
Subspace Exploration: Bounds on Projected Frequency
Estimation

Graham Cormode

University of Warwick

Charlie Dickens

University of Warwick

David P. Woodruff

Carnegie Mellon University

ABSTRACT
Given an 𝑛 × 𝑑 dimensional dataset 𝐴, a projection query specifies

a subset 𝐶 ⊆ [𝑑] of columns which yields a new 𝑛 × |𝐶 | array. We

study the space complexity of computing data analysis functions

over such subspaces, including heavy hitters and norms, when the

subspaces are revealed only after observing the data. We show that

this important class of problems is typically hard: for many prob-

lems, we show 2
Ω (𝑑)

lower bounds. However, we present upper

bounds which demonstrate space dependency better than 2
𝑑
. That

is, for 𝑐, 𝑐 ′ ∈ (0, 1) and a parameter 𝑁 = 2
𝑑
an 𝑁𝑐

-approximation

can be obtained in space min(𝑁𝑐′, 𝑛), showing that it is possible

to improve on the naïve approach of keeping information for all

2
𝑑
subsets of 𝑑 columns. Our results are based on careful construc-

tions of instances using coding theory and novel combinatorial

reductions that exhibit such space-approximation tradeoffs.

CCS CONCEPTS
•Theory of computation→ Streamingmodels;Lower bounds
and information complexity; Communication complexity;
Sketching and sampling.

KEYWORDS
projection queries, distinct elements, frequency moments

ACM Reference Format:
Graham Cormode, Charlie Dickens, and David P. Woodruff. 2021. Subspace

Exploration: Bounds on Projected Frequency Estimation. In Proceedings of
the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’21), June 20–25, 2021, Virtual Event, China. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3452021.3458312

1 INTRODUCTION
In many data analysis scenarios, datasets of interest are of moderate

to high dimension, but many of these dimensions are spurious or

irrelevant. Thus, we are interested in subspaces, corresponding to

the data projected on a particular subset of dimensions. Within

each subspace, we are concerned with computing statistics, such

as norms, measures of variation, or finding common patterns. Such

calculations are the basis of subsequent analysis, such as regression

and clustering. In this paper, we introduce and formalize novel

problems related to functions of the frequency in such projected

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458312

subspaces. Already, special cases such as subspace projected distinct

elements have begun to generate interest, e.g., in Vu’s work [18],

and as an open problem in sublinear algorithms [16].

In more detail, we consider the original data to be represented by

a (usually binary) array with 𝑛 rows of 𝑑 dimensions. A subspace

is defined by a set 𝐶 ⊆ [𝑑] of columns, which defines a new array

with 𝑛 rows and |𝐶 | dimensions. Our goal is to understand the

complexity of answering queries, such as which rows occur most

frequently in the projected data, computing frequency moments

over the rows, and so on. If 𝐶 is provided prior to seeing the data,

then the projection can be performed online, and so many of these

tasks reduce to previously studied questions. Hence, we focus on

the case when 𝐶 is decided after the data is seen. In particular, we

may wish to try out many different choices of 𝐶 to explore the

structure of the subspaces of the data. Our model is given in detail

in Section 2.

For further motivation, we outline some specific areas where

such problems arise.

• Bias andDiversity.A growing concern in data analysis and

machine learning is whether outcomes are ‘fair’ to different

subgroups within the population, or whether they reinforce

existing disparities. A starting point for this is to quantify

the level of bias within the data when different features

are considered. That is, we want to know whether certain

combinations of attribute values are over-represented in the

data (heavy hitters), and how many different combinations

of values are represented in the data (captured by measures

like 𝐹0). We would like to be able to answer such queries

accurately for many different (typically overlapping) subsets

of dimensions.

• Privacy and Linkability. When sharing datasets, we seek

assurance that they are not vulnerable to attacks that exploit

structure in the data to re-identify individuals. An attempt

to quantify this risk is given in recent work [6], which asks

how many distinct values occur in the data for each partial

identifier, specified as a subset of dimensions. This prior work

considered the case where the target dimensions are known

in advance, but more generally we would like to compute

such measures for arbitrary subsets, based on frequency

moments and sampling techniques.

• Clustering and Frequency Analysis. In the area of clus-

tering, the notion of subspaces has been studied under a

number of interpretations. The common theme is that the

data may look unclustered in the original space due to spuri-

ous dimensions inflating the distance between points that

are otherwise close. Many papers addressed this as a search

problem: to search through exponentially many subspaces

to find those in which the data is well-clustered. See the

survey by Parsons, Haque and Liu [15]. In our setting, the

https://doi.org/10.1145/3452021.3458312
https://doi.org/10.1145/3452021.3458312

problem would be to estimate various measures of density or

clusteredness for a given subspace. A related problem is to

find subspaces (or “subcubes” in database terminology) that

have high frequency. Prior work proceeded under strong

statistical independence assumptions about the values in

different dimensions, for example, that the distribution can

be modeled accurately with a (Naïve) Bayesian model [13].

2 PRELIMINARIES AND DEFINITIONS
For a positive integer𝑄 , let [𝑄] = {0, 1, . . . , 𝑄 −1}, and𝐴 ∈ [𝑄]𝑛×𝑑
be the input data. The objective is to keep a summary of 𝐴 which

is used to estimate the solution to a problem P upon receiving a

column subset query 𝐶 ⊆ [𝑑]. Problems P of interest are described

in Section 2.1. Define the restriction of 𝐴 to the columns indexed

by 𝐶 as 𝐴𝐶
whose rows 𝐴𝐶

𝑖
, 1 ≤ 𝑖 ≤ 𝑛, are vectors over [𝑄] |𝐶 |

. We

use the Minkowski norm ∥𝑋 ∥𝑝 = (∑𝑖, 𝑗 |𝑋𝑖 𝑗 |𝑝)1/𝑝
to denote the

entrywise-ℓ𝑝 norm for vectors (𝑗 = 1) and matrices (𝑗 > 1).

Computational Model. First, the data 𝐴 is received under the

assumption that it is too large to hold entirely in memory so can

be modeled as a stream of data. Our lower bounds are not strongly

dependent on the order in which the data is presented. After ob-

serving 𝐴, a column query 𝐶 is presented. The frequency vector

over 𝐴 induced by 𝐶 is 𝑓 = 𝑓 (𝐴,𝐶) whose entries 𝑓𝑖 (𝐴,𝐶) denote
the frequency of 𝑄-ary word 𝑤𝑖 ∈ [𝑄] |𝐶 |

. We study functions of

the frequency vector 𝑓 = 𝑓 (𝐴,𝐶) after the observation of 𝐴 and re-

ceiving column query 𝐶 . The task is, during the observation phase,

to design a summary of 𝐴 which approximates statistics of 𝐴𝐶
,

the restriction of 𝐴 to its projected subspace 𝐶 . Approximations of

𝐴𝐶
are accessed through the frequency vector 𝑓 (𝐴,𝐶). Note that

functions (e.g., norms) are taken over 𝑓 (𝐴,𝐶) as opposed to the

raw vector inputs from the column projection.

Remark 1 (Indexing 𝑄-ary words into 𝑓). Recall that the fre-
quency vector 𝑓 (𝐴,𝐶) has length 𝑄 |𝐶 | with each entry 𝑓𝑖 counting
the occurrences of word𝑤𝑖 ∈ [𝑄] |𝐶 | . To clearly distinguish between
the (scalar) index 𝑖 of 𝑓 and the input vectors 𝑤𝑖 whose frequency
is measured by 𝑓𝑖 we introduce the index function 𝑒 (𝑤𝑖) = 𝑖 . We
may think of 𝑒 (·) as simply the canonical mapping from [𝑄] |𝐶 | into
{0, 1, 2, . . . , 𝑄𝐶 − 1}, but other suitable bijections may be used.

For example, suppose 𝑄 = 2 and 𝐴 ∈ {0, 1}5×3
with column

indices {1, 2, 3} given below. If 𝐶 = {1, 2}, then using the canoni-

cal mapping from {0, 1} |𝐶 |
into {0, 1, 2, 3} (e.g 𝑒 (00) = 0, 𝑒 (01) =

1, . . . 𝑒 (11) = 3) we obtain 𝐴𝐶
and hence 𝑓 (𝐴,𝐶) = (1, 1, 0, 3).

𝐴 =

1 1 0

0 1 0

0 0 1

1 1 1

1 1 0

−→ 𝐴𝐶 =

1 1

0 1

0 0

1 1

1 1

The vector 𝑓 = 𝑓 (𝐴,𝐶) is then the frequency vector over which we

seek to compute statistical queries such as ∥ 𝑓 ∥0. In this example,

∥ 𝑓 ∥0 = 3 (there are three distinct rows in 𝐴𝐶
), while ∥ 𝑓 ∥1 = 5 is

independent of the choice of 𝐶 .

2.1 Problem Definitions.
The problems that we consider are column-projected forms of com-

mon streaming problems ([11], [3], [4]). Here, we refer to these

problems as “projected frequency estimation problems” over the

input 𝐴. We define

𝑓𝑖 (𝐴,𝐶) = |{ 𝑗 : 𝐴𝐶
𝑗 = 𝑤𝑖 , 𝑗 ∈ [𝑛]}| (1)

𝐹𝑝 (𝐴,𝐶) =
∑

𝑖∈{0,1} |𝐶 |

𝑓𝑖 (𝐴,𝐶)𝑝 . (2)

• 𝐹𝑝 estimation: Given a column query 𝐶 , the 𝐹𝑝 estima-

tion problem is to approximate the quantity 𝐹𝑝 (𝐴,𝐶) =

∥ 𝑓 (𝐴,𝐶)∥𝑝𝑝 under somemeasure of approximation to be spec-

ified later (e.g., up to a constant factor). Of particular interest

to us is (projected) 𝐹0 (𝐴,𝐶) estimation, which counts the

number of distinct row patterns in 𝐴𝐶
.

• ℓ𝑝 -heavy hitters: The query is specified by a column query

𝐶 ⊆ [𝑑], a choice of metric/norm ℓ𝑝 , 𝑝 > 0 and accuracy

parameter 𝜙 ∈ (0, 1). The task is then to identify all patterns

𝑤𝑖 observed on𝐴
𝐶
for which 𝑓𝑖 (𝐴,𝐶) ≥ 𝜙 ∥ 𝑓 (𝐴,𝐶)∥𝑝 . Such

values𝑤𝑖 (or equivalently 𝑖) are called 𝜙-ℓ𝑝 -heavy hitters, or
simply ℓ𝑝 -heavy hitters when 𝜙 is fixed. We will consider a

multiplicative approximation based on a parameter 𝑐 > 1,

where we require that all 𝜙-ℓ𝑝 heavy hitters are reported,

and no items with weight less than (𝜙/𝑐) · ∥ 𝑓 (𝐴,𝐶)∥𝑝 are

included.

