon in this paper. For
concreteness, we illustrate our methodology by focusing on the construction of zero knowledge SIPs
for one of the most fundamental problems in the data stream model: index.

We begin with a bird’s eye view of our ideas and the challenges that arise in their implementation.
The starting point of our efforts is Section 2.1, where we describe the polynomial evaluation protocol
(pep), from which a (non zero-knowledge) SIP for the index problem follows. An attempt to make
this protocol zero-knowledge faces two fundamental challenges, which we address in Sections 2.2
and 2.3 via the construction of two types of streaming commitment protocols.

In Section 2.4, we apply the foregoing protocols to obtain a streaming interactive proof for
index and provide an overview of the proof of its zero-knowledge property, which requires an
involved simulator argument. Finally, Section 2.5 sketches another application of this framework
that obtains an additional powerful and flexible tool: a zero-knowledge streaming sumcheck protocol.

2.1 A starting point: the polynomial evaluation protocol

Recall that in the index problem, a streaming algorithm with s bits of memory receives a length-n
string x over an alphabet Γ, followed by a coordinate j ∈ [n], and its goal is to output xj ∈ Γ. It
is well-known that index is maximally hard for streaming algorithms, requiring s = Ω(n) space for
the output to be correct with nontrivial probability.

First, note that obtaining an efficient SIP for index is non-trivial even without zero-knowledge.
Indeed, the naive approach of having the prover P reveal the index j before V streams x (allowing
the verifier to save xj) fails: both parties observe the same stream of information, so P only learns
j long after V has seen xj . Any communication in an SIP before the input stream must therefore
be independent of it.

Remarkably, an exponential reduction in space complexity is possible despite both prover and
verifier not knowing the index j before it appears in the stream. We recall the SIP in [CCM+19],
upon which we build, and argue why it is not zero-knowledge to begin with. Their SIP is an
application of pep, the polynomial evaluation protocol, which enables a small-space algorithm to
recover any element that was streamed but not stored, using only a small fingerprint of the stream.

We embed the input stream into an object with algebraic structure in a space of size much
larger than n, namely, by viewing xi ∈ F, for a large enough finite field F, and considering an m-
variate low-degree polynomial x̂ that interpolates across all xi; we call the polynomial x̂ : Fm → F
of individual degree d = d(m,n) the low-degree extension (LDE) of x. (Usual parameter settings
satsify d,m ≤ log n and |F| = polylog(n).)

The protocol proceeds as follows. The verifier samples a random evaluation point ρ ∼ Fm and
computes the fingerprint x̂(ρ), which can be evaluated in low space via standard online Lagrange
interpolation. After V learns j, it enlists P in the recovery of xj : it sends P a line L : F → Fm
incident to j (viewing this index as an element of Fm) and ρ, where L(0) = j and L(ρ) = ρ for a
random ρ ∼ F, whereupon P replies with the (low-degree) univariate polynomial x̂|L = x̂ ◦ L.

If P is honest, then V can easily recover xj = x̂(j) = x̂|L(0). However, P could easily cheat if V
made no further checks: the prover could just as well pick α ∈ F arbitrarily and send any low-degree
polynomial g such that g(0) = α to (falsely) convince V that xj = α. By having V only accept
the prover’s claim that xj = g(0) if g also agrees with the fingerprint, i.e., if g(ρ) = x̂|L(ρ) = x̂(ρ),
the verifier thwarts this (and any other) attack: since both ρ and ρ are unknown to the prover,
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to convince the verifier of an incorrect answer g(0) 6= x̂|L(0), the prover must send a polynomial
g 6= x̂|L that agrees with x̂|L at a random point; and if F is sufficiently large, the probability of this
event (ρ being a root of the nonzero polynomial g − x̂|L) is arbitrarily small.

(a) V streams x (in blue), learns x̂(ρ) = x̂|L(ρ) and
sends L. The prover replies with x̂|L, revealing xj
and x̂(ρ) (in green) along with evaluations of x̂ that
V cannot learn on its own (in red).

(b) A first attempt at preventing leakage: sending
the evaluation table of x̂|L in “locked boxes” and only
unlocking the points checked by the verifier.

Figure 1: Leakage in the SIP for index via evaluation of the bivariate polynomial x̂ : F2 → F, and
an (unsuccessful) attempt to prevent it.

The protocol outlined above is, however, not zero-knowledge: after all, V learns not only xj ,
but the restriction of x̂ to an entire line L through j (see Fig. 1a). Note that learning the restriction
of x̂ to (say) a random line R does not necessarily constitute leakage: V could simply compute a
few evaluations (rather than only one) of x̂|R, which fully determine the polynomial. The issue is
that L is a function of the coordinate j, which V does not know prior to streaming x.

In the next section we will take our first steps towards making the protocol zero-knowledge, i.e.,
ensuring that the verifier learns nothing beyond the value xj . Note that the honest V only evaluates
x̂|L at two points, ρ and 0; what if P could send the evaluations of x̂|L in “locked boxes” and only
open the pair that the verifier needs?

2.2 Curtailing leakage with commitments

To make the foregoing approach more precise, let us first assume the existence of a commitment
protocol that allows P to transmit any field element α to V in two steps: sending a string commit(α),
from which V is unable to extract any information about α; and later, upon the verifier’s request,
revealing a field element β such that, if β 6= α, then V can detect that the P is being dishonest.

With such a commitment protocol in hand, a natural attempt to prevent the pep protocol from
leaking information is to have the prover P send a commitment to x̂|L, the restriction of the input’s
LDE to the line chosen by V (rather than sending the polynomial in the clear). That is, the prover
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would commit to the evaluation table of x̂|L, sending
(
commit(x̂|L(ρ′)) : ρ′ ∈ F

)
, after which V

can reveal its random evaluation point ρ and P decommits only to the evaluations of 0 and ρ (see
Fig. 1b). This does indeed reveal less information (2 rather than |F| evaluations of x̂), but is still
far from what we set out for.

There are two severe shortcomings with this idea; we shall tackle one now and defer the other to
Section 2.3. First we need to ask: what is to prevent a cheating prover from committing to a function
g that is inconsistent with x̂|L? Indeed, since V is (by design) unable to learn the field elements that
were committed to, it cannot detect whether the function is a low-degree polynomial; then a cheating
prover may commit to any α 6= xj = x̂|L(0) as the claimed evaluation at 0, while committing to the
correct evaluations elsewhere. The resulting function is not a low-degree polynomial anymore, but
V is oblivious to this fact.

Therefore, we require a scheme that allows not only to commit to a function, but to also ensure
it is a low-degree polynomial. We solve this problem by constructing an algebraic commitment
protocol, whereby P commits to a set of field elements and can decommit to any linear combination
of them. Then P may commit to d+ 1 points – which uniquely determine a degree-d polynomial g
– and V requests a decommitment to the linear combination that coincides with g(ρ) (see Fig. 2).
We next present the basic commitment protocol, and then extend it to be algebraic.

(a) Commitments to an interpolating set of x̂|L. (b) Decommiting to a point outside the interpolating
set.

Figure 2: Preventing leakage by committing to x̂|L as an interpolating set for the polynomial. To
decommit to an evaluation outside the set, the scheme must be algebraic.

The basic protocol. Recall that our goal is to construct a commitment protocol between asym-
metric parties, allowing a computationally unbounded P to send and later reveal a message α ∈ F
to a low-space verifier V . We focus on the first step, where P sends a hidden message, and deal
with how to reveal it later. A natural attempt is to play the prover’s strength against the verifier’s
weakness: we know, from the hardness of index, that the space limitation of V prevents it from
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recalling an item from a long stream whose position is only revealed later; we can thus have P send
a long stream y with the message hidden at a coordinate k that is revealed at the end.

While the idea seems intuitively sound, there are nontrivial issues to address. For example, the
string-coordinate pair (y, k) should not have any structure from which V could extract information,
which we can ensure by sampling both uniformly at random; but to prove security for this strategy,
index must be hard to solve on average. Luckily, reductions from one-way communication com-
plexity enable us to prove this fact: one-way protocols where Alice receives x ∼ {0, 1}n and sends
an s-bit message to Bob, who receives j ∼ [n] and attempts to output xj , succeed with probability
at most 1

2 +O(
√
s/n) [RY20]. We show that the bound extends to larger alphabets, carrying over

to space-s streaming algorithms (see Proposition 5.5 and Lemma 5.9).
In short, we have P encode its message α ∈ F as the solution to a random index instance, ex-

ploiting the problem’s average-case hardness to ensure that V is unable to extract α; more precisely,
P sends a uniformly random string-coordinate pair (y, k) and then the “correction” γ = α− yk.4 Of
course, the discussion thus far only shows how P can commit; but we also need a decommitment
protocol whereby V can check that P is being honest when it reveals β (which may or may not
coincide with the message α). Fortunately, we already have a tool V can use to solve index with
an untrusted prover’s assistance! The decommitment thus consists of an execution of pep by P and
V with respect to the instance (y, k): this allows V to learn yk and check that γ+ yk = β, i.e., that
the correction γ sent earlier matches the (alleged) message.

Recall that we are building technical tools towards a zkSIP for index, so we ultimately exploit
the hardness of a problem to solve an instance of the same problem. Should we not expect, then, that
the same leakage issues should arise with respect to the “virtual” instance (y, k) as they did with
the “real” instance (x, j)? While this may appear to be circular reasoning, we stress that revealing
evaluations of ŷ leaks no information whatsoever about the input; indeed, (y, k) is a uniform random
variable that is independent of (x, j). Put differently, V only obtains information about uniformly
random strings that are completely uncorrelated with the input. See Section 5.2 for details.

Making the scheme algebraic. We now extend the foregoing idea into an algebraic protocol,
which allows P to commit to a tuple of field elements α = (α1, . . . ,α`) and decommit to a linear
combination α · β. (Committing to a polynomial and decommitting to an evaluation follows as a
special case; see Section 5.1.) Note that such an extension seems to follow if linear combinations
“commute” with commitments; that is, by showing that linear combinations of a fingerprint (as
defined in Section 2.1) match a fingerprint of the linear combinations, we should be able to use
essentially the same strategy of the basic scheme: committing with a random index instance and
decommitting with pep. Details follow.

Consider a trivial extension of the scheme that allows P to transmit a pair of messages α, α′ ∈ F:
sending two independent commitments (y, k, α−yk) and (y′, k′, α′−y′k′). The key observation is that,
if V saves two fingerprints at the same evaluation point ρ, then linear combinations and low-degree
extensions do commute: for any β, β′ ∈ F, defining z := βy+ β′y′, we have ẑ(ρ) = βŷ(ρ) + β′ŷ′(ρ);
in short, evaluating a low-degree extension is a linear operation.

A problem still remains, however: since k 6= k′ with overwhelming probability, an execution of
the pep protocol enables V to learn zk = βyk + β′y′k; but the correction for y′ refers to another
coordinate k′ 6= k (with overwhelming probability). We address this issue by hiding both messages

4We remark that while replacing yik with α (rather than sending a random element and a correction later) looks
simpler, then (y, k) ceases to be a random index instance, and it is not clear how to show a reduction from index.
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at the same index, i.e., setting k′ = k and only revealing the coordinate after both y and y′ are sent;
see Section 5.3 for details.

2.3 From honest to malicious verifiers: temporal commitments

Recall that a source of leakage in the index protocol of Section 2.1 is the prover P sending the
restriction of x̂ (the LDE of the input) to a line L in the clear. In the previous section, we constructed
a prover-to-verifier scheme that enables P to commit to a low-degree polynomial and decommit to
a single evaluation of it. We may then use it to modify the original protocol, having P instead
commit to x̂|L and decommit to the points inspected by V .

While this modification amounts to significant progress – indeed, it achieves an honest-verifier
SIP for index– there is a second major challenge to address. The issue is that if a verifier Ṽ cheats,
it can use the protocol to extract information that it could not have learned on its own, as we will
see next. The goal of this section is to describe a strategy that prevents leakage of information
without requiring that Ṽ behave honestly; in other words, we would like to make the protocol
malicious-verifier zero-knowledge.

Concretely, consider the (cheating) verifier Ṽ that ignores the input string x, reads j and requests
the line through j and j+ 1 from the prover. P then commits to the restriction of x̂ to this line and
decommits to the evaluation of the LDE at both j and j + 1. This reveals xj and xj+1 to Ṽ , which
shows clearly that the modified protocol still leaks: xj is the only information the verifier should
learn that it could not have computed on its own, but the protocol also reveals xj+1 (which is just
as hard to compute as the jth coordinate).

An idealised scenario: V -to-P commitments. Let us assume, for the moment, that there
also exists a commitment protocol in the reverse direction, allowing V to commit and later reveal
a message to P . We will show how, in this idealised setting, we can prevent information leakage
altogether. Note that the difficulty posed by a malicious verifier Ṽ is the usage of an allegedly
random evaluation point ρ that is, in reality, a function of the input.

If Ṽ proves that ρ is indeed random, however, we may conclude that Ṽ could have computed
x̂(ρ) alone – and thus that no leakage occurs. The idealised scheme allows Ṽ to do (almost) that, by
having it commit to ρ before reading the input stream and decommit to it at a later step (after the
prover’s commitment). While this does not ensure ρ is random, the fact that Ṽ cannot decommit
to anything other than ρ constrains its evaluation point to be chosen before the input stream, so
that it cannot be a function of the input.

Of course, it is not at all clear that such a commitment protocol, allowing a weak computational
party to commit to a computationally unbounded one, even exists; after all, the commitment step
generally exploits their very difference to hide the message, as we did in the previous section. Is
this just wishful thinking?

The solution: a temporal commitment. We will now see that, perhaps surprisingly, we can
once again exploit the space limitation of Ṽ to accomplish this goal. What we obtain in fact falls
short of a full-fledged commitment protocol: roughly speaking, the temporal commitment will enable
a space-s verifier Ṽ to reveal not one, but s messages. But this collection is still determined before
the input, so that it remains fit for purpose (incurring a small overhead in the simulator algorithm
that we discuss in the following section).
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As discussed above, we cannot expect Ṽ to be able to send a hidden message to P : however Ṽ
may try to hide it, P can simply store the entirety of the communication and extract the message
itself. Since sending is out of the picture, could Ṽ instead commit by receiving a message? Note that,
while somewhat counter-intuitive, this would allow Ṽ to play what is essentially its only strength,
its private randomness, against P . Recall, moreover, that there is a temporal aspect to the positions
of a long stream z that Ṽ can remember: if it remembers zi, this can be seen as evidence that i was
determined no later than when z was seen.

Let us now make the idea more precise, and construct our verifier-to-prover temporal com-
mitment protocol. The main idea is to impose some cost onto the ability of Ṽ to “unlock” the
decommitment from P , without overly constraining the honest verifier V . Note that after P sends
the commitment to a low-degree polynomial, having V reveal the point ρ = L(ρ) at which it com-
puted x̂ is not a problem (as opposed to revealing ρ before P sends the polynomial, which allows the
prover to cheat easily). Therefore, we will have Ṽ reveal its alleged evaluation point ρ along with a
certificate c(ρ) that shows Ṽ selected the point before seeing the input stream. P will only proceed
with the protocol if the certificate is valid; if not, it aborts to prevent Ṽ from learning information
beyond its reach.

Given that the verifier’s scarce resource is space, we design this certificate to require a number
of bits that is not too large and yet not negligible; then the honest V should have no trouble, as it
only needs to remember one piece of information, whereas the malicious Ṽ described before would
need to store a certificate for the evaluation point j + 1, which it does not know before reading x.

We thus prepend our index protocol with a step where P sends Ṽ a long string z containing
all possible evaluation points (i.e., the entire domain) of the low-degree extension x̂.5 Now, if Ṽ
wants the prover, in the future, to decommit to a polynomial evaluation at the point ρ, it must
offer evidence that ρ is uncorrelated with the input stream: Ṽ does so by revealing ρ along with
the coordinate i that contains ρ in z; i.e., the certificate for ρ is c(ρ) = i, the coordinate satisfying
zi = ρ.

The temporal commitment indeed achieves what we set out for: regardless of what Ṽ does, as
long as its space is bounded we are able to extract the points it may ask P for in advance of its
streaming of x (see Section 5.4). Note that the commitment is non-interactive (consisting of a single
message from P to V ) and need not be rerun if the verifier streams multiple inputs; we shall use
it as the setup stage of our protocol. Its analysis is subtle and involved: it begins with a study of
a variant of index in the one-way communication model that we call reconstruct, where, upon
receipt of a message from Alice, Bob outputs a guess for every coordinate of the input string rather
than for only one. Using tools from information theory, we obtain an upper bound on the expected
number of correct coordinates, which we call the protocol’s score.

Next, we use the expected score bound of reconstruct to prove a related upper bound for a
problem we call pair: a variant of index where Bob, rather than receiving the coordinate to be
recovered as part of the input, is free to choose it. The implication is that any protocol for pair
has a small number C of indices such that the output of the protocol is outside C and yet correct
(i.e., a pair (i, zi) with i /∈ C) with arbitrarily small probability. This will underpin the simulator
argument that ultimately shows our protocol is zero-knowledge, which we sketch in the next section.

5In fact, any given point has a small probability of being absent from the string. We ignore this issue in the
technical overview.
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2.4 A sketch of the zero-knowledge index protocol

We now have all of the components necessary to sketch a zero-knowledge streaming interactive
proof for index. Recall that we constructed a prover-to-verifier algebraic commitment protocol in
Section 2.2 and a verifier-to-prover temporal commitment in Section 2.3. We will now compose
them in the appropriate order, using the temporal commitment to constrain V to choose its inner
randomness before reading the input stream; and the algebraic commitment to ensure P only reveals
what the verifier needs. The protocol follows.

Parameters. Without loss of generality, we consider the alphabet over which the input string is
defined to be a field of size |F| = q; that is, x ∈ Fn. We also fix two additional parameters, d and m,
which characterise the low-degree extension x̂ : Fm → F as an m-variate polynomial of individual
degree d. We assume all parameters are known to P and V in advance.

Setup: verifier-to-prover temporal commitment. P sends V a permutation of Fm as a string
z (of length v = qm). Before receiving the string, V samples ρ ∼ Fm and then streams z. When it
sees ρ at the `th coordinate of z, the verifier stores `.

Step 1: input streaming. V streams the input string x and records the fingerprint x̂(ρ) as well
as the target index j.

Step 2: prover-to-verifier algebraic commitment. V samples ρ ∼ F and sends P the line
L : F→ Fm through j and ρ (satisfying L(0) = j and L(ρ) = ρ).

P sends xj = x̂|L(0) (in the clear) and an algebraic commitment (y,γ, k) to the remainder of
an interpolating set of the degree-dm polynomial x̂|L : F → F, i.e., to the field elements x̂|L(i) for
all i ∈ [dm]. The commitment consists of a random matrix y ∼ Fdm×p with dm rows and a large
enough number p of columns; a random (column) coordinate k ∼ [p]; and the correction tuple γ
satisfying γi = x̂|L(i)− yik.

V samples (another) evaluation point σ and computes the fingerprint y(σ,β) =
∑

i βiŷi(σ),
where the tuple β satisfies

∑
i βix̂|L(i) = x̂(ρ);6 it also computes γ =

∑
i βiγi and stores k.

Step 3: temporal decommitment. V reveals its fingerprint’s evaluation point ρ along with
the index ` where it appeared in z. The prover checks that z` = ρ, and only continues to the final
step if the check passes.

Step 4: algebraic decommitment. P and V engage in the decommitment of the kth coordinate
of the string y′ = β · y (the linear combination of the rows yi with coefficients βi).7 V outputs the
(alleged) xj if the decommitment is consistent with x̂(ρ), and rejects otherwise.

6Note that βi is determined solely by i and ρ: it is the evaluation χi(ρ) of the ith Lagrange polynomial.
7This requires P to know the linear coefficients β, and, while we could have the verifier send them, this is not

necessary: P learns ρ in step 3, which allows it to determine ρ = L−1(ρ) and thus β = β(ρ) as well.
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In an honest execution of the above protocol, the final decommitment reveals

y′k =
∑
i

βiyik

=
∑
i

βi
(
x̂|L(i)− γi

)
= x̂(ρ)− γ,

so that V , having stored x̂(ρ) and γ, can indeed perform this consistency check (which shows the
protocol is complete). The protocol’s soundness follows from that of pep, noting that none of
the mechanisms we add harm soundness (indeed, the last check relies, as does pep, on a random
evaluation of the low-degree extension), while zero-knowledge, which we discuss next, follows from
the correctness of our commitment protocols.

