
Theory meets Practice at the Median:
a worst case comparison of relative error quantile algorithms

Graham Cormode

University of Warwick

Coventry, UK

G.Cormode@warwick.ac.uk

Abhinav Mishra

Splunk

US

amishra@splunk.com

Joseph Ross

Splunk

US

josephr@splunk.com

Pavel Veselý

Charles University

Prague, Czech Republic

vesely@iuuk.mff.cuni.cz

ABSTRACT
Estimating the distribution and quantiles of data is a foundational

task in data mining and data science. We study algorithms which

provide accurate results for extreme quantile queries using a small

amount of space, thus helping to understand the tails of the in-

put distribution. Namely, we focus on two recent state-of-the-art

solutions: 𝑡-digest and ReqSketch. While 𝑡-digest is a popular com-

pact summary which works well in a variety of settings, ReqS-
ketch comes with formal accuracy guarantees at the cost of its

size growing as new observations are inserted. In this work, we

provide insight into which conditions make one preferable to the

other. Namely, we show how to construct inputs for 𝑡-digest that

induce an almost arbitrarily large error and demonstrate that it

fails to provide accurate results even on i.i.d. samples from a highly

non-uniform distribution. We propose practical improvements to

ReqSketch, making it faster than 𝑡-digest, while its error stays

bounded on any instance. Still, our results confirm that 𝑡-digest

remains more accurate on the “non-adversarial” data encountered

in practice.

ACM Reference Format:
Graham Cormode, Abhinav Mishra, Joseph Ross, and Pavel Veselý. 2021.

Theory meets Practice at the Median: a worst case comparison of relative

error quantile algorithms. In Proceedings of the 27th ACM SIGKDDConference
on Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021,
Virtual Event, Singapore. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3447548.3467152

1 INTRODUCTION
Studying the distribution of data is a foundational task in data

mining and data science. Given observations from a large domain,

wewill oftenwant to track the cumulative frequency distribution, to

understand the behavior, or to identify anomalies. This cumulative

distribution function (CDF) is also known variously as the order

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467152

statistics, generalizing themedian, and the quantiles.Whenwe have

a very large number of input observations, an exact characterization

is excessively large, and we can be satisfied with an approximate

representation, i.e., a compact function whose distance from the

true CDF is bounded. Recent work has argued that, rather than a

uniform error bound, it is more important to capture the detail of

the tail of the input distribution.

Faced with the problem of processing large volumes of distribu-

tion data, there have been many proposals of approximate quantile

algorithms to extract the desired compact summary. These are de-

signed to handle the input when seen as a stream of updates, or as

distributed observations. Even though these various algorithms all

draw on the same set of motivations, the emphasis can vary widely.

Some works view the question primarily as one of computational

complexity, and seek optimal bounds on the space usage, even if

this entails very intricate algorithmic designs and lengthy technical

proofs. Other works aspire to highly practical algorithms that can

be implemented and run efficiently on real workloads. Although

their authors might object, we can crudely characterize these two

perspectives as “theoretically-driven” and “pragmatic”.

In this paper, we study the behavior of two recent algorithms for

the quantiles problem, which we take to embody these two mind-

sets. The pragmatic approach is represented by the 𝑡-digest, which

is a flexible framework that has been reported as being adopted in

practice by various tech-focused companies (e.g., Microsoft, Face-

book, Google [8]). The theoretical approach is represented by the

ReqSketch [4], a work building on a line of prior theoretical papers,

each making incremental improvements to the asymptotic bounds.

On first glance, the conclusion seems obvious. ReqSketch is

suited for algorithmic study, and contributes to our understanding

of the fundamental computational complexity of the problem. Cod-

ing it up is not too hard, but the constants hidden in the “big-O”

analysis mean that it requires a fair amount of space to store and so

is unlikely to be competitive with the pragmatic approach. Mean-

while, the 𝑡-digest is very compact, and gives accurate answers to

realistic workloads, especially those uniformly distributed over the

domain. Its widespread adoption should give confidence that this

is a sensible choice to implement.

Our contribution in this paper is to tell a more nuanced story,

with a less clearcut ending. We dive into the inner workings of

the 𝑡-digest, and show how to construct inputs that lead to almost

arbitrarily bad accuracy levels. While it may seem that such inputs

https://doi.org/10.1145/3447548.3467152
https://doi.org/10.1145/3447548.3467152
https://doi.org/10.1145/3447548.3467152

are highly unlikely to be encountered in practice, 𝑡-digest may fail

to provide accurate estimates even if input items are repeatedly

drawn from a non-uniform distribution, and we demonstrate such

distributions. Meanwhile, we engineer an implementation of ReqS-
ketch that improves its time and space efficiency, making it faster

than 𝑡-digest. The outcome is a collection of empirical results show-

ing ReqSketch can be vastly preferable to 𝑡-digest, even on i.i.d.

samples, flipping the conclusion for uniformly distributed inputs.

Still, the conclusion is therefore less straightforward than one

might wish for. Both the input distributions and the careful con-

struction which lead to high error for the 𝑡-digest rely on a highly

non-uniform data distribution with numbers ranging from infini-

tesimal to astronomically large. For most realistic data patterns en-

countered in practice, the 𝑡-digest will remain a compelling choice,

due to its simplicity and ease of use. But, particularly since quantile

monitoring is often needed to track deviations from expected be-

havior, there is now a case to adopt ReqSketch for scenarios where

a strong guarantee is needed across all eventualities, no matter

how unlikely they might appear. Although ReqSketch has higher

overheads on average, and relies on internal randomness, its worst

case is much more tightly bounded. So, in summary, the practical

approach nevertheless has flaws – at least in theory – while the

theoretical approach is not so impractical as it may first appear.

2 PRELIMINARIES
2.1 Definitions
We consider algorithms that operate on a stream of items drawn

from some large domain. This could be any domain 𝑈 equipped

with a total order (e.g., strings with lexicographic comparison), or

a more restricted setting, such as the reals, where we additionally

have arithmetic operations.

The core notion needed is that of the rank of an element from

the domain, which is the number of items from the input that are

(strictly) smaller than the given element. Formally, for an input

stream of 𝑛 items 𝜎 = {𝑥1, . . . , 𝑥𝑛}, the rank of element 𝑦 is given

by 𝑅𝜎 (𝑦) = |{𝑖 : 𝑥𝑖 < 𝑦}|. There is some nuance in how to handle

streams with duplicated elements, but we will gloss over it in this

presentation; see [2] for a discussion of this nuance.

The quantiles are those elements which achieve specific ranks.

For example, the median of 𝜎 is𝑦 such that𝑅𝜎 (𝑦) = 𝑛/2, and the 𝑝th
percentile is 𝑦 such that 𝑅𝜎 (𝑦) = 𝑝𝑛/100. More generally, we seek

the 𝑞th quantile with 𝑅𝜎 (𝑦) = 𝑞𝑛 for 0 ≤ 𝑞 ≤ 1. Again, ambiguity

can arise since there can be a range of elements satisfying this

definition, but this need not concern us here.

We consider algorithms that aim to find approximate quantiles

via approximate ranks. That is, they seek elements whose rank is

sufficiently close to the requested quantile. Specifically, the quantile
error of reporting 𝑦 as the 𝑞th quantile is given by |𝑞 − 𝑅𝜎 (𝑦)/𝑛 |.
A standard observation is that if we have an algorithm to find

the approximate rank of an item, as 𝑅𝜎 (𝑦), this suffices to answer

quantile queries, after accounting for the probability of making

errors. In what follows, we focus on the accuracy of rank estimation.

Typically, we would like to have some guarantee on rank esti-

mation accuracy. A uniform (additive) rank estimation guaran-

tee asks that the error on all queries be bounded by the same

fraction of the input size, i.e., |𝑅𝜎 (𝑦) − 𝑅𝜎 (𝑦) | ≤ Y𝑛, for Y < 1.