• ℓ𝑝 -frequency estimation: A related problem is to allow

the frequency 𝑓𝑖 (𝐴,𝐶) to be estimated accurately, with error

as a fraction of 𝐹𝑝 (𝐴,𝐶)1/𝑝 = ∥ 𝑓 (𝐴,𝐶)∥𝑝 , which we refer

to as ℓ𝑝 frequency estimation. Specifically, for a given 𝑤𝑖 ,

return an estimate
ˆ𝑓𝑖 which satisfies | ˆ𝑓𝑖 (𝐴,𝐶) − 𝑓𝑖 (𝐴,𝐶) | ≤

𝜙 ∥ 𝑓 (𝐴,𝐶)∥𝑝 .
• ℓ𝑝 sampling: The goal of this sampling problem is to sam-

ple patterns 𝑤𝑖 according to the distribution 𝑝𝑖 ∈ (1 ±
Y) 𝑓

𝑝

𝑖
(𝐴,𝐶)

∥𝑓 (𝐴,𝐶) ∥𝑝𝑝
+Δwhere Δ = 1/poly(𝑛𝑑), and return a (1±Y ′)-

approximation to the probability 𝑝𝑖 of the item𝑤𝑖 returned.

When clear, we may drop the dependence upon𝐶 in the notation

and write 𝑓𝑖 and 𝐹𝑝 instead. We will use �̃� and Ω̃ notation to supress

factors that are polylogarithmic in the leading term. For example,

lower bounds stated as Ω̃(2𝑑) suppress terms polynomial in 𝑑 .

2.2 Related Work
Themodel we study is reminscent of, but distinct from, some related

formulations. In the problem of cascaded aggregates [10], we imag-

ine the starting data as a matrix, and apply a first operator (denoted

𝑄) on each row to obtain a vector, on which we apply a second

operator 𝑃 . Our problems can be understood as special cases of cas-

caded aggregates where 𝑄 is a project-then-concatenate operator,

to obtain a vector whose indices correspond to the concatenation of

the projection of a row. Another example of a cascaded aggregate

is a so-called correlated aggregate [17], but this was only studied

in the context of two dimensions. To the best of our knowledge,

our projection-based definitions have not been previously studied

under the banner of cascaded aggregates.

Other work includes results on provisioning queries for analytics

[2], but the way these statistics are defined is different from our

formulation. In that setting there are different scenarios (“hypo-

theticals”) that may or may not be turned on: this corresponds to

“what-if” analysis whereby a query is roughly “how many items are

observed if a given set of columns is present (turned on)?” The num-

ber of distinct elements for the query is the union of the number of

distinct elements across scenarios. In our setting, we concatenate

the distinct items into a row vector and count the number of dis-

tinct vectors. Note that in the hypotheticals setting in the binary

case, each column only has 2 distinct values, 0 and 1, and thus the

union also only has 2 distinct values. However, we can obtain up to

2
𝑑
distinct vectors. Consequently, Assadi et al. are able to achieve

poly(𝑑/Y) space for counting distinct elements, whereas we show

a 2
Ω (𝑑)

lower bound. Moreover, they achieve a 2
Ω (𝑑)

lower bound

for counting (i.e., 𝐹1), whereas we achieve a constant upper bound.

These disparities highlight the differences in our models.

More recently, the notion of “subset norms” was introduced by

Braverman, Krauthgamer and Yang [5]. This problem considers an

input that defines a vector 𝑣 , where the objective is to take a subset

𝑠 of entries of 𝑣 and compute the norm. Results are parameterized

by the “heavy hitter dimension”, which is a measure of complexity

over the set system from which 𝑠 can be drawn. While sharing

some properties with our scenario, the results for this model are

quite different. In particular, in [5] a trivial upper bound follows

by maintaining the vector 𝑣 explicitly, of dimension 𝑛. Meanwhile,

many of our results show lower bounds that are exponential in the

dimensionality, as 2
Ω (𝑑)

, though we also obtain non-trivial upper

bounds.

3 CONTRIBUTIONS
The main challenge here is that the column query𝐶 is revealed after
observing the data; consequently, applying a known algorithm to

just the columns 𝐶 as the data arrives is not possible. For example,

consider the exemplar problem of counting the number of distinct

rows under the projection 𝐶 , i.e., the projected 𝐹0 problem. Recall

that 𝐴𝐶
𝑖
denotes the 𝑖-th row of array 𝐴𝐶

. Then the task is to count

the number of distinct rows observed in 𝐴𝐶
, i.e.,

𝐹0 (𝐴,𝐶) = |{𝐴𝐶
𝑗 : 𝑗 ∈ [𝑛]}| = ∥ 𝑓 (𝐴,𝐶)∥0 .

Observe that 𝐹0 (𝐴,𝐶) can vary widely over different choices of

𝐶 . For example, even for a binary input 𝐴 ∈ {0, 1}𝑛×𝑑 , 𝐹0 (𝐴,𝐶)
can be as large as 2

𝑑
when 𝐶 consists of all columns from a highly

diverse dataset, and as small as 1 or 2 when 𝐶 is a single column or

when 𝐶 selects homogeneous columns (e.g., the columns in 𝐶 are

all zeros).

3.1 Summary of Results
Our main focus, in common with prior work on streaming algo-

rithms, is on space complexity. For the above problems we obtain

the following results:

• In Section 4 we show that projected 𝐹0 estimation requires

2
Ω (𝑑)

space for a constant factor approximation, demonstrat-

ing the essential hardness of these problems. Nevertheless,

we obtain a tradeoff in terms of upper bounds described

below.

• Section 5 presents results for ℓ𝑝 frequency estimation, ℓ𝑝
heavy hitters, 𝐹𝑝 estimation, and ℓ𝑝 sampling. We show a

space upper bound of 𝑂 (Y−2
log(1/𝛿)) for ℓ𝑝 frequency es-

timation when 0 < 𝑝 < 1 and complement this result with

lower bounds for heavy hitters when 𝑝 > 1, 𝐹𝑝 estimation

and ℓ𝑝 sampling for all 𝑝 ≠ 1, showing that these problems

require 2
Ω (𝑑)

bits of space.

• In Section 6 we show upper bounds for 𝐹0 and 𝐹𝑝 estima-

tion which improve on the exhaustive approach of keeping

summaries of all 2
𝑑
subsets of columns, by showing that

we can obtain coarse approximate answers with a smaller

subset of materialized answers. Specifically, for parameters

𝑁 = 2
𝑑
and 𝛼 ∈ (0, 1) we can obtain an𝑁𝛼

approximation in

min

(
𝑁𝐻 (1/2−𝛼) , 𝑛

)
space. Since the binary entropy function

𝐻 (𝑥) < 1, this bound is better than the trivial 2
𝑑
bound.

These bounds show that there is no possibility of “super efficient”

solutions that use space less than exponential in 𝑑 . Nevertheless,

we demonstrate some solutions whose dependence is still exponen-

tial but weaker than a naïve 2
𝑑
. Thinking of 𝑁 = 2

𝑑
, the above

upper and lower bounds imply the actual complexity is a nontrivial

polynomial function of 𝑁 .

The bounds also show novel dichotomies that are not present in

comparable problems without projection. In particular, we show

that (projected) ℓ𝑝 sampling is difficult for 𝑝 ≠ 1 while (projected)

ℓ𝑝 -heavy hitters has a small space algorithm for 0 < 𝑝 < 1. This

differs from the standard streaming model in which the (classical)

ℓ𝑝 heavy hitters problem has a small space solutions for 𝑝 ≤ 2 with-

out projection [14], and (classical) ℓ𝑝 sampling can be performed

efficiently for 𝑝 ≤ 2 [9]. Our lower bounds are built on amplifying

the frequency of target codewords for a carefully chosen test word.

Note that there are trivial naïve solutions which simply retain

the entire input and so answer the query exactly on the query 𝐶:

to do so takes Θ(𝑛𝑑) space, noting that 𝑛 may be exponential in 𝑑 .

Alternatively, if we know 𝑡 = |𝐶 | then we may enumerate all

(𝑑
𝑡

)
subsets of [𝑑] with size 𝑡 and maintain (approximate) summaries

for each choice of 𝐶 . However, this will entail a cost of at least

Ω(𝑑𝑡) and as such does not give a major reduction in cost.

3.2 Coding Theory Definitions
Our lower bounds will typically make use of a binary code C, consti-
tuted of a collection of codewords, which are vectors (or strings) of

fixed length. We writeB(𝑙, 𝑘) to denote all binary strings of length 𝑙
and (Hamming) weight 𝑘 . We first consider the dense, low-distance

family of codes C = B(𝑑, 𝑘) but will later use more sophisticated

randomly sampled codes. When 𝑘 < 𝑑/2, we have

(𝑑
𝑘

)
≥ (𝑑/𝑘)𝑘

and when 𝑘 = 𝑑/2, we have

(𝑑
𝑑/2

)
≥ 2

𝑑/
√

2𝑑 . A trivial but crucial

property of B(𝑑, 𝑘) is that any two codewords from this set can

have intersecting 1s in at most 𝑘 − 1 positions.

We define the support of a string 𝑦 as supp(𝑦) = {𝑖 : 𝑦𝑖 ≠ 0}, the
set of locations where 𝑦 is non-zero. We define child words to be

the set of new codewords obtained from C by generating all 𝑄-ary

words 𝑧 with supp(𝑧) ⊆ supp(𝑦) for some 𝑦 ∈ C, and construct

them with the star operator defined next.

Definition 3.1 (star𝑄 operation, child words). Let 𝑑 be the length

of a binary word, 𝑘 be a weight parameter, and suppose𝑦 ∈ B(𝑑, 𝑘).
Let𝑀 = supp(𝑦). We define the function star𝑄 (𝑦) to be the opera-

tion which lifts a binary word 𝑦 to a larger alphabet by generating

all the words over alphabet [𝑄] on𝑀 . Formally,

star𝑄 (𝑦 ∈ {0, 1}𝑑) = {𝑧 : 𝑧 ∈ [𝑄]𝑑 , supp(𝑧) ⊆ supp(𝑦)}

Since the alphabet size 𝑄 is often fixed when using this operation,

when clear we will drop the superscript and abuse notation by

writing star(𝑦). Elements of the set star𝑄 (𝑦) are referred to as child
words of 𝑦.

For any 𝑦 ∈ B(𝑑, 𝑘), there are 𝑄𝑘
words generated by star𝑄 (𝑦).

When star(·) is applied to all vectors of a set 𝑈 then we write

star(𝑈) = ∪𝑢∈𝑈 star(𝑢). For example, if 𝑦 ∈ {0, 1}𝑑 and 𝑄 = 2,

then star𝑄 (𝑦) is simply all possible binary words of length 𝑑 whose

support is contained in supp(𝑦). For the projected 𝐹0 problem, the

code C = B(𝑑, 𝑘) is sufficient. However, for our subsequent results,

we need a randomly chosen code whose existence is demonstrated

in Lemma 3.2. The proof follows from a Chernoff bound.