Proving the zero knowledge property. We conclude with a discussion of the simulator argu-
ment for the protocol laid out in this section. Recall that proving zero-knowledge for the foregoing
protocol entails the construction of a simulator S, a streaming algorithm with knowledge of xj
and roughly the same memory as Ṽ , which is able to interact with Ṽ without it being able to tell
whether it is communicating with S or P .

Roughly speaking, S does the following: after the temporal commitment step, it inspects the
memory state of Ṽ and records (almost) all the points to which Ṽ can decommit; as shown in the
last section, this is a relatively small set C. It then streams the input and records x̂(ρ) for all
ρ ∈ C.8 Upon receipt of a line L from Ṽ , the simulator computes and commits to an arbitrary low-
degree polynomial g that interpolates across the points in L ∩ C. When Ṽ requests the algebraic
decommitment to obtain an evaluation of g, the simulator checks that the evaluation point ρ is
contained in C (in which case g(ρ) matches a fingerprint x̂(ρ) known to S), proceeds with the
decommitment if that is the case, and otherwise aborts.

We note that implementing the strategy above raises yet another challenge, namely, extracting
the set C of evaluation points from the description and memory state of Ṽ . This is accomplished
via a form of white-box access to Ṽ , see Section 4.

The simulator S is thus able to generate the transcript of an interaction where the message x̂|L
of the algebraic commitment is replaced with another low-degree polynomial g whose evaluations
match x̂|L at all points where Ṽ is able to temporally decommit. Then, distinguishing between a
real and a simulated transcript amounts to distinguishing an index instance whose solution is x̂|L
from one whose solution is g.

We prove that any streaming algorithm that does so with nontrivial bias implies a one-way
communication protocol for index with a small message, contradicting the known hardness of the
problem. We remark that the reduction is rather nontrivial, as we must insert an index instance
into the algebraic commitment (y,γ, k) while ensuring the decommitment can be simulated without
any knowledge about the instance. See Theorem 6.3 for details.

Remark 2.1 (Superpolynomial to near-linear communication). We stress that, while we may prove
zero-knowledge with the strategy above, the natural reduction from index is over a large alphabet

8We note that storing C is the most space-intensive task of S, which implies a small overhead to its space
complexity as compared to Ṽ ; see Theorem 6.3.
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Γ = Fdm. But then, for indistinguishability to follow, the length p of the temporal commitment
must be qdm, which implies superpolynomial communication complexity.

We avoid this blowup via Lemma 5.9, which shows that an index (one-way) protocol for large
alphabets implies another protocol for the binary alphabet with only a mild loss to its success
probability; this restricts our ambient field to be an extension of F2, but reduces the superpolynomial
complexity to barely superlinear.

2.5 A general-purpose zero-knowledge SIP: sumcheck

Lastly, we briefly mention how the commitment protocols developed in Sections 2.2 and 2.3 can be
used not only to solve index (and, more generally, the polynomial evaluation problem), but also to
construct another widely applicable tool: a streaming zero-knowledge sumcheck protocol.

As before, we start with an SIP that is clearly not zero-knowledge: the standard sumcheck
protocol leaks hard-to-compute sums over subcubes. By carefully using the algebraic and temporal
commitment protocols, we can also endow the sumcheck protocol with zero-knowledge in the data
stream model. However, we note that doing so is considerably more involved than in the case of
index, owing to, among other reasons, several rounds of interaction with nontrivial dependencies
of messages on past communication.

More precisely, we consider a slight variation of the standard sumcheck protocol: while in the
latter every round is followed by a (random) consistency check, we instead defer all such checks to
the end. It is clear that this variant is equivalent to the standard protocol; however, without the
modification, the zero-knowledge property seems to require a strengthening of the chained commit-
decommit strategy we follow. Moreover, rather than a single algebraic commitment followed by a
(single) decommitment, the sumcheck protocol requires many decommitments; indeed, for an m-
variate polynomial f , the prover commits to m partial sums of f , and each partial sum is involved
in two decommitments (for a total of m+ 1 decommitments).

Therefore, by extending the techniques that underpin our approach for the index problem to a
multi-round setting, we are able to construct a zero-knowledge sumcheck SIP. Such a protocol can
then be used to compute frequency moments and inner products, problems known to require linear
space without a prover’s assistance [AMS99]. See Section 7 for details.

3 Preliminaries

General notation. For an integer k ≥ 1, we denote by [k] the set {1, 2, . . . , k}. Vectors are
denoted with notation analogous to that of sets, i.e., (αi : i ∈ [k]) denotes the vector (α1, . . . , αk).
We use n to denote the length of a string that is the input to an algorithm, and poly(n) (respectively,
polylog(n)) to denote an arbitrary polynomial (respectively, polylogarithmic) function in n.

We use lowercase Latin letters to denote positive integers (e.g., d, i, j, k, `,m, p, v) or strings
(e.g., x, y, z); r and t often (but not always) denote random strings. Lowercase Greek letters
denote elements of a finite alphabet or field (e.g., α, β, γ), and we reserve ρ, σ for random elements.
Uppercase letters denote either algorithms (e.g., A,B, P, S, V ) or sets (e.g., C,K), with T used as
the indeterminate of a polynomial.

When f and g are functions, we sometimes use α ∈ f as a shorthand for α ∈ Im f and f|g for
f ◦ g; if f is a low-degree polynomial that is communicated in an interactive protocol, we assume
it is sent in a canonical form (e.g., a line is communicated by a pair of points f(0), f(1)). We use
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1[· = x0] to denote the delta function at x0 (i.e., 1[x0 = x0] = 1 and 1[x = x0] = 0 for x 6= x0) and
log to denote log2.

As integrality issues do not substantially change any of our results, equality between an integer
and an expression (that may not necessarily evaluate to one) is assumed to be rounded to the nearest
integer.

Vectors and matrices. The notation we use for matrices is the same as for strings (lowercase
Latin letters), and it will be clear from context which is the case. When x is a matrix, we use xi to
refer to the ith row of x.

We use vectors or tuples, interchangeably, to refer to elements of a vector space over a finite
field F. Such tuples are denoted with boldface (e.g., α,β,γ) and random tuples are (similarly to
strings) denoted ρ,σ. We use α · β to denote the inner product between the two vectors, and,
when the dimension of α matches the number of rows of a matrix x, we use α · x to denote the
vector corresponding to the linear combination of the rows of x with coefficients α, i.e.,

∑
iαixi.

(Equivalently, we assume vectors to be in row form.)

Probability. We use X ∼ µ to denote a random variable with distribution µ, and, for the uniform
distribution over a set S, we write X ∼ S. We sometimes make the sources of randomness in
a probabilistic expression explicit, and when we do they are assumed to be independent; e.g.,
only when X and Y are independent do we write PX∼µ,Y∼λ[E]. The internal randomness of an
algorithm is generally omitted; e.g., P[A(X) = 0] (if the distribution of X is known from context)
or PX∼µ[A(X) = 0] are shorthand for PX∼µ

r∼{0,1}m
[A(X; r) = 0], where r is A’s internal randomness.

We will also make use of the following versions of the Chernoff and Hoeffding bounds.

Lemma 3.1 (Additive Chernoff-Hoeffding bound). Let X1, . . . , Xk be independent Bernoulli ran-
dom variables distributed as X. Then, for every δ ∈ [0, 1],

Pr

[
1

k

k∑
i=1

Xi ≤ E[X]− δ

]
≤ e−2δ2k and

Pr

[
1

k

k∑
i=1

Xi ≥ E[X] + δ

]
≤ e−2δ2k.

Lemma 3.2 (Hoeffding’s inequality). Let X1, . . . , Xk be independent random variables distributed
as X ∈ [a, b]. Then, for every δ ∈ [0, 1],

Pr

[
1

k

k∑
i=1

Xi ≤ (1− δ)E[X]

]
≤ e−

(
δE[X]
b−a

)2
k and

Pr

[
1

k

k∑
i=1

Xi ≥ (1 + δ)E[X]

]
≤ e−

(
δE[X]
b−a

)2
k
.

Algorithms and protocols. We use the same term to refer to computational problems and to
protocols that solve them, but distinguish the two cases with different fonts (so that the pep and
sumcheck protocols solve the pep and sumcheck problems, respectively).
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We generally use A, D, S and V to denote streaming algorithms, while P denotes an algorithm
with unbounded computational resources (including space). A(x) is the output of an algorithm
that receives x as input; when A is a streaming algorithm, x is read sequentially in one pass, from
the first symbol (x1) to the last. When A(x, y, z) reads multiple inputs, A(y) denotes the partial
execution of A after it has read x. When the entries of a length-n string x are taken over a finite
alphabet Γ, we may also use x for the equivalent bit string of length n log |Γ|.

We shall often make use of the minimax principle, and assume, without loss of generality, that
a computationally unbounded algorithm A whose goal is to maximise some value Ex∼µ[f(A(x))]
(e.g., the probability that A(x) equals x) can be assumed to be deterministic, and thus given by
a function x 7→ a(x); equivalently, A can be taken as the deterministic algorithm that maximises
E[f ◦ a(x)] for the distribution of inputs µ.

In a protocol, two algorithms P and V interact by exchanging messages in a predefined order;
after all messages have been exchanged, V chooses an output that we denote 〈P, V 〉 and call the
output of the protocol. When V rejects or P aborts midway through the interaction, we assume
the algorithm proceeds until the end of the protocol with dummy messages (e.g., strings of zeroes).

The snapshot of an algorithm is synonymous to its memory state; when A reads a sequence of
more than one input, e.g., A(x, y), the “snapshot of A after x” is the snapshot immediately before
the first symbol of y is streamed (i.e., after A has read and processed the last symbol of x). When
A is interacting in a protocol and sends a message between reading x and y, the snapshot after x is
that immediately before sending the message.

Low-degree extensions. For any field F and integer k such that |F| ≥ k, we consider [k] ⊆ F via a
canonical injection (e.g., taking the image of ` ∈ [k] as the field element whose binary representation
is the same as that of `). Accordingly, we write ` ∈ F as shorthand for the field element corresponding
to the image of ` ∈ [k] via this canonical injection.

For a string y ∈ Fk, the low-degree extension (LDE) with degree d and dimension m where
|F| ≥ d + 1 and k ≤ (d + 1)m, denoted ŷ, is the unique m-variate polynomial of individual degree
d that coincides with y in [k]; more precisely, viewing [k] ⊆ [d+ 1]m ⊆ Fm, the LDE ŷ : Fm → F is
the unique polynomial satisfying ŷ(i) = yi for all i ∈ [k]. Our notation for the polynomial ŷ omits
the degree and dimension, as they will be clear from context.

When y is a matrix, we use ŷ(α,β) to denote the linear combination of the LDEs of the rows
with linear coefficients β, i.e., ŷ(α,β) =

∑
i βiŷi(α).

3.1 Information theory

We will make use of several notions of information theory and approximations of information-
theoretic quantities. The q-ary entropy function Hq : [0, 1]→ [0, 1] is

Hq(t) = t logq(q − 1)− t logq t− (1− t) logq(1− t) (1)

=
1

log q

(
t log(q − 1)− t log t− (1− t) log(1− t)

)
=

1

log q

(
t log(q − 1) +H2(t)

)
,

where Hq(0) = 0; we also use the shorthand H for H2, which simplifies to

H(t) = H(1− t) = −t log t− (1− t) log(1− t). (2)
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We will make use of the following approximation for the (natural) logarithm function: for
0 ≤ t ≤ 1/2,

− t(1 + t) ≤ ln(1− t) ≤ −t. (3)

The (relative) Hamming distance between two strings a, b ∈ Γk over a finite alphabet is the
fraction of coordinates where they differ, i.e., d(a, b) = 1

k |{i ∈ [k] : ai 6= bi}| ∈ [0, 1]. With γ = |Γ|,
the volume of a Hamming ball B(b, δ) :=

{
a ∈ Γk : d(a, b) ≤ δ

}
of radius δ = 1− ε, when k is large

enough and ε = k−1 polylog(k), satisfies

γHγ(δ)k ≥ |B(b, δ)| = Ω

(
γHγ(δ)k

√
εk

)
=

γHγ(δ)k

polylog(k)
.9 (4)

The entropy of a discrete random variable X taking values in Γ is

H(X) = −
∑
α∈Γ

P[X = α] log
(
P[X = α]

)
.

Every such random variable satisfies

H(X) ∈ [0, log |Γ|]. (5)

The conditional entropy H(X|Y ) is the entropy of the conditional random variable, which sat-
isfies

H(X|Y ) ≤ H(X). (6)

If X,Y are independent, then
H(X,Y ) = H(X) +H(Y ). (7)

The last property of entropy we will make use is the chain rule: for random variables X1, . . . , Xn,

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1). (8)

For ease of notation, when (X,Y ) are jointly distributed over Γ2 with marginals µ and λ,
respectively, we denote the distribution of Y conditioned on X = x as λx. The KL divergence
between the distributions is

KL(µ || λ) =
∑
α∈Γ

µ(x) log
µ(α)

λ(α)
, (9)

which upper bounds the Euclidean distance between probability vectors via Pinsker’s inequality
(see, e.g., [BLM13]):

‖µ− λ‖2 ≤
KL
(
µ || λ

)
2 ln 2

. (10)

9The lower bound is a simplification of

|B(b, δ)| ≥ γHγ(δ)k ·
exp

(
1

12k+1
− 1

12δk
− 1

12εk

)
√

2πδ(1− δ)k
;

since 1
εk

= o(1), the numerator is 1−o(1), and the denominator is of order Θ(
√
εk) = polylog(k). (See, e.g., [GRS12].)
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Finally, the mutual information is defined as (and equivalent to)

I(µ : λ) := I(X : Y ) (11)
= I(Y : X)

= H(Y )−H(Y |X)

= EX∼µ[KL(λX || λ)].

4 Zero-knowledge streaming interactive proofs

This section motivates and provides a definition of zero-knowledge proofs in the data stream model.
We start by discussing the differences between the streaming and the traditional settings as well as
establish necessary notation. We then we provide a formal definition in Section 4.1.

The notion of zero-knowledge proofs in a computational model should capture the intuition
that, when engaged in an interactive protocol, a verifier algorithm V should learn nothing but the
truth of some hard-to-compute statement about its input x (e.g., that x is in a language L). For
consistency with the general notion we define zero-knowledge for decision problems in the streaming
model, but remark that the definition extends to search problems in the standard way (i.e., the
verifier V learns nothing but a valid solution to the search problem).

In the traditional setting, V can easily store the entirety of x and make polynomial-time com-
putations without the assistance of a prover. This implies that the sensitive information a zero-
knowledge proof in this setting must not leak is the result of a computation on x beyond the verifier’s
reach, i.e., one that requires superpolynomial time to obtain from the information available to V . In
the streaming setting, however, the notion of “hard-to-compute” changes dramatically: the model
puts space as the primary resource, so that computations within the reach of V are those possible
with a small amount of space and sequential one-pass access to the input (but arbitrarily large time
complexity). Knowledge then essentially corresponds to all information that V cannot compute in
low space complexity using its streaming access. As a result, zero-knowledge streaming interactive
proofs (zkSIPs) must satisfy a much more stringent requirement: that they not leak any information
about the input x itself (which in the traditional setting is fully known to the verifier).

In order to capture such a stringent notion of sensitive information, we define zkSIPs as protocols
such that no streaming algorithm can distinguish a real transcript of the protocol from one that
is generated by a (streaming) simulator. To this end, we first recall the formalisation of streaming
interactive proofs (SIPs) [CTY11] without any zero-knowledge requirement.

Definition 4.1. A streaming interactive proof (SIP) for a language L is an interactive proof defined
by a pair (P, V ) of algorithms: a computationally unbounded prover P and streaming verifier V
with space s = o(n). The verifier engages in an iteractive protocol with P and streams, at a
predetermined step, the bit string x ∈ {0, 1}n, which P also observes.10 At the end of the protocol,
V outputs a binary decision 〈P, V 〉(x) satisfying

• (completeness) if x ∈ L, then P[〈P, V 〉(x) = 1] ≥ 2/3; and

• (soundness) if x /∈ L, then then P[〈P, V 〉(x) = 1] ≤ 1/3.
10The definition could allow for alternating between streaming parts of x and communicating with the prover, as

well as adaptively choosing the round(s) on which to read the input. Our protocols do not require this flexibility,
however, so we assume the entirety of x is read at a fixed step along the communication protocol.
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We call s the space complexity (of the verifier). Note that, while the constant 1/3 is arbitrary,
soundness amplification does not hold for streaming algorithms due to the need to reread the input;
nevertheless, many SIPs (including all those considered in this paper) allow for improving soundness
by a desired factor with a logarithmic increase to their space complexity (see Section 5.1). We stress
that Definition 4.1 constrains the verifier only in terms of space, which allows arbitrarily large time
complexities for both prover and verifier. (This is similar to other settings such as communication
complexity and property testing, where the primary resources are communication and queries,
respectively.)

Loosely speaking, we capture the notion of zero-knowledge in the data stream model by saying
that an SIP is zero-knowledge if there exists a streaming simulator algorithm S, with roughly the
same space as the verifier V , able to simulate a prover-verifier interaction that is indistinguishable
from a real one; that is, S generates a view of the verifier (defined next) that no distinguisher
algorithm with power comparable to V (i.e., a streaming algorithm with roughly the same space)
can tell apart from a real interaction. We stress that while the distinguisher D is reminiscent of
computational zero-knowledge, the security of our protocols is information-theoretic and does not
rely on computational assumptions.

Definition 4.2. Let (P, V ) be an SIP with a space-s verifier, where P sends k1 messages to V
before the verifier streams its input, and an additional k2 messages afterwards. Denote the prover’s
messages by y1 ∈ {0, 1}p1 , . . . , yk1+k2 ∈ {0, 1}pk1+k2 ; the input by x; and the verifier’s and prover’s
internal randomness by r and t, respectively.

The view of the verifier Ṽ , denoted View
P,Ṽ

(x, r), is the random variable defined as

View
P,Ṽ

(x, r; t) = (r, y1, . . . , yk1 , x, yk1+1, . . . , yk1+k2).11

While Definition 4.2 is similar to its polynomial-time analogue, we highlight an important dis-
tinction: to faithfully correspond to what Ṽ sees, the order in which the view is streamed must be
preserved. Indeed, a step-by-step execution of Ṽ in an interaction with P corresponds exactly to its
streaming View

P,Ṽ
(x, r) one symbol at a time. Order preservation is also consistent with the input

stream x being observed by all parties simultaneously (which are, in a simulation, Ṽ , the simulator
S and a distinguisher D).

4.1 Definition

We now ready to give a formal definition of zero-knowledge streaming interactive proofs.

Definition 4.3 (zkSIP). Let L be a language and (P, V, S) be a triplet where (P, V ) is an SIP
with a space-s verifier V and S is a streaming poly(s)-space simulator with white-box access to the
verifier, streaming access to the input x and additional query access to a random bit string t.

(P, V, S) forms a zero-knowledge streaming interactive proof (zkSIP) for L that is secure against
space-s′ adversaries if, for any space-s algorithm Ṽ and x ∈ L, the random variables View

P,Ṽ
(x, r)

and S(Ṽ , x, r) are indistinguishable by any streaming space-s′ algorithm. That is, for every space-s′

streaming algorithm D,∣∣∣P [D(View
P,Ṽ

(x, r)
)
accepts

]
− P

[
D
(
S(Ṽ , x, r)

)
accepts

]∣∣∣ = o(1).

11We note that a more general definition allows the random bits r to be partially streamed throughout the protocol,
rather than only in the beginning. This simpler definition suffices to capture the honest V in all of our protocols, but
we assume the more general version when (a malicious) Ṽ consumes more randomness than it can store.
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We note that all our applications have s = polylog(n), and the protocols are secure against
adversaries with any space s′ = poly(s) (see Remark 6.5).

Remark 4.4. Recall that the analogue of Definition 4.3 in the polynomial-time setting requires a
much stronger notion of indistinguishability: negligible (i.e., sub-inverse-polynomial), rather than
o(1), bias. This is necessary for the notion to be robust with respect to poly-time algorithms,
as otherwise repeating polynomially many executions of D would boost its success probability
arbitrarily close to 1.

This raises a number of interesting questions on the achievable notions of security for zkSIPs: can
we obtain tighter bounds, such as 1/ poly(n) or negligible? (Perhaps even in the statistical case?)
An answer to each such question ensures security against one type of adversary (i.e., distinguisher):
we will study the natural threat model where all parties are streaming algorithms and argue why
o(1) is a sufficient bound in this case. Before doing so, however, we briefly discuss an important
alternative.