This will ensure that all quantile queries have the same accuracy.

However, it is noted that in practice we often want greater ac-

curacy on the tails of the distribution, where we can see more

variation, compared to the centre which is usually more densely

packed and unvarying. This leads to notions such as the relative

error guarantee, |𝑅𝜎 (𝑦) − 𝑅𝜎 (𝑦) | ≤ Y𝑅𝜎 (𝑦), or more generally

|𝑅𝜎 (𝑦) − 𝑅𝜎 (𝑦) | ≤ Y 𝑓 (𝑅𝜎 (𝑦)/𝑛), where 𝑓 is a scale function which

captures the desired error curve as a function of the location in

quantile space. In this work, we focus on the relative error guaran-

tee and related scale functions (based on logarithmic functions). As

defined, relative error focuses on the low end of the distribution (i.e.,

the elements with low rank), but it is straightforward to flip this to

the high end by using the scale function (1 − 𝑅𝜎 (𝑦)/𝑛), or to make

it symmetric with the scale function min(𝑅𝜎 (𝑦)/𝑛, 1 − 𝑅𝜎 (𝑦)/𝑛).
We remark that guarantees on the rank error stated above are

more general and mathematically natural to study than guarantees

on the value error, which requires, for example, for a quantile query

𝑞 to return an item 𝑦 with 𝑦 = (1± Y) ·𝑥 , where 𝑅(𝑥) = 𝑞. The error

in value space is not invariant under translating the data (and can

be made arbitrarily bad by applying a translation). For applications

in which value space guarantees are desired, a simple logarithmic

histogram is optimal in the fixed-range regime.

2.2 Related Work
Most related work has focused on providing uniform error guaran-

tees. It is folklore that a random sample of size 𝑂 (1

Y2
) items from

the input is sufficient to provide an Y additive error estimate for

any quantile query, with constant probability. Much subsequent

work has aimed to improve these space bounds. Munro and Pa-

terson [22] gave initial results, but it was not until two decades

later that Manku et al. reinterpreted this (multipass) algorithm as

a quantile summary taking one pass over a stream, and showed

improved bounds of𝑂 (1Y log
2 Y𝑛) [19]. For many years, the state of

the art was the Greenwald-Khanna (GK) algorithm, which comes

in two flavours: a somewhat involved algorithm with a𝑂 (1Y log Y𝑛)
space cost, and a simplified version without a formal guarantee,

but good behavior in practice [12]. Subsequent improvements came

from Felber and Ostrovsky [10], who proposed combining sampling

with a constant number of GK instances; and Agarwal et al. [3]

who adapted the Manku et al. approach with randomness. Both

these approaches removed the (logarithmic) dependence on 𝑛 from

the space cost. Most recently, Karnin et al. [17] (KLL) further re-

fined the randomized approach to show an 𝑂 (1Y) space bound. The
tightest bound is achieved by a more complicated variant of the

approach; a slightly simplified approach with weaker guarantees is

implemented in the Apache DataSketches library [23].

The study of other scale functions such as relative error can

be traced back to the work of Gupta and Zane [13], who gave a

simple multi-scale sampling-based approach, with a space bound of

𝑂 (1

Y3
poly log𝑛). Subsequent heuristic and theoretical work aimed

to reduce this cost, leading to a bound of 𝑂 (1Y log
3 (Y𝑛)) using a

deterministic merge & prune strategy due to Zhang and Wang [25].

The cubic dependence on log𝑛 can be offputting, and recent work in

the form of the ReqSketch [4] has reduced this bound by adopting

a randomized algorithm inspired by the KLL method.

The theoretical study of the quantiles problem has also led to

lower bounds on the amount of space needed by any algorithm

for the problem, based on information theoretic arguments about

how many items from the input need to be stored. A simple ar-

gument shows that a uniform error guarantee requires space to

store Ω(1/Y) items from the input, and a relative error requires

Ω(1/Y log Y𝑛) (see, e.g., [4]). Some more involved arguments show

stronger lower bounds for uniform error of Ω(1Y log 1/Y) [14] and
Ω(1Y log Y𝑛) [5], but only for deterministic and comparison-based
algorithms. The restriction to comparison-based means that the

method can only apply comparisons to items and is not permit-

ted to manipulate them (e.g., by computing the average of a set

of items). Nevertheless, these lower bounds are sufficient to show

that the analysis of certain approaches described above, such as

the GK algorithm, is asymptotically tight, and cannot be improved

further. The deterministic bounds can also be extended to apply

to randomized algorithms and non-uniform guarantees, becoming

weaker as a result.

There are other significant approaches to the quantiles problem

to study. The moment-based sketch takes a statistical approach,

by maintaining the moments of the input stream (empirically),

and using these to fit the maximum entropy distribution which

agrees with these moments [11]. This requires the assumption that

the model fitting procedure will yield a distribution that closely

agrees with the true distribution. The DDSketch aspires to achieve

a “relative error” guarantee in value space [21], as described above,

though its merge operation (needed to handle the unbounded range

case) may result in estimates that do not comply with the prescribed

accuracy. Finally, the 𝑡-digest [8, 9] has been widely used in practice,

and is described in more detail in the subsequent section.

3 ALGORITHMS
3.1 t-Digest
The 𝑡-digest consists essentially of a set of weighted centroids
{𝐶1,𝐶2, . . .}, with a weighted centroid 𝐶𝑖 = (𝑐𝑖 ,𝑤𝑖) representing
𝑤𝑖 ∈ Z points near 𝑐𝑖 ∈ R. Centroids are maintained in the sorted

order, that is, 𝑐𝑖 < 𝑐 𝑗 for 𝑖 < 𝑗 . Rank queries are answered ap-

proximately by accumulating the weights smaller than a query

point, and performing linear interpolation between the straddling

centroids. The permissible weight of a centroid is governed by a

non-decreasing scale function 𝑘 : [0, 1] → R ∪ {±∞}, which de-

scribes the maximal centroid weight as a function on quantile space:

faster growth of 𝑘 enforces smaller centroids and hence higher accu-

racy. In particular, scale functions which grow rapidly near the tails

𝑞 = 0, 1 but are flat near 𝑞 = 0.5 should produce accurate quantile

estimates near 𝑞 = 0, 1, but trade accuracy for space near 𝑞 = 0.5.

The size of a 𝑡-digest is controlled by a compression parameter 𝛿 ,
which (roughly) bounds from above the number of centroids used.

(For the scale functions below, Dunning [7] shows that this rough

bound does hold for all possible inputs.) Given 𝛿 and scale function

𝑘 , the weight𝑤𝑖 of centroid 𝐶𝑖 must satisfy

𝑘

(𝑤<𝑖 +𝑤𝑖

𝑁

)
− 𝑘

(𝑤<𝑖

𝑁

)
≤ 1

𝛿
, (1)

where 𝑤<𝑖 :=
∑

𝑗<𝑖 𝑤 𝑗 is the total weight of centroids to the left

of 𝐶𝑖 and 𝑁 =
∑

𝑗 𝑤 𝑗 is the total number of items summarized by

the 𝑡-digest. The intuitive meaning of (1) is that the size of 𝐶𝑖 is

determined by the inverse derivative of the scale function evaluated

at the fraction of items to the left of 𝐶𝑖 . Thus 𝛿 controls the size-

accuracy tradeoff, and the scale function 𝑘 allows for the accuracy

to vary across quantile space. We will say a 𝑡-digest is associated

with the pair (𝑘, 𝛿). The four common proposed scale functions are

𝑘0 (𝑞) =
𝑞

2

𝑘1 (𝑞) =
1

2𝜋
sin

−1 (2𝑞 − 1)

𝑘2 (𝑞) =
1

𝑍 (𝑁) log
𝑞

1 − 𝑞

𝑘3 (𝑞) =
1

𝑍 (𝑁)

{
log 2𝑞 if 𝑞 ≤ 0.5

− log 2(1 − 𝑞) if 𝑞 > 0.5

Here, 𝑍 (𝑁) is a normalization factor that depends on 𝑁 . While 𝑘0
provides a uniformweight bound for any𝑞 ∈ [0, 1], functions𝑘1, 𝑘2,
and 𝑘3 get steeper towards the tails 𝑞 = 0, 1, which leads to smaller

centroids and higher expected accuracy near 𝑞 = 0, 1. Dunning [6]

proves that adding more data to a 𝑡-digest or merging two instances

of 𝑡-digest preserves the constraint (1) if any of these four scale

functions is used. Ross [24] describes asymmetric variants of 𝑘1, 𝑘2,

and 𝑘3, using the given function 𝑘 on [𝛼, 1] and the linearization of

𝑘 at 𝛼 on [0, 𝛼), and shows that the 𝑡-digest associated with any of

these modified scale functions accepts insertions and is mergeable.