Lemma 3.2. Fix 𝜖,𝛾 ∈ (0, 1) and let C ⊆ B(𝑑, 𝜖𝑑) be such that
for any two distinct 𝑥,𝑦 ∈ C we have |𝑥 ∩ 𝑦 | ≤ (𝜖2 + 𝛾)𝑑 . With
probability at least 1 − exp(−2𝑑𝛾2) there exists such a code C with
size 2

𝑂 (𝛾2𝑑) instantiated by sampling sufficiently many words i.i.d.
at random from B(𝑑, 𝜖𝑑).

Proof. Let 𝑋 be the random variable for the number of 1s in

common between 𝑥 and 𝑦 sampled uniformly at random. Then

the expectation of 𝑋 is E[𝑋] =
(𝜖𝑑)2

𝑑
= 𝜖2𝑑 and although the

coordinates of 𝑥,𝑦 are not independent, they are negatively corre-

lated so we may use a Chernoff bound (see Section 1.10.2 of [7]

for self-contained details). Our aim is to show that the number of

1s in common between 𝑥 and 𝑦 can be at most 𝛾𝑑 more than its

expectation. Then, via an additive Chernoff-Hoeffding bound:

P(𝑋 − E(𝑋) ≥ 𝛾𝑑) ≤ exp(−2𝑑𝛾2).

This is the probability that any two codewords 𝑥 and 𝑦 are not

too similar, so by taking a union bound over the Θ(|C|2) pairs of
codewords, the size of the code is |C| = exp(𝑑𝛾2) = 2

𝛾2𝑑/ln 2
. □

3.3 Overview of Lower Bound Constructions
Our lower bounds rely upon non-standard reductions to the Index
problem using codes C defined in Section 3.2. These reductions

are more involved than is typically found as we need to combine

the combinatorial properties of C along with the star(·) operation
on Alice’s input. In particular, the interplay between C and star(·)
must be understood over the column query 𝑆 given by Bob, which

again relies on properties of C used to define the input.

Recall that the typical reduction from Index is as follows: Alice
holds a vector a ∈ {0, 1}𝑁 , Bob holds an index 𝑖 ∈ [𝑁] and he

is tasked with finding a𝑖 following one-way communication from

Alice. The randomized communication complexity of Index is Ω(𝑁)
[12]. We adapt this setup for our family of problems, following an

approach that has been used to prove many space lower bounds for

streaming algorithms.

The general construction of our lower bounds is as follows: first

we choose a binary code C (usually independently at random) with

certain properties such as a specific weight and a bounded number

of 1s in common locations with other words in the code. In the

communication setting, Alice holds a subset𝑇 ⊆ C while Bob holds

a codeword 𝑦 ∈ C and is tasked with determining whether or not

𝑦 ∈ 𝑇 . Bob can also access the index function (Remark 1) 𝑒 (𝑦) which
simply returns the index or location that 𝑦 is enumerated in C. The
corresponding bitstring for the Index problem that Alice holds is

a ∈ {0, 1} |C |
which has a𝑗 = 1 for every element 𝑤 𝑗 ∈ 𝑇 (under

a suitable enumeration of {0, 1}𝑑). We use the star(𝑇) operator
(defined in Section 3.2) to map these strings into an input 𝐴 for

each of the problems (i.e., a collection of rows of datapoints). Upon

defining the instance, we show that Bob can query a proposed

algorithm for the problem and use the output to determine whether

or not Alice holds 𝑦. This enables Bob to return a𝑒 (𝑦) , which is 1

if Alice holds 𝑦 ∈ 𝑇 and 0 otherwise. Hence, determining if 𝑦 ∈ 𝑇

or 𝑦 ∈ C \𝑇 solves Index and incurs the lower bound Ω(|C|). Our
constructions of C establish that |C| is exponentially large in 𝑑 .

4 LOWER BOUNDS FOR 𝐹0

In this section, we focus on the 𝐹0 (distinct counting) projected

frequency problem. The main result in this section is a strong lower

bound for the problem, which is exponential in the domain size 𝑑 .

We use codes C = B(𝑑, 𝑘) as defined in Section 3.2.

Theorem 4.1. Let 𝑄 ≥ 2 be the target alphabet size and 𝑘 <

𝑑/2 be a fixed query size with 𝑄 > 𝑘 . Any algorithm achieving an
approximation factor of |𝑄 |/𝑘 for the projected 𝐹0 problem requires
space 2

Ω (𝑑) .

Proof. Fix the code C = B(𝑑, 𝑘), recalling that any 𝑥 ∈ C
has Hamming weight 𝑘 , and for distinct 𝑥,𝑦 ∈ C at most 𝑘 − 1

bits are shared in common. We will use these facts to obtain the

approximation factor.

Obtain the collection of all child words C𝑄 from C by using star𝑄 (·)
as defined in Section 3.2. We will reduce from the Index problem in

communication complexity as follows. Alice has a set of (binary)

codewords𝑇 ⊆ C and initializes the input array𝐴 for the algorithm

with all strings from the set star(𝑇). Bob has a vector 𝑦 ∈ C and

wants to know if 𝑦 ∈ 𝑇 or not. Let 𝑆 = supp(𝑦) so that |𝑆 | = 𝑘

and Bob queries the 𝐹0 algorithm on columns of 𝐴 restricted to 𝑆 .

First suppose that 𝑦 ∈ 𝑇 . Then Alice holds 𝑦 so star(𝑦) is included
in 𝐴 and there must be at least 𝑄𝑘

patterns observed. Conversely,

if 𝑦 ∉ 𝑇 , then Alice does not include 𝑦 in 𝐴. However, by the

construction of C, 𝑦 shares at most (𝑘 − 1) 1s with any distinct

𝑦′ ∈ C. Thus, the number of patterns observed on the columns

corresponding to 𝑆 is at most

(𝑘
𝑘−1

)
𝑄𝑘−1 = 𝑘𝑄𝑘−1

.

We observe that if we can distinguish the case of 𝑘𝑄𝑘−1
from

𝑄𝑘
, then we could correctly answer the Index instance, i.e., if we

can achieve an approximation factor of Δ such that:

Δ =
𝑄𝑘

𝑘𝑄𝑘−1

=
𝑄

𝑘
. (3)

Any protocol for Index requires communication proportional to

the length of Alice’s input vector a, which translates into a space

lower bound for our problem. Alice’s set 𝑇 ⊂ C defines an input

vector for the Index problem built using a characteristic vector over

all words in C, denoted by a ∈ {0, 1} |C |
, as follows. Under a suitable

enumeration of C = {𝑤1,𝑤2, . . . ,𝑤 |C |}, Alice’s vector is encoded
via a𝑖 = 1 if and only if Alice holds the binary word𝑤𝑖 ∈ 𝑇 . From

the separation shown prior to (3), Bob can determine if Alice holds

a word in 𝑇 , thus solving Index and incurring the lower bound.

Hence, space proportional to |C| =
(𝑑
𝑘

)
is necessary. We use the

standard relation

(𝑑
𝑘

)
≥ (𝑑/𝑘)𝑘 and choose 𝑘 = 𝑎𝑑/2 for a constant

𝑎 ∈ [0, 1) from which we obtain |C| ≥ 2
𝑎𝑑/2

to achieve the stated

approximation guarantee. □

Setting 𝑘 = 𝑎𝑑/2 allows us to vary the query size and directly

understand how this affects the size of the code necessary for the

lower bound. For a query of size 𝑘 , the size of the input to the

projected 𝐹0 problem is a matrix whose rows are words contained

in star𝑄 (𝑇), hence 𝐴 has size |𝑇 |𝑄𝑘 × 𝑑 . Theorem 4.1 is for 𝑘 <

𝑑/2. When 𝑘 = 𝑑/2 we can use the tighter bound for the central

binomial term on the sum of the binomial coefficients and obtain

the following stronger bounds. The subsequent results use the

same encoding as in Theorem 4.1. However, at certain points of the

calculations the parameter setttings are slightly altered to obtain

different guarantees.

Corollary 4.2. Let 𝑄 ≥ 𝑑/2 be an alphabet size and 𝑑/2 be the
query size. There exists a choice of input data 𝐴 ∈ [𝑄]𝑛×𝑑 such that
any algorithm achieving approximation factor 2𝑄/𝑑 for the projected
𝐹0 problem on the query requires space 2

Ω (𝑑) .

Proof. Repeat the argument of Theorem 4.1 with 𝑘 = 𝑑/2. The

approximation factor from equation (3) becomes Δ = 2𝑄/𝑑 . The
code size for Index is |C| ≥ 2

𝑑/
√

2𝑑 . Note that |C| is 2
Ω (𝑑)

as

1

2
log

2
(𝑑) can always be bounded above by a linear function of 𝑑 .

The instance is an array whose rows are the 𝑄𝑑/2
child words in

star𝑄 (𝑇). Hence, the size of the instance to the 𝐹0 algorithm is

bounded above by |𝑇 |𝑄𝑑/2 × 𝑑 . □

Corollary 4.3 follows from Corollary 4.2 by setting 𝑄 = 𝑑 .

Corollary 4.3. A 2-factor approximation to the projected 𝐹0 prob-
lem on a query of size𝑑/2 needs space 2

Ω (𝑑) with an instance𝐴 whose
size is |𝑇 |𝑄𝑑/2 × 𝑑 .

Theorem 4.1 and its corollaries suffice to obtain space bounds

over all choices of 𝑄 . However, 𝑄 could potentially grow to be

very large, which may be unsatisfying. As a result, we will argue

how the error varies for fixed 𝑄 . To do so, we map [𝑄] down to a

smaller alphabet [𝑞] and use this code to define the communication

problem from which the lower bound will follow. The cost of this is

that the instance is a logarithmic factor larger in the dimensionality.

Corollary 4.4. Let 𝑞 be a target alphabet size such that 2 ≤ 𝑞 ≤
|𝑄 |. Let 𝛼 = 𝑄 log𝑞 (𝑄) ≥ 1 and 𝑑 ′ = 𝑑 log𝑞 (𝑄). There exists a choice
of input data 𝐴 ∈ [𝑞]𝑛×𝑑′

for which any algorithm for the projected
𝐹0 problem over queries of size 𝑑/2 that guarantees error �̃� (𝛼/𝑑 ′)
requires space 2

Ω (𝑑) .

Proof. Fix the binary code C = B(𝑑, 𝑑/2) and generate all child
words over alphabet [𝑄] to obtain the approximation factor Δ =

2𝑄/𝑑 as in Corollary 4.3. For every 𝑤 ∈ C there are 𝑄𝑑/2
child

Table 1: Comparison of the lower bounds for 𝐹0. Theorem
4.1 uses C = B(𝑑, 𝑘), corollaries use C = B(𝑑, 𝑑/2).