As explained above, streaming verifiers secure against polynomial-time adversaries require negli-
gible distinguishability. This has been previously studied, most notably for zero-knowledge interac-
tive proofs that reduce to evaluating low-degree polynomials defined by the input and allow for it to
be processed in a streaming fashion, such as [GKR08]. (We stress, however, that such protocols rely
on computational assumptions.) An interesting question that we leave to future work is whether
zkSIPs can simultaneously achieve security against different adversaries – e.g., with negligible bias
for poly-time distinguishers (under cryptographic assumptions) in addition to subconstant bias for
streaming distinguishers.

Recall that a key distinction between the poly-time and streaming settings is the one-pass
restriction of the latter, which prevents even a single repetition of (a streaming) D – indeed, index
trivialises with 2 passes (as do many fundamental streaming problems). In other words, as the
common technique of amplification is unavailable in the streaming model, o(1) bias is a sufficiently
robust requirement that guarantees the probability of information leakage tends to 0. (We note
that the weaker requirement of arbitrarily small constant bias would also suffice, i.e., the existence
of (Pε, Vε, Sε) achieving ε bias for every ε > 0. We adopt the simpler and stronger subconstant
version, which our protocols satisfy.)

The streaming simulator. For technical reasons, the simulator is given white-box access to
the verifier and explicit access to a random string. We stress that this auxiliary information is
completely independent of the input. This can viewed as allowing the verifier to obtain some
computation about auxiliary information (about its own strategy, or a uniformly chosen random
string), but learn absolutely zero information about the input stream x.

While white-box access gives the simulator S knowledge of any function of the verifier’s strategy,
we do not require such generality; indeed, we will only be interested in questions about the most
likely messages that Ṽ may send at a single point of the protocol. As such, the weaker definition
that follows is sufficient.

Definition 4.5. Let A be a space-s streaming algorithm that reads an n-bit string y and outputs
an m-bit string z. We define white-box access to A as oracle access to a function W with two
inputs, a snapshot b ∈ {0, 1}s and a candidate output z ∈ {0, 1}m; the oracle returns the maximum
probability over all inputs y with which A, starting with memory state b, outputs z; that is,

W(b, z) = max
y∈{0,1}n

{P[A(y) outputs z when its initial snapshot is b]} .
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Remark 4.6. While the honest verifier V does not use a large random string, malicious verifiers Ṽ
with this additional resource can readily be simulated by S as above. We assume hereafter that Ṽ
has the same resources as the honest verifier, but note that the simulations extend straightforwardly
to verifiers with both white-box access (to their strategies) and query access to a random string.

5 Algebraic and temporal commitments

A commitment protocol is a two-party protocol (or, more accurately, a pair of protocols) that allows
the transmission of a message from one party to another to be split into two parts: a commitment,
where the message is transmitted in a form that cannot be interpreted by the recipient; followed,
at some point in the future, by a decommitment, where the sender transmits additional information
with which the recipient can read the message. (A useful analogy is that the commitment amounts
to sending a locked box containing the message, and the decommitment to sending the key.)

In the standard setting [Blu83] we have two parties: a sender and a receiver, which we will refer
to as prover and verifier, respectively. The prover wishes to communicate a symbol α, and does
so by first choosing a random key k and sending another string c = commit(α, k). Then, at some
point in the future, prover and verifier engage in a protocol at the end of which the receiver obtains
α = decommit(c). (We will refer to the streaming analogue as a commitment protocol, rather than
scheme, to avoid ambiguity with the polynomial-time analogue.)

Commitment protocols are extremely useful components for the construction of interactive pro-
tocols, and should satisfy two properties: hiding, i.e., the commitment alone should prevent the
verifier from obtaining a non-negligible amount of information about the message α; and binding,
i.e., the prover should not be able to decommit to a message that differs from the one it committed
to. We will construct a commitment protocol whose hiding property follows from the average-case
hardness of search-index for streaming algorithms, while binding follows from the soundness of
the pep protocol (which we introduce formally in Section 5.1).

We first formally define streaming commitment protocols. We note that while the definition
that follows can be generalised,12 it suffices to capture our constructions.

Definition 5.1. A streaming commitment protocol for alphabet Γ (with security parameter p) and
space bound s consists of a function commit : Γ×K → C, where K ⊆ {0, 1}p is the set of keys and
C is the set of commitments, and a space-s SIP (P, V ) which satisfy the following conditions.

• Hiding: Fix any pair of distinct messages α, β ∈ Γ and sample k ∼ K. Set c = commit(α) =
commit(α, k) and c′ = commit(β) = commit(β, k). Every (streaming) space-s distinguisher D
tells the two commitments apart with at most subconstant bias (with respect to the parameter
p); that is,

∣∣P[D(c) accepts]− P[D(c′) accepts]
∣∣ = o(1).

• Binding: Fix k ∈ K and α ∈ Γ. Then

P
[
〈P, V 〉

(
commit(α, k), α

)
= 1
]

= 1,

12A natural generalisation is to parameterise the bias in the hiding property as well as the completeness and
soundness in binding by εb, εc, εs ∈ (0, 1); our definition has εb, εs = o(1) and εc = 0.
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and for any β 6= α,
P
[
〈P, V 〉

(
commit(α, k), β

)
= 1
]

= o(1).

Note that, with some abuse of notation, the binding condition corresponds to (P, V ) being an
SIP for the language L = {(commit(α, k), α) : α ∈ Γ, k ∈ K}.

The next sections introduce the commitment protocols we will use to build our protocols. Sec-
tion 5.1 begins by defining the concepts and tools we build upon: low-degree extensions and the
polynomial evaluation protocol (pep). In Section 5.2, we use them to construct a basic scheme that
allows for the communication of a single symbol (which we use as a stepping stone), based on the
hardness of index (or, more accurately, search-index); in it, the keys are simply long strings
paired with a coordinate, i.e., K = Γp × [p], and commitments are keys appended with a single
extra symbol (i.e., C ⊂ Γp+1 × [p]).

Section 5.3 then extends the construction of Section 5.2 into an algebraic commitment proto-
col, which allows for the commitment of low-degree polynomials. In both the basic and algebraic
schemes, hiding is achieved by overwhelming V with “too much information”, and can only be bro-
ken if a malicious verifier is lucky enough to retain a critical fragment of the information stream;
indeed, as we will see, breaking it amounts to solving index. Binding, on the other hand, relies on
the pep protocol, which we introduce in the next section.

While commitment protocols are not a prerequisite for a zero-knowledge protocol, they also
serve as inspiration for our second main component: Section 5.4 shows how the verifier can perform
a temporal commitment to show its alleged internal randomness is uncorrelated with its input, and
thus that it is not behaving maliciously.

5.1 Low-degree extensions and polynomial evaluation

Fingerprinting is a technique that enables streaming algorithms to approximately verify an arbitrary
coordinate of a long string in small space. It exploits low-degree extensions (LDEs), extremely useful
objects in the design of interactive proofs more broadly.

Given a data set x, viewed as a string of n elements in a finite field F = Fq, an LDE is a low-
degree polynomial that interpolates every data point. More precisely, we may view x as a function
x : [n] → F; given a dimension m and defining the degree d as the smallest (positive) integer such
that n ≤ (d + 1)m, we can also view x : [d + 1]m → F by some canonical injection [n] ↪→ [d + 1]m

(padding with zeroes if n < (d + 1)m). Then, as long as q > d, we can also view (via another
canonical injection [d+ 1] ↪→ F) the data set as the restriction of a function from Fm to F.

Standard properties of polynomials imply that if this function is an m-variate polynomial of
individual degree d, then the extension is unique; we thus denote by x̂ : Fm → F the unique degree-
d polynomial whose restriction to [n] is equal to x. Explicitly, with (i1, . . . , im) as the image of i by
[n] ↪→ Fm,

x̂ =

n∑
i=1

xiχi =
∑

i1,...,im∈[d+1]

xi1,...,imχi1,...,im

where the χi are the Lagrange basis polynomials, given by

χi(α1, . . . , αm) :=

m∏
j=1

d+1∏
k=1
k 6=ij

αj − k
ij − k
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(viewing k ∈ [d+ 1] as an element of F); equivalently, the Lagrange polynomials are the unique m-
variate degree-d polynomials satisfying χi(j) = 1[i = j] when i, j ∈ [d+ 1]. We note that LDEs and
Lagrange polynomials can equivalently be defined with an injection from {0}∪[d], rather than [d+1],
to F; then they satisfy the previous condition for all 0 ≤ i, j ≤ d. We will use the characterisation
that is most convenient, which will be clear from context (e.g., an LDE that involves the evaluation
of a polynomial at 0 is of the latter type).

We will also use χ(α) to denote the vector
(
χ1(α), . . . , χn(α)

)
of evaluations of Lagrange poly-

nomials; note that this allows us to write x̂(α) as the dot product χ(α) ·x of n-dimensional vectors.
Now, given a string x ∈ Fn, a fingerprint is simply an evaluation of the LDE of x at a random

point, that is, x̂(ρ) with ρ ∼ Fm. The key property of fingerprints is that they are extremely unlikely
to match for two different strings when the underlying field is large enough, as a consequence of the
Schwartz-Zippel lemma [Sch80, Rab81].

Lemma 5.2 (Schwartz-Zippel). If x, y ∈ Fnq are distinct, then Pρ∼Fm
[
x̂(ρ) = ŷ(ρ)

]
≤ dm/q.

Importantly for streaming algorithms, fingerprints can be computed with O(dm) time per entry
of the input and O(m) field elements (thus O(m log q) bits) of space [CTY11].

The polynomial evaluation protocol is an interactive proof that enables a streaming verifier with
a single random evaluation f(ρ) of a degree-d polynomial f : Fm → F to evaluate f at any other
point, assisted by a prover with knowledge of f in its entirety. Note that the prover could help
the verifier compute f at a point (non-interactively) by simply sending an interpolating set of the
polynomial; but any such set has size (d+ 1)m. The pep (polynomial evaluation) protocol, detailed
in Protocol 5.1, allows us to reduce the communication from O(dm log q) to O(dm log q) by adding
interaction.

In order to better compare the original pep protocol with the zero-knowledge version that we
will construct, we consider a general problem that the protocol is able to solve (as in [CCM+19]).
We use f as shorthand for a mapping x 7→ fx (or, equivalently, a set f ⊆ {fx : x ∈ Fn}) where
one evaluation fx(ρ) can be computed by a space-bounded algorithm that streams x. The problem
pep(f, α) is to decide whether fx(β) = α when the input stream is x followed by an evaluation
point β ∈ Fm.

Protocol 5.1: pep(f, α)

Input: Explicit access to α ∈ F and a set f ⊆ {fx : x ∈ Fn} of m-variate degree-d polyno-
mials over F. Streaming access to (x,β) ∈ Fn × Fm.

V : Sample ρ ∼ Fm. Stream x and compute fx(ρ). Store β.

Compute the line L : F→ Fm such that L(0) = β and L(ρ) = ρ with ρ ∼ F, then send
L to the prover.

P : Compute and send fx|L.
13

V : Compute g(ρ), where g : F→ F is the degree-dm low-degree extension of the sequence of
evaluations sent by P such that g(0) = α.14Accept if g(ρ) = fx(ρ) and reject otherwise.
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Assuming an evaluation of fx can be computed by streaming x with O(m log q) space, Proto-
col 5.1 is a streaming interactive proof for pep(f, α) with communication complexity O(dm log q)
and verifier space complexity O(m log q). We note that pep(f, α) can easily be modified into an
algorithm for a search problem without a candidate value α for fx(β), by having V output g(0)
instead of accepting.

It is clear that V accepts in Protocol 5.1 when P is honest; the protocol’s soundness relies on
the fact that if the prover were to send an incorrect g 6= fx|L, it is highly unlikely that it will agree
with the verifier’s evaluation at the (unknown) location ρ.

In conjuction with the streaming nature of LDEs, (the search version of) Protocol 5.1 yields
a simple and efficient streaming interactive proof for search-index. This SIP, introduced by
[CCM+19], hasO(log n log logn) space and communication complexities for a stream (x, j) ∈ Fn×[n]
where q = |F| = polylog(n) (and β ∈ Fm is the identification of j); it is simply an instantiation
of pep where d = 2, m = log n and the function fx = x̂ is the m-variate (multilinear) LDE of
x,15 an evaluation x̂(ρ) of which can be computed incrementally as values of x are revealed in the
stream. Then x̂(ρ) = x̂|L(ρ) allows the verifier to check that the prover is being honest (i.e., that
the polynomial it sent is x̂|L), as well as to learn xj = x̂(j) = x̂|L(0).

Observe that pep is not zero knowledge: the verifier learns all of fx|L, which it is not be able
to construct by virtue of only learning β (and thus L) after streaming x. Note, however, that the
honest verifier only inspects two evaluations of fx|L, namely, at 0 and ρ. In the following sections
we construct a commitment protocol that lets the prover only reveal information about these two
points, without sacrificing soundness.

5.2 A prover-to-verifier commitment protocol

Our commitment protocol, designed to allow an unbounded-space sender to commit to a streaming
receiver, directly uses the (average-case) hardness of the index problem. By sending a message
hidden at a random coordinate, we exploit the fact that any streaming algorithm requires a linear
amount of space to be able to recall a random item from a string after it has been seen. We begin
by formally defining (the search and decision versions of) index in the one-way communication
complexity model.

Definition 5.3. search-index, over alphabet Γ and with message length s, is the one-way commu-
nication problem defined as follows: Alice receives a string x ∈ Γn and sends Bob an s-bit message
a = A(x). Bob receives, besides a ∈ {0, 1}s, an index j ∈ [n], and outputs a symbol b = B(a, j) ∈ Γ.
The execution succeeds if b = xj .

Definition 5.4. decision-index(α) (with alphabet Γ and message length s) is the one-way com-
munication problem defined as follows: Alice receives a string x ∈ Γn and sends Bob an s-bit
message a = A(x). Bob receives, besides Alice’s message, an index j ∈ [n], and outputs a bit
b = B(a, j) ∈ {0, 1}. The execution succeeds if b = 1 when xj = α, and b = 0 otherwise.

It is well known that index is extremely hard, even on average and in the one-way communi-
cation model with shared randomness.

13Recall that the line L and fx|L are sent in a canonical form: L as the evaluation L(1) and fx|L as the vector(
fx ◦ L(i) : i ∈ [dm]

)
. (There is no need to send L(0) = β or fx|L(0) = fx(β) = α, as they are known to V .)

14Note that the Lagrange polynomials in this case satisfy χi(j) = 1[i = j] for all 0 ≤ i, j ≤ dm.
15The space complexity can be reduced to O(logn) with the choice of parameters for q, d and m in Corollary 6.6.
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Proposition 5.5. Any one-way communication protocol (A,B) for search-index that sends a
message of length s satisfies

Px∼Γp
j∼[p]

[
B
(
A(x), j

)
= xj

]
=

1

|Γ|
+O

(√
s

p

)
.

In other words, the chance of correctly recalling a random symbol is at best slightly better than
uniform guessing if the string p is much longer than the message length s of the protocol. We note
that this bound was known for Γ = {0, 1} [RY20], but it extends to larger alphabets (we provide a
proof of this fact in Appendix A.1 for completeness).

The commitment phase of our scheme exploits this hardness result directly: we take Γ ↪→ F where
F is a large enough finite field (which will allow us to use pep to decommit) and have P send the
triple (y, α−yk, k) for random y and k as a commitment to α. (In particular, the commitment key is
a random string-coordinate pair (y, k)). Loosely speaking, the protocol has the sender communicate
a random stream y with the message hidden at a random coordinate k, which is revealed after y.

The honest verifier keeps a (random) fingerprint of y, which it can use to validate the message
at yk (see Protocol 5.2), while the decommit stage simply instantiates pep appropriately (see Pro-
tocol 5.3). We note that the inputs listed in the description of the protocols are those available to
the verifier.

Protocol 5.2: commit(α)

Input: explicit access to p, d,m, q ∈ N with p ≤ dm, q > d and F = Fq. Streaming access to
y ∼ Fp followed by a correction γ ∈ F and a coordinate k ∼ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ) =
∑p

i=1 χi(ρ)yi while streaming y.

Store ρ, k, γ and ŷ(ρ).

Protocol 5.3: decommit(α, y, k)

Input: α ∈ F, as well as the (parameters and) values stored in the commit stage: k, γ,ρ, ŷ(ρ).

V : Compute and send the line L : F→ Fm such that L(0) = k and L(ρ) = ρ with ρ ∼ F.

P : Send ŷ|L.

V : Compute g(ρ) and g(0), where g : F→ F is the degree-dm extension of the sequence of
evaluations sent by P .

Accept if g(ρ) = ŷ(ρ) and g(0) + γ = α, rejecting otherwise.

Now, we show that Protocols 5.2 and 5.3 form a streaming commitment protocol, i.e., they
satisfy the hiding and binding properties of Definition 5.1 if p is large enough; these follow from the
hardness of search-index and the soundness of pep, respectively.

Theorem 5.6. Protocols 5.2 and 5.3 form a streaming commitment protocol with space complexity
s = O(m log q) when p = q3 and dm = polylog(q). The protocol is secure against poly(s)-space
adversaries and communicates O(q3 log q) bits.
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Proof. First, note that the communication complexity is dominated by the prover sending p = q3

field elements in the commit step, for a total of O(q3 log q) bits.
The binding property is an immediate consequence of the completeness and soundness of pep:

if P is honest, i.e., sends the correction γ = α − yk in the commit stage and the polynomial ŷ|L in
the decommit stage, then V accepts, as ŷ|L(ρ) = ŷ(ρ) and ŷ|L(0) + γ = α. (Recall that the line L
satisfies L(0) = k and L(ρ) = ρ.)

Now, suppose the prover replies with a polynomial g such that g(0) 6= yk = ŷ(k) = ŷ|L(0);
then the Schwartz-Zippel lemma (Lemma 5.2) implies ŷ(ρ) = ŷ|L(ρ) 6= g(ρ) except with probability
dm/q = o(1), in which case V rejects.16 Note that the verifier only needs to store ρ ∈ Fm, k ∈ [p]
and a constant number of additional field elements, for a space complexity of O(m log q + log p) =
O(m log q).

To show the hiding property, assume towards contradiction that there exists a streaming algo-
rithm D with space poly(s) = polylog(q) that distinguishes commitments between some α ∈ F and
α′ ∈ F \ {α} with constant bias:17 that is,

Py∼Fp
k∼[p]

[
D(y, k, α− yk) accepts

]
− Py∼Fp

k∼[p]

[
D(y, k, α′ − yk) accepts

]
≥ ε

for some ε = Ω(1). Now consider the following algorithm A for search-index over the alphabet F
with input (x, j): simulate D on the stream (x, γ, j) where γ ∼ F; output α − γ if D accepts, and
otherwise output α′ − γ. Note that A outputs correctly exactly when γ = α − yk and D accepts,
or γ = α′ − yk and D rejects; moreover, A can simulate D with constant space overhead, so that
its space complexity is also polylog(q). We will now show that A solves search-index with a bias
that is too large, contradicting Proposition 5.5.

Px∼Fp
j∼[p]

[
A(x, j) = xj

]
=

1

q
· Px∼Fp

j∼[p]

[
D(x, j, α− xj) accepts

]
+

1

q
· Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) rejects

]
=

1

q

(
1 + Px∼Fp

j∼[p]

[
D(x, j, α− xj) accepts

]
− Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) accepts

])
≥ 1 + ε

q

=
1

q
+ Ω

(
1

q

)
.

Since 1/q =
√
q/p = ω

(√
poly(s)/p

)
, owing to s = polylog(q), the result follows.

Remark 5.7. Just as in pep, the verifier learns much more than than the message ŷ|L(0) = α ∈ F:
it learns all of ŷ|L. Crucially, however, the additional information consists of random field elements
uncorrelated with α. This enables the commitment protocol laid out in this section to be proven zero-
knowledge when the simulator has read-only access to a large random string t, as in Definition 4.3.
(More accurately, such a simulator can perfectly generate the random variable that corresponds to
the view resulting from the commit followed by the decommit steps.)

16We remark that ρ need not be sampled from the entire field; the same result holds if ρ ∼ R ⊂ F when R is large
enough. This will be useful in proving that our protocols for pep and sumcheck are zero-knowledge.

17Note that allowing poly(s) space for D will imply a space-robust indistinguishability property; bounding it by,
say, Õ(s) or O(s2) would prove a weaker but still nontrivial statement.
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Indeed, a simulator with space O(m log q) and query access to y ∼ Fp may sample k ∼ [p] and
send (y, α−yk, k) in the commit step; then, in decommit, after receiving the line L, it computes and
sends ŷ|L =

(
ŷ|L(i) : i ∈ {0} ∪ [dm]

)
by reading the string y an additional dm+ 1 times, computing

and sending one LDE evaluation at a time.