There are two main implementations of 𝑡-digest that differ in

how they incorporate an incoming item into the data structure.

The merging variant maintains a buffer for new updates and once

the buffer gets full, it performs a merging pass, in which it treats

all items in the buffer as (trivial) centroids, sorts all centroids, and

merges iteratively any two consecutive centroids whose combined

size does not violate the constraint (1). The clustering variant finds

the closest centroids to each incoming item 𝑥 and adds 𝑥 to a

randomly chosen one of the closest centroids to 𝑥 that still has

room for 𝑥 , i.e, satisfies (1) after accepting 𝑥 . If there is no such

centroid, the incoming item forms a new centroid, which may

however lead to exceeding the limit of 𝛿 on the number of centroids

— in such a case, we perform a merging pass over the centroids that

is guaranteed to output at most 𝛿 centroids.

In an ideal scenario, the instance of the 𝑡-digest would be strongly-

ordered, that is, for each 𝑥𝑖 represented by centroid 𝐶𝑖 and each 𝑥 𝑗
represented by𝐶 𝑗 with 𝑖 < 𝑗 , it holds that 𝑥𝑖 < 𝑥 𝑗 . This means that

the (open) intervals spanned by data points summarized by each

centroid are disjoint, which is the case when data are presented

in the sorted order. Together with assuming a uniform distribu-

tion of items across the domain, strongly-ordered 𝑡-digest provides

highly accurate rank estimates even for, say, 𝛿 = 100. However,

strong ordering of centroids is impossible to maintain in a limited

memory when items arrive in an arbitrary order and in general,

centroids are just weakly ordered, i.e., only the means 𝑐𝑖 and 𝑐 𝑗 of

centroids 𝐶𝑖 and 𝐶 𝑗 satisfy 𝑐𝑖 < 𝑐 𝑗 if 𝑖 < 𝑗 . This weak ordering of

centroids, together with non-uniform distribution of items, is the

major cause of the error in rank estimates. The hard instances and

distributions presented in this paper are constructed so that they

induce a “highly weak” ordering of centroids, meaning that many

values summarized by centroid 𝐶𝑖 will not lie between the means

of neighboring centroids. As we show below, this leads to a highly

biased error in rank estimates for certain inputs.

3.2 ReqSketch
The basic building block of ReqSketch [4] is a compactor, which
is essentially a buffer of a certain capacity for storing items, and

the sketch consists of several such compactors, arranged in levels

numbered from 0. At the beginning, we start with one buffer at level

0, which accepts incoming items. Once the buffer at any level ℎ gets

full, we discard some items from the sketch in a way that does not

affect rank estimates too much. This is done by sorting the buffer,

choosing an appropriate prefix of an even size, and removing all

items in the chosen prefix from the buffer. Of these removed items,

a randomly chosen half is inserted into the compactor at level ℎ + 1

(which possibly needs to be initialized first), namely, items on odd

or even indices with equal probability, while removed items in the

other half are discarded from the sketch. This procedure is called

the compaction operation. Similar compactors were already used to

design the KLL sketch [16] and appear also, e.g., in [3, 18–20].

Since the sketch consists of items stored in the compactors, one

can view the set of stored items as a weighted coreset, that is, a

sample of the input where each item stored at level ℎ is assigned a

weight of 2
ℎ
(akin to the weight of a centroid in the 𝑡-digest setting).

Observe that the total weight of items remains equal to the input

size: when a compaction operation discards 𝑟 items, it also promotes

𝑟 items one level higher, and as the weight of promoted items

doubles, the total weight of stored items remains unchanged after

performing a compaction. To estimate the rank of some query item

𝑦, we simply calculate the total weight of stored items 𝑥 with 𝑥 < 𝑦.

Overall, this approach gives a comparison-based algorithm and

thus, its behavior only depends on the ordering of the input and is

oblivious to applying an arbitrary order-preserving transformation

of the input, even non-linear (which does not hold for 𝑡-digest).

The error in the rank estimate for any item is unbiased, that is, 0

in expectation, and since it is a weighted sum of a bounded number

of independent uniform ±1 random variables, its distribution is sub-

Gaussian, so we can apply standard tail bounds for the Gaussian

distribution. For bounding the variance, the choice of the prefix in

the compaction operation is crucial. For uniform error, it is sufficient

to always compact the whole buffer; see e.g. [17]. However, as

argued in [4], to achieve relative error accuracy, the prefix size

should be at most half of the buffer size and chosen according

to an exponential distribution, i.e., with probability proportional

to exp(−𝑠/𝑘), where 𝑠 is the prefix size and 𝑘 is a parameter of

the sketch controlling the accuracy. The prefix is actually chosen

according to a derandomization of this distribution, which leads to

a cleaner analysis and smaller constant factors. The choice of prefix

is qualitatively similar to the choice of scale function for a 𝑡-digest.

The number of compactors is bounded by at most 𝑂 (log(𝑁 /𝐵)),
where 𝐵 is the buffer size, since the weight of items is exponen-

tially increasing with each level, and thus, the size of the sketch

is 𝑂 (𝐵 · log(𝑁 /𝐵)). The analysis in [4] implies that if we take

𝐵 = 𝑂 (Y−1 ·
√
log Y𝑁), then the sketch provides rank estimates

with relative error Y with constant probability, while its size is

𝑂 (Y−1 · log1.5 Y𝑁) (the parameter 𝑘 mentioned above should be

set to 𝑂 (𝐵/log Y𝑁) = 𝑂 (Y−1/
√
log Y𝑁)). Finally, ReqSketch is fully

mergeable, meaning that after an arbitrary sequence of merge op-

erations, the aforementioned accuracy-space trade-off still holds.

3.3 Implementation Improvements of
ReqSketch

The brief description of ReqSketch above follows the outline in [4]

and is suitable for a mathematical analysis. In this section, we de-

scribe practical adjustments to ReqSketch that improve constant

factors as well as the running time. These were used in our proof-of-

concept Python implementation and have been incorporated in the

implementation in the DataSketches library.
1
First, we apply prac-

tical improvements for the KLL sketch proposed by Ivkin et al. [15].

These include laziness in compaction operations, i.e., allowing the

buffer to exceed its capacity provided that the overall capacity of

the sketch is satisfied, and flipping a random coin for choosing

even or odd indexed items only during every other compaction

operation at each level and otherwise using the opposite outcome

of the previous coin flip.