Instance 𝐴 for 𝐹0 Approx. Factor

Theorem 4.1 |𝑇 |𝑄𝑘 × 𝑑 over [𝑄] 𝑄/𝑘
Corollary 4.2 |𝑇 |𝑄𝑑/2 × 𝑑 over [𝑄] 2𝑄/𝑑
Corollary 4.3 |𝑇 |𝑄𝑑/2 × 𝑑 over [𝑑] 2

Corollary 4.4 |𝑇 |𝑄𝑑/2 × 𝑑 log𝑞 𝑄 over [𝑞] 2𝑄/𝑑

words so the child code C𝑄 now has size 𝑛 = Θ(2𝑑𝑄𝑑/2/
√
𝑑) words.

Since 𝑄 can be arbitrarily large, we encode it via a mapping to a

smaller alphabet but over a slightly larger dimension; specifically,

use a function [𝑄] ↦→ [𝑞]log𝑞 (𝑄)
which generates 𝑞-ary strings for

each symbol in [𝑄]. Hence, all of the stored strings in C𝑄 ⊂ [𝑄]𝑑

are equivalent to a collection, C𝑞 over [𝑞]𝑑 log𝑞 (𝑄)
. Although |C𝑄 | =

|C𝑞 |, words in C𝑄 are length 𝑑 , while the equivalent word in C𝑞 has

length 𝑑 log𝑞 (𝑄). This collection of words from𝐶𝑞 now defines the

instance 𝐴 ∈ [𝑞]𝑛×𝑑 log𝑞 (𝑄)
, each word being a row of 𝐴. Taking

𝛼 = 𝑄 log𝑞 (𝑄) and 𝑑 ′ = 𝑑 log𝑞 (𝑄) results in an approximation

factor of:

Δ =
2𝑄

𝑑
=

2𝛼

𝑑 ′
. (4)

Alice’s input vector a is defined by the same code C and held set𝑇 ⊂
C as in Theorem 4.1 so we incur the same space bound. Likewise,

Bob’s test vector 𝑦 and column query 𝑆 also remain the same as in

that theorem.

□

Corollary 4.4 says that the same accuracy guarantee as Corollary

4.2 can be given by reducing the arbitrarily large alphabet [𝑄] to
a smaller one over [𝑞]. However, the price to pay for this is that

the size of the instance 𝐴 increases by a factor of log𝑞 (𝑄) in the

dimensionality. These various results are summarized in Table 1.

5 ℓ𝑝-FREQUENCY BASED PROBLEMS
In this section, we extend the techniques from the previous section

to understand the complexity of projected frequency estimation

problems related to the ℓ𝑝 norms and 𝐹𝑝 frequency moments (de-

fined in Section 2.1). A number of our results are lower bounds,

but we begin with a simple sampling-based upper bound to set the

stage.

5.1 ℓ𝑝 Frequency Estimation
We first focus on the projected frequency estimation problem show-

ing that a simple algorithm keeping a uniform sample of the rows

works for 𝑝 < 1. The algorithm uSample(𝐴,𝐶, 𝑡, 𝑏) first builds a uni-
form sample of 𝑡 rows (sampled with replacement at rate 𝛼 = 𝑡/𝑛)
from 𝐴 and evaluates the absolute frequency of string 𝑏 on the

sample after projection onto 𝐶 . Let 𝑔 be the absolute frequency of

𝑏 on the subsample. To estimate the true frequency of 𝑏 on the en-

tire dataset from the subsample, we return an appropriately scaled

estimator
ˆ𝑓𝑒 (𝑏) = 𝑔/𝛼 which meets the required bounds given in

Theorem 5.1, recalling that 𝑒 (𝑏) is the index location associated

with the string 𝑏. The proof follows by a standard Chernoff bound

argument and is given in Appendix A.1.

Theorem 5.1. Let𝐴 ∈ {0, 1}𝑛×𝑑 be the input data and let𝐶 ⊆ [𝑑]
be a given column query. For a given string 𝑏 ∈ {0, 1}𝐶 , the absolute
frequency of 𝑏, 𝑓𝑒 (𝑏) , can be estimated up to Y∥ 𝑓 ∥1 additive error
using a uniform sample of size 𝑂 (Y−2

log(1/𝛿)) with probability at
least 1 − 𝛿 .

The same algorithm can be used to obtain bounds for all 0 < 𝑝 < 1.

By noting that ∥ 𝑓 ∥1 ≤ ∥ 𝑓 ∥𝑝 for 0 < 𝑝 < 1 we can obtain the

following corollary.

Corollary 5.2. Let 𝐴,𝑏,𝐶 be as in Theorem 5.1. Let 0 < 𝑝 < 1.
Then uniformly sampling 𝑂 (Y−2

log(1/𝛿)) rows achieves��� ˆ𝑓𝑒 (𝑏) − 𝑓𝑒 (𝑏)
��� ≤ Y∥ 𝑓 ∥𝑝

with probability at least 1 − 𝛿 .

Both Theorem 5.1 and Corollary 5.2 are stated as if 𝐶 is given.

However, since the sampling did not rely on 𝐶 in any way, we can

sample complete rows of the input uniformly prior to receiving the

query 𝐶 , which is revealed after observing the data. The uniform

sampling approach also allows us to identify the ℓ𝑝 heavy hitters in

small space: for each item included in the sample (when projected

onto column set 𝐶), we use the sample to estimate its frequency,

and declare those with high enough estimated frequency to be the

heavy hitters. By contrast, for 𝑝 > 1 we are able to obtain a 2
Ω (𝑑)

space lower bound, given in the next section.

5.2 ℓ𝑝 Heavy Hitters Lower Bound
Recall from Section 2.1 that the objective of (projected) 𝜙-ℓ𝑝 heavy

hitters is to find all those rows in 𝐴𝐶
whose frequency is at least

some 𝜙-fraction of the ℓ𝑝 norm of the frequency distribution of

this projection. For the lower bound we need a randomly sam-

pled code as defined in Lemma 3.2. The lower bound argument

follows a similar outline to the bound for 𝐹0, although now Bob’s

query is on the complement of the support of his test vector 𝑦 (i.e.,

𝑆 = [𝑑] \ supp(𝑦)) rather than supp(𝑦). Akin to Theorem 4.1, we

will create a reduction from the Index problem in communication

complexity, and use its communication lower bound to argue a

space lower bound for projected ℓ𝑝 heavy hitters. The proof will

generate an instance of ℓ𝑝 heavy hitters based on encoding a col-

lection of codewords, and consider in particular the status of the

string corresponding to all zeros. We will consider two cases: when

Bob’s query string is represented in Alice’s set of codewords, then

the all zeros string will be a heavy hitter (for a subset of columns

determined by the query); and when Bob’s string is not in the set,

then the all zeros string will not be a heavy hitter. We begin by

setting up the encoding of the input to the Index instance.

Theorem 5.3. Let 𝜙 ∈ (0, 1) be a parameter and fix 𝑝 > 1. Any
algorithm which can obtain a constant factor approximation to the
projected 𝜙-ℓ𝑝 -heavy hitters problem requires space 2

Ω (𝑑) .

Proof. Fix 𝜖 > 0. Let C ⊂ B(𝑑, 𝜖𝑑) be a code whose words have
weight 𝜖𝑑 and any two distinct words 𝑥,𝑦 have at most (𝜖2 + 𝛾)𝑑
ones in common. By Lemma 3.2 such a C exists and |C| = 2

Ω𝛾 (𝑑)
.

Suppose Alice holds a subset 𝑇 ⊂ C. Let a ∈ {0, 1} |C |
be the

characteristic vector over all length-𝑑 binary strings for which

a𝑒 (𝑢) = 1 if and only if Alice holds 𝑢 ∈ 𝑇 . Bob holds 𝑦 ∈ C and

wants to determine if Alice holds 𝑦 ∈ 𝑇 . Ascertaining whether or

not Alice holds 𝑦 would be sufficient for Bob to solve Index and
incur the Ω(|C|) lower bound.

The input array, 𝐴, for the 𝜙-ℓ𝑝 -heavy hitters problem is con-

structed as follows.

(1) Alice populates 𝐴 with 2
𝜖𝑑

copies of the length-𝑑 all ones

vector, 1𝑑
(2) Next, Alice takes 𝑄 = 2 and inserts into 𝐴 the collection

star𝑄 (𝑇), which is the expansion of her input strings to

all child-words in binary. That is, for every 𝑠 ∈ 𝑇 , Alice

computes all binary strings 𝑥 of length 𝑑 with supp(𝑥) ⊆
supp(𝑠) and includes these in 𝐴.

Let 𝑆 = [𝑑] \ supp(𝑦), so that |𝑆 | = 𝑑 − 𝜖𝑑 = (1 − 𝜖)𝑑 . Without loss

of generality we may assume 𝑆 = {1, 2, . . . , (1−𝜖)𝑑} and we denote
the (1−𝜖)𝑑 length vector which is identically 0 on 𝑆 by 0𝑆 . Suppose
there is an algorithm A which approximates the ℓ𝑝 -heavy hitters

problem on a given column query up to a constant approximation

factor. Bob queries A for the heavy hitters in the table 𝐴 under the

column query given by the set 𝑆 , and then uses this information to

answer whether or not 𝑦 ∈ 𝑇 .

Case 1: 𝑦 ∈ 𝑇 . If 𝑦 ∈ 𝑇 , then we claim that 0𝑆 is a 𝜙-ℓ𝑝 heavy hitter

for some constant 𝜙 , i.e., 𝑓𝑒 (0𝑆) ≥ 𝜙 ∥ 𝑓 ∥𝑝 . We will manipulate the

equivalent condition 𝑓
𝑝

𝑒 (0𝑆) ≥ 𝜙𝑝𝐹𝑝 . Since 𝑦 ∈ 𝑇 , the set star(𝑦) is
included in the table 𝐴 as Alice inserted star(𝑠) for every 𝑠 that she
holds. Consider any child word of 𝑦, that is, a𝑤 ∈ star(𝑦). Since 𝑦
is supported only on [𝑑] \ 𝑆 and supp(𝑤) ⊆ supp(𝑦), every𝑤𝑖 = 0

for 𝑖 ∈ 𝑆 . So 0𝑆 is observed once for every 𝑤 ∈ star(𝑦) and there

are |star(𝑦) | = 2
𝜖𝑑

such𝑤 . Hence, 0𝑆 occurs at least 2
𝜖𝑑

times.

Now that we have a lower bound on the frequency of 0𝑆 , it
remains to upper bound the 𝐹𝑝 value when 𝑦 ∈ 𝑇 so that we are

assured 0𝑆 will be a heavy hitter in this instance. The quantity we

seek is the 𝐹𝑝 value of all vectors in𝐴𝑆
, written 𝐹𝑝 (𝐴, 𝑆); which we

decompose into the contribution from 0𝑆 present due to 𝑦 being in

𝑇 , and two special cases from the block of 2
Y𝑑

all-ones rows and

‘extra’ copies of 0𝑆 which are contributed by vectors 𝑦′ ≠ 𝑦. We

claim that this 𝐹𝑝 (𝐴, 𝑆) value is at most |C|1+𝑝2
𝜖𝑑+(𝜖2+𝛾)𝑑𝑝 +3·2𝜖𝑝𝑑 .