However, this basic commitment protocol is not yet sufficient. As discussed in Section 2.2, it
allows P to commit (and decommit) to a single field element; but the prover should be able to
commit to a polynomial and decommit to a single evaluation thereof. In the next section we show
how to accomplish this, by modifying our scheme to make it algebraic.

5.3 Making the commitment algebraic

In this section, we will show how to modify the commitment protocol laid out in Section 5.2 so that
the prover can commit to ` messages and decommit to a single linear combination of the verifier’s
choosing. As we shall see, this can in fact be accomplished by adapting only the commitment step.

The idea behind this new protocol is simple, but has an important caveat. If the prover P wishes
to commit to the messages α = (α1,α2, . . . ,α`), the obvious solution is to send (yi,αi−yiki , ki) for
all i, a sequence of commitments to each αi. However, the indices ki where each message is hidden
are sampled independently, so that even though taking low-degree extensions is a linear operation
(i.e., the LDE of

∑
i βiyi is

∑
βiŷi), a linear combination of the yi does not yield a commitment

to a linear combination of the αi: evaluating it at ki yields a sum where only the ith summand is
guaranteed to be correct.

We can fix this problem by hiding all the messages at the same coordinate k. Then, setting
γ =

(
αi − yik : i ∈ [`]

)
and γ = β · γ =

∑
βiγi, we have

γ +
(∑

βiyi
)
k

=
∑

βi(yik + γi) = α · β;

so a linear combination of commitments yields a commitment to a linear combination of the mes-
sages. Therefore, the prover may send (y1, . . . , y`,γ, k) and the new protocol will satisfy the binding
property (a slightly stronger version of which, with respect to a random β, will be necessary; we
elaborate upon this later in the section).

More precisely, viewing y ∈ F`×p as a matrix whose ith row is yi, the prover may send y, say,
column by column.18 The resulting string, appended with γ and k, is a random index instance
whose alphabet is F`; and this enables us to show the hiding property for algebraic-commit as we
did for commit.

The result is Protocol 5.4, which enables a prover to commit to multiple messages and decommit
(via Protocol 5.3, using ŷ(ρ,β) as the fingerprint and β · γ as the correction) to an arbitrary linear
combination of them.

Theorem 5.8. Protocol 5.4 (algebraic-commit) and Protocol 5.3 (decommit) form a streaming com-
mitment protocol with space complexity s = O

(
(` + m) log q

)
if p = q3` and dm = polylog(q). The

scheme is secure against poly(s)-space adversaries and communicates O(`q3` log q) bits.
Furthermore, if each linear coefficient can be computed in O(m log q) space, then s = O(m log q).

18We remark that while sending y column by column naturally corresponds to an index instance with a larger
alphabet (where symbols are `-tuples of field elements), since the hardness of index holds for the stronger model of
one-way communication protocols, the hiding property of the scheme is preserved regardless of the order in which y
is sent. This is important in our sumcheck protocol, where a column cannot be sent all at once.
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Since the proof is a straightforward extension of Theorem 5.6, we defer it to Appendix A.2.

Protocol 5.4: algebraic-commit(α)

Input: explicit access to p,m, d, q ∈ N with p ≤ dm, q > d and F = Fq; as well as linear
coefficients β ∈ F`. Streaming access to y ∈ F`×p followed by γ ∈ F` and k ∈ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ,β) =
∑`

i=1 βiŷi(ρ), a random linear fingerprint of y
with coefficients β, while streaming y.

Store ρ, k, ŷ(ρ,β) and the correction γ =
∑`

i=1 βiγi.

We stress that the binding property of the linear commitment protocol has an important caveat:
it is with respect to the linear combination α · β, rather than the entire tuple α. Therefore, if the
prover has knowledge of the linear coefficients, it can easily commit to a set of messages α′ 6= α
that nonetheless decommits to the same linear combination α · β, and P has many choices indeed:
the equation

∑
βiα

′
i =

∑
βiαi is satisfied by all β in the hyperplane (of size q`−1) orthogonal to

α′ −α.
Since our applications require a stronger guarantee – that V should be able to detect when P

commits to α and a decommits according to α′ 6= α – this binding property is insufficient unless
V chooses the coefficients β at random; then the linear combination of α′ matches that of α only
with probability 1/q. While in our zero-knowledge protocol for pep the coefficients are not uniform,
they are a random evaluation of low-degree polynomials, and the same reasoning holds with a small
loss (see Theorem 6.2).

However, an important issue still remains: the exponential dependency of Theorem 5.8 in the
number ` of field elements that comprise the tuple P commits and decommits to. Concretely, in
our applications we have ` = ω(1) but can only afford to communicate poly(q) bits. To circumvent
this issue, we shall use the following efficient reduction from index over bits to the problem of
distinguishing a commitment to a fixed element of F` from a commitment to a random one.

Lemma 5.9. Let (A,B) be a one-way protocol with s-bit messages that distinguishes between a
length-p algebraic commitment to a fixed α ∈ F` and a random commitment with advantage ε; that
is, such that∣∣∣∣∣∣∣Py∼F`×pk∼[p]

[
B
(
A(y), (αi ⊕ yik : i ∈ [`]), k

)
accepts

]
− Py∼F`×p

k∼[p]

τ∼F`

[
B(A(y), τ , k) accepts

]∣∣∣∣∣∣∣ = ε.

Then there exists an average-case one-way communication protocol for (binary) index over p-bit
strings that communicates O(`2s log2 q/ε2) bits and succeeds with probability 1− 1

e = 1
2 + Ω(1).

Proof. Define, for ease of notation, y(k) := (yik : i ∈ [`]) (i.e., the kth column of y) and

aτ := P
[
B
(
A(y), τ ⊕ y(k), k

)
accepts

]
= E

[
B
(
A(y), τ ⊕ y(k), k

)]
,

where we interpret Bob’s output as 1 (respectively 0) when he accepts (respectively rejects). Define,
also, ετ := aα − aτ .
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We first argue that, without loss of generality, we can assume F = F2 = {0, 1}. Note that, with
q = |F|,19

ε = aα −
1

q`

∑
τ∈F`

aτ =
1

q`

∑
τ∈F`

ετ .

Taking `′ := b` log qc and S ⊆ F` as the set of size 2`
′ containing α and the tuples τ with the largest

ετ , and viewing {0, 1}`′ ⊆ F` via a bijection between {0, 1}`′ and S, we have

ε′ :=
1

2`′
∑

τ∈{0,1}`′
ετ ≥

ε

3
,

owing to |S| ≥ q`/2 and ετ ≥ ετ ′ when τ ∈ S \ {α} and τ ′ ∈ F` \ S. Therefore, assuming F = F2

incurs at most a constant factor in ε and a log q factor in `; we shall use ε and ` (rather than ε′ and
`′) hereafter for simplicity of notation.

Finally, define, for each 0 ≤ i < `,

εi :=
1

2`−i

∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

ετ .

We divide the analysis into two cases: suppose, first, that εi ≥ εi−1 ·
(
1− 1

2`

)
for all i ∈ [` − 1].

Then, by Bernoulli’s inequality (t ≤ −1 implies (1 + t)` ≥ 1 + t`), we have

ε`−1 =
1

2
(aα − aα⊕`) ≥

(
1− 1

2`

)`
· ε ≥ ε

2
,

where α⊕i = (α1, . . . ,αi−1, 1−αi,αi+1, . . . ,α`). Consider the following one-way protocol (with
shared randomness) for an index instance (x, j) ∈ {0, 1}p × [p]: Alice and Bob jointly sample 2/ε2

independent matrices y′ ∼ {0, 1}`×p and permutations σ ∼ Sp; Alice sets yi = y′i ⊕ 1[i = `] · σ(x)
(where σ(x)k := xσ(k)), simulates A(y) and sends the resulting messages in a 2s/ε2-bit string to
Bob.

With knowledge of j, Bob finishes the simulations B(A(y),γ, k), using coordinate k = σ−1(j)
and correction γ = α⊕ y′(k); he computes their empirical mean µ, outputs α` if µ ≥ aα + ε/2, and
outputs 1−α` otherwise.

Correctness follows from the observation that, if xj = σ(x)k = α`, then γ = α ⊕ y(k), so
E[µ] = aα; since the (y, k) pairs are uniform and independent,

P
[
µ ≤ aα −

ε

2

]
≤ 1

e

by the Chernoff-Hoeffding bound (Lemma 3.1, with 2/ε2 samples and δ = ε/2). Likewise, when
xj = 1 we have α = α⊕` ⊕ y(k); then E[µ] = aα⊕` ≤ aα − ε and an application of the Chernoff-
Hoeffding bound (with the same parameters) yields the same guarantee.

19This assumes the acceptance probability of a commitment to α is larger than that of a random commitment,
which is without loss of generality (otherwise Bob can simply flip his output bit).
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We now consider the second case: suppose εi < εi−1 ·
(
1− 1

2`

)
for some i ∈ [` − 1]; we take,

without loss of generality, the minimal such i. Then

1

2`−i

∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

ετ⊕i =
1

2`−i

∑
τ∈{0,1}`

∀i′<i, τi′=αi′
τi=1−αi

ετ

= 2εi−1 − εi

> εi−1

(
1 +

1

2`

)
,

and thus

1

2`−i

 ∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

(ετ⊕i − ετ )

 =
1

2`−i

 ∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

(aτ⊕i − aτ )


>
εi−1

`

≥ ε

2`
.

We will use a similar strategy to the previous case, although the expression we must estimate
involves many more terms (indeed, 2`−i+1 of them). Consider the following one-way protocol for an
index instance (x, j) ∈ {0, 1}p × [p]: Alice and Bob jointly sample 64`2/ε2 independent matrices
y′ ∼ {0, 1}`×p and permutations σ ∼ Sp; Alice sets yi′ = y′i′⊕1[i′ = i] ·σ(x), computes and sends all
messages A(y) in a 64`2s/ε2-bit string to Bob.20 (Recall that assuming F = {0, 1} incurs constant
and logarithmic factors in ε and `, respectively, so that Alice’s message is O(`2s log2 q/ε2) bits long.)

For each A(y) sent by Alice, Bob simulates B
(
A(y), τ ⊕ y′(k), k

)
with k = σ−1(j) for all τ

satisfying τi′ = αi′ when i′ ≤ i. He computes the empirical mean µ of

1

2`−i

 ∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

(
B
(
A(y), τ⊕i ⊕ y′(k), k

)
−B

(
A(y), τ ⊕ y′(k), k

)) ,

outputs 0 if the result is non-negative, and outputs 1 otherwise.
To prove correctness, first note that

τ ⊕ y′(k) =

{
τ ⊕ y(k), when xj = 0

τ⊕i ⊕ y(k), when xj = 1,

so that, when xj = 0,

E[µ] =
1

2`−i

 ∑
τ∈{0,1}`

∀i′≤i, τi′=αi′

(aτ⊕i − aτ )

 >
ε

2`
,

20Note that the only difference in Alice’s strategy, as compared to the previous case, is the row where she inserts
σ(x) and the number of simulations of A.
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and when xj = 1 we have E[µ] < −ε/2` (since the order of each pair of terms in the sum is flipped).
We conclude with an application of Hoeffding’s inequality (Lemma 3.2, with a = −1, b = 1,

δ = 1/2 and 64`2/ε2 samples): in the xj = 0 case,

P
[
µ ≤ ε

4`

]
≤ 1

e
;

and, likewise, in the xj = 1 case we have P
[
µ ≥ − ε

4`

]
≤ 1

e .

5.4 A verifier-to-prover temporal commitment

The goal of this section is to construct the second main component towards our streaming zero-
knowledge protocols. While it is not formally a commitment protocol (as per Definition 5.1), it is
useful to conceptualise it as V committing to its internal randomness before the input is streamed
(hence temporal).

Roughly speaking, we would like to ensure that a malicious verifier cannot choose the point ρ
at which it (allegedly) computes its fingerprint after it sees the input (x,β), as that would allow
it to learn more than fx(β). (For example, in the index case it could claim that ρ = j + 1 and
learn x̂(j + 1) = xj+1.) We will prove, in 3 steps, a lemma formalising the intuition that a space-s
algorithm cannot remember the positions of significantly more than s elements, which will later
enable the construction of a simulator. As in the case of algebraic commitments, we will in fact
prove a stronger statement: that this holds not only in the case of streaming algorithms, but in the
stronger model of one-way communication protocols.

We first define two variants of search-index in the one-way communication complexity model,
which we call reconstruct and pair (see Definitions 5.10 and 5.11). In reconstruct, Bob’s
task is to output the symbols at every coordinate of the input z (rather than receiving a single
coordinate j and outputting only zj , as in index); in other words, Bob should reconstruct the
input as best he can. In pair, as in search-index, Bob’s task is again to output the symbol at a
single coordinate; but rather than receiving the index as part of the input, Bob is free to choose a
coordinate-symbol pair (i, α) and succeeds if α = zi. (Note that in both reconstruct and pair,
Bob does not receive any additional input besides Alice’s message.)

Our first two steps are as follows. We first study reconstruct and show, in Lemma 5.12,
that if Alice’s message has s bits, Bob cannot reconstruct significantly more than s coordinates of
the input. Then, in Lemma 5.13, we show how this bound for reconstruct implies a related
bound for pair; more precisely, we prove that there exists a size-s set C of coordinates such that
the probability Bob outputs a correct coordinate-symbol pair (i, zi) where i /∈ C is arbitrarily small.

While Lemma 5.13 immediately implies an analogous statement for streaming algorithms, it is
not yet enough for our purposes. The reason is that our verifier will read additional information,
i.e., a fixed – but unknown – pep instance (x,β) between reading a pair input and writing its
output. While it is intuitively clear that this should not help the verifier in any way (as the pep
and pair instances are uncorrelated), we still require a slight extension of Lemma 5.13.

To this end we define, for each fixed string x ∈ Γn, a variant of pair that we call pair(x)
(Definition 5.15). The only difference between this one-way communication problem and pair is
that Bob receives the string x in addition to Alice’s message a. In Theorem 5.17, we show that the
existence of a set capturing most of the correct outputs of pair implies such a set C also exists for
pair(x); crucially, C is determined by a and does not depend on x. This last result then immediately
implies an analogous one for streaming algorithms.
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Let us begin with the definitions:

Definition 5.10. reconstruct is the following one-way communication problem: Alice receives a
string z ∼ Γv and sends Bob an s-bit message a; after receiving a, Bob outputs a string b ∈ Γv. The
score of an execution is the number of matching coordinates between z and b, i.e., |{i ∈ [v] : bi = zi}|.

Definition 5.11. Let pair denote the following one-way communication problem: Alice receives a
string z ∼ Γv and sends Bob an s-bit message a; after receiving a, Bob outputs a pair (α, i) ∈ Γ×[v].
The execution succeeds if α = zi.

Note that both are definitionally average-case problems, as z is sampled uniformly. We now
proceed to the first step towards the goal of this section: a proof that, in our parameter settings of
interest for |Γ| and s (as functions of v), the expected score of any protocol for reconstruct is
tightly constrained by the message length s.

Lemma 5.12. Any one-way protocol for reconstruct with alphabet size |Γ| = O(v/ log log v),
|Γ| ≥ 32v/ log log v and message length s, where log v ≤ s = polylog(v), achieves an expected score
of at most s+ o(s).

Proof. By the minimax theorem, we may assume Alice’s and Bob’s strategies are both deterministic,
so that there exists a set of messages A ⊆ {0, 1}s that partitions the set Γv of input strings by
{Pa : a ∈ A}, where Bob outputs b = b(a) ∈ Γv whenever z ∈ Pa.

Observe that Bob’s optimal strategy is to set bi as the most frequent symbol at the ith coordinate
among the strings of Pa; we can thus index the partition by b ∈ B := {b(a) : a ∈ A}, setting
Pb = Pb(a) = Pa. (Note that while {Pb : b ∈ B} may be a smaller partition than {Pa : a ∈ A}, the
expected scores of the protocols induced by both partitions are the same.)

Define the random variable Mb := {i ∈ [v] : zi = bi}. For simplicity of notation, denote also
γ := |Γ|. Note that the expected score of this one-way protocol is

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
=
∑
b∈B

P[z ∈ Pb] · Ez∼Pb [|Mb|]

=
∑
b∈B

|Pb|≥ sv ·
γv

2s

P[z ∈ Pb] · Ez∼Pb [|Mb|] +
∑
b∈B

|Pb|< s
v
· γ
v

2s

P[z ∈ Pb] · Ez∼Pb [|Mb|] .

We bound the first term by the largest expectation, and the second by observing that the union of
sets Pb with |Pb| ≤ s

v ·
γv

2s contain at most an s/v fraction of all length-v strings:

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B
|Pb|≥ sγv

v·2s

Ez∼Pb [|Mb|] +
∑
b∈B

|Pb|< sγv

v·2s

P[z ∈ Pb] · v

≤ max
b∈B

|Pb|≥ sγv

v·2s

Ez∼Pb [|Mb|] + s.

Let δ ∈ (0, 1) be such that the volume of Hamming balls of radius δ is V := sγv

v·2s ≤
sγv

v2 . (Recall
that s ≥ log v.) For any b ∈ B, the set Pb that maximises

Ez∼Pb [|Mb|] = |Pb|−1
∑
z∈Pb

|{i ∈ [v] : zi = bi}|
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is Pb = B(b, δ′), the ball centered at b (whose radius δ′ is determined by the equality |B(b, δ′)| = |Pb|).
Since |Pb| ≥ V implies δ′ ≥ δ, we have

1

|Pb|
·
∑

z∈B(b,δ′)

|{i ∈ [v] : zi = bi}| ≤
1

V
·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|,

so it suffices to bound the right-hand side. (The inequality follows from the observation that
the left-hand side is a weighted average between the right-hand side and the expectation over
z ∼ B(b, δ′) \ B(b, δ), which is smaller.)

Define ε := 1−δ. We aim to upper bound Ez∼Pb [|Mb|], and set as an intermediate goal to prove
upper and lower bounds for ε. To this end, we will use the following standard approximations (see,
e.g., [GRS12]) for H = H2 when σ (or 1− σ) is small:

H(σ) = H(1− σ) ∈
[
σ log

1

σ
, σ

(
log

1

σ
+

2

ln 2

)]
(12)

We begin with the lower bound on ε, which uses the lower bound of Eq. 12 and follows by
showing that the volume of a ball with radius 1− log γ

v log log γ is larger than V; then δ < 1− log γ
v log log γ ,

or, equivalently, ε = 1− δ > log γ
v log log γ .

We have

Hγ

(
1− log γ

v log log γ

)

=

(
1− log γ

v log log γ

)
log(γ − 1) +H

(
1− log γ

v log log γ

)
log γ

(by Eq. 1)

=

(
1− log γ

v log log γ

)
log(γ − 1) +H

(
log γ

v log log γ

)
log γ

(by Eq. 2)

≥

(
1− log γ

v log log γ

)(
log γ + log

(
1− 1

γ

))
log γ

+
log
(
v log log γ

log γ

)
v log log γ

(by Eq. 12)

= 1 +

(
1

log γ
− 1

v log log γ

)
log

(
1− 1

γ

)
+

log v
γ + log log log γ

v log log γ
− 1

v

≥ 1− 1

γ ln 2

(
1 +

1

γ

)(
1

log γ
− 1

v log log γ

)
+

log v
γ + log log log γ

v log log γ
− 1

v
(by Eq. 3)

≥ 1− 1

γ ln 2

(
1 +

1

γ

)(
1

log γ
− 1

v log log γ

)
− 1

v

≥ 1− 3

2v
,

where the second-to-last inequality uses v ≥ γ; and the last inequality uses γ = Θ
(

v
log log v

)
to

bound the first negative term to order Θ
(

log log v
v log v

)
, so the 1/v term dominates. Therefore,

γ
Hγ
(

1− log γ
v log log γ

)
v ≥ γv/γ3/2,
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and thus, by Eq. 4, the volume of a ball (centered at any point b) of radius 1− log γ
v log log γ = 1− polylog(v)

v
satisfies ∣∣∣∣B(b, 1− log γ

v log log γ

)∣∣∣∣ ≥ γ
Hγ
(

1− log γ
v log log γ

)
v

√
log v

≥ γv

2
3
2

log γ+ 1
2

log log v

≥ γv

2
7
4

log γ
.