Furthermore, new ideas for ReqSketch are desired. A specific

feature of ReqSketch, compared to the KLL sketch, is that the buffer

size 𝐵 depends on the input size 𝑁 , and this is needed for the prefix

choice by the (derandomized) exponential distribution. For the

theoretical result, it is possible to maintain an upper bound �̂� on 𝑁

and once it is violated, use �̂� 2
as an upper bound and recompute the

buffer size at all levels. As it turns out, it suffices for the exponential

distribution to count compaction operations performed at each

level ℎ and set the level-ℎ buffer size based on this count 𝐶ℎ , i.e., to

𝑂 (Y−1 ·
√
log𝐶ℎ). This results in levels having different capacities,

with lower levels being larger as they process more items. Since

the level-0 compactor has the largest size, compaction operations

at level 0 are most costly as they take time proportional to the

size. To improve the amortized update time, when we perform a

compaction operation at level 0, we also compact the buffer at any

other level that exceeds its capacity. In other words, we restrict the

aforementioned laziness in compaction operations to level 0 only

and this postpones the next compaction operation at level 0 for as

long as possible. Experiments reveal that such a “partial laziness”

improves the amortized update time significantly (depending on

the number of streaming updates and parameters); see Section 5.3.

Overall, the empirical results in this paper and in the DataS-

ketches library suggest that on randomly shuffled inputs ReqS-
ketch with the improvements outlined above has over 10 times

smaller standard deviation of the error than predicted by the (al-

ready quite tight) mathematical worst-case analysis in [4]. Further-

more, results on various particular input orderings (performed in

the DataSketches library and with the proof-of-concept Python

implementation) reveal that the error on random permutations is

representative, that is, we did not encounter a data ordering on

which ReqSketch has higher standard deviation.

4 CAREFUL ATTACK ON 𝑡-DIGEST

The 𝑡-digest and space bounds. The application of merging on the

centroids ensures that the number of centroids maintained by the

𝑡-digest cannot be too large. In particular, the space parameter 𝛿 is

used to enforce that there are at most 𝛿 centroids maintained, no

1
The Python implementation of ReqSketch by the fourth author is available

at https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.

py. DataSketches library is available at https://datasketches.apache.org/; ReqSketch is

implemented in this library according to the aforementioned Python code.

https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://datasketches.apache.org/

x1 x2 = x3 = · · · = xw1c1

y2 = y3 = · · · = yw2c1 y1 c2

Figure 1: Illustration of the first two iterations of the attack
that creates two lopsided centroids at 𝑐1 and 𝑐2, assuming for
simplicity that none of items𝑦1, . . . , 𝑦𝑤2

getsmergedwith the
centroid at 𝑐1. Centroids to the left or right of the centroid
at 𝑐1 are not shown.

matter what order the items in the input stream arrive in, for any

of the scale functions considered above [7, 24]. While this bound

on the size of the summary is reassuring, it appears to stand in

opposition to the space lower bounds referenced in Section 2.2

above [5, 14]. This conflict is resolved by observing that the lower

bounds hold against algorithms which only apply comparisons to

item identifiers, whereas the 𝑡-digest combines centroids by tak-

ing weighted averages, and uses linear interpolation to answer

queries. Still, we should not be entirely reassured. We can consider

a “sampling" (instead of averaging) variant of the 𝑡-digest approach

which stays within the comparison-based model, by keeping some

(randomly-chosen) item in each centroid as its representative, and

using this to answer queries. For sure, this sampling variant makes

less use of the information available, and lacks the careful hier-

archical structure of the KLL sketch or ReqSketch. But now this

sampling variant is certainly subject to the space lower bounds,

e.g., from [5], and so cannot guarantee accuracy while using only

𝑂 (𝛿) space. Since it is not so different to the full averaging 𝑡-digest,
the accuracy offered might be comparable, suggesting that this too

may be vulnerable. This is the essence of our subsequent study, and

we make use of the construction of a “hard” instance from [5] to

help form the adversarial inputs to 𝑡-digest.

Overview of the attack. The idea of the attack is to produce a

(very) weakly ordered collection of centroids by wielding inspi-

ration from [5] against the inner workings of 𝑡-digest. For mo-

tivation, if centroid (𝑐1,𝑤1) summarizes 𝑆1 := {𝑥1, . . . , 𝑥𝑤1
} and

𝑥𝑖 < 𝑐1 < 𝑥𝑖+1 = next(𝜎, 𝑐1) (where next(𝜎, 𝑐1) is the smallest

stream element larger than 𝑐1; see [5]), then for a query point in

the interval (𝑐1, 𝑥𝑖+1), the rank will be overestimated by (at least)

𝑤1 − 𝑖 . When 𝑐1 is very close to the median of 𝑆1, this produces an

overestimate of approximately
𝑤1

2
. In the worst case, the rank error

is closer to𝑤1: if we operate with integer weights, in the “lopsided"

scenario in which 𝑥2 = 𝑥3 = · · · = 𝑥𝑤1
, the rank is overestimated by

at least𝑤1−1 in the interval (𝑐1, 𝑥2). Using real-valued weights, the
rank error can be made as close to𝑤1 as desired, using a weighted

set of the form {(𝑥1, Y), (𝑥2,𝑤1 − Y)}.
If a set 𝑆2 := {𝑦1, . . . , 𝑦𝑤2

} is then inserted within the interval

(𝑐1, 𝑥𝑖+1) and forms a new centroid (𝑐2,𝑤2), then for a query point

in the interval (𝑐2, next(𝜎, 𝑐2)), the rank will be overestimated by

𝑤1+𝑤2

2
in the typical case, or 𝑤1 + 𝑤2 − 2 in the worst case with

integer weights if 𝑆2 is similarly lopsided; see Figure 1. (The orien-

tation of the attack may be flipped in the evident way, producing

underestimates of the rank.)

As this nested construction proceeds, some of the inserted points

will be merged with a previously created centroid, and hence that

portion of the inserted weight will not contribute to the rank error.

Overall, after adding an initial set of items, we choose a centroid

(𝑐1,𝑤1) that we will attack. Assuming the merging pass always pro-

ceeds from left to right, the sequence of centroid weights progresses

as: (−𝑙1−),𝑤1, (−𝑟1−)
(−𝑙1−),𝑤1 + 𝑣1,𝑤2, (−𝑟1−)

(−𝑙1−),𝑤1 + 𝑣1,𝑤2 + 𝑣2,𝑤3, (−𝑟1−)
(2)

and so on, where (−𝑙1−) denotes the ordered collection of centroids,
having total weight 𝑙1 and smaller than the centroid with weight𝑤1,

and similarly (−𝑟1−) stands for centroids larger than the attacked

centroid. The idea is to add items of weight 𝑣1 to the “attacked”

centroid so that this centroid will be full and none of the next𝑤2

items will get merged into it, and similarly in the next iteration.

Thus, the first insertion has size 𝑣1 +𝑤2, the second has size 𝑣2 +𝑤3,

etc. To see how this affects the rank error as the number of nested

insertions of lopsided centroids increases, observe that if∑𝑁
𝑖=1𝑤𝑖 + 𝑣𝑖

𝑙1 + 𝑟1
→ ∞ (3)

as𝑁 → ∞ (i.e., if theweight not covered by these lopsided centroids

is negligible), then the asymptotic error can be made arbitrarily

close to

∑
𝑖 (𝑤𝑖−1)∑
𝑖 𝑤𝑖+𝑣𝑖 if integer weights are required, or

∑
𝑖 𝑤𝑖∑

𝑖 𝑤𝑖+𝑣𝑖 if this

restriction is dropped. If in addition

𝑤𝑖

𝑤𝑖 + 𝑣𝑖
≥ 𝛾 > 0 (4)

for all 𝑖 , then

∑
𝑖 𝑤𝑖∑

𝑖 𝑤𝑖+𝑣𝑖 ≥ 𝛾 as well and hence 𝛾 serves as a lower

bound on the asymptotic error.

We will see that the parameter 𝛿 influences the rate of conver-

gence to the asymptotic error (i.e., the growth of the quantity in

(3)), but the asymptotic error itself (i.e., 𝛾 in (4)) cannot be reduced

simply by taking 𝛿 large enough; in fact the asymptotic error is

increasing in 𝛿 for some important scale functions. In the next sec-

tions we sketch how to achieve the inequalities (3) and (4) above

for several scale functions of interest.