First, let 𝑦′ ∈ C with 𝑦′ ≠ 𝑦 and consider prefixes 𝑧 supported

on 𝑆 which can be generated by possible child words from star(𝑦′).
Since our code requires that |𝑦′ ∩ 𝑦 | ≤ (𝜖2 + 𝛾)𝑑 , 𝑦′ can have at

most (𝜖2 + 𝛾)𝑑 1s located in 𝑆 = [𝑑] \ 𝑆 , and hence must have at

least (𝜖−𝜖2−𝛾)𝑑 1s located in 𝑆 . Since |star(𝑦′) | = 2
𝜖𝑑
, the number

of copies of 𝑧 inserted is at most 2
𝜖𝑑−(𝜖𝑑−𝜖2𝑑−𝛾𝑑) = 2

𝜖2𝑑+𝛾𝑑
. This

occurs for every 𝑦′ ∈ C so the total number of occurences of 𝑧

is at most |C|2(𝜖2+𝛾)𝑑
. The contribution to 𝐹𝑝 for this scenario is

then |C|𝑝2
(𝜖2+𝛾)𝑑𝑝

. Observe that each codeword 𝑦′ generates at
most 2

𝜖𝑑
vectors under the star(𝑦′) operator, so we have an upper

bound of |C|2𝜖𝑑 such vectors generated, with a total contribution

of |C|1+𝑝2
(𝜖2𝑝+𝜖+𝛾𝑝)𝑑

.

Next, we focus on the two special vectors to count which have

a high contribution to the 𝐹𝑝 value. Recall that Alice specifically

included 1𝑑 into 𝐴 2
𝜖𝑑

times so the 𝑝-th powered frequency is

exactly 2
𝜖𝑝𝑑

for this term. From the above argument, 0𝑆 also has

frequency 2
𝜖𝑑

from star(𝑦). But 0𝑆 is also created at most 2
(𝜖2+𝛾)𝑑

times from each 𝑦′ ≠ 𝑦 in 𝑇 , giving an additional count of at most

|C|2(𝜖2+𝛾)𝑑
. Based on our choice of 𝜖 and 𝛾 , we can ensure that this

is asymptotically smaller than 2
𝜖𝑑
, and so the total contribution

from these two special vectors is at most 3 · 2
𝜖𝑑
. So in total we

achieve that 𝐹𝑝 is at most |C|1+𝑝2
𝜖𝑑+(𝜖2+𝛾)𝑑𝑝 + 3 · 2

𝜖𝑝𝑑
, as claimed.

Then 0𝑆 meets the definition to be a 𝜙-ℓ𝑝 heavy hitter provided

2
𝜖𝑝𝑑 > 𝜙𝑝 (|C|1+𝑝2

𝜖𝑑+(𝜖2+𝛾)𝑝𝑑 + 3 · 2
𝜖𝑝𝑑).

Assuming 𝑝 > 1, and choosing 𝜖 sufficiently smaller than (𝑝 −
1)/𝑝 and 𝛾 sufficiently small, we have that

|C|1+𝑝2
𝜖𝑑+(𝜖2+𝛾)𝑝𝑑 ≤ 2

𝑂 (𝛾2𝑑 (1+𝑝))+𝜖𝑑+𝜖 (𝑝−1)𝑑+𝛾𝑝𝑑 ≤ 2
𝜖𝑝𝑑 .

Hence, we require 2
𝜖𝑝𝑑 > 𝜙𝑝𝑂 (2𝜖𝑝𝑑), i.e., 2𝜖𝑑 > 𝜙𝑂 (2𝜖𝑑), which

is satisfied for a suitably small but constant 𝜙 .

Case 2: 𝑦 ∉ 𝑇 . On the other hand, suppose that 𝑦 ∉ 𝑇 . Then the

claim is that 0𝑆 is not a 𝜙-ℓ𝑝 -heavy hitter. Now the vector 0𝑆 does

not occur with a high frequency because star(𝑦) is not included in

𝐴. However, certain child words in star(𝑇) could also generate 0𝑆
when projected onto 𝑆 and this is the contribution we need to upper

bound. Again, any codeword 𝑠 ∈ 𝑇 has at least (𝜖 − 𝜖2 − 𝛾)𝑑 1s

present on 𝑆 . So for a particular 𝑠 ∈ 𝑇 , 0𝑆 can occur 2
𝜖2𝑑+𝛾𝑑

times.

Taken over all 𝑦′ ∈ C for which Alice includes in 𝐴, the frequency

of 0𝑆 in this case is at most |C|2𝜖2𝑑+𝛾𝑑
. Taking Y < 1/3, 𝛾 < Y/3

and using |C| = 2
𝛾2𝑑/ln 2

(Lemma 3.2) we have 𝑓𝑒 (0𝑆) ≤ 2
0.72Y𝑑

.

Meanwhile, there are 2
𝜖𝑑

copies of the string 1𝑑 inserted into 𝐴

meaning that 𝐹𝑝 (𝐴, 𝑆) ≥ 2
𝜖𝑝𝑑

and hence 𝐹
1/𝑝
𝑝 is strictly greater

than 𝑓𝑒 (0𝑆) . Hence, 0𝑆 is not a 𝜙-ℓ𝑝 heavy hitter provided that

𝑓𝑒 (0𝑆)/𝐹
1/𝑝
𝑝 = 2

−0.28Y𝑑
is strictly less than 𝜙 = 1/4, this is satisfied

for suitable Y and 𝑑 .

Concluding the proof. Bob can use his test vector𝑦 and a query 𝑆

with a constant factor approximation algorithmA for the ℓ𝑝 -heavy

hitters problem and distinguish between the two cases of Alice

holding 𝑦 or not based on whether 0𝑆 is reported. As a result, Bob

can determine if𝑦 ∈ 𝑇 and consequently solve Index, thus incurring
the Ω(|C|) = 2

Ω (𝑑)
lower bound. □

The instance 𝐴 is initialized with 2
Y𝑑

rows of the vector 1𝑑 and the

child words star𝑄 (𝑇). For any 𝑡 ∈ star𝑄 (𝑇), |star𝑄 (𝑡) | = 2
Y𝑑

so the

size of the instance 𝐴 is (|𝑇 | + 1)2Y𝑑 × 𝑑 .

5.3 𝐹𝑝 Estimation
The space complexity of approximating the frequency moments

𝐹𝑝 has been widely studied since the pioneering work of Alon,

Matias and Szegedy [1]. Here, we investigate their complexity under

projection. For 𝑝 = 1, the frequency is always the number 𝑛 of rows

in the original instance irrespective of the column set 𝐶 , so only

one word of space is required. We therefore devote attention to

𝑝 ≠ 1.

The reduction to Index for Theorem 5.4 follows a similar outline

as Theorem 5.3 for 𝑝 > 1. For 𝑝 < 1, we encode the problem slightly

differently, closer to that in Theorem 4.1. Again, the reduction to

Index relies on Bob determining whether or not Alice holds 𝑦,

which for 𝐹𝑝 estimation amounts to Bob evaluating 𝐹𝑝 (𝐴, 𝑆) and
comparing to a threshold value.

Theorem 5.4. Fix a real number 𝑝 > 0 with 𝑝 ≠ 1. A constant
factor approximation to the projected 𝐹𝑝 estimation problem requires
space 2

Ω (𝑑) .

Proof. For 𝑝 > 1 we begin by noticing that in the proof for

Theorem 5.3 one can also monitor the 𝐹𝑝 value of the input to the

problem rather than simply checking the heavy hitters. In particular,

depending on whether or not Alice holds Bob’s test word, 𝑦, the

projected 𝐹𝑝 changes by more than a constant. Consequently, we

invoke the same proof for 𝐹𝑝 , 𝑝 > 1 and obtain the same 2
Ω (𝑑)

lower bound.

On the other hand, suppose that 𝑝 < 1. We assume a code

C ⊂ B(𝑑, 𝜖𝑑) with the property that any distinct 𝑥, 𝑥 ′ ∈ C have

|𝑥∩𝑥 ′ | ≤ 𝑐𝑑 for some small constant 𝑐 > 𝜖2
(see Lemma 3.2). Again,

Alice holds a subset 𝑇 ⊆ C and inserts star(𝑇) into the table for

the problem 𝐴. Throughout this proof we use a binary alphabet

so suppress the 𝑄 notation from star𝑄 (·). Bob holds a test vector
𝑦 ∈ C and is tasked with determining whether or not Alice holds

𝑦 ∈ 𝑇 . We distinguish between the cases when Alice holds 𝑦 ∈ 𝑇

or not as follows. Bob uses 𝑦 to determine the query column set

𝑆 = supp(𝑦) and will compare against the returned frequency value

from the algorithm.

Case 1: 𝑦 ∉ 𝑇 . Consider some 𝑦′ ∈ C \ {𝑦}. Since 𝑦 and 𝑦′ are both
codewords, they can have a 1 coincident in at most 𝑐𝑑 locations. So

if Alice does not hold 𝑦 then the codewords we need to consider are

all binary words in the code which have at most 𝑐𝑑 1s in common

with 𝑦 on 𝑆 . We denote this collection of words by𝑀 , i.e., the set

of binary strings of length 𝑑 that have at most 𝑐𝑑 locations set to 1.

There are 𝑟 such vectors, where 𝑟 is defined by:

𝑟 ≜
𝑐𝑑∑
𝑖=0

(
𝑑

𝑖

)
≤ 𝑐𝑑 ·

(
𝑑

𝑐𝑑

)
= 𝑂 (𝑑)2Θ(𝑐𝑑) .

The total count of all strings generated by Alice’s encoding is at

most 2
𝜖𝑑 |C|: each string in C generates 2

𝜖𝑑
subwords from the

star(·) operation. We now evaluate the ℓ𝑝 -frequency of elements in

the set𝑀 , denoted 𝐹𝑝 (𝑀). For 𝑝 < 1, the value 𝐹𝑝 (𝑀) is maximized

when every element of 𝑀 has the same number of occurrences,

|C|2𝜖𝑑/𝑟 . As there are at most 𝑟 members of𝑀 , we obtain 𝐹𝑝 (𝑀) ≤
|C|𝑝2

𝜖𝑑𝑝𝑟1−𝑝
. Recalling the bounds on |C| and 𝑟 , this is:

2
𝑐𝑑𝑝+𝜖𝑑𝑝+Θ((1−𝑝)𝑐𝑑) ·𝑂 (𝑑1−𝑝) . (5)

We can now choose 𝑐 to be a small enough constant so that (5) is

at most 2
(1−𝛼)𝜖𝑑

for a constant 𝛼 > 0 by Lemma A.2 in Appendix

A.2.

Case 2: 𝑦 ∈ 𝑇 . Now consider the scenario when 𝑦 ∈ 𝑇 so that Alice

has inserted star(𝑦) into the table𝐴. Here, we can be sure that each

of the 2
𝜖𝑑

strings in star(𝑦) appears at least once over the column

set 𝑆 , and so the 𝐹𝑝 value is at least 2
𝜖𝑑

1
𝑝 = 2

𝜖𝑑
.