Then

|B(b, δ)| = V =
sγv

v · 2s

≤ γv polylog(v)

v2

≤ γv

2
15
8

log v

≤
∣∣∣∣B(b, 1− log γ

v log log γ

)∣∣∣∣,
and we conclude that ε = 1− δ > log γ

v log log γ .
We now proceed to the upper bound on ε, which will use the upper bound of Eq. 12. Since

γHγ(δ)v ≥ V = sγv

v·2s (Eq. 4), taking the logarithm of both sides and using Eq. 1 yields

(1− ε) log(γ − 1) +H(1− ε)
log γ

= Hγ(1− ε) = Hγ(δ) ≥ 1−
s+ log v

s

v log γ
. (13)

Note that the right-hand side is 1− o(1) because s = o(v); then, δ is within o(1) distance of the
maximiser 1− 1/γ = 1− o(1) of Hγ , so that δ = 1− o(1) and ε = o(1).

This allows us to bound H(ε) = H(1− ε) from above via Eq. 12, which, combined with Eq. 13
(multiplied by log γ), implies

(1− ε) log(γ − 1) + ε log
1

ε
+

2ε

ln 2
≥ log γ − s+ log v − log s

v
.

Rearranging yields

ε

(
log ε+ log γ + log

(
1− 1

γ

)
− 2

ln 2

)
≤ s+ log v − log s

v
+ log

(
1− 1

γ

)
.

The bounds − log(1− 1/γ) = O(1/γ) = O(log log v/v) (Eq. 3) and s ≥ log v show that the
right-hand side is O(s/v); and Eq. 3 along with log γ = log v− log log log v+ Θ(1) =

(
1− o(1)

)
log v

implies the left-hand side is Ω
(
ε(log ε+ log v)

)
. Therefore, the inequality above simplifies to

ε(log ε+ log v) = O
(s
v

)
.

Now, if we had ε = Ω(s/v), then

ε(log ε+ log v) = ε
(

log s− log v + log v + Ω(1)
)

= Ω(ε log s) = ω(s/v),
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a contradiction. We thus conclude that ε = o(s/v) (and, in particular, that ε is both lower and
upper bounded by polylog(v)/v).

Returning to the goal of bounding the expected score, we now show that most of the volume of
a Hamming ball of radius δ is close to its boundary. More precisely, consider the volume V ′ of a
ball of radius δ′ = 1− 2ε. As ε = v−1 polylog(v), Eq. 4 applies, giving V ′ ≤ γHγ(1−2ε) and

V = Ω

(
γHγ(1−ε)
√
εv

)
= Ω

(
γHγ(1−ε)
√
s

)
.

so that
V ′

V
= O

(√
s · γ−(Hγ(1−ε)−Hγ(1−2ε))v

)
.

We can bound the coefficient in the exponent as follows:

Hγ(1− ε)−Hγ(1− 2ε) =
ε log(γ − 1) +H(ε)−H(2ε)

log γ

≥ ε

log γ

(
log(γ − 1) + log

1

ε
− 2 log

1

2ε
− 4

ln 2

)
(by Eq. 12)

=
ε

log γ

(
log(εγ) + log

(
1− 1

γ

)
+ 2− 4

ln 2

)
≥ ε log log γ

log γ
,

where the last inequality follows from εγ > γ log γ
v log log γ = Θ

(
log γ

log2 log γ

)
when the constant in Θ(·) is

large enough (γ ≥ 32v/ log log v suffices, as log(1− 1/γ) + 2− 4/ ln 2 > −5). Therefore,

√
s · γ−(Hγ(1−ε)−Hγ(1−2ε))v ≤

√
s · γ−

εv log log γ
log γ

=
√
s · 2−εv log log γ

<
√
s · 2− log γ

=

√
s

γ

= Θ

(√
s log log v

v

)
= o(s/v),

where the last line is due to
√
s ≥
√

log v = ω(log log v) and the strict inequality to ε > log γ
v log log γ .

Therefore, V ′/V = o(s/v), showing that the volume of a ball of radius 1− ε is indeed concentrated
in points of distance at least 1− 2ε.
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Finally, we conclude that

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B
|Pb|≥ sγv

v·2s

Ez∼Pb [|Mb|] + s

≤ s+
1

V
·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|

≤ s+
V ′

V
· v +

(
1− V

′

V

)
· 2εv

= s+ o(s),

as desired.

At this stage, we have an upper bound on the expected score of any one-way communication
protocol for reconstruct. The next step is to show that it implies a similar bound for the
communication problem pair; indeed, it seems intuitively clear that reconstruct is no harder
than pair, as it allows Bob to output an independent guess for each coordinate. We formalise this
intuition in the following lemma.

Lemma 5.13. Any one-way protocol for pair with alphabet size 32v
log log v ≤ |Γ| = O

(
v

log log v

)
and

message length s, where log v ≤ s = polylog(v), satisfies the following: there exists an event E
(depending only on z) with P[E] = 1 − o(1) and a set C of size s (depending only on Alice’s
message) such that

P
[
Bob outputs (zi, i) with i /∈ C

∣∣E] = o(1).

Proof. We will first show how to construct a protocol for reconstruct given one for pair, and
then use Lemma 5.12 to conclude; as in that lemma, we define {Pa} as the partition induced by
Alice’s messages a = a(z) ∈ A (we can assume Alice to be deterministic, as before, by the minimax
theorem; then a is a random variable determined by z).

Recall that in a protocol for pair, Bob’s output is a random variable b(a) ∈ Γ× [v];21 our goal
is to construct, from this random variable, an entire string y ∈ Γv and apply the expected score
bound to it. For ease of notation, when the message a is fixed we write b = (b1, b2) = b(a); note
that b is independent of the conditional distribution z ∼ Pa of the input, since upon fixing a it is
solely a function of Bob’s internal randomness. We will denote its distribution by µ = µ(a), and
the conditional distribution of b2 when b1 = i by µi.

The (pair) protocol’s success probability, conditional on receiving a, is given by

v∑
i=1

Pz∼Pa
b∼µ

[b = (zi, i)] =

v∑
i=1

Pb∼µ[b2 = i] · Pz∼Pa
b∼µ

[b1 = zi | b2 = i]

=

v∑
i=1

Pb∼µ[b2 = i] · P z∼Pa
b1∼µi

[b1 = zi].

21Note that, in contrast with Alice, we cannot assume Bob is deterministic. We wish to bound the number of
points in the support of b that aggregate all but a subconstant amount of probability weight in correct solutions to
the problem. This is not a function of the value of b, but of its distribution, so the minimax principle does not apply.
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Define y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent symbol at the ith

coordinate in Pa (as before, y is the best attempt at reconstructing the input z given to Alice). Now,
consider the reconstruct protocol that outputs the string whose ith coordinate is the random
variable b1 ∼ µi. Since, for each i ∈ [v], the symbol α ∈ Γ maximising Pz∼Pa [α = zi] is yi, the
expected score of the resulting protocol (conditioned on a) is

v∑
i=1

Pz∼Pa [b1 = zi | b2 = i] =
v∑
i=1

P z∼Pa
b1∼µi

[b1 = zi]

=
v∑
i=1

∑
α∈Γ

Pb1∼µi [b1 = α] · Pz∼Pa [α = zi]

≤
v∑
i=1

Pz∼Pa [yi = zi]

= Ez∼Pa [|Ma|] ,

where, as before, Ma = {i ∈ [v] : yi = zi}.
Recall that in Lemma 5.12 we showed that, as long as |Pa| ≥ s|Γ|v

v2s , the above expectation is
o(s). To conclude, we will use the following claim, whose proof is deferred to Appendix A.3:

Claim 5.14. Let p, q ∈ [0, 1]v be probability vectors and t ≤ v be an integer. There exists a set
C ⊆ [v] of size t such that

∑
i∈[v]\C piqi ≤ 1/t.

Note that while r ∈ [0, 1]v defined by ri = P[b1 = zi | b2 = i] is not a probability vector, we may
normalise it to obtain one: applying Claim 5.14 to p =

(
P[b2 = i] : i ∈ [v]

)
, q = r/‖r‖1 and t = s,

we obtain a set Ca ⊂ [v] of size s such that

Pz∼Pa
b∼µ(a)

[
b = (zi, i) with i /∈ Ca] =

v∑
i/∈Ca

piri

= ‖r‖1
v∑

i/∈Ca

piqi

≤
‖r‖1
s

=

∑v
i=1 P[b1 = zi | b2 = i]

s
= o(1)

whenever |Pa| ≥ s|Γ|v
v2s . Finally, take Ca as given by the claim. Recall that the sets Pa of size less

than s|Γ|v
v2s cover at most a s/v = o(1) fraction of length-v strings, so that the probability z ∼ Γv
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falls into the union of such sets is o(1). In the complement of this event, we have

P
[
b(a) = (zi, i) with i /∈ Ca

∣∣∣∣ |Pa| ≥ s|Γ|v

v2s

]
=

1

Pz∼Γv

[
|Pa| ≥ s|Γ|v

v2s

] ∑
a∈A

|Pa|≥ s|Γ|
v

v2s

Pz∼Γv [z ∈ Pa] · Pz∼Pa
b∼µ(a)

[b = (zi, i) with i /∈ Ca]

=
1

1− o(1)
· o(1) = o(1),

which concludes the proof.

With the second step of our proof finished, we already have a nontrivial result by the known
implication from hardness for one-way communication complexity: any streaming algorithm that
streams a uniformly random string z ∈ Γv and immediately outputs a pair (α, i) has a small set
C ⊂ [v] capturing most of the probability that it outputs correctly. However, the verifier in our zero-
knowledge streaming protocol will stream an index instance between streaming z and outputting
a pair. To capture this behaviour, we define a (slight) variant of pair and prove that the result of
Lemma 5.13 carries over to it.

Definition 5.15. For each string x ∈ Γn, let pair(x) denote the following one-way communication
problem: Alice receives a string z ∼ Γv and sends Bob an s-bit message a; Bob reads x and a and
outputs a pair (α, i) ∈ Γ× [v]. The protocol succeeds if α = zi.

We have now reached the end goal of this section:

Lemma 5.16. Fix a (single) one-way communication protocol for pair(x) for all x ∈ Γn with
alphabet size 32v/ log log v ≤ |Γ| = O(v/ log log v) and message length log v ≤ s = polylog(v).
Then, for any x ∈ Γn, there exists an event E (that depends only on z) with P[E] = 1− o(1) and a
set C of size s (that depends only on Alice’s message) satisfying

P
[
b(a, x) = (zi, i) with i /∈ Ca

∣∣E] = o(1).

Proof. We will make a small adaptation in one of the steps of Lemma 5.13 to show there is a size-s
set C independent of x that captures most of the probability of Bob’s correct outputs.

Following the notation of Lemma 5.13, {Pa} is the partition induced by Alice’s messages and
Bob’s output is a random variable b(a(z), x) = b(a, x) ∈ Γ× [v]. We also denote the distribution of
b = b(a, x) by µ(a, x) and the conditional distribution of b1 when b2 = i by µi(a, x).

For every x and a, the protocol’s success probability conditioned on z ∈ Pa is

v∑
i=1

Pz∼Pa
b∼µ(a,x)

[b = (zi, i)] =
v∑
i=1

Pb∼µ(a,x)[b2 = i] · Pz∼Pa
b∼µ(a,x)

[b1 = zi | b2 = i]

=
v∑
i=1

Pb∼µ(a,x)[b2 = i] · P z∼Pa
b1∼µi(a,x)

[b1 = zi].

With y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent symbol at the ith

coordinate in Pa, we know that Pz∼Pa [α = zi] is maximal when α = yi. This holds also if α is a
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random variable (independent from z), so that, in particular, with r ∈ [0, 1]v defined by

ri := max
x∈Γn

{
P z∼Pa
b1∼µi(a,x)

[b1 = zi]

}
≤ Pz∼Pa [yi = zi]

we have ‖r‖1 = o(s) when |Pa| is sufficiently large. Defining p ∈ [0, 1]v by pi = Pb∼µ(a,x)[b2 = i],
p′ ∈ [0, 1]v by qi = ri/‖r‖1 and using Claim 5.14, we obtain a set Ca ⊂ [v] of size s such that for
every x ∈ Γn,

Pz∼Pa
b∼µ(a,x)

[
b = (zi, i) and i /∈ Ca] =

v∑
i=1

Pb∼µ(a,x)[b2 = i] · P z∼Pa
b1∼µi(a,x)

[b1 = zi]

≤ ‖r‖1
v∑

i/∈Ca

piqi = o(1),

and we conclude with same calculation of Lemma 5.13.

As an immediate corollary (by taking C to be a set of symbol-coordinate pairs, rather than only
coordinates; and setting, say, C = ∅ in the complement of the event E), we have:

Theorem 5.17. Let Γ be an alphabet of size 32v/ log log v ≤ |Γ| = Θ(v/ log log v) and fix x ∈ Γn.
Let Ṽ be a streaming space-s algorithm with log v ≤ s = polylog(v) that streams z ∼ Γv followed by
x, and outputs a pair (α, i) ∈ Γ× [v].

There exists a set C ⊂ Γ× [v] of size s, determined by the snapshot of Ṽ at the end of the stream
z, such that

P
[
Ṽ (z, x) outputs (zi, i) /∈ C

]
= o(1).

The theorem above attains what we set out for in this section: since Ṽ cannot remember many
pairs (zi, i), we may prepend to any protocol a step where P sends z to the verifier. Then, whenever
Ṽ sends an allegedly random α ∈ Γ to the prover, we ask that it also send the coordinate i such
that α = zi as evidence that α was indeed sampled in the past, i.e., before it finished streaming z.
In other words, this step provides a temporal commitment by means of which Ṽ can show that its
internal randomness is uncorrelated with the input.

6 A zero-knowledge SIP for polynomial evaluation

Our goal in this section will be to combine the components constructed in Sections 5.3 and 5.4 –
algebraic and temporal commitment protocols – into a zero-knowledge protocol for pep. It is useful
to keep in mind that pep is a generalisation of index, and thus a protocol for the former yields
one for the latter; in other words, for concreteness one may replace pep by index throughout this
section. A formal definition of pep follows.

Definition 6.1. Let α ∈ F and f = {fx : x ∈ Γn} be a mapping such that fx : Fm → F is a
degree-d polynomial. pep(f, α) is the language {(x,β) ∈ Γn × Fm : fx(β) = α}.

We remark that the parameters of the problem generally increase as a function of n; in particular,
the field size is always assumed to satisfy q = |F| = ω(1).
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6.1 The protocol

For any mapping f and field element α, Protocol 6.1 lays out zk-pep(f, α), our zero-knowledge SIP
for pep(f, α). Theorems 6.2 and 6.3 prove, respectively, the correctness (i.e., completeness and
soundness) and the zero-knowledge properties of zk-pep.

The protocol uses commitment (sub)protocols to allow each party to only reveal key information
after the other party gives evidence that it is being honest; this is achieved by interspersing the
commit-decommit steps of one party with those of the other. More precisely, in the setup (Step 0)
the verifier performs its (temporal) commitment; after the input is streamed (Step 1), the prover
makes its (algebraic) commitment in Step 2. Then follow decommitments in the same order: verifier
and prover decommit at Steps 3 and 4, respectively.

For ease of notation, we use F× to denote F\{0}, the multiplicative group of the field F. Recall,
moreover, that for a matrix y, we use ŷ(ρ,θ) ∈ F to denote an evaluation of the low-degree extension
of the string θ ·y over F (see Section 3), and that χ(ρ) denotes a vector of Lagrange polynomials (see
Section 5.1); in the following protocol, the vector contains all but the first point of the interpolating
set {0} ∪ [dm] for a univariate degree-dm polynomial over F, i.e., χ(ρ) =

(
χi(ρ) : i ∈ [dm]

)
∈ Fdm.

Protocol 6.1: zk-pep(f, α)

Input: Explicit access to F, element α ∈ F, degree d, dimension m and a mapping x 7→ fx;
streaming access to x ∈ Γn followed by β ∈ Fm.

Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(logm+ log log q)/32 and p = m(dmq)3;

Step 0: Temporal commitment

P : Send a string z ∼
(
Fm
)v.

V : Sample ρ ∼ Fm and stream z. For each i, check if zi = ρ and store ` := i if so.
Reject if ρ 6= zi for all i ∈ [v].

Step 1: Input streaming

V : Stream x and compute fx(ρ) ∈ F. Store β ∈ Fm.
If ρ = β, check that fx(ρ) = α, accepting if so and rejecting otherwise.

Step 2: Algebraic commitment

V : Sample ρ ∼ F× \ [dm] and send the line L : F→ Fm with L(0) = β and L(ρ) = ρ.

P : Send an algebraic commitment (y,γ, k) to fx|L, i.e., (y, k) ∼ Fdm×p × [p] and γ ∈ Fdm

with γi = fx|L(i)− yik for all i ∈ [dm].

V : Sample σ ∼ Fm and, while streaming y, compute ŷ
(
σ,χ(ρ)

)
.

Compute the correction γ = χ(ρ) · γ and save (the identification of) k ∈ Fm.
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Step 3: Temporal decommitment

V : Send ρ and `.

P : Check that z` = ρ ∈ L and ρ := L−1(ρ) /∈ {0} ∪ [dm], aborting otherwise.

Step 4: Algebraic decommitment

V : Run decommit
(
fx(ρ)−χ0(ρ)α,χ(ρ)·y, k

)
, with correction γ and fingerprint ŷ(σ,χ(ρ)).

Accept if decommit accepts and reject otherwise.

6.2 Analysis of the protocol

We now show that zk-pep is a valid (i.e., complete and sound) streaming interactive proof, as well
as compute its space and communication complexities.

Theorem 6.2. Let f be such that an evaluation of the Fq-polynomial fx can be computed by
streaming x in O(m log q) space. Then, for any α ∈ Fq, Protocol 6.1 is an SIP for pep(f, α)
with s = O(m log q) space complexity. Its communication complexity is O(qmm log2 q) in the setup
and O(d4m5q3 log q) in the interactive phase.

Proof. We will prove completeness then soundness, and compute the complexities last.

Completeness. The verifier only aborts in Step 0 (the setup) if ρ is not among the v > qm log log q
random tuples sent by the prover, an event with probability (1−1/qm)v ≤ e−v/qm = o(1). Otherwise,
since the prover behaves honestly, in Step 2 (the algebraic commitment) we have

yik = fx|L(i)− γi

for all i ∈ [dm].
Let w = χ(ρ) · y =

∑dm
i=1 χi(ρ)yi ∈ Fp and ŵ : Fm → F be its m-variate LDE. Recall that, in

decommit
(
fx(ρ) − χ0(ρ)α,w, k

)
(Protocol 5.3), with correction γ and fingerprint ŷ(σ,χ(ρ)), the

verifier sends a line L′ : F → Fm with L′(0) = k, L′(σ) = σ, receives ŵ|L′ and makes two checks:
that ŵ|L′(σ) matches the fingerprint and that ŵ(0) + γ = fx(ρ)− χ0(ρ)α. Since

ŵ|L′(σ) = ŵ(σ) =

dm∑
i=1

χi(ρ)ŷi(σ) = ŷ
(
σ,χ(ρ)

)
and

ŵ(0) + γ = wk + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
=

dm∑
i=1

χi(ρ)fx|L(i)

= fx(ρ)− χ0(ρ)fx(β)

= fx(ρ)− χ0(ρ)α,

the verifier accepts when P is honest except with probability o(1).
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Soundness. First, note that if ρ /∈ {zi : i ∈ [v]}, the verifier rejects already in Step 0. We can thus
assume the tuple ρ equals some coordinate in z, and, since the string and tuple are independent
random variables, the distribution of ρ is still uniform conditioned on this event. (We may also
assume that ρ 6= β, since otherwise V also rejects regardless of the prover’s behaviour.)

The only other point where V may reject is Step 4 (the algebraic decommitment). Once again,
recall that V sends the prover a line L′ with L′(0) = k, L′(σ) = σ where σ ∼ F and P replies
with a degree-dm polynomial g : F → F that is allegedly ŵ|L′ . The verifier then checks that
g(σ) = ŷ

(
σ,χ(ρ)

)
= ŵ|L′(σ) and g(0) + γ = fx(ρ) − χ0(ρ)α, rejecting if either equality fails to

hold.
We now analyse three cases: first, suppose that g = ŵ|L′ . Then the first check passes but

g(0) + γ = wk + γ

= fx(ρ)− χ0(ρ)fx(β)

6= fx(ρ)− χ0(ρ)α,

so the verifier rejects (with probability 1).
Suppose, now, that g(0) 6= ŵ|L′(0). Then Lemma 5.2 (Schwartz-Zippel) implies g(σ) 6= ŵ|L′(σ),

so the verifier rejects, except with probability dm/q = o(1).
Finally, suppose that g 6= ŵ|L′ but g(0) = ŵ(0) =

∑dm
i=1 χi(ρ)yik. Then either the first check

fails, i.e., g(σ) 6= ŷ
(
σ,χ(ρ)

)
, and V rejects; or g(σ) = ŷ

(
σ,χ(ρ)

)
, and the second check passes if

g(0) + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
is equal to

fx(ρ)− χ0(ρ)α = χ0(ρ)
(
fx(β)− α

)
+

dm∑
i=1

χi(ρ)fx|L(i).