4.1 Scale Functions with Bounded Derivative
Proposition 1. Let 𝑘 be a scale function such that 0 < 𝑏 ≤

𝑘 ′(𝑞) ≤ 𝐵 for 𝑞 ∈ [0, 1]. Then there exists a number 𝛾 > 0 and a
𝛿0 > 0 such that for all 𝛿 ≥ 𝛿0, the 𝑡-digest associated with (𝑘, 𝛿)
has asymptotic error at least 𝛾 on the nested sequence of lopsided
insertions described above.

Sketch of proof. Since by (1), the function 𝑘 increases by
1

𝛿
on the interval 𝐼𝑤 in quantile space occupied by a full centroid

(𝑐,𝑤), the Mean Value Theorem guarantees a point 𝑞𝑤 ∈ 𝐼𝑤 such

that 𝑘 ′(𝑞𝑤) |𝐼𝑤 | = 1

𝛿
, where |𝐼𝑤 | denotes the length of the interval.

Note that |𝐼𝑤 | = 𝑤/(𝑙 +𝑤 + 𝑟), where 𝑙 and 𝑟 are the weights to

the left and right of centroid (𝑐,𝑤), respectively. We apply this

on centroid (𝑐𝑖 ,𝑤𝑖 + 𝑣𝑖) just after the 𝑖-th iteration of the attack,

with 𝑤 = 𝑤𝑖 + 𝑣𝑖 . Since
𝑤𝑖+𝑣𝑖
𝑙1+𝑟1 ≥ |𝐼𝑤 | and 𝑘 ′(𝑞𝑤) ≤ 𝐵, we obtain

𝑤𝑖+𝑣𝑖
𝑙1+𝑟1 ≥ 1

𝛿𝐵
. Taking 𝑁 large enough (depending on 𝛿), the desired

limiting behavior (3) is shown.

For the second inequality, we apply similar arguments to the

intervals of weights𝑤𝑖 ,𝑤𝑖 + 𝑣𝑖 ,𝑤𝑖+1 appearing in consecutive iter-

ations of the attack. Clearing denominators, we obtain equations:

𝛿𝑘 ′(𝑞𝑤𝑖
)𝑤𝑖 = 𝑙 +𝑤𝑖 + 𝑟

𝛿𝑘 ′(𝑞𝑤𝑖+𝑣𝑖) (𝑤𝑖 + 𝑣𝑖) = 𝑙 +𝑤𝑖 + 𝑣𝑖 +𝑤𝑖+1 + 𝑟
𝛿𝑘 ′(𝑞𝑤𝑖+1)𝑤𝑖+1 = 𝑙 +𝑤𝑖 + 𝑣𝑖 +𝑤𝑖+1 + 𝑟

(5)

From which it follows that

𝑤𝑖

𝑤𝑖 + 𝑣𝑖
=
𝛿𝑘 ′(𝑞𝑤𝑖+𝑣𝑖)𝑘 ′(𝑞𝑤𝑖+1) − 𝑘 ′(𝑞𝑤𝑖+𝑣𝑖) − 𝑘 ′(𝑞𝑤𝑖+1)

(𝛿𝑘 ′(𝑞𝑤𝑖
) − 1)𝑘 ′(𝑞𝑤𝑖+1)

. (6)

The denominator is bounded above by 𝛿𝐵2. For any Y > 0, we can

find 𝛿0 > 0 such that for 𝛿 ≥ 𝛿0, the numerator is bounded below

by (1 − Y)𝛿𝑏2. Hence 𝑤𝑖

𝑤𝑖+𝑣𝑖 is bounded below by
(1−Y)𝑏2

𝐵2
and (4) is

shown as well. □

A consequence of the proof is that for 𝑘0 (𝑞) = 𝑞/2 (the linear
scale function producing roughly equal-weight centroids and ex-

pected to have constant accuracy), the asymptotic error according

to (6) is
𝛿−2
𝛿−1 , i.e., for sufficiently large 𝛿 , the approximations can be

arbitrarily poor.

4.2 Attacks on 𝑘2 and 𝑘3

Without loss of generality, we assume the attack occurs where

𝑞 > 0.5 according to the 𝑡-digest, i.e., the attacked centroid has more

weight to its left than to its right, hence the growth conditions for

𝑘3 under (2) give rise to the following system of equations (derived

similarly to (5), using the definition of 𝑘3):

exp

(
1

𝛿

)
=
𝑤𝑖 + 𝑟1

𝑟1
=
𝑤𝑖 + 𝑣𝑖 +𝑤𝑖+1 + 𝑟1

𝑤𝑖+1 + 𝑟1
=
𝑤𝑖+1 + 𝑟1

𝑟1
(7)

Solving yields
𝑤𝑖

𝑤𝑖+𝑣𝑖 = 1

exp(1

𝛿
) and also

𝑤𝑖

𝑟1
= exp(1

𝛿
) − 1. We

may assume 𝑙1 < 𝐶 (𝛿)𝑟1 and hence
𝑤𝑖

𝑙1+𝑟1 >
𝑤𝑖

(𝐶 (𝛿)+1)𝑟1 =
exp(1

𝛿
)−1

(𝐶 (𝛿)+1) .

From this the limiting behavior (3) follows; as 𝛿 → ∞, exp(1
𝛿
) → 1

+

and hence the asymptotic error gets larger (and approaches 1) for

larger values of 𝛿 . Hence, in the worst case, the quantile error of

𝑡-digest with scale function 𝑘3 can be arbitrarily close to 1.

While 𝑘2 does not seem as amenable to direct calculation, we

observe that for all 𝑞 ∈ (0.5, 1), we have 𝑘 ′
3
(𝑞) < 𝑘 ′

2
(𝑞) < 2𝑘 ′

3
(𝑞).

Therefore the growth of 𝑘2 on an interval can be bounded on both

sides in terms of the growth of 𝑘3, and the system of equations

(7) has a corresponding system of inequalities. Eventually we find

𝑤𝑖

𝑟1
> exp(1

2𝛿
) − 1, giving (3), and also get

𝑤𝑖

𝑤𝑖 + 𝑣𝑖
>

1

exp(1
𝛿
) (exp(1

2𝛿
) + 1)

.

This lower bound on the asymptotic error approaches 0.5 as 𝛿

increases, which implies that the quantile error of 𝑡-digest with 𝑘2
can be arbitrarily close to 0.5.

5 EMPIRICAL RESULTS
In this section, we study the error behavior of 𝑡-digest and of Re-
qSketch on inputs constructed according to the ideas described

in Section 4 and also on inputs consisting of i.i.d. items generated

by certain non-uniform distributions. Furthermore, we compare

the merging and clustering implementations of 𝑡-digest, and also

empirically evaluate update times of the two algorithms.

The experiments are performed using the Java implementation

of 𝑡-digest by Dunning and the Java implementation of ReqSketch
by the Apache DataSketches library.

2
By default, we run 𝑡-digest

with compression factor 𝛿 = 500, but we can obtain similar results

for other values of 𝛿 . We then choose the parameters of ReqSketch
so that its size is similar to that of 𝑡-digest with 𝛿 = 500 for the

particular input size (recall that the size of ReqSketch depends

on the logarithm of the stream length). The measure for the size

we choose is the number of bytes of the serialized data structure.

For instance, if the input size is 𝑁 = 2
20
, then using 𝑘 = 4 as the

accuracy parameter of ReqSketch leads to essentially the same size

of the two sketches, which is about 2.5 kB.