We observe that these two cases obtain the constant factor sepa-

ration, as required. Then, Bob can use his test vector 𝑦 and a query

𝑆 with a constant factor approximation algorithm to the projected

𝐹𝑝 -estimation problem and distinguish between the two cases of

Alice holding 𝑦 or not. Thus, Bob can determine if 𝑦 ∈ 𝑇 and con-

sequently solve the Index problem, incurring the Ω(|C|) = 2
Ω𝑐 (𝑑)

lower bound for a 𝑐 arbitrarily small. □

Remark 2. For 𝑝 > 1 we adopt the same instance as in Theorem
5.3 so the instance is of size (|𝑇 | + 1)2Y𝑑 × 𝑑 . On the other hand, for
0 < 𝑝 < 1, only the words in star𝑄 (𝑇) are required so 𝐴 has size
|𝑇 |2Y𝑑 × 𝑑 .

5.4 ℓ𝑝-Sampling
In the projected ℓ𝑝 -sampling problem, the goal is to sample a row

in 𝐴𝐶
proportional to the 𝑝-th power of its number of occurrences.

One approach to the standard (non-projected) ℓ𝑝 -sampling problem

on a vector 𝑥 is to subsample and find the ℓ𝑝 -heavy hitters [14].

Consequently, if one can find ℓ𝑝 -heavy hitters for a certain value

of 𝑝 , then one can perform ℓ𝑝 -sampling in the same amount of

space, up to polylogarithmic factors. Interestingly, for projected

ℓ𝑝 -sampling, this is not the case, and we show for every 𝑝 ≠ 1, there

is a 2
Ω (𝑑)

lower bound. This is despite the fact that we can estimate

ℓ𝑝 -frequencies efficiently for 0 < 𝑝 < 1, and hence find the heavy

hitters (Section 5.1).

Theorem 5.5. Fix a real number 𝑝 > 0 with 𝑝 ≠ 1, and let
Y ∈ (0, 1/2). Let 𝑆 ⊆ [𝑑] be a column query and 𝑖 be a pattern
observed on the projected data 𝐴𝑆 . Any algorithm which returns
a pattern 𝑖 sampled from a distribution (𝑝1, . . . , 𝑝𝑛), where 𝑝𝑖 ∈

(1 ± Y)
𝑓
𝑝

𝑒 (𝑖)
∥𝑓 (𝐴,𝑆) ∥𝑝𝑝

+ Δ together with a (1 ± Y ′)-approximation to 𝑝𝑖 ,

Δ = 1/poly(𝑛𝑑) and Y ′ > 0 is a sufficiently small constant, requires
2
Ω (𝑑) bits of space.

Proof. Case 1: 𝑝 > 1. The proof of Theorem 5.3 argues that

the vector 0𝑆 is a constant factor ℓ𝑝 -heavy hitter for any 𝑝 > 1

if and only if Bob’s test vector 𝑦 is in Alice’s input set 𝑇 , via a

reduction from Index. That is, we argue that there are constants
𝐶1 > 𝐶2 for which if 𝑦 ∈ 𝑇 , then 𝑓

𝑝

𝑒 (0𝑆) ≥ 𝐶1𝐹𝑝 , while if 𝑦 ∉

𝑇 , then 𝑓
𝑝

𝑒 (0𝑆) < 𝐶2𝐹𝑝 . Consequently, given an ℓ𝑝 -sampler with

the guarantees as described in the theorem statement, then the

(empirical) probability of sampling the item 0𝑆 should allow us to

distinguish the two cases. This holds even tolerating the (1 + Y ′)-
approximation in sampling rate, for a sufficiently small constant

Y ′. In particular, if 𝑦 ∈ 𝑇 , then we will indeed sample 0𝑆 with

Ω(1) probability, which can be amplified by independent repetition;

whereas, if𝑦 ∉ 𝑇 , we do not expect to sample 0𝑆 more than a handful

of times. Consequently, for 𝑝 > 1, an ℓ𝑝 -sampler can be used to

solve the ℓ𝑝 -heavy hitters problem with arbitrarily large constant

probability, and thus requires 2
Ω (𝑑)

space.

Case 2: 0 < 𝑝 < 1. We now turn to 0 < 𝑝 < 1. In the proof

of Theorem 5.4, a reduction from Index is described where Alice

holds the set 𝑇 and Bob the string 𝑦. Bob can generate the set

star(𝑦) of size 2
Y𝑑

which is all possible binary strings supported

on the column query 𝑆 . From this, Bob constructs the set 𝑀 ′ ={
𝑧 ∈ star(𝑦) : | supp(𝑧) | ≥ Y𝑑

2

}
. We observe that if 𝑦 ∈ 𝑇 then at

least half of the strings in star(𝑦) are supported on at least Y𝑑/2

coordinates which implies |𝑀 ′ | ≥ 2
Y𝑑−1

. The total 𝐹𝑝 in this case

can be bounded by a contribution of |𝑀 ′ |1𝑝 + 2
Y𝑑
. The first term

arises from the |𝑀 ′ | strings in𝑀 ′
with a frequency of 1, while the

second term is shown in Case 1 of Theorem 5.4. Since |𝑀 ′ | ≤ 2
Y𝑑
,

we have that 𝐹𝑝 ≤ 2
Y𝑑+1

in this case. Consequently, the correct

probability of ℓ𝑝 -sampling returning a string in 𝑀 ′
is at least

1

4

for the “ideal” case of Y = 0,Δ = 0. Even allowing Y < 1

2
and

Δ = 1/poly(𝑛𝑑), this probability is at least 1/10.

Otherwise, if 𝑦 ∉ 𝑇 , we exploit that 𝑦′ ≠ 𝑦 can coincide in at

most 𝑐𝑑 = 𝑂 (Y2𝑑) coordinates and | supp(𝑧) | ≥ Y𝑑/2 > 𝑐𝑑 for

any 𝑧 ∈ 𝑀 ′
. Hence, no 𝑧 ∈ 𝑀 ′

can occur in star(𝑦′) for another
𝑦′ ∈ C \ {𝑦} on the column projection 𝑆 . In this case, there should

be zero probability of sampling a string in𝑀 ′
(neglecting the trivial

additive probability Δ).
To summarize, in the case that 𝑦 ∈ 𝑇 , by querying the projection

𝑆 then a constant fraction of the 𝐹𝑝 -mass is on the set𝑀 ′
, whereas

when 𝑦 ∉ 𝑇 , then there is zero 𝐹𝑝 -mass on the set 𝑀 ′
. Since Bob

knows𝑀 ′
, he can run an ℓ𝑝 -sampler and check if the output is in

the set 𝑀 ′
, and succeed with constant probability. It follows that

Bob can solve the Index problem (amplifying success probability

by independent repetitions if needed), and thus again the space

required is 2
Ω (𝑑)

. □

Remark 3. For 𝑝 > 1 we again adopt the same instance as in
Theorem 5.3 which has size (|𝑇 | + 1)2Y𝑑 × 𝑑 . However, for 0 < 𝑝 < 1,
we require the instance from Theorem 5.4 so 𝐴 has size |𝑇 |2Y𝑑 × 𝑑 .

6 PROJECTED FREQUENCY ESTIMATION VIA
SET ROUNDING

Although our lower bounds rule out the possibility of computing

constant factor approximations to projected frequency problems

in sub-exponential space, it is still possible to compute non-trivial

approximations using exponential space but still better than naiv̈ely

enumerating all column subsets of [𝑑]. We design a class of algo-

rithms that proceed by keeping appropriate sketch data structures

for a “net” of subsets. The net has the property that for any query

𝐶 ⊂ [𝑑] there is a 𝐶 ′ ⊂ [𝑑] stored in the net which is not too

different from 𝐶 . We can then answer the query on 𝐶 using the

summary data structure computed for columnset 𝐶 ′
. To formalize

this approach we need some further definitions, the first of which

conceptualizes the notion of a net over subsets.

Definition 6.1 (𝛼-net of subsets). Let P ([𝑑]) denote the power
set of [𝑑]. Fix a parameter 𝛼 ∈ (0, 1/2). An 𝛼-net of P ([𝑑]) is the
set N = {𝑈 : |𝑈 | ≤ 𝑑/2 − 𝛼𝑑 or |𝑈 | ≥ 𝑑/2 + 𝛼𝑑} which contains

all subsets 𝑈 ∈ P ([𝑑]) whose size is at most 𝑑/2 − 𝛼𝑑 or at least

𝑑/2 + 𝛼𝑑 .

Let 𝐻 (𝑥) = −𝑥 log
2
(𝑥) − (1 − 𝑥) log

2
(1 − 𝑥) denote the binary

entropy function.

Lemma 6.2. LetN be an𝛼-net forP ([𝑑]). Then |N | ≤ 2
𝐻 (1/2−𝛼)𝑑+1.

Proof. The total number of subsets whose size is atmost𝑑/2 − 𝛼𝑑

is

∑
𝑖≤𝛼𝑑

(𝑑
𝑖

)
and

∑
𝑖≤𝛼𝑑

(𝑑
𝑖

)
≤ 2

𝐻 (1/2−𝛼)𝑑
[8, Theorem 3.1]. By sym-

metry we obtain the same bound for the number of subsets of size

at least 𝑑/2 + 𝛼𝑑 , yielding the claimed total. □

0.00 0.25 0.50
α

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
S

p
ac

e

0.00 0.25 0.50
α

22

25

28

A
p

p
ro

x
im

at
io

n
F

ac
to

r

2−14 2−8 2−2

Relative Space

22

25

28

A
p

p
ro

x
im

at
io

n
F

ac
to

r

Figure 1: Space-approximation tradeoff for 𝑑 = 20 as 𝛼 is varied from 0 to 1/2. Relative space is 2
𝐻 (1/2−𝛼)𝑑/2

𝑑 .

Algorithm 1: Projected frequency by query rounding

Input: Data 𝐴 ∈ {0, 1}𝑛×𝑑 , parameter 𝛼 ∈ (0, 1/2),
frequency estimation problem 𝑃 , query 𝐶 revealed

after 𝐴

1 Function ProjectedFreq(𝐴, 𝛼,𝐶):
2 Generate an 𝛼-net N
3 For every𝑈 ∈ N evaluate a 𝛽 approximate sketch to

estimate 𝑃 (𝐴,𝑈)
4 Given a projection query 𝐶 after observing 𝐴:

5 Obtain 𝐶 ′
, an 𝛼-neighbour to 𝐶 in N

6 return 𝑃 (𝐴,𝐶 ′) to 𝛽 relative error

6.1 From 𝛼-nets to Projections
Suppose that we are tasked with answering problem 𝑃 = 𝑃 (𝐴,𝐶)
on a projection query𝐶 . We know that if𝐶 is known ahead of time

then we can encode the input data 𝐴 ∈ [𝑄]𝑛×𝑑 on projection 𝐶

as a standard stream over the alphabet [𝑄] |𝐶 |
. The use of 𝛼-nets

allows us sketch some of the input and use this to approximately

answer a query. For a standard streaming problem, we will say

that an algorithm yields a 𝛽-approximation to the true solution 𝑧∗

if the returned estimate 𝑧 ∈ [𝑧∗/𝛽, 𝛽𝑧∗]. A sketch obtaining such

approximation guarantees will be referred to as a 𝛽 approximate

sketch. We additionally need the following notion of error due to

the distortion incurred when answering queries on elements of the

𝛼-net rather than the given query.