Rearranging, the second check corresponds to the following equation:

χ0(ρ)
(
fx(β)− α

)
+

dm∑
i=1

χi(ρ)
(
fx|L(i)− γi − yik

)
= 0.

Now, consider the left-hand side of the equation as a polynomial in ρ: plugging in 0 for the
variable ρ evaluates to fx(β) − α 6= 0, so that it is a nonzero polynomial; and, crucially, ρ was
sampled uniformly (from F× \ [dm]) and independently of the communication (in particular, of y
and γ) by V . By Lemma 5.2 lemma once again, the equation is satisfied with probability at most
dm/(q − dm− 1) = o(1) and soundness follows.

Communication complexity. Most of the communication occurs in Steps 0 and 2 (the commit-
ments), which communicate

O
(
qm(logm+ log log q)m log q

)
= O

(
qmm log2 q

)
and

O (pdm log q) = O
(
d4m5q3 log q

)
bits, respectively. (The communication in other steps is significantly smaller: Step 1 has none, while
Steps 3 and 4 communicate m log q + log v = O(m log q) and O(dm log q) bits, respectively.)
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Space complexity. Apart from a constant number of elements of F (requiring O(log q) bits), the
verifier stores ` ∈ [v], k ∈ [p] and ρ,σ ∈ Fm. Since v ≥ p, the space complexity is dominated by `
and ρ,σ. Since storing ` requires log v = O(m log q) bits (as does computing fx(ρ)) while ρ and σ
require m log q bits each, the space complexity follows.

6.3 Zero-knowledge

Having shown that zk-pep is a valid streaming interactive proof, we now show it is also zero-
knowledge.

Theorem 6.3. Protocol 6.1 is zero-knowledge, secure against distinguishers with space dm2 polylog(q).
The simulator runs in O

(
(d+m log q)m log q

)
= O

(
dm2 log2 q

)
space.

Proof. Recall that an SIP with a space-s verifier is zero-knowledge against dm2 polylog(q)-space
distinguishers if there exists a streaming simulator S that satisfies the following. For any space-s
(honest or malicious) verifier Ṽ and input (x,β) where fx(β) = α, given whitebox access to Ṽ
the simulator S produces a view that is indistinguishable to a dm2 polylog(q)-space (streaming)
algorithm from the view generated by an interaction of Ṽ with the honest prover. Note that Ṽ can
be simulated in space O(s), so the space complexity of the statement suffices to simulate the verifier
of Protocol 6.1 since s = O(m log q).

The simulator interprets its read-only random bit string as (z, y) with z ∼ Fv and y ∼ Fdm×p
(so that vm log q + pdm log q ≤ qm+8 bits suffice and an algorithm with (m + 8) log q space can
address into this string). This pair will be used to simulate prover messages, whereas the simulation
of Ṽ will use a source of randomness that cannot be reread (but has unbounded length). In the
description that follows, as well as the more succinct one in Algorithm 6.1, recall that Ṽ is assumed
to only output a decision at the end of the protocol (so that, if it decides to reject in the middle, it
continues the protocol with dummy messages); and likewise if S (or P ) aborts.

In the setup, Step 0 (the temporal commitment), S simulates Ṽ (z). Then, using the snapshot
of the verifier’s memory and its whitebox access to Ṽ , the simulator finds the set C of s elements of
Fm that Ṽ may successfully decommit to with the largest probabilities. More precisely, S calls the
whitebox oracleW (see Definition 4.5) on the algorithm that corresponds to the verifier immediately
before streaming x, with initial memory state equal to the current snapshot b ∈ {0, 1}s, and whose
output is a pair (ρ, `) at Step 3 (ignoring L, the intermediate output at Step 2).

S initialises a(n empty) sorted list of message-probability pairs in Fm × [v]× [0, 1], and, for all
` ∈ [v], uses its oracle access to both z and W to find µ` := W

(
b, (z`, `)

)
. If the size of the list is

smaller than s, or µ` is larger than the smallest probability in it, S adds (z`, `, µ`) to it (and removes
the tuple with the smallest µ`′ if the size of the resulting would have exceeded s).

This yields the set C ⊂ Fm × [v] with the s most likely correct decommitments of Ṽ . Since the
string z is over the alphabet Fm, whose size satisfies

v

log log v
=

qm(logm+ log log q)

32 log
(
m log q + log(logm+ log log q)− 5

) ≤ qm

32
,

qm = Θ(v/ log log v) as well as s ≥ log p = Θ(log q) and s = polylog(p), Theorem 5.17 applies for
this parameter setting. This ensures that, except with probability o(1), the verifier Ṽ will output
either (z`, `) ∈ C or an incorrect (ρ, `) with z` 6= ρ in its decommitment at Step 3.

Then S proceeds to Step 1, where it simulates Ṽ (x) and, with F := {zi : (zi, i) ∈ C}, computes
fx(ρ) for every ρ ∈ F . At the start of Step 2 (the algebraic commitment), Ṽ sends a line L.
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The simulator inspects the intersection of L (viewed as a set) with the set of fingerprints F and
computes a random degree-dm polynomial g subject to the constraints g(β) = fx|L(β) = fx

(
L(β)

)
for all β ∈ L−1(F ).22 Note that the description of g is comprised of O(dm) field elements.

S samples k ∼ [p] then simulates Ṽ streaming y followed by γi = g(i)− yik for all i ∈ [dm] and
k; note that S is able to compute all γi from the description of g combined with its oracle access to
y.

There is no prover-to-verifier communication in Step 3 (the temporal decommitment), so S
simulates Ṽ until the verifier sends a tuple ρ ∈ Fm and an index ` ∈ [v]. The simulator then checks
that z` = ρ ∈ L and ρ := L−1(ρ) ∈ F× \ [dm]; if not, then S aborts (as P would).

Finally, in Step 4 (the algebraic decommitment), S simulates Ṽ until it sends a line L′ : F→ Fm.
The only remaining part of the verifier’s view left to generate are the evaluations of of the polynomial∑

i∈[dm] χi(ρ)ŷi ◦ L′ for all points in [dm]. These are computed by S in a streaming fashion using
its oracle access to y.

The space complexity of S is dominated by the description of the polynomial g, which requires
O(dm log q) bits, and by the set C of s = O(m log q) elements of Fm × [v]. Since each element
requires m log q + log v = O(m log q) bits, the total space complexity is

O(dm log q + sm log q) = O ((d+m log q)m log q) = O(dm2 log2 q),

as claimed. (Apart from C, the simulator stores fx(ρ) ∈ F for every ρ ∈ C, which requires s log q
bits; and the lines L, L′ as well as k, which require O(log q) bits each.)

Algorithm 6.1: Simulator for Protocol 6.1

Input: Whitebox access to Ṽ ; oracle access to a length-qm+8 random bit string interpreted
as (z, y) ∈

(
Fm
)v × Fdm×p; streaming access to (x,β) ∈ Γn × Fm.

Output: View
(
z, x,β, y,γ, k, (h(i) : i ∈ [dm])

)
with k ∈ [p], γ ∈ Fdm and h : F→ F.

Step 0: Temporal commitment

S: Send z.
Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting snapshot of Ṽ .

Use the whitebox oracle W to determine the set C ⊂ {(zi, i) : i ∈ [v]} of size s with
the largest W(b, (zi, i)).

Step 1: Input streaming

Ṽ : Stream x, computing and storing fx(ρ) for every ρ ∈ {zi : (zi, i) ∈ C} while simulating
the verifier.

S: Store β.

Step 2: Algebraic commitment

Ṽ : Simulate until Ṽ sends a line L, aborting if L(0) 6= β.

22Knowledge of fx(ρ) for all ρ ∈ F enables the simulator to sample from this distribution: F fixes |L ∩ F |
evaluations, and the simulator sets the dm− |L ∩ F | remaining ones uniformly.
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S: Sample a random polynomial g : F→ F of degree at most dm subject to g(0) = α and
g(β) = fx

(
L(β)

)
for all β such that (i, L(β)) ∈ C for some i ∈ [v].

Send y followed by γ =
(
g(i)− yik : i ∈ [dm]

)
and k ∼ [p].

Ṽ : Simulate until the end of the step.

Step 3: Temporal decommitment

Ṽ : Simulate until Ṽ sends ρ ∈ Fm and ` ∈ [v].

S: Check that z` = ρ ∈ L and ρ ∈ F× \ [dm], aborting if either check fails or (ρ, `) /∈ C.

Step 4: Algebraic decommitment

Ṽ : Simulate until Ṽ sends a line L′ : F→ Fm, aborting if L′(0) 6= k.

S: Set ρ := L−1(ρ) and send
(∑dm

i=1 χi(ρ) · ŷi ◦ L′(j) : j ∈ [dm]
)
.

Now, all that remains is to prove indistinguishability by space-s′ streaming algorithms between
the output of S and a real transcript, for some s′ comparable to the space complexities of the verifier
and simulator. The following claim proves this with s′ = dm2 polylog(q) (which is larger than both).

Claim 6.4. Fix α ∈ F and f as in the definition of pep, an input (x,β) ∈ Fn × Fm, a bit string
r of arbitrary length and a O(m log q)-space verifier algorithm Ṽ . Let D be a streaming algorithm
with space dm2 polylog(q) such that

P
[
D
(

View
P,Ṽ

(x, r)
)

accepts
]
− P

[
D
(
S
(
Ṽ , x, r

))
accepts

]
= ε,

with View
P,Ṽ

(x, r) a view of Protocol 6.1 and S
(
Ṽ , x, r

)
output by Algorithm 6.1. Then ε = o(1).

Assume, towards contradiction, that there exist α, f , an input (x,β) ∈ Fn × Fm, a streaming
verifier Ṽ with O(m log q) space and a (streaming) distinguisher D with dm2 polylog(q) space such
that D distinguishes real transcripts of zk-pep(f, α) from simulations with bias ε = Ω(1) when the
input is (x,β).

Recall that we assume that Ṽ rejects only after receiving all messages from P ; therefore, the
algebraic commitment (y,γ, k) is always present in both real and simulated views. Our goal is to
show D implies a one-way protocol for index over the binary alphabet with a small message and a
large bias, using Lemma 5.9. We do so by constructing, from D, a one-way communication protocol
that distinguishes algebraic commitments to a fixed message α ∈ F` from algebraic commitments
to a random α′ ∈ F`, where ` ≤ dm.

As both the real and simulated transcripts are identically distributed up to (and including) the
verifier’s message in Step 2, the expected distinguishing advantage and probability of a simulation
failure (i.e., of an abortion in Step 3 due to (ρ, `) /∈ C) are ε and o(1), respectively (over z and
the bits of the verifier randomness r used until then). Therefore, there exists a fixed prefix of the
transcript that retains distinguishing advantage ε/2 and whose probability of a simulation failure is
o(1); indeed, at least an ε/2 fraction of prefixes retains advantage ε/2 and at most an o(1) fraction
yields simulation failures with Ω(1) probability, so an ε/2− o(1) fraction of prefixes work. We thus
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Figure 3: Reduction from index to distinguishability of views when ` = 3 and dm = 4. The
instance w is inserted into the first 2 rows of y, while y3 is filled in with joint randomness and y4 is
the solution of the linear system shown in the diagram.

assume, in the one-way protocol we define next, not only x and β to be fixed, but also the line L
and z – and, consequently, the set C ⊂ {(zi, i) : i ∈ [v]} (as well as the corresponding fx(zi)) that
captures most of the weight of correct tuples Ṽ may decommit to, as given by Theorem 5.17.

Viewing L as the set of pairs {(L(σ), σ) : σ ∈ F}, define ` := dm−|L ∩ C| and assume,23 without
loss of generality, that L ∩ C = [dm] \ [`]. Consider the following one-way communication protocol
with shared randomness (for strings w of length p) that distinguishes a commitment (w, k,η) to(
fx(i) : i ∈ [`]

)
from a commitment to a random message: Alice uses S to simulate an interaction

between P and Ṽ with input (x,β) and verifier randomness r, executing D on the (partial and
fixed) transcript thus obtained, until Ṽ sends a line L : F→ Fm in Step 2.

Alice samples ρ′ ∼ F× \ [dm] and continues the simulation of D by feeding it y ∈ Fdm×p defined
as follows: yi := wi for i ∈ [`], yi ∼ Fp for ` < i < dm and

ydm := χdm(ρ′)−1 ·

(
t−

dm−1∑
i=1

χi(ρ
′)yi

)
,

where y`+1, . . . , ydm−1 and t are random strings (in Fp) shared with Bob. Note that ρ′ /∈ {0}∪ [dm]
implies χdm(ρ′) 6= 0, so that ydm is well-defined. (See Fig. 3 for a diagram of the reduction.)

After simulating Ṽ , D and S in Step 2 with y, she sends Bob all three snapshots as well as L
and ρ′ in a dm2 polylog(q)-bit message.24 (The space complexities of Ṽ and S are both dominated
by the distinguisher’s.)

Bob, in turn, finishes the simulation of Step 2 with his (random) index k ∈ [p] and the correction
tuple γ defined as follows:25

γi =

{
ηi, if i ≤ `
x̂(i)− yik, if ` < i < dm

and

γdm := χdm(ρ′)−1

(
fx|L(ρ′)− χ0(ρ′)α− tk −

dm−1∑
i=1

χi(ρ
′)γi

)
.

Bob proceeds to simulate Steps 3 and 4, using S to generate the remainder of the view. Note that
in the former step (ρ, `) /∈ C is the only case in which S aborts when P would not, which identifies

23Note that when |L ∩ C| ≥ dm the simulator knows the entirety of fx|L, in which case the distinguishing bias is 0.
Nonzero bias thus implies dm > |L ∩ C|.

24We assume Bob receives the tuple η and reads C along with the corresponding evaluations from the simulator’s
snapshot; alternatively, Alice could send this information in a message that is asymptotically no larger.

25Recall that all yi for all ` < i < dm are contained in Alice and Bob’s shared randomness.
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a simulated transcript with certainty; but this is a small-probability event. When S fails (i.e.,
(ρ, `) /∈ C) or the field element ρ = L−1(ρ) is not equal to ρ′, Bob halts the simulations and accepts
or rejects uniformly; otherwise, he finishes the transcript by sending the low-degree polynomial that
comprises the last round. This is possible because, while Bob does not know all ŷi, he does know
the required linear combination:

dm∑
i=1

χi(ρ) · yi =

dm−1∑
i=1

χi(ρ) · yi + χdm(ρ) · χdm(ρ)−1

(
t−

dm−1∑
i=1

χi(ρ)yi

)
= t,

and since t is a (random) string known to both Alice and Bob, in particular he can compute t̂L′ for
any line L′ : Fm → F.

Finally, Bob inspects the output of D and chooses his output accordingly, accepting if and only
if D accepts. Note that this one-way protocol succeeds

• with probability 1/2 (and thus bias 0) either when S fails or when S succeeds and ρ′ 6= ρ;
• with bias ε/2 when S succeeds and ρ′ = ρ.

The latter follows from the fact that, if S succeeds and ρ′ = ρ, it produces a full transcript
where γ is a correction for the (unique) degree-dm polynomial g such that g(0) = α, g(i) = ηi + yik
for i ∈ [`] and g(i) = fx(i) for i ∈ [dm] \ [`] = L ∩ C.26 Therefore, if η =

(
fx(i) − yik : i ∈ [`]

)
,

then γ is a correction to fx; while if η is random, then γ is a random degree-dm polynomial that
matches fx in (0 and) L ∩ C. Since D distinguishes between the two cases with bias ε/2, then so
does the one-way protocol. Therefore,

Pw∼F`×p
k∼[p]

[
B
(
A(w),

(
fx(i)− wik : i ∈ [`]

)
, k
)
accepts

]
− Pw∼F`×p

k∼[p]

η∼F`

[
B
(
A(w),η, k

)
accepts

]
= o(1) ·

(
1

2
− 1

2

)
+
(
1− o(1)

)
·
(

1− 1

q

)
·
(

1

2
− 1

2

)
+
(
1− o(1)

)
· 1

q
· ε

2

≥ ε

3q
.

Finally, applying Lemma 5.9, we conclude that there exists a one-way binary index protocol
for strings of length p = m(dmq)3 with messages of length dm2q2`2 log2 q

ε2
polylog(q) ≤ d3m4q2.01 and

constant bias, a contradiction with
√

d3m4q2.01

p = o(1).

Remark 6.5. Inspecting the proof of Claim 6.4, we see that increasing the prover’s commitment
length allows us to achieve significantly stronger indistinguishability: with p = logω(1) n, we have√
s′q2`2/p = o(1) for any s′ = polylog(n). This setting of p increases only the communication

complexity of the interactive phase (Steps 2 to 4) – which can still be bounded by no(1) – and makes
the protocol secure against polylog(n)-space distinguishers.

26When L ∩ C 6= [dm] \ [`], the set still fixes |L ∩ C| values of g and leaves dm− |L ∩ C| to be chosen randomly.
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6.4 Applications: index, point-query, range-count and selection

From the general zk-pep(f, α) protocol, we immediately obtain a zero-knowledge streaming interac-
tive proof for the decision-index(α) problem (Definition 5.4) as a corollary:

Corollary 6.6. Fix δ ∈ (0, 1]. For any α ∈ Fq where q = Θ
(

log1+ 2
δ n
)
, decision-index(α) admits

a zkSIP with space complexity O(log n) and communication complexities O(n1+δ) and polylog(n)

in the setup and interactive stages, respectively. The protocol is secure against Õ
(

log2+ 2
δ n
)
-space

distinguishers.

Proof. Set d = log
2
δ n and m = δ log n/2 log log n, so that dm = n and dm/q = o(1). Note,

moreover, that decision-index(α) is the polynomial evaluation problem where fx = x̂, the low-
degree extension of x (which can be computed in O(m log q) space) and β is the identification of
a coordinate j ∈ [n]. Thus, applying Protocol 6.1 to the mapping x 7→ x̂ with the aforementioned
parameters, we obtain a protocol with verifier space complexity

O(m log q) = O

(
log n

log logn
· log log n

)
= O(log n)

and communication complexities

O(qmm log2 q) =
(

log1+ 2
δ n
) δ logn

2 log logn
polylog(n)

= n1+ δ
2 polylog(n)

= O(n1+δ)

in the setup and O(d4m5q3 log q) = polylog(n) in the interactive stage; moreover, it is secure against
distinguishers with dm2 polylog(q) = Õ

(
log2+ 2

δ n
)
space.

We now select a few applications of the zk-pep protocol to solve other streaming problems; the
remainder of this section follows reductions to pep due to [CCM+19].

In the point-query problem, the input is a stream of updates (u, i) ∈ Z×[`] to an `-dimensional
vector y initialised to zero, followed by an index j, and the task is to output yj . A formal definition
follows.27

Definition 6.7. Let `,M ∈ N and t ∈ [−M,M ] ∩ Z. The language point-query(t) is defined as(u1, k1, . . . , un, kn, j
)

:

∀i, ui ∈ [−M,M ] ∩ Z and ki, j ∈ [`],

∀k,
∣∣∣∑i∈[n],ki=k

ui

∣∣∣ ≤M and∑
i∈[n],ki=j

ui = t

 .

Corollary 6.8. Fix δ ∈ (0, 1]. Let `,M ∈ N with ` ∈ [n], M = poly(n) and t ∈ [−M,M ]∩Z. There
exists a zkSIP for point-query(t) with space complexity O(log2 n) and communication complexities
O(n1+δ) and polylog(n) in the setup and interactive stages, respectively.

27We remark that point-query is formally a promise problem: the condition that coordinatewise sums are bounded
by M is assumed to hold for no-instances of the language too. However, a polynomial bound is often trivially true
(as in the applications that follow).
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Proof. We first note that, by an application of the Chinese Remainder Theorem (see, e.g., [GR15]),
we may assume M = O(log n) at the cost of a logarithmic blowup to the space complexity: the
verifier runs Protocol 6.1 in parallel with O(log n) fields Fq ⊃ Fp for distinct primes p = O(log n),
so that any integer in [−M,M ] can be uniquely represented by logarithmically many field elements.