5.1 Implementation of the Attack
In implementing the ideas of Section 4, we note that the size of the

interval between the attacked centroid and the next stream value

shrinks exponentially as the attack proceeds. Hence the attack as

described may run out of precision (at least for float or double
variable types) after only a few iterations. To circumvent this diffi-

culty, we target the attack in the neighborhood of zero, where more

precision is available, so the attack as implemented
3
chooses the

largest centroid less than zero, and uses the smallest positive stream

value as its “next” element. Additionally, the effectiveness of the

attack can be sensitive to the exact compression schedule used by

an implementation (particularly the clustering variant). Hence the

results of the attack are somewhat dependent on the particular man-

ner in which values are chosen from the interval for the ensuing

iteration. Nevertheless, equipped with knowledge of the parame-

ters of the 𝑡-digest, the ability to query for centroids near zero and

centroid weights, and memory of the actual stream presented to the

𝑡-digest, an adversary may generate a stream on which the 𝑡-digest

performs rather poorly. Figure 2 shows the (additive) quantile error

of both the merging and clustering implementations of 𝑡-digest, all

using scale function 𝑘0 and 𝛿 = 500 (the error of ReqSketch is not

shown as it is very close to 0%, similarly as in the plots below). This

shows that the vulnerability of 𝑡-digest is not due to the specifics of

implementation choices, but persists across a range of approaches.
4

5.2 Randomly Generated Inputs
Here, we provide results for inputs consisting of i.i.d. items gener-

ated by some distributions. Our purpose is to study the behavior of

the algorithms when the order of item arrivals is not adversarially

chosen, demonstrating that the class of “difficult” inputs is larger

than just the carefully targeted attack stream. Items drawn i.i.d.

form a well-understood scenario: if we knew the description of

the distribution, the quantiles of the distribution serve as accurate

estimates of the quantiles of a sufficiently large input sampled from

2
All code used is open source, and all scripts and code can be downloaded from

our repository at https://github.com/PavelVesely/t-digest/. For more details about

reproducing our empirical results, see Section A.

3
See again https://github.com/PavelVesely/t-digest/.

4
A similar construction may be applied to 𝑘2 or 𝑘3 , but as data accumulates on both

sides of zero (for precision reasons), the error is not pushed into the tails. Higher

precision computation (using, e.g., BigDecimal) would seem necessary for a practical

implementation of the attack exhibiting poor performance in the tails of the distribution

for the logarithmic scale functions.

https://github.com/PavelVesely/t-digest/
https://github.com/PavelVesely/t-digest/

Figure 2: 𝑡-digest on carefully constructed input

that distribution. However, we only study algorithms not designed

for any particular distribution, and so inputs consisting of i.i.d.

items can still present a challenge.

It is already known that on (i.i.d.) samples from some distri-

butions, such as the uniform or the normal distribution, 𝑡-digest

performs very well [1, 9, 24], and so we do not replicate these sce-

narios. Instead, we study a class of distributions inspired by the

attack of Section 4 and show under which conditions 𝑡-digest fails

to provide any accurate rank estimates.

In the attack described in Section 4, we carefully construct a

sequence of insertions into 𝑡-digest so that the error gets arbitrarily

large. Recall that with each iteration of the attack the interval where

future items are generated shrinks exponentially, while the number

of items increases linearly. Surprisingly, the large error is provoked

not only by the order in which items arrive but also by the large

range of scales of the input, as we demonstrate below.

Taking this property of the attack as an inspiration, a natural idea

for a hard distribution is to generate items uniformly on a logarith-

mic scale, i.e., applying an exponential function to an input drawn

uniformly at random. This is called the log-uniform distribution.
To capture the increasing number of items in the iterations of the

attack, we square the outcome of the uniform distribution used in

the exponent and finally, we let it have a negative or positive value

with equal probability, giving a signed log-uniform2 distribution.
Thus, each item is distributed according to

D
hard

∼ (−1)𝑏 · 10(2·𝑅
2−1) ·𝐸max

(8)

where 𝑏 ∈ {0, 1} is a uniformly random bit, 𝑅 is a uniformly random

number between 0 and 1, and 𝐸max is a maximum permissible

exponent (for base 10) of the double data type, which is bounded

by 308 in the IEEE 754-1985 standard.
5
The input is then constructed

by taking 𝑁 samples from D
hard

.

Figure 3 shows the quantile error for 𝑡-digest with 𝛿 = 500 and

asymmetric 𝑘2 scale function together with the error of ReqSketch
on this input with 𝑁 = 2

20
. We show the error for both the merging

5
In our implementation, we use 𝐸max = log

10
(𝑀/𝑁) , where𝑀 is the maximum value

of double, so that 𝑡 -digest does not exceed𝑀 when computing the average of any

centroid.

and clustering variants of 𝑡-digest and take the median error of

each rank, based on 2
12

trials, while for ReqSketch, we plot the
95% confidence interval of the error, i.e., ±2 standard deviations

(recall that the error of ReqSketch for any rank is a sub-Gaussian

zero-mean random variable). The absolute error is plotted on the

y-axis. The relative error requirement in this experiment is that

the error should be close to zero for the high quantiles (close to

1.0), with the requirement relaxing as the quantile value decreases

towards 0.0. This is observed for ReqSketch, whose error gradually
increases in the range 1.0 to 0.5, before approximately plateauing

below the median. However, the two 𝑡-digest variants show larger

errors on high quantiles, approaching -30% absolute error at 𝑞=0.8

for the merging variant. Note that if we simply report the maximum

input value for 𝑞 = 0.8, this would achieve +20% absolute error.

The resulting size of the merging 𝑡-digest is 2 752 bytes, while the

clustering variant needs just 2 048 bytes and the size of ReqSketch
is 2 624 bytes.

For comparison, Figure 4 shows similar results on the signed

log-uniform distribution, i.e., items generated according to (−1)𝑏 ·
10

(2·𝑅−1) ·𝐸max
, with 𝑏, 𝑅, and 𝐸max as above. The only notable differ-

ence is that 𝑡-digest achieves a slightly better accuracy. Our further

experiments suggest that the error of 𝑡-digest with other scale

functions capturing the relative error, such as the (asymmetric) 𝑘3
function, is even worse than if asymmetric 𝑘2 is used. We obtain

analogous results even for larger values of 𝛿 (with an appropriately

increased parameter 𝑘 for ReqSketch), although this requires larger

stream lengths 𝑁 .

A specific feature of bothD
hard

and the log-uniform distribution

is that there are numbers ranging (in absolute value) from 10
−302

to

10
302

. Such numbers, however, rarely appear in real-world datasets

and one may naturally wonder what happens if we limit the range,

by bounding the parameter 𝐸max of these distributions. Figure 5

shows the dependence of the average relative error on 𝐸max

6
; a

similar plot can also be obtained for the maximal relative error.

Interestingly, the clustering variant of 𝑡-digest performs far better

than the merging variant w.r.t. this measure. For a small 𝐸max, say,

𝐸max ≤ 10, 𝑡-digest is clearly preferable to ReqSketch as a very

large range of numbers is needed to enforce a large error for 𝑡-

digest. On the other hand, as the error of ReqSketch is unbiased,

its median relative error is indeed very close to 0.

We also note that the clustering variant of 𝑡-digest appears to

have better (though admittedly still inadequate) accuracy on the

hard inputs than does the merging variant. The merging variant

is generally preferred due to its faster updates (see Section 5.3)

and avoidance of dynamic allocations. Thus, those efficiencies may

come with a price of higher error.

Explanation of the large error for 𝑡-digest. The particularly strik-

ing feature of the merging 𝑡-digest error in Figure 3 is the straight

line which approximately goes from rank 0.48 to rank 0.79. As it

turns out, all ranks in this range have essentially the same esti-

mated rank returned by 𝑡-digest. This is because the last centroid

6
The relative error for a particular rank 𝑞 is computed as the absolute quantile error

at 𝑞 (i.e. the difference between 𝑞 and the estimated rank for item 𝑦 with 𝑅 (𝑦) = 𝑞)

divided by 1 − 𝑞; thus, the relative error is amplified for ranks close to 1. We run 2
8

trials and for each rank we take the median relative error for 𝑡 -digest and both the

median and +2 standard deviations (+2SD) of the error distribution for ReqSketch.
These median or +2SD errors are aggregated over all ranks by taking the average.