Definition 6.3 (Rounding distortion). Let 𝑃 = 𝑃 (𝐴,𝐶) be a pro-
jection query for the problem 𝑃 on input 𝐴 ∈ [𝑄]𝑛×𝑑 with pro-

jection 𝐶 . Let N ⊂ P ([𝑑]) be an 𝛼-net. The rounding distortion
𝑟 (𝛼, 𝑃) is the worst-case determinstic error incurred by solving

𝑃 (𝐴,𝐶 ′) rather than 𝑃 (𝐴,𝐶) for an 𝛼-neighbour 𝐶 ′ ∈ N of 𝐶 so

that 𝑃 (𝐴,𝐶)/𝑟 (𝛼, 𝑃) ≤ 𝑃 (𝐴,𝐶 ′) ≤ 𝑟 (𝛼, 𝑃)𝑃 (𝐴,𝐶).

Definition 6.3 is easiest to conceptualize for the 𝐹0 problem when

𝐴 ∈ {0, 1}𝑛×𝑑 . Specifically, 𝑃 = 𝐹0 and the task to solve is 𝑃 =

𝐹0 (𝐴,𝐶). For a given query 𝐶 , with an 𝛼-neighbour 𝐶 ′
in the net,

the gap between the number of distinct items observed on 𝐶 ′
at

most doubles for each column in the set difference between 𝐶 and

𝐶 ′
. Since𝐶 ′

is an 𝛼-neighbour, we have |𝐶 ′
∆𝐶 | ≤ 𝛼𝑑 so the worst-

case approximation factor in the number of distinct items observed

over 𝐶 ′
rather than 𝐶 is 2

𝛼𝑑
.

More generally, we can categorize the rounding distortion for

other typical queries, as demonstrated in the following lemma. Note

that if the query is contained in the 𝛼-net N then we will retain a

sketch for that problem; hence the distortion is only incurred for

queries not contained in the net.

Lemma 6.4. Fix 𝛼 ∈ (0, 1/2), suppose 𝐴 ∈ {0, 1}𝑛×𝑑 and N be an
𝛼-net. If 𝐶 is a projection query for the following cases, the rounding
distortion can be bounded as:

(1) 𝑃 = 𝐹0 (𝐴,𝐶) then 𝑟 (𝛼, 𝐹0) = 2
𝛼𝑑

(2) 𝑃 = 𝐹𝑝 (𝐴,𝐶), 𝑝 > 1 then 𝑟 (𝛼, 𝐹𝑝) = 2
𝛼𝑑 (𝑝−1)

(3) 𝑃 = 𝐹𝑝 (𝐴,𝐶), 𝑝 < 1 then 𝑟 (𝛼, 𝐹𝑝) = 2
𝛼𝑑 (1−𝑝)

Proof. Item (1) is an immediate consequence of the discussion

above following Definition 6.3 so we focus on (2) and (3). Suppose

𝑝 ≥ 1. Let 𝑓𝐶 = 𝑓 (𝐴,𝐶) denote the frequency vector associated to

the projection query 𝐶 over domain [2 |𝐶 |]. First, consider a single
index 𝑗 ∈ [2 |𝐶 |] with (𝑓𝐶) 𝑗 = 𝑥 . Let 𝐶 ′

be an 𝛼-neighbour for 𝐶

in N , and without loss of generality, assume that |𝐶 | < |𝐶 ′ |. The
task is to estimate ∥ 𝑓𝐶 ∥

𝑝
𝑝 = 𝑥𝑝 from ∥ 𝑓𝐶′ ∥𝑝𝑝 , where 𝑓𝐶′ = 𝑓 (𝐴,𝐶 ′)

is a frequency vector over the domain [2 |𝐶′ |] which is a |𝐶 ′ \ 𝐶 |
factor larger than the domain for 𝑓𝐶 . However, observe that in

𝑓𝐶′ , the value of 𝑥 is spread across the at most 2
𝛼𝑑

entries that

agree with 𝑗 on columns 𝐶 . The contribution to 𝐹𝑝 from these

entries is at most 𝑥𝑝 (if the mass of 𝑥 is mapped to a single entry).

On the other hand, by Jensen’s inequality, the contribution is at

least 2
𝛼𝑑 (𝑥/2

𝛼𝑑)𝑝 = 𝑥𝑝/2
𝛼𝑑 (𝑝−1)

. Hence, considering all entries

𝑗 , we obtain ∥ 𝑓𝐶 ∥
𝑝
𝑝/2

𝛼𝑑 (𝑝−1) ≤ ∥ 𝑓𝐶′ ∥𝑝𝑝 ≤ ∥ 𝑓𝐶 ∥
𝑝
𝑝 . In the case |𝐶 | >

|𝐶 ′ |, essentially the same argument shows that ∥ 𝑓𝐶 ∥
𝑝
𝑝 ≤ ∥ 𝑓𝐶′ ∥𝑝𝑝 ≤

∥ 𝑓𝐶 ∥
𝑝
𝑝2

𝛼𝑑 (𝑝−1)
. Thus we obtain the rounding distortion of 2

𝛼𝑑 (𝑝−1)
.

For 𝑝 < 1, we proceed as above, except by concavity, the ordering

is reversed. □

Observe that the distortion reduces to 1 (no distortion) as we

approach 𝑝 = 1 from either side. This is intuitive, since the 𝐹1 prob-

lem is simply to report the number of rows in the input, regardless

of 𝐶 , and so the problem becomes “easier” as we approach 𝑝 = 1.

With these properties in hand, we can give a meta algorithm as

described in Algorithm 1. In Theorem 6.5 we can fully characterize

the accuracy-space tradeoff for Algorithm 1 as a function of 𝛼 and

𝑑 .

Theorem 6.5. Let 𝐴 ∈ {0, 1}𝑛×𝑑 be the input data and 𝐶 ⊆ [𝑑]
be a projection query. Suppose 𝑃 = 𝑃 (𝐴,𝐶) is the projected frequency
problem, 𝛼 ∈ (0, 1/2) and 𝑟 (𝛼,𝑑) is the rounding distortion. With
probability at least 1 − 𝛿 a 𝛽𝑟 (𝛼,𝑑) approximation can be obtained
by keeping �̃� (2𝐻 (1/2−𝛼)𝑑) 𝛽-approximate sketches.

Proof. Let N be a 𝛼-net for P ([𝑑]) and for every 𝑈 ∈ N
generate a sketch with accuracy parameter 𝜖 for the problem 𝑃 on

the projection defined by𝑈 ⊆ [𝑑]. Either the projection 𝐶 ∈ N , in

which case we can report a 𝛽 factor approximation, or 𝐶 ∉ N in

which case we take an 𝛼-neighbour,𝐶 ′ ∈ N and return the estimate

𝑧 for 𝑃 (𝐴,𝐶 ′). The sketch ensures that the answer to 𝑃 (𝐴,𝐶 ′) is
obtained with accuracy 𝛽 , which by the rounding distortion is

a 𝛽𝑟 (𝛼,𝑑) approximation. To obtain this guarantee we build one

sketch for every 𝑈 ∈ N , for a total of 𝑂 (2𝐻 (1/2−𝛼)𝑑) sketches (via
Lemma 6.2). By setting the failure probabilty for each sketch as

𝛿 = 1/2
𝛼𝑑

and then taking a union bound over the 𝛼-net we achieve

probability at least 1 − 𝛿 . □

We remark that similar results are possible for the other func-

tions considered, ℓ𝑝 frequency estimation, ℓ𝑝 heavy hitters and ℓ𝑝
sampling. The key insight is that all these functions depend at their

heart on the quantity 𝑓𝑗/∥ 𝑓 ∥𝑝 , the frequency of the item at location

𝑗 divided by the ℓ𝑝 norm. If we evaluate this quantity on a superset

of columns, then both the numerator and denominator may shrink

or grow, in the same ways as analyzed in Lemma 6.4, and hence

their ratio is bounded by the same factor, up to a constant. Hence,

we can also obtain (multiplicative) approximation algorithms for

these problems with similar behavior.

Illustration of Bounds. First, observe that, irrespective of the

problem 𝑃 , the number of sketches needed is sublinear in 2
𝑑
. This

is due to the fact that the entropy 𝐻 (1/2 − 𝛼) < 1 for 𝛼 > 0, so the

size of the net |N | < 2
𝑑
. For 0 ≤ 𝑝 ≤ 2, we have 𝛽-approximate

sketches with 𝛽 = (1+𝜖) whose size is �̃� (Y−2), which is constant for
constant 𝜖 . For example, we obtain a 2

𝛼𝑑
approximation (ignoring

small constant factors) for 𝐹0 in space 𝑂 (2𝐻 (1/2−𝛼)𝑑), using for

instance the (1 + 𝜖)-approximate sketch from [11] which requires

𝑂 (Y−2 + log𝑛′) bits for an input over domain {1, . . . , 𝑛′}. Since
𝑛′ ≤ 2

𝑑
, and setting 𝜖 = 1, we obtain the approximation in space

𝑂 (𝑑2
𝐻 (1/2−𝛼)𝑑). This is to be compared to the bounds in Section 4,

where it is shown that (binary) instances of the projected 𝐹0 problem

require space 2
Ω (𝑑)

. These results show that the constant hidden

by the Ω() notation is less than 1.

In Figure 1 we illustrate the general behavior of the bounds for

𝑑 = 20. We plot the relative space by 2
𝐻 (1/2−𝛼)/2

𝑑
while varying 𝛼

over (0, 1/2) (plotted in the leftmost pane). This shows the space

reduction in using the 𝛼-net approach compared to naiv̈ely storing

all 2
𝑑
queries. The central pane shows how the approximation factor

2
𝛼𝑑

(on a log scale) varies with 𝛼 . We plot the space-approximation

tradeoff in the rightmost pane and the approximation factor is

again plotted on a log
2
-scale. This plot suggests that if we reduce

the space by a factor of 4 (i.e., permit relative space 2
−2
) then the

approximation factor is on the order of 10s. Meanwhile, if we use

relative space 2
−8
, then the approximation remains on the order of

hundreds: this is a substantial saving as the number of summaries

kept for the approximation is 2
12 = 4096 ≪ 2

20 ≈ 10
6
.