We set the same parameters as in Corollary 6.6: degree d = log
2
δ n and m = δ log n/2 log log n,

but also ensure q = Θ
(

log1+ 2
δ n
)
is the power of a prime larger than 2M + 1 (so that elements of

[−M,M ] ∩ Z map to distinct field elements).
Viewing integers in [−M,M ] as elements of F, we define y ∈ F` by

yk :=
∑
i∈[n]
ki=k

ui,

and the mapping x =
(
(ui, ki) : i ∈ [n]

)
7→ fx by fx := ŷ. Note that the verifier can compute

ŷ(ρ) =
∑
k∈[`]

 n∑
i=1
ki=k

ui

χk(ρ)

by recording the running sum of uiχki(ρ), a task for which O(m log q) = O(log n) space suffices.
Applying Protocol 6.1 with the mapping and parameters above, we obtain a zero-knowledge SIP

with space complexity O(log2 n) (due to the aforementioned logarithmic overhead), communication
complexity O(n1+δ) in the setup and polylog(n) in the interactive stage.

With the protocol of Corollary 6.8, we obtain a zero-knowledge SIP for the range-count
problem, where the stream consists of a sequence x of elements in a set [`] followed by a subset
R ⊆ [`], and the task is to return the number of times an element of R appeared in the stream.
Formally,

Definition 6.9. Let R ⊆ 2[`]. The language range-count(t) is defined as

{(x,R) ∈ [`]n ×R : |{i ∈ [n] : xi ∈ R}| = t} .

Corollary 6.10. Fix δ ∈ (0, 1]. For every R ⊆ 2[`] of size poly(n), the language range-count(t)
admits a zkSIP with space complexity O(log2 n) and communication complexities O(n1+δ) and
polylog(n) in the setup and interactive stages, respectively.

Proof sketch. We run the protocol for point-query (Corollary 6.8) on the stream obtained by
concatenating (R′ ∈ R : xi ∈ R′) for every i ∈ [n] (which the verifier can simulate while streaming
x), followed by R (viewed as an element of [|R|]). More precisely, we redefine the mapping x 7→ fx

as what would be obtained by processing the derived stream, which avoids the length overhead (to
n|R| = poly(n), rather than n) incurred otherwise.

Since M = n is an upper bound for the number of points in any subset of [`], we obtain a
protocol with the complexities as claimed.

We conclude with an application of the range-count protocol to solve selection (and me-
dian in particular). For x ∈ [`]n and i ∈ [`], we call ϕ(x) the frequency vector of x, defined as
ϕi(x) = |{j ∈ [n] : xj = i}| (see, also, Definition 7.4). A word in the language selection consists
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of x along with a rank r ∈ [n] the integer k ∈ [`] with this rank and offsets φ ∈ [n], φ′ ∈ {0} ∪ [n].
(We remark that the additional parameters take into account what the verifier learns in the search
version of the SIP: not only the element k with rank r, but the values of the cumulative frequencies
up to k − 1 and up to k.)

Definition 6.11. For ` ∈ [n], the language selection is defined as{
(x, k, r, φ, φ′) ∈ [`]n × [`]× [n]× [n]× {0} ∪ [n] :

k−1∑
i=1

ϕi(x) = r − φ and
k∑
i=1

ϕi(x) = r + φ′

}
.

Corollary 6.12. Fix δ ∈ (0, 1]. There exists a zkSIP for selection with space complexity O(log2 n)
and communication complexities O(n1+δ) and polylog(n) in the setup and interactive stages, respec-
tively.

Proof sketch. We execute the protocol for range-count twice (by temporally committing and
streaming x only once; this can be done by saving two independent fingerprints for fx, and only
running zk-pep twice from Step 2 onwards). The class of ranges is R = {[n] \ [i] : 0 ≤ i ≤ n}, of
size O(n), and the verifier checks that the number of hits in the ranges [n] \ [k− 1] and [n] \ [k] are
r − φ and r + φ′, respectively.

7 A zero-knowledge sumcheck SIP

In the previous section we showed how Protocol 5.1, the polynomial evaluation protocol of [CTY11],
can be made zero-knowledge with the careful addition of algebraic and temporal commitment pro-
tocols. Although pep is a foundational problem for streaming algorithms – generalising index, for
example – it is not immediately clear whether the same techniques enable us to construct a zero-
knowledge version of the second widely used tool in SIPs: the sumcheck protocol. In this section,
we prove that they do: Protocol 7.2 leys out zk-sumcheck, a zkSIP for the sumcheck problem
(Definition 7.1) with the same components, namely, the algebraic and temporal commitments that
enabled zk-pep.

Sumcheck protocols are extremely useful building blocks for the construction of interactive
proofs; indeed, some of the most celebrated results of the last two decades rely on them, most
notably the GKR [GKR08] and subsequent delegation-of-computation protocols (e.g., [RVW13,
RRR19, RR20]). Roughly speaking, they allow a verifier to check that the sum, over a subcube,
of the evaluations of a polynomial yields a prescribed field element; they save exponentially in the
communication (and time) complexity as compared to sending the entire description of the polyno-
mial. In particular, they enable the (exact) computation of frequency moments of a stream via an
interactive protocol in sublinear space [CCMT14], which is impossible without interaction [AMS99].

More precisely, let f : Fm → F be a polynomial of (individual) degree d and H ⊂ F be an
evaluation domain. One obvious way to check that

∑
β∈Hm f(β) is equal to some α ∈ F is via

the description of f (say, as a list of sufficiently many evaluations), from which the sum can be
computed directly. This requires not only the entire description of f , which has size (d+ 1)m; but
also entails evaluating f over |H|m many points, implying an even larger runtime.

The standard sumcheck protocol (Protocol 7.1) enables a verifier V to offload this costly com-
putation to a powerful prover P and check the claim by communicating O(dm) field elements in
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O(|H|md) time steps, with a single random evaluation of f .28

Protocol 7.1: sumcheck(f, α)

Input: Explicit access to F = Fq, evaluation domain H ⊂ F, degree d, dimension m and
α ∈ F as well as f(ρ) with ρ ∼ Fm, where f : Fm → F is a degree-d polynomial.

Repeat, from i = 1 to m:

P : Send the polynomial fi(T ) =
∑

βi+1,...,βm∈H f(ρ1, . . . ,ρi−1, T, βi+1, . . . , βm).

V : Send ρi.

V : Check that
∑

β1∈H f1(β1) = α, f(ρ) = fm(ρm) and the intermediate polyomials satisfy∑
βi∈H fi(βi) = fi−1(ρi−1) for all 2 ≤ i < m, accepting if so and rejecting otherwise.

It is well known that the protocol above (always) accepts if
∑

β∈Hm f(β) = α, and rejects with
probability at least 1−dm/q otherwise (see, e.g., [AB09]). As sums of polynomials can be performed
in a streaming fashion, the verifier only needs O(m log q) bits of space.

7.1 The protocol

We now show that the techniques of Section 5 enable us to construct a streaming zero-knowledge
variant of sumcheck(f, α), which solves the problem defined next.

Definition 7.1. Let α ∈ F, H ⊆ F and f = {fx : x ∈ Γn} be a mapping such that fx : Fm → F is
a degree-d polynomial. sumcheck(f, α) is the language

{
x ∈ Γn :

∑
β∈Hm fx(β) = α

}
.

The techniques need to be adapted, however, with one key distinction between zk-sumcheck
and zk-pep: the prover now must make many (algebraic) commitments, each of which is used in a
pair of decommitments; moreover, the commitments cannot be sent in parallel anymore, owing to
dependencies between messages in contiguous rounds. Intuitively, neither of these should pose too
great a challenge: computing fingerprints of a set of messages whose commitment is sent sequentially
should be no easier than when they are sent in parallel (indeed, for one-way communication protocols
they are exactly equivalent); and if one algebraic decommitment does not leak a significant amount
of information, two should not do so either.

The protocol follows. We note that (differently from Section 6) χ(ρ) denotes the vector of
Lagrange polynomials over F for degree-d univariate polynomials with interpolating set [d+ 1], i.e.,
χ(ρ) =

(
χi(ρ) : i ∈ [d+ 1]) ∈ Fd+1.

Protocol 7.2: zk-sumcheck(f, α)

Input: Explicit access to F, element α ∈ F, degree d, dimension m, evaluation domain
H ⊂ F and mapping x 7→ fx; streaming access to x ∈ Γn.

28Protocol 7.1 is laid out in a somewhat non-standard (but equivalent) form, with checks deferred to the end, that
more closely resembles the streaming version we construct.
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Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(logm+ log log q)/96 and p = qlog log q.

Step 0: Temporal commitment

P : Send a string z ∼
(
(F \ [d+ 1])m

)v.
V : Sample ρ ∼ (F \ [d+ 1])m and stream z. Check if zi = ρ for each i, storing ` := i if

so.
Reject if ρ 6= zi for all i ∈ [v].

Step 1: Input streaming

V : Stream x and compute fx(ρ) ∈ F.

Step 2: Algebraic commitments

P : Compute f1(T ) =
∑

β2,...,βm∈H f
x(T, β2 . . . , βm) and sample k ∼ [p].

V : Sample σ(1), . . . ,σ(m+1) ∼ Fm. Compute χ(ρ1) . . . ,χ(ρm) and the linear coefficients
θ such that

∑
β∈H g(β) =

∑
i θig(i) when g is a degree-d univariate polynomial.

Repeat, from i = 1 to m:

P : Send y(i) ∼ F(d+1)×p and γ(i) =
(
fi(j)− y(i)

jk : j ∈ [d+ 1]
)
.

V : Compute the fingerprints ŷ(i)
(
σ(i),χ(ρi)

)
and ŷ(i)

(
σ(i+1),θ

)
, as well as the dot

products χ(ρi) · γ(i) and θ · γ(i).
Send ρi.

P : If i < m, compute fi+1(T ) =
∑

βi+2,...,βm∈H f
x(ρ1, . . . ,ρi, T, βi+2, . . . , βm).

P : Send k.

Step 3: Temporal decommitment

V : Send `.
P : Check that z` = ρ ∈

(
F \ [d+ 1]

)m, aborting otherwise.

Step 4: Algebraic decommitments

V : For all 1 < i ≤ m, run

decommit
(

0,θ · y(i) − χ(ρi−1) · y(i−1), k
)
, with

fingerprint ŷ(i)
(
σ(i),θ

)
− ŷ(i−1)

(
σ(i),χ(ρi−1)

)
and correction θ ·γ(i)−χ(ρi−1) ·γ(i−1).

Run decommit
(
α,θ · y(1), k

)
with fingerprint ŷ(1)

(
σ(1),θ

)
and correction θ · γ(1).

Run decommit
(
fx(ρ),χ(ρm) · y(m), k

)
with fingerprint ŷ(m)

(
σ(m+1),χ(ρm)

)
and cor-

rection χ(ρm) · γ(m).
Accept if all decommitments accept, and reject otherwise.
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7.2 Analysis of the protocol

We now show that zk-sumcheck is a valid (i.e., complete and sound) streaming interactive proof,
and compute its space and communication complexities.

Theorem 7.2. Let f be such that an evaluation of the Fq-polynomial fx can be computed by
streaming x in O(m2 log q) space. For any α ∈ Fq, Protocol 7.2 is an SIP for sumcheck(f, α)
with space complexity s = O(m2 log q), communication complexity O(qmm log2 q) in the setup and
O(qlog log qdm log q) = qlog log q poly(q) in the interactive phase.

Proof. As in Theorem 6.2, we first show completeness and soundness, then compute the complexities.

Completeness. Recall that decommit(β,w, k) with correction γ accepts if (the fingerprint matches
the LDE of w and) γ + wk = β. Therefore, when P and V are both honest, the first m − 1
decommitments of Step 4 accept, since

θ · γ(i) − χ(ρi−1) · γ(i−1) +
(
θ · y(i) − χ(ρi−1) · y(i−1)

)
k

=
d+1∑
j=1

(
θj
(
γ

(i)
j + y

(i)
jk

)
− χj(ρi−1)

(
γ

(i−1)
j + y

(i−1)
jk

))

=
d+1∑
j=1

θjfi(j)−
d+1∑
j=1

χj(ρi−1)fi−1(j)

=

∑
β∈H

fi(β)

− fi−1(ρi−1)

= 0.

Likewise, the last two decommitments accept because

θ · γ(1) +
(
θ · y(1)

)
k

=

d+1∑
j=1

θj(γ
(1)
j + y

(1)
jk )

=
d+1∑
j=1

θjf1(j)

=
∑
β∈H

f1(β)

=
∑

β∈Hm

f(β)

= α
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and

χ(ρm) · γ(m) +
(
χ(ρm) · y(m)

)
k

=
d+1∑
j=1

χj(ρm)(γ
(m)
j + y

(m)
jk )

=
d+1∑
j=1

χj(ρm)fm(j)

= fm(ρm)

= fx(ρ),

respectively. The verifier thus accepts unless ρ 6= {zi : i ∈ [v]} in Step 0, an event with probability(
1− 1

q − d− 1

)v
≤ e−v/(q−d−1)m ≤ e−v/qm = o(1).

Soundness. We divide the behaviour of a malicious prover into three cases. The first (and sim-
plest) is when P̃ commits to fi for all i and decommits with polynomials whose evaluations at 0
yield the same values as the honest prover (i.e., in decommit(β,w, k) with γ as the correction, P̃
replies with a polynomial g such that g(0) = wk + γ). Then, since

∑
β∈Hm f(β) 6= α, the verifier

rejects in decommit
(
α,θ · y(1), k

)
with probability 1.

The second case is when P̃ commits to a sequence of polynomials g1, . . . , gm such that gi 6= fi
for some i, and decommits honestly. Then V accepts if and only if the set {gi} leads the verifier
in the standard sumcheck protocol to accept; by the soundness of that protocol, V accepts with
probability at most dm/(q − d− 1) = o(1).

The only remaining case is when P̃ commits to a sequence of polynomials {gi} (which may or
may not coincide with {fi}) and, in at least one decommitment with respect to a string w where P̃
receives the line L, the prover replies with a degree-dm polynomial g such that g(0) 6= wk = ŵ|L(0).
Then, since V has a fingerprint ŵ(σ) with σ ∼ Fm and a field element σ ∼ F such that L(σ) = σ,
we have g(σ) 6= ŵ(σ) = ŵ|L(σ) with probability dm/q = o(1) by Lemma 5.2 (Schwartz-Zippel),
and soundness follows.

Space and communication complexities. The communication of the setup (Step 0, the tem-
poral commitment) is qm(logm+ log log q)m log q = O(qmm log2 q) bits. The communication of the
interactive phase (Steps 2 to 4) is dominated by the m algebraic commitments to elements of Fd+1

with length p = qlog log q each, for a total of O(qlog log qdm log q) ≤ qlog log q+2 bits.
The verifier’s space complexity is dominated by computing fx(ρ) and storing O(m) elements of

Fm (i.e., ρ and σ(i) for i ∈ [m+ 1]), so that it is bounded by O(m2 log q).

7.3 Zero-knowledge

Having shown that zk-sumcheck is a valid streaming interactive proof, we now show it is also zero-
knowledge.

Theorem 7.3. Protocol 7.2 is zero-knowledge against poly(q)-space streaming distinguishers. The
simulator has space complexity poly(q).
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Proof. We shall prove indistinguishability as we have done earlier: with the simulator S shown in
Algorithm 7.1, we assume towards contradiction that there exists α ∈ F, an input x ∈ Fn, internal
randomness r, a space-O(m2 log q) verifier Ṽ and a poly(q)-space distinguisher D that accepts
View

P,Ṽ
(x, r) with probability ε = Ω(1) above that with which D accepts S

(
Ṽ , x, r

)
. Then, via

Lemma 5.9, we construct a one-way protocol for index with impossibly large success probability.
The space complexity of S is dominated by its storing of O(m2 log q) = poly(q) elements of

Fm × [v] and by the computation of the partial sums (gi : i ∈ [m]). Note that the naive strategy of
sampling g and computing the corresponding partial sums requires Ω(dm) space; however, [BCF+17]
constructs an algorithm that can sample from the same distribution in poly(q) time, and thus
space.29 Note, moreover, that the alphabet over which z is taken has size

(q − d− 1)m = qm
(

1− d+ 1

q

)m
≥ qm

(
1− 1

m

)m
≥ qm

3

≥ 32v

log log v
,

so that Theorem 5.17 applies. (The conditions (q − d − 1)m = Θ
(

v
log log v

)
and log q ≤ s =

polylog(q) are also clearly satisfied.)

Algorithm 7.1: Simulator for Protocol 7.2

Input: Whitebox access to Ṽ ; oracle access to random bit string of length qm+log log q poly(q)
interpreted as the concatenation of z ∈ (Fm)v and y(i) ∈ F(d+1)×p for all i ∈ [m].

Output: View
(
z, x,

(
y(i),γ(i) : i ∈ [m]

)
, k,
(
hi : i ∈ [m+ 1]

))
with z ∈

(
(F \ [d + 1])d

)v,
y(i) ∈ F(d+1)×p, γ(i) ∈ Fd+1, k ∈ [p] and hi : F→ F of degree dm.

Step 0: Temporal commitment

S: Send z ∈
(
(F \ [d+ 1])m

)v.
Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting snapshot of Ṽ .

Use the whitebox oracle W to determine the set C ⊂ {(zi, i) : i ∈ [v]} of size s with
the largest W(b, (zi, i)).

Step 1: Input streaming

Ṽ : Stream x, simulating the verifier while computing and storing fx(zi) for all (zi, i) ∈ C.

29More precisely, the algorithm of [BCF+17] allows us to sample from the distributions gi(β) for any β and i
under the uniform distribution of g satisfying a set of constraints. To sample (g1, . . . , gm), we begin with the set of
constraints induced by C and, after sampling gi(j), include the corresponding constraint before the next sample.
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Step 2: Algebraic commitments

S: Take g1 : F→ F of degree (at most) d under the distribution determined by sampling
g : Fm → F subject to the constraints

∑
β∈Hm g(β) = α and g(zi) = fx(zi) for all

(zi, i) ∈ C, then outputting g1(T ) =
∑

β2,...,βm∈H g(T, β2 . . . , βm).
Sample k ∼ [p].

Ṽ : Simulate until the end of the step.

Repeat, from i = 1 to m:

S: Send y(i) and γ(i) =
(
gi(j)− y(i)

jk : j ∈ [d+ 1]
)
.

Ṽ : Simulate until ρi is sent (or until the end of the step when i = m).
S: If i < m, sample gi+1 under the distribution given by taking g randomly and

outputting gi+1(T ) =
∑

βi+2,...,βm∈H g(ρ1, . . . ,ρi, T, βi+2, . . . , βm).

S: Compute θ such that
∑

β∈H h(β) =
∑

i θih(i) when h is a degree-d univariate polyno-
mial, and send k.

Step 3: Temporal decommitment

Ṽ : Simulate until Ṽ sends ` ∈ [v].

S: Abort if z` 6= ρ, ρ /∈
(
F \ [d+ 1]

)m or (ρ, `) /∈ C.

Step 4: Algebraic decommitments

For all 1 < i ≤ m,

Ṽ : Simulate until Ṽ sends a line Li : F→ Fm.
S: Abort if Li(0) 6= k, and otherwise send((

θ · ŷ(i) − χ(ρi) · ŷ(i−1)
)
◦ Li(j) : j ∈ [dm+ 1]

)
.

Ṽ : Simulate until Ṽ sends a line L1 : F→ Fm.
S: Abort if L1(0) 6= k, and otherwise send((

θ · ŷ(1)
)
◦ L1(j) : j ∈ [dm+ 1]

)
.

Ṽ : Simulate until Ṽ sends a line Lm+1 : F→ Fm.
S: Abort if Lm+1(0) 6= k, and otherwise send((

χ(ρm) · ŷ(m)
)
◦ Lm+1(j) : j ∈ [dm+ 1]

)
.

We fix a string z (and thus the set C of the verifier’s likely decommitments) along with bits of
the verifier’s random string r that ensure distinguishing bias at least ε/2 and o(1) probability of
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simulation failure (recall that failure corresponds to the event (ρ, `) /∈ C). Consider the following
(linear) mapping between F-vector spaces: from polynomials g : Fm → F of degree at most d
that satisfy the s + 1 linear constraints of the fingerprints and subcube sum (i.e., g(ρ) = zi for
all (zi, i) ∈ C and

∑
β∈Hm g(β) = α) to the sequence of univariate (partial sum) polynomials∑

βi+1,...,βm∈H g(ρ1, . . . ,ρi−1, T, βi+1, . . . , βm) for all i ∈ [m] and evaluation points ρ in C.
Let ` ≤ (d+ 1)m be the dimension of the image of this mapping, and let ξ = ξ(ρ) ∈ F(d+1)m×`

be the linear coefficients that map vectors in F` to partial sums (given by d + 1 evaluations) with
respect to ρ. We now proceed to Alice’s strategy, who receives w ∈ F`×p as input and uses a random
y′(i) shared with Bob for each commitment string y(i). She will also use t(i) for each pair y(i−1), y(i);
additionally, t(1) and t(m+1) will be used for y(1) and y(m), respectively. The t(i) will ensure Bob
knows the linear combination of every algebraic decommitment.