Figure 3: 𝑡-digest on i.i.d. samples from D
hard

(±2SD for Re-
qSketch means ±2 standard deviations)

Figure 4: 𝑡-digest on i.i.d. samples from the signed log-
uniform distribution.

with mean below 0 has mean equal to ≈ −10−302, while the next
centroid in the order has mean ≈ +10−101 (for one particular trial).
Hence, there is no centroid to represent values [0, 10−101], while
according to the definition of the hard distribution in (8), approxi-

mately 40% of items fall within that range. Furthermore, most of

this 40% lies in a much smaller interval of, say, [0, 10−110], meaning

that linear interpolation does not help to make the estimated ranks

more accurate. A similar observation can be made about the error

of the clustering variant, as well as in other scenarios. While the

infinitesimal values are not well-represented by centroids, they

distort the centroid means. In the clustering variant, for example,

all the centroids are pulled towards zero by being averaged with

Figure 5: Average relative error on i.i.d. samples from D
hard

,
depending on 𝐸max (denoted maxExp).

infinitesimal items, leading to overestimates of quantiles for 𝑞 < 0.5

and underestimates of quantiles for 𝑞 > 0.5.7

As outlined in Section 3.1, centroids of 𝑡-digest are only weakly

ordered, which in particular means that the numbers covered by

one centroid may be larger than the mean of a subsequent centroid

of 𝑡-digest. The mixed scales, when presented in random order, lead

to centroids with a high degree of overlap, at least measured locally

(on consecutive centroids): there are substantial regions in cen-

troid weight space in which the two-sample Kolmogorov-Smirnov

statistic computed on neighboring centroids is close to zero. The

centroids produced by the careful attack, by contrast, are pairwise

somewhat distinguishable, but have a global nested structure, caus-

ing the 𝑡-digest to have large error.
8
Note the same data presented

in sorted order does not pose nearly the same difficulty for 𝑡-digest,

as the infinitesimal items eventually form their own centroids and

give the 𝑡-digest sufficient detail on that scale.

5.3 Update Time
Finally, we provide empirical results that compare the running time

of the open source Java implementations of 𝑡-digest and ReqSketch.
We evaluate both merging and clustering variants of 𝑡-digest asso-

ciated with 𝛿 = 500 and asymmetric 𝑘2 scale function, and choose

the accuracy parameter of ReqSketch as 𝑘 = 4. Additionally, we

include the KLL sketch as well, with accuracy parameter 𝑘 = 100.

Table 1 shows amortized update times in nanoseconds (rounded to

integer) on an input consisting of 𝑁 i.i.d. samples from a uniform

distribution, for 𝑁 = 2
30
. The results are obtained on a 3 GHz AMD

EPYC 7302 processor. We remark that the update times remain

constant for varying 𝑁 , unless 𝑁 is too small (in the order of thou-

sands). In summary, the results show ReqSketch to be more than

two times faster than merging 𝑡-digest and about 4.5 times faster

than clustering 𝑡-digest.

7
A similar phenomenon occurs for the merging variant, but the error shifts since

merging passes always proceed from left to right. This is due to alternating merging

passes not being properly supported for asymmetric scale functions.

8
See https://github.com/PavelVesely/t-digest/blob/master/docs/python/adversarial_

plots/notebooks/overlap_computation.ipynb for the supporting computations.

https://github.com/PavelVesely/t-digest/blob/master/docs/python/adversarial_plots/notebooks/overlap_computation.ipynb
https://github.com/PavelVesely/t-digest/blob/master/docs/python/adversarial_plots/notebooks/overlap_computation.ipynb

Figure 6: Average update time of ReqSketch in nanoseconds.

Furthermore, we compare ReqSketch with the partial laziness

technique from Section 3.3 (which is the default option) and with

“full laziness” that was proposed for the KLL sketch in [15]. Figure 6

shows the average update times of both variants for varying accu-

racy parameter 𝑘 on 𝑁 i.i.d. samples from a uniform distribution,

for 𝑁 = 2
30
. This implies that the partial laziness idea provides a

significant speedup, especially for larger values of 𝑘 .

6 CONCLUDING REMARKS
Our standpoint as authors of this work cannot be viewed as neutral:

two of us (G. Cormode and P. Veselý) are co-authors of the ReqS-
ketch paper [4], and two of us (at Splunk) have deployed 𝑡-digest

and analyzed its behavior. Our collaboration in this workwas driven

by a desire to better understand these algorithms, their strengths

and weaknesses, and provide advice to other data scientists on how

to make best use of them. As foreshadowed in the introduction, our

view at this conclusion is perhaps more complicated than when we

started, when we hoped for a simple answer. From our studies, the

main takeaway is that 𝑡-digest can fail to give the desired levels of

accuracy on inputs with a highly non-uniform distribution over

the domain. However, these inputs are far from appearing natural,

and should not significantly trouble any teams who have deployed

this algorithm. Our second observation is that as implemented, the

ReqSketch is pretty fast in practice, and quite reliable in accuracy,

despite its somewhat offputtingly technical description. We did not

observe any examples where its error shoots up, but on “expected”

distributions (like the D
hard

with a small 𝐸max in Figure 5), it is

appreciably less accurate than 𝑡-digest. There is no clear win for

the pragmatic or theoretically minded solutions, at least in this case.

In the final analysis, our advice to practitioners is to consider both

Table 1: Average update time in nanoseconds.

Merging 𝑡-digest Clustering 𝑡-digest ReqSketch KLL

129 251 55 41

styles of algorithm for their applications, and to weigh up carefully

the tradeoff between performance in the worst case to performance

on average.

Acknowledgements. We wish to thank Lee Rhodes and other peo-

ple working on the DataSketches project for many useful discus-

sions about implementing ReqSketch. Work done while P. Veselý

was at the University of Warwick. G. Cormode and P. Veselý were

supported by European Research Council grant ERC-2014-CoG

647557. P. Veselý was also partially supported by GA ČR project

19-27871X and by Charles University project UNCE/SCI/004.

REFERENCES
[1] Apache DataSketches: KLL sketch vs t-digest. https://datasketches.apache.org/

docs/QuantilesStudies/KllSketchVsTDigest.html. Acessed: 2021-01-27.

[2] Apache DataSketches: Quantiles and ranks definitions. https://datasketches.

apache.org/docs/Quantiles/Definitions.html. Acessed: 2021-05-24.

[3] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei

Wei, and Ke Yi. Mergeable summaries. ACM Transactions on Database Systems
(TODS), 38(4):26, 2013.

[4] Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý.

Relative error streaming quantiles. In ACM Symposium on Principles of Database
Systems, 2021. arXiv preprint arXiv:2004.01668.

[5] Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based

quantile summaries. In ACM Symposium on Principles of Database Systems, 2020.
[6] Ted Dunning. Conservation of the 𝑡 -digest scale invariant. arXiv preprint

arXiv:1903.09919, 2019.
[7] Ted Dunning. The size of a 𝑡 -digest. arXiv preprint arXiv:1903.09921, 2019.
[8] Ted Dunning. The t-digest: Efficient estimates of distributions. Software Impacts,

7:100049, 2021.

[9] Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using

t-digests. arXiv preprint arXiv:1902.04023, 2019.
[10] David Felber and Rafail Ostrovsky. A randomized online quantile summary in

O(1/Y ∗ log(1/Y)) words. In APPROX/RANDOM, pages 775–785, 2015.

[11] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. Moment-

based quantile sketches for efficient high cardinality aggregation queries. Pro-
ceedings of the VLDB Endowment, 11(11):1647–1660, 2018.