7 CONCLUDING REMARKS
We have introduced the topic of projected frequency estimation,

with the aim of abstracting a range of problems involving comput-

ing functions over projected subspaces of data. Our main results

show that these problems are generally hard, in terms of the space

requirements: in most cases, we require space which is exponential

in the dimensionality 𝑑 of the input. However, interestingly, the

exact dependence is not as simple as 2
𝑑
: we show that coarse ap-

proximations can be obtained whose cost is substantially sublinear

in 2
𝑑
. Letting 𝑁 = 2

𝑑
, our upper and lower bounds establish that

the space complexity for a number of problems here is polynomial

in 𝑁 , though substantially sublinear. And, in a few special cases

(ℓ𝑝 frequency estimation for 𝑝 ≤ 1), a sufficiently constant-sized

sample suffices for accurate approximation of projected frequencies.

It remains an intriguing open question to close the gaps between

the upper and lower bounds, and to find the exact form of the

polynomial dependence on 𝑁 for these problems.

Acknowledgements. We thank S. Muthukrishnan and Jacques

Dark for helpful discussions about this problem. The work of GC

and CD was supported by European Research Council grant ERC-

2014-CoG 647557. The work of DWwas supported by NSF grant No.

CCF-1815840, National Institute of Health grant 5R01HG 10798-2,

and a Simons Investigator Award.

REFERENCES
[1] N. Alon, Y. Matias, andM. Szegedy. 1999. The Space Complexity of Approximating

the Frequency Moments. JCSS: Journal of Computer and System Sciences 58 (1999),
137–147.

[2] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. 2016. Algorithms

for Provisioning Queries and Analytics. In International Conference on Database
Theory. 18:1–18:18.

[3] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu

Wang, and David P Woodruff. 2017. BPTree: An ℓ2 heavy hitters algorithm

sing constant memory. In Proceedings of Principles of Database Systems. ACM,

361–376.

[4] Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and

Samson Zhou. 2018. Nearly Optimal Distinct Elements and Heavy Hitters on

Sliding Windows. In Approximation, Randomization, and Combinatorial Opti-
mization Algorithms and Techniques (APPROX/RANDOM 2018), Vol. 116. 7:1–7:22.
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.7

[5] Vladimir Braverman, Robert Krauthgamer, and Lin F. Yang. 2018. Universal

Streaming of Subset Norms. CoRR abs/1812.00241 (2018). arXiv:1812.00241

http://arxiv.org/abs/1812.00241

[6] Pern Hui Chia, Damien Desfontaines, Irippuge Milinda Perera, Daniel Simmons-

Marengo, Chao Li, Wei-Yen Day, Qiushi Wang, and Miguel Guevara. 2019. KHy-

perLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale. In

IEEE Symposium on Security and Privacy (SP). 867–881.
[7] Benjamin Doerr. 2020. Probabilistic tools for the analysis of randomized opti-

mization heuristics. In Theory of Evolutionary Computation. Springer, 1–87.
[8] David Galvin. 2014. Three tutorial lectures on entropy and counting. arXiv

preprint arXiv:1406.7872 (2014).
[9] Rajesh Jayaram and David P. Woodruff. 2018. Perfect ℓ𝑝 Sampling in a Data

Stream. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS. 544–555.

[10] T. S. Jayram and D. P. Woodruff. 2009. The Data Stream Space Complexity of

Cascaded Norms. In IEEE Symposium on Foundations of Computer Science (FOCS).
765–774. https://doi.org/10.1109/FOCS.2009.82

[11] Daniel MKane, Jelani Nelson, and David PWoodruff. 2010. AnOptimal Algorithm

for the Distinct Elements Problem. In Proceedings of Principles of database systems.
ACM, 41–52.

[12] Ilan Kremer, Noam Nisan, and Dana Ron. 1999. On Randomized One-Round

Communication Complexity. Computational Complexity 8, 1 (1999), 21–49.

[13] Branislav Kveton, S. Muthukrishnan, Hoa T. Vu, and Yikun Xian. 2018. Finding

Subcube Heavy Hitters in Analytics Data Streams. In Proceedings of the 2018
World Wide Web Conference. 1705–1714. https://doi.org/10.1145/3178876.3186082

[14] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. 2016.

Heavy Hitters via Cluster-Preserving Clustering. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS. 61–70.

[15] Lance Parsons, Ehtesham Haque, and Huan Liu. 2004. Subspace Clustering for

High Dimensional Data: a review. SIGKDD Explorations 6, 1 (2004), 90–105.

https://doi.org/10.1145/1007730.1007731

[16] Sublinear.info. [n.d.]. Open Problem 94. https://sublinear.info/index.php?title=

Open_Problems:94.

[17] Srikanta Tirthapura and David P. Woodruff. 2012. A General Method for Esti-

mating Correlated Aggregates over a Data Stream. In IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012. 162–173.

[18] Hoa Vu. 2018. Data Stream Algorithms for Large Graphs and High Dimensional
Data. Ph.D. Dissertation. U. Massachusetts at Amherst.

A OMITTED PROOFS
A.1 Omitted Proof for Section 5.1

Theorem A.1 (Restated Theorem 5.1). Let𝐴 ∈ {0, 1}𝑛×𝑑 be the
input data and let𝐶 ⊆ [𝑑] be a given column query. For a given string
𝑏 ∈ {0, 1}𝐶 , the absolute frequency of 𝑏, 𝑓𝑒 (𝑏) , can be estimated up to
Y∥ 𝑓 ∥1 additive error using a uniform sample of size 𝑂 (Y−2

log(1/𝛿))
with probability at least 1 − 𝛿 .

Proof. Let 𝑇 = {𝑖 ∈ [𝑛] : 𝐴𝐶
𝑖

= 𝑏} be the set of indices on

which the projection onto query set 𝐶 is equal to the given pattern

𝑏. Sample 𝑡 rows of 𝐴 uniformly with replacement at a rate 𝑞 = 𝑡/𝑛.
Let the (multi)-subset of rows obtained be denoted by 𝐵 and the

matrix formed from the rows of 𝐵 be denoted 𝐴. For every 𝑖 ∈ 𝐵,

define the indicator random variable 𝑋𝑖 which is 1 if and only if

the randomly sampled index 𝑖 satisfies 𝐴𝐶
𝑖
= 𝑏, which occurs with

probability |𝑇 |/𝑛. Next, we define 𝑇 = 𝑇 ∩ 𝐵 so that |𝑇 | = ∑𝑡
𝑖=1

𝑋𝑖

and the estimator 𝑍 = 𝑛
𝑡 |𝑇 | has E(𝑍) = |𝑇 |. Finally, apply an

additive form of the Chernoff bound:

P (|𝑍 − E(𝑍) | ≥ Y𝑛) = P
(���𝑛
𝑡
|𝑇 | − |𝑇 |

��� ≥ Y𝑛

)
= P

(���|𝑇 | − 𝑡

𝑛
|𝑇 |

��� ≥ Y𝑡

)
≤ 2 exp

(
−Y2𝑡

)
.

Setting 𝛿 = 2 exp

(
−Y2𝑡

)
allows us to choose 𝑡 = 𝑂 (Y−2

log(1/𝛿)),
which is independent of 𝑛 and 𝑑 . The final bound comes from

observing that ∥ 𝑓 ∥1 = 𝑛, 𝑓𝑒 (𝑏) = |𝑇 | and ˆ𝑓𝑒 (𝑏) = 𝑍 . □

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.7
https://arxiv.org/abs/1812.00241
http://arxiv.org/abs/1812.00241
https://doi.org/10.1109/FOCS.2009.82
https://doi.org/10.1145/3178876.3186082
https://doi.org/10.1145/1007730.1007731
https://sublinear.info/index.php?title=Open_Problems:94
https://sublinear.info/index.php?title=Open_Problems:94

A.2 Omitted Proof for Section 5.3
A key step in the proof of Theorem 5.4 is that in Equation (5), the

expression

2
𝑐𝑑𝑝+𝜖𝑑𝑝+Θ((1−𝑝)𝑐𝑑) ·𝑂 (𝑑1−𝑝)

can be bounded by a manageable power of two. We formalize this

in Lemma A.2.

Lemma A.2. Under the same assumptions as in Theorem 5.4, there
exists a small constant 𝑐 > 0 which bounds Equation (5) by at most
2
(1−𝛼)𝜖𝑑 for some 𝛼 > 0.

Proof. Here we use base-2 logarithms and let 0 < 𝑐 < 1 be a

small constant which we need to bound. Also, let 0 < 𝑝 < 1 be a

given constant. Observe that the 𝑂 (𝑑1−𝑝) term only contributes

positively in the exponent term of (5) so we can ignore it from the

calculation. Write 2
Θ(𝑐𝑑 (1−𝑝)) = 2

𝑐𝑑𝛼 (1−𝑝)
for 𝛼 > 0. This follows

from: (
𝑑

𝑐𝑑

)
≤

(
𝑒𝑑

𝑐𝑑

)𝑐𝑑
≤ 2

(2+log
1

𝑐
)𝑐𝑑

(6)

so let 𝛼 = 2 + log
1

𝑐 . For clarity, we proceed by using the trivial

identity 1 − (1 − a) = a and show that 1 − a > 0 for a a function of

𝑐, 𝑝, 𝑑 . We need to ensure:

𝑐𝑝𝑑 + 𝜖𝑑𝑝 + 𝛼𝑐𝑑 (1 − 𝑝) ≤ (1 − 𝛼)𝜖𝑑. (7)

This amounts to showing that:

a ≜ 𝑐𝑝/𝜖 + 𝑝 + 𝛼𝑐 (1 − 𝑝)/𝜖 ≤ (1 − 𝛼)
Now, a = 𝑝 (𝑐/𝜖 + 1 − 𝛼𝑐/𝜖) + 𝛼𝑐/𝜖 and we require a < 1. We

may enforce the weaker property of 𝑝 (𝑐/𝜖 + 1 − 𝛼/𝜖) < 1 because

𝑐 > 0 and for 𝑐 < 4 we also have 𝛼 > 0 (inspection on Equation

(6)) so 𝛼𝑐/𝜖 > 0, and so can be omitted. Solving for 𝑐 we obtain

𝑐 (1 − 𝛼) < 𝜖 (1/𝑝 − 1). Recalling the definition of 𝛼 this becomes:

𝑐 (log 𝑐 − 1) < 𝜖 (1/𝑝 − 1) (8)

from which positivity on 𝑐 yields 𝑐 log 𝑐 < 𝜖 (1/𝑝 − 1). Hence, it is
enough to use 𝑐 < 𝜖 (1/𝑝 − 1). □

	Abstract
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Problem Definitions.
	2.2 Related Work

	3 Contributions
	3.1 Summary of Results
	3.2 Coding Theory Definitions
	3.3 Overview of Lower Bound Constructions

	4 Lower Bounds for F0
	5 p-Frequency Based Problems
	5.1 p Frequency Estimation
	5.2 p Heavy Hitters Lower Bound
	5.3 Fp Estimation
	5.4 p-Sampling

	6 Projected Frequency Estimation via Set Rounding
	6.1 From s to Projections

	7 Concluding Remarks
	References
	A Omitted Proofs
	A.1 Omitted Proof for Section 5.1
	A.2 Omitted Proof for Section 5.3