More precisely, Alice runs S (with the fixed string z and partially fixed r) until the end of
Step 0, determines the set C, samples ρ′ ∼ F = {zi : (zi, i) ∈ C} and sets ξ = ξ(ρ′). For every
(i, j) ∈ [m − 1] × [d] and (i, j) ∈ {m} × [d − 1], she sets y(i)

j = y
′(i)
j + (ξ · w)(i−1)d+j . She also sets

the remaining rows (i.e., y(i)
d+1 for all i as well as y(m)

d ) to satisfy

θ · y(1) = t(1),

θ · y(i) − χ(ρ′i−1) · y(i−1) = t(i) for 1 < i ≤ m and

χ(ρ′m) · y(m) = t(m+1).

Note that these are m+1 linear constraints on m+1 row vectors of dimension p, and since θd+1

and χd(ρ
′
m) are nonzero, there is at least one solution.30 (If some constraint is not independent

from the others, Alice replaces it with a “canonical” constraint to ensure a unique solution, e.g.,
setting the linear coefficients for y(i)

d+1 with the smallest bit representation that makes the constraint
independent.) She then simulates Step 1 and the part of Step 2 until Ṽ (and D) finish streaming the
y(i), sending the resulting snapshots of S, Ṽ and D to Bob along with ρ′ in a poly(q)-bit message.

Bob reads his input (η, k) and sets the correction tuples γ(i) ∈ Fd+1 so as to satisfy constraints
with the same linear coefficients as y(i): he sets γ(i)

j = (ξ · η)(i−1)d+j − y
′(i)
jk for (i, j) ∈ [m− 1]× [d]

and (i, j) ∈ {m} × [d− 1]; then sets the coordinates i = d+ 1 and j ∈ [m] as well as (i, j) = (d,m)
to satisfy

θ · γ(1) = α− t(1)
k ,

θ · γ(i) − χ(ρ′i−1) · γ(i−1) = −t(i)k for 1 < i ≤ m and

χ(ρ′m) · γ(m) = fx(ρ′)− t(m+1)
k .

Bob then finishes the simulation of Step 2 with the coordinate k ∈ [p].
In Step 3, if ρ′ 6= ρ or the simulation fails (i.e., z` = ρ but (ρ, `) /∈ C), Bob accepts or rejects

uniformly at random. Otherwise, he simulates Step 4 until the protocol terminates (which his access
30The condition χd(ρ

′
m) 6= 0 follows from choosing ρ′m /∈ [d + 1], and we assume the last entry of θ is nonzero

without loss of generality. Note that if θ is the zero vector the problem trivialises: in this case the verifier does not
need assistance from a prover (or even to stream x), accepting if and only if α = 0.
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to the shared random strings t(i) enables him to). At the end of the simulation, Bob accepts if and
only if D accepts.

Note that, when η = τ − (wik : i ∈ [`]) for a vector τ that maps to the polynomials (gi : i ∈ [m])

via ξ = ξ(ρ), then γ(i)
j satisfies

γ
(i)
j = (ξ · η)(i−1)d+j − y

′(i)
j

= gi(j)− (ξ · w)(i−1)d+j,k − y
′(i)
jk

= gi(j)− y(i)
jk

for all i, j in [m− 1]× [d] and {m}× [d− 1] (equivalently, for all i, j such that y(i)
j includes a linear

combination of the rows of w). Then the linear constraints satisfied by the other m+1 pairs ensures
the equality extends to all (i, j): for i ∈ [m], j = d+ 1 and (i, j) = (m, d), we have

θ · γ(1) = α− t(1)
k

=
d+1∑
j=1

θjg(j)− t(1)
k

=
d+1∑
j=1

θj

(
g(j)− y(1)

jk

)
,

χ(ρm) · γ(m) = fx(ρ)− t(m+1)
k

= gm(ρm)− t(m+1)
k

=
d+1∑
j=1

χj(ρm)
(
gm(j)− y(m)

jk

)
,

and, for 1 < i ≤ m,

θ · γ(i) − χ(ρi−1) · γ(i−1) = −t(i)k

=
d+1∑
j=1

(
χj(ρi−1)y

(i−1)
jk − θjy(i)

jk

)

=
d+1∑
j=1

θj

(
gi(j)− y(i)

jk

)
+

d+1∑
j=1

χj(ρi−1)
(
gi−1(j)− y(i−1)

jk

)
.

That is, since the γ(i) satisfy the same linear constraints as the vectors
(
gi(j)−y(i)

jk : j ∈ [d+1]
)
,

it follows that they are equal. Therefore the resulting view is distributed exactly as View
P,Ṽ

(x, r)

when τ maps to the partial sums of fx (and thus ξ(ρ) · τ maps to the partial sums with respect to
ρ); and if η ∼ F`, it is distributed as S(Ṽ , x, r) (unless the simulation fails or ρ 6= ρ′).

This one-way protocol achieves bias 0 when the simulation fails (an o(1)-probability event) or
the verifier’s temporal decommitment ρ is in C (i.e., the simulation succeeds) but ρ 6= ρ′, an event
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with conditional probability 1− 1
|C| = 1− 1

s . Otherwise, it achieves a bias of ε/2. We thus have

Pw∼F`×p
k∼[p]

[
B
(
A(w),

(
fx(i)− wik : i ∈ [`]

)
, k
)
accepts

]
− Pw∼F`×p

k∼[p]

η∼F`

[B (A(w),η, k) accepts]

= o(1) · 0 +
(
1− o(1)

)
·
(

1− 1

s

)
· 0 +

(
1− o(1)

)
· 1

s
· ε

2

≥ ε

3s
.

Applying Lemma 5.9 yields a one-way binary index protocol for strings of length p = qlog log q

with messages of length s2`2 log2 q
ε2

poly(q) = poly(q) and constant bias. But this contradicts Propo-

sition 5.5’s upper bound of O
(√

poly(q)/p
)

= o(1).

7.4 Applications: frequency-moment and inner-product

We now proceed to applications of zk-sumcheck. The first is a zkSIP that (exactly) computes
frequency moments of order k > 1 (commonly denoted Fk) for a stream over an alphabet of size `,
a problem known to require Ω(`) space without a prover [AMS99].

Definition 7.4. Fix k ∈ N. For every ` ∈ [n] and t ∈ [nk], the language frequency-momentk(t)

is
{
x ∈ [`]n :

∑
i∈[`] ϕi(x)k = t

}
, where ϕi(x) := |{j ∈ [n] : xj = i}|.

Corollary 7.5. Fix 1 < k ∈ N and δ ∈ (0, 1]. For every ` ∈ [n] and t ∈ [nk], there exists a
zero-knowledge SIP for frequency-momentk(t) with space complexity O(log2 n/ log logn). The
communication complexity is O(n1+δ) in the setup and no(1) in the interactive phase, and the protocol
is secure against polylog(n)-space distinguishers.

Proof. We set parameters analogously to Corollary 6.6, but take into account the factor-k blowup
in the degree of fx: set degree d = k log

2
δ n = O

(
log

2
δ n
)
, dimension m = δ logn

2 log logn , and take

a field F of size |F| = q = Θ
(

log1+ 2
δ n
)
. The mapping x 7→ fx is defined as follows: viewing

[`] ↪→ [d + 1]m ↪→ Fm and defining the frequency vector ϕ = ϕ(x) :=
(
ϕi(x) : i ∈ [`]

)
, set

fx(α) :=
∑

i∈[d+1] ϕ̂(i,α)k for α ∈ Fm−1, where ϕ̂ is the degree-d/k extension of ϕ̂. Note that fx

is a (m− 1)-variate degree-d polynomial.
Using O(dm log q) = O(m2 log q) bits of space (recall that k is constant), the verifier can compute

all the low-degree extensions ϕ̂(i,ρ) ∈ F (by adding χxj (i,ρ) to each running sum upon reading xj);
then, after the stream, V raises each LDE to the kth power and adds the results to obtain fx(ρ).

Applying Protocol 7.2, the verifier checks whether∑
α∈[d+1]m−1

fx(α) =
∑

β∈[d+1]m

ϕ̂(β)k =
∑
i∈[`]

ϕki

is equal to t. The space complexity is O(m2 log q) = O(log2 n/ log logn); the communication com-
plexity of the setup step is of order

qmm log2 q = n1+ δ
2 polylog(n) = O

(
n1+δ

)
,
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and qlog log q poly(q) = no(1) in the interactive phase. Lastly, the protocol is secure against distin-
guishers with space poly(q) = polylog(n).

Our second and last last application is a small modification of the F2 protocol that allows us to
compute inner products.

Definition 7.6. For every ` ∈ [n], t ∈ [n2`] and field F, the language inner-product(t) is defined
as
{

(x, y) ∈ Fn × Fn : ϕ(x) · ϕ(y) =
∑

i∈[`] ϕi(x)ϕi(y) = t
}
.

Corollary 7.7. For every δ ∈ (0, 1], ` ∈ [n], t ∈ [n2`] and field Fq with q = Θ
(

log1+ 2
δ n
)
, there

exists a zkSIP for inner-product(t) with space complexity O(log2 n/ log logn) and communication
complexities O(n1+δ) and no(1) in the setup and communication phases, respectively.

Proof. We use the same parameter settings as Corollary 7.5 and define

fx,y(α) =
∑

i∈[d+1]

ϕ̂(x)(i,α)ϕ̂(y)(i,α),

a polynomial of degree 2d = 2 log
2
δ n whose evaluation the verifier computes by saving ϕ̂(x)(i,ρ)

and ϕ̂(y)(i,ρ) for i ∈ [d+1]. Protocol 7.1 enables the verifier to check that
∑

i∈[`] ϕi(x)ϕi(y) equals
t, as desired, with complexities of the same order as in Corollary 7.5.

We remark that while one might reduce inner product to F2, by taking the difference between
the second moment of ϕ(x)+ϕ(y) and the second moments of ϕ(x) and ϕ(y), the resulting protocol
leaks these values, and is therefore not zero-knowledge.
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A Deferred proofs

A.1 Proof of Proposition 5.5

Proposition A.1 (Proposition 5.5, restated). Any one-way communication protocol for search-
index with input (x, j) ∼ Γp × [p] that sends an s-bit message succeeds with probability at most
1
|Γ| +O

(√
s/p
)
.

Proof. Define, for ease of notation, γ = |Γ|. We follow the strategy used in [RY20] for the binary
case. First, note that by the minimax theorem we may assume Alice’s and Bob’s strategies are
deterministic; i.e., that Alice sends A(x) ∈ {0, 1}s and Bob outputs B(A(x), j) ∈ Γ for some
functions A and B.

Let λ be the distribution of Alice’s message A = A(x) induced by the (uniform) distribution of
x, partitioning Γp into {Pa} where Pa = A−1(a) = {x ∈ Γp : A(x) = a}. Note that the distribution
of x conditioned on A = a is uniform over Pa, and that PA∼λ[A = a] = |Pa|/γp. Then,

Px∼Γp
j∼[p]

[Bob outputs xj ] =
∑

a∈{0,1}s
Px∼Γp [A(x) = a] · Px∼Γp

j∼[p]

[
b(a, j) = xj

∣∣ A(x) = a
]

=
∑

a∈{0,1}s
PA∼λ[A = a] · Px∼Pa

j∼[p]

[
b(a, j) = xj

]
= EA∼λ

j∼[p]

[
Px∼PA

[
b(A, j) = xj

]]
≤ EA∼λ

j∼[p]

[
max
α∈Γ
{Px∼PA [xj = α]}

]
, (14)

so that we only need to bound the latter expression; note that the inequality shows Bob’s optimal
strategy is to output the most frequent symbol at the jth coordinate in PA.

Now, define µ as the uniform distribution over Γ and µi,a as the distribution of xi when x ∼ Pa
(i.e., the distribution of xi when x ∼ Γp conditioned on A(x) = a). Then, by Pinsker’s inequality
(Eq. 10), for all a ∈ ImA and i ∈ [p] we have

‖µi,a − µ‖2 ≤
KL
(
µi,a || µ

)
2 ln 2
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(where we use ‖·‖ as shorthand for the 2-norm ‖·‖2). Since the inequality holds for all a and i, then
it also holds for the convex combination corresponding to taking A ∼ λ and j ∼ [p] independently
(i.e., whose coefficients are P[A = a, j = i] = |Pa|

γpp ). Therefore,

EA∼λ
j∼[p]

[
‖µj,A − µ‖2

]
=

1

p

p∑
i=1

EA∼λ
[
‖µi,A − µ‖2

]
≤ 1

2p ln 2

p∑
i=1

EA∼λ [KL(µi,A || µ)]

=
1

2p ln 2

p∑
i=1

I(A : xi),

where the last equality follows by the definition of mutual information (Eq. 11). By convexity of
z 7→ z2, we have

EA∼λ
j∼[p]

[
‖µj,A − µ‖

]2 ≤ EA∼λ
j∼[p]

[
‖µj,A − µ‖2

]
≤ 1

2p ln 2

p∑
i=1

I(A : xi).

Recall that µi,a(α) = Px∼Pa [xi = α]. Comparing this value with the average mass 1/γ, we have

EA∼λ
j∼[p]

[
max
α∈Γ
{Px∼PA [xj = α]}

]
− 1

γ
= EA∼λ

j∼[p]

[
max
α∈Γ

{
µj,A(α)− 1

γ

}]
≤ EA∼λ

j∼[p]

[
max
α∈Γ

{∣∣∣∣µj,A(α)− 1

γ

∣∣∣∣}]
≤ EA∼λ

j∼[p]

[
‖µj,A − µ‖

]
≤

√∑p
i=1 I(A : xi)

2p ln 2
,

so that using Eq. 14 and rearranging,

Px∼Γp
j∼[p]

[Bob outputs xj ] ≤
1

γ
+

√∑p
i=1 I(A : xi)

2p ln 2
.

The theorem thus reduces to showing
∑p

i=1 I(A : xi) ≤ s. By standard information-theoretic
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equivalences and inequalities,

p∑
i=1

I(A : xi) =

p∑
i=1

(
H(xi)−H(xi|A)

)
(by Eq. 11)

= H(x)−
p∑
i=1

H(xj |A) (by Eq. 7)

≤ H(x)−
n∑
i=1

H(xi|x1, . . . , xi−1, A) (by Eq. 6)

= H(x)−H(x|A) (by Eq. 8)

= I(A : x) ≤ H(A) (by Eq. 11)

≤ s (by Eq. 5)

and the result follows.

A.2 Proof of Theorem 5.8

Theorem A.2 (Theorem 5.8, restated). Protocol 5.4 (algebraic-commit) and Protocol 5.3 (decom-
mit) form a streaming commitment protocol with space complexity s = O

(
(` + m) log q

)
if p = q3`

and dm = polylog(q). The scheme is secure against poly(s)-space adversaries and communicates
O(`q3` log q) bits.

Furthermore, if each linear coefficient can be computed in O(m log q) space, then s = O(m log q).

Proof. We follow the same steps of Theorem 5.6, beginning with the binding property: using y(i)

to denote the ith column of y, when P is honest, i.e., sends the correction tuple γ = α − y(k) in
the commit stage and the polynomial ẑ|L where z = β · y in the decommit stage, then V accepts as
ẑ|L(ρ) = ẑ(ρ) = ŷ(ρ,β) and ẑ|L(0) + γ = zk + β · γ = α · β. (Recall that the line L is such that
L(0) = k and L(ρ) = ρ.)

Now, suppose P replies with a polynomial g such that g(0) 6=
∑

i∈[`] βiyik = zk = ẑ|L(0); then
the Schwartz-Zippel lemma implies g(ρ) 6= ẑ|L(ρ) except with probability dm/q = o(1), in which
case V rejects. As the verifier only needs to store the evaluation point ρ ∈ Fm, the coordinate k ∈ [p]
and a constant number of additional field elements, its space complexity is O(m log q) as long as
each βi can be computed in this space (e.g., when βi = βi(ρ) is the evaluation of an m-variate
polynomial over F); if β must be stored in its entirety, the complexity becomes O

(
(`+m) log q

)
.

To show the hiding property, assume towards contradiction that there exists a streaming algo-
rithm D with space poly(s) = poly(`, log q) that distinguishes commitments between some α ∈ F`
and α′ ∈ F \ {α} with constant bias: that is,

Py∼F`×p
k∼[p]

[
D(y,α− y(k), k) accepts

]
− Py∼Fp

k∼[p]

[
D(y,α′ − y(k), k) accepts

]
≥ ε

for some ε = Ω(1). Now consider the following one-way communication protocol for search-index
over the alphabet F` with input (x, j) ∈ (F`)p×[p]: Alice, viewing x as an element of F`×p, simulates
D on the stream (x,γ), where γ ∼ F`, and sends the polylog(p)-bit snapshot of D to Bob, who
finishes the simulation with j; if D accepts output α− γ, and otherwise output α′ − γ. Note that
Bob outputs correctly exactly when γ = α−y(k) and D accepts, or γ = α′−y(k) and D rejects. We
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will now show that the protocol solves search-index with a bias that is too large, contradicting
Proposition 5.5.

Px∼(F`)p
j∼[p]

[Bob outputs xj ]

=
1

q`
· Px∼(F`)p

j∼[p]

[D(x,α− xj , j) accepts] +
1

q`
· Px∼(F`)p

j∼[p]

[
D(x,α′ − xj , j) rejects

]
=

1

q`

(
1 + Px∼(F`)p

j∼[p]

[D(x,α− xj , j) accepts]− Px∼(F`)p
j∼[p]

[
D(x,α′ − xj , j) accepts

])

≥ 1 + ε

q`

=
1

q`
+ Ω

(
1

q`

)
.

Since q−` = Ω
(√

q`/p
)

= ω
(√

poly(s)/p
)
, owing to s = poly(`, log q), the result follows. The

communication complexity of the protocols is dominated by the prover sending `p field elements,
for a total of O(`q3` log q) bits.

A.3 Proof of Claim 5.14

Claim A.3 (Claim 5.14, restated). Let p, q ∈ [0, 1]v be probability vectors and t ∈ [v] a positive
integer. There exists a set C ⊆ [v] of size t such that

∑
i∈[v]\C piqi ≤ 1/t.

Proof. We reduce the claim to proving an upper bound on a certain optimisation problem. Namely,
let ∆ = {x ∈ [0, 1]v :

∑
i xi = 1} and ∆′ = ∆ ∩ {x ∈ [0, 1]v : x1 ≥ · · · ≥ xv} be the v-dimensional

simplex and the simplex with ordered coordinates, respectively. Define the function f : ∆′×∆→ R+

by f(p, q) =
∑v

i=1 ipiqi.
Under the assumption that f(p, q) ≤ 1 for all p ∈ ∆′ and q ∈ ∆, we conclude as follows: since

p1 ≥ p2 ≥ · · · ≥ pv without loss of generality (permuting the vectors to satisfy the condition does
not affect the truth of the claim), for any t ∈ [v]

1 ≥ f(p, q) =

v∑
i=1

 v∑
j=i

pjqj

 ≥ t∑
i=1

 v∑
j=i

pjqj


implies the existence of i ∈ [t] such that

∑v
j=i pjqj ≤ 1/t. Taking C = [i− 1] completes the proof.

We now proceed to show f(p, q) ≤ 1. Since f is continuous with compact domain, there exists
a pair (p∗, q∗) that maximises f . Let ` ∈ [v] be the largest nonzero coordinate of p∗. Then q∗i > 0
for all i ≤ `, as otherwise moving the mass p∗i onto p∗1 would contradict maximality; and q∗i = 0 for
all i > `, or moving q∗i onto (say) q∗1 likewise leads to a contradiction.

Now, suppose (towards contradiction) ` > 1, take 1 < j ≤ ` and consider the pair (p∗, q′) with
q′1 = 0, q′i = q∗1 + q∗i and q′j = q∗j otherwise. Then f(p∗, q′) ≤ f(p∗, q∗) implies

ip∗i (q
∗
1 + q∗i ) ≤ p∗1q∗1 + ip∗i q

∗
i ,
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and thus ip∗i ≤ p∗1 (since q∗1 6= 0). But then

f(p∗, q∗) =
∑̀
i=1

ip∗i q
∗
i ≤ p∗1

∑̀
i=1

q∗i = p∗1 < 1,

a contradiction, as the delta distributions at 1 achieve value 1.
We thus conclude that ` = 1, so the maximisers p∗, q∗ are the delta distributions at 1 and

f(p, q) ≤ f(p∗, q∗) = 1, as desired.
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