[12] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of

quantile summaries. In ACM SIGMOD Record, volume 30, pages 58–66, 2001.

[13] Anupam Gupta and Francis X. Zane. Counting inversions in lists. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms, pages 253–254, 2003.

[14] Regant Y. S. Hung and Hing-Fung Ting. An 𝜔 (1
Y
log

1

Y
) space lower bound for

finding Y-approximate quantiles in a data stream. In Frontiers in Algorithmics,
volume 6213, pages 89–100. Springer, 2010.

[15] Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.

Streaming quantiles algorithms with small space and update time. arXiv preprint
arXiv:1907.00236, 2019.

[16] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for

the distinct elements problem. In ACM Principles of database systems, 2010.
[17] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in

streams. In Proceedings of IEEE Foundations of Computer Science, 2016.
[18] Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams:

Experimental comparisons, new analyses, and further improvements. The VLDB
Journal, 25(4):449–472, August 2016.

[19] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate

medians and other quantiles in one pass and with limited memory. In ACM
SIGMOD Record, volume 27, pages 426–435. ACM, 1998.

[20] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random

sampling techniques for space efficient online computation of order statistics of

large datasets. In ACM SIGMOD Record, volume 28, pages 251–262. ACM, 1999.

[21] Charles Masson, Jee E. Rim, and Homin K. Lee. DDSketch: A fast and fully-

mergeable quantile sketch with relative-error guarantees. Proc. VLDB Endow.,
12(12):2195–2205, August 2019.

[22] J Ian Munro and Michael S Paterson. Selection and sorting with limited storage.

Theoretical computer science, 12(3):315–323, 1980.
[23] Lee Rhodes, Kevin Lang, Alexander Saydakov, Edo Liberty, and Justin Thaler.

DataSketches: A library of stochastic streaming algorithms. Open source software:

https://datasketches.apache.org/, 2013.

[24] Joseph Ross. Asymmetric scale functions for 𝑡 -digests. Journal of Statistical
Computation and Simulation, to appear. arXiv preprint arXiv:2005.09599.

[25] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. Space-efficient

relative error order sketch over data streams. In Proceedings of IEEE ICDE, 2006.

https://datasketches.apache.org/docs/QuantilesStudies/KllSketchVsTDigest.html
https://datasketches.apache.org/docs/QuantilesStudies/KllSketchVsTDigest.html
https://datasketches.apache.org/docs/Quantiles/Definitions.html
https://datasketches.apache.org/docs/Quantiles/Definitions.html
https://datasketches.apache.org/

A REPRODUCIBILITY
All code used in obtaining the experimental results is open source

and can be downloaded from

https://github.com/PavelVesely/t-digest/ ,

where we also provide documentation and resources needed to re-

produce our experiments. Our repository is a clone of the original 𝑡-

digest repository available at https://github.com/tdunning/t-digest

(the original repository was last merged into ours on 2021-01-28),

and it additionally incorporates asymmetric scale functions from

https://github.com/signalfx/t-digest/tree/asymmetric. The asym-

metric scale functions provide a natural 𝑡-digest analogue of a

ReqSketch with guarantees on one end of the distribution.

The DataSketches library is available at https://datasketches.

apache.org/ and we took the particular Java implementation of Re-
qSketch from the GitHub repository at https://github.com/apache/

datasketches-java. For technical reasons, the code we use in our

experiments requires the ReqSketch algorithm to work with the

double data type, however, theDataSketches implementationworks

with float numbers only. We provide an adjusted implementation

using double inside our above-mentioned repository for reproduc-

ing the experiments. We also incorporate the KLL sketch from the

DataSketches library into our repository, with a similar adjustment

to the double type.

A.1 Main Experimental Setups
We implemented three experimental setups:

• A careful construction of a hard input for 𝑡-digest, according

to Sections 4 and 5.1.

• A generator of i.i.d. samples from a specified distribution,

for reproducing results in Section 5.2. A variant of this ex-

periment allows to have variable parameter 𝐸max of Dhard

and the log-uniform distribution, for reproducing results in

Figure 5.

• A comparison of the average update times of 𝑡-digest (both

the merging and clustering variants), ReqSketch, and the

KLL sketch, for reproducing results in Section 5.3.

The parameters of these experiments are adjustable by a con-

figuration file, which allows, for example, to set the compression

parameter 𝛿 and scale function for 𝑡-digest and the accuracy pa-

rameter 𝑘 for ReqSketch. Each of the experiments outputs a CSV

file with results into a specified directory. See the README file in

the repository for more details on how to run the experiments and

how to produce the plots.

The first two experiments output statistics on absolute error of

𝑡-digest and of ReqSketch for each of 200 evenly spaced normalized

ranks (the number of these ranks can be adjusted). Furthermore,

we perform 𝑇 trials, where 𝑇 is adjustable and set to 2
12

by default,

and output the median error for each variant of 𝑡-digest and the

95% confidence interval for ReqSketch (recall that the error of Re-
qSketch is unbiased; see Section 3.2). More precisely, the errors

for each rank are accumulated using the KLL sketch with accuracy

parameter 𝑘 = 200 and then from this sketch we recover an approx-

imate median or appropriate quantiles for two standard deviations

of the normal distribution. The error introduced by using the KLL

sketch instead of exact quantiles is negligible as we do not need to

estimate extreme quantiles of the distribution. The experiment with

variable 𝐸max (for Figure 5) outputs average and maximal relative

errors
6
of ReqSketch and both variants of 𝑡-digest for each tested

value 𝐸max.

A.2 Auxiliary Experiments
The possibility to adjust the parameters allows for verification of

other claims in this paper. For instance, one can obtain plots similar

to those in Figures 3-5 for (asymmetric) scale function 𝑘3 or for

other values of 𝛿 . We remark that in general, larger values of 𝛿

require larger values of the input size 𝑁 to induce poor accuracy

levels for 𝑡-digest, compared to similarly-sized ReqSketch.
Additionally, the configuration files may be altered to produce

more verbose output, namely to also write the datapoints underly-

ing the centroids in the resulting 𝑡-digest. Some plots describing the

local overlap of centroids are available in the repository. These help

to illuminate the nature of the weak ordering of centroids discussed

in Section 5.2.

Finally, further experiments with ReqSketch can be performed

with our proof-of-concept Python implementation and in the DataS-

ketches library. The Python implementation of ReqSketch by the

fourth author is available at https://github.com/edoliberty/streaming-

quantiles/blob/master/relativeErrorSketch.py and the generator of

some particular data orderings is at https://github.com/edoliberty/

streaming-quantiles/blob/master/streamMaker.py. Moreover, the

DataSketches library provides a repository for doing extensive ac-

curacy and speed experiments with ReqSketch (as well as other

sketches in this library), which is available at https://github.com/

apache/datasketches-characterization/.

https://github.com/PavelVesely/t-digest/
https://github.com/tdunning/t-digest
https://github.com/signalfx/t-digest/tree/asymmetric
https://datasketches.apache.org/
https://datasketches.apache.org/
https://github.com/apache/datasketches-java
https://github.com/apache/datasketches-java
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/streamMaker.py
https://github.com/edoliberty/streaming-quantiles/blob/master/streamMaker.py
https://github.com/apache/datasketches-characterization/
https://github.com/apache/datasketches-characterization/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Related Work

	3 Algorithms
	3.1 t-Digest
	3.2 ReqSketch
	3.3 Implementation Improvements of ReqSketch

	4 Careful Attack on t-digest
	4.1 Scale Functions with Bounded Derivative
	4.2 Attacks on k2 and k3

	5 Empirical results
	5.1 Implementation of the Attack
	5.2 Randomly Generated Inputs
	5.3 Update Time

	6 Concluding remarks
	References
	A Reproducibility
	A.1 Main Experimental Setups
	A.2 Auxiliary Experiments

