
A Second Look at Counting Triangles in Graph Streams
(Revised)

Graham Cormode, Hossein Jowharia,b,

aG.Cormode@warwick.ac.uk, Corresponding author
bhjowhari@sfu.ca

Abstract

In this paper we present improved results on the problem of counting triangles
in edge streamed graphs. For graphs with m edges and at least T triangles, we
show that an extra look over the stream yields a two-pass streaming algorithm
that uses O( m

ε2.5
√
T

polylog(m)) space and outputs a (1 + ε) approximation of the
number of triangles in the graph. This improves upon the two-pass streaming
tester of Braverman, Ostrovsky and Vilenchik, ICALP 2013, which distinguishes
between triangle-free graphs and graphs with at least T triangle using O( m

T 1/3 )
space. Also, in terms of dependence on T , we show that more passes would not
lead to a better space bound. In other words, we prove there is no constant pass
streaming algorithm that distinguishes between triangle-free graphs from graphs
with at least T triangles using O( m

T 1/2+ρ ) space for any constant ρ ≥ 0.

1. Introduction

Many applications produce output in form of graphs, defined an edge at a
time. These include social networks that produce edges corresponding to new
friendships or other connections between entities in the network; communication
networks, where each edge represents a communication (phone call, email, text
message) between a pair of participants; and web graphs, where each edge repre-
sents a link between pages. Over such graphs, we wish to answer questions about
the induced graph, relating to the structure and properties.

One of the most basic structures that can be present in a graph is a trian-
gle: an embedded clique on three nodes. Questions around counting the number
of triangles in a graph have been widely studied, due to the inherent interest in
the problem, and because it is a necessary stepping stone to answering questions
around more complex structures in graphs. Triangles are of interest within social

Preprint submitted to Theoretical Computer Science January 10, 2018



networks, as they indicate common friendships: two friends of an individual are
themselves friends. Counting the number of friendships within a graph is there-
fore a measure of the closeness of friendship activities. Another use of the number
of triangles is as a parameter for evaluation of large graph models [LBKT08].

For these reasons, and for the fundamental nature of the problem, there have
been numerous studies of the problem of counting or enumerating triangles in var-
ious models of data access: external memory [LWZW10, HTC13]; map-reduce [SV11,
PT12, TKMF09]; and RAM model [SW05, Tso08]. Indeed, it seems that triangle
counting and enumeration is becoming a de facto benchmark for testing “big data”
systems and their ability to process complex queries. The reason is that the prob-
lem captures an essentially hard problem within big data: accurately measuring
the degree of correlation. In this paper, we study the problem of triangle counting
over (massive) streams of edges. In this case, lower bounds from communication
complexity can be applied to show that exactly counting the number of triangles
essentially requires storing the full input, so instead we look for methods which
can approximate the number of triangles. In this direction, there has been series
of works that have attempted to capture the right space complexity for algorithms
that approximate the number of triangles. However most of these works have fo-
cused on one pass algorithms and thus, due to the hard nature of the problem, their
space bounds have become complicated, suffering from dependencies on multiple
graph parameters such as maximum degree, number of paths of length 2, number
of cycles of length 4, etc.

In a recent work by Braverman et al. [BOV13], it has been shown that at the
expense of an extra pass over stream, a straightforward sampling strategy gives a
sublinear bound that depends only on m (number of edges) and T (a lower bound
on the number of triangles1). More precisely [BOV13] have shown that one ex-
tra pass yields an algorithm that distinguishes between triangle-free graphs from
graphs with at least T triangles using O( m

T 1/3 ) words of space. Although their
algorithm does not give an estimate of the number of triangles and more impor-
tant is not clearly superior to the O(m∆

T
) one pass algorithm by [PT12, PTTW13]

(especially for graphs with small maximum degree ∆), it creates some hope that
perhaps with the expense of extra passes one could get improved and cleaner space

1In this and prior works, some assumption on the number of triangles is required. This is due
in part to the fact that distinguishing triangle-free graphs from those with one or more triangle
requires space proportional to the number of edges. Other works have required even stronger
assumptions, such as a bound on T2, the number of paths of length 2, or the maximum degree of
the graph
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complexities that beat the one pass bound for a wider range of graphs. In partic-
ular one might ask is there a O(m

T
) space multi-pass algorithm? In this paper,

while we refute such a possibility, we show that a more modest bound is possible.
Specifically here we show that the sampling strategy of [BOV13], namely uniform
sampling of the edges at a rate of 1√

T
in the first pass and counting detected trian-

gles in the second pass gives a O(1) approximation of the number of triangles. To
bring down the approximation precision to 1 + ε, we use a simple summary struc-
ture for identifying heavy edges (edges shared by many triangles which introduce
large variance in the estimator) in order to deal with them separately from the rest
of the graph. It turns out the right threshold for heaviness is O(

√
t/ε) which can

be obtained from the two pass constant factor approximation. In order to avoid
a third pass, we run the algorithm in parallel for different guesses of t and at the
end pick the outcome of the guess that matches our constant factor approximation
of t. We remark that a similar idea has been used in the recent work of Eden et
al. [ELRS15] for approximately counting triangles in sublinear time. There, the
notion of heaviness is applied to nodes, not edges, and the model allows query
access to node degrees and edge presence. In our algorithm, we also utilize the
one pass algorithm of Pagh and Tsourakakis [PT12] (explained below) as a sub-
routine. Lastly, we observe that this m/

√
T dependence is attainable in one pass

for a constant factor approximation—under the stronger assumption of random
ordering of edge arrivals.

Furthermore, via a reduction to a hard communication complexity problem,
we demonstrate that this bound is optimal in terms of its dependence on T . In
other words there is no constant pass algorithm that distinguishes between triangle-
free graphs from graphs with at least T triangles using O( m

T 1/2+ρ ) for any constant
ρ > 0. Our results are summarized in Figure 2 and compared to other bounds in
terms of the problem addressed, bound provided, and number of passes.

In line with prior work, we assume a simple graph—that is, each edge of
the graph is presented exactly once in the stream. Note that our lower bounds
immediately hold for the case when edges are repeated.

Algorithms for Triangle Counting in Graph Streams. The triangle counting
problem has attracted particular attention in the model of graph streams: there is
now a substantial body of work in this setting. Algorithms are evaluated on the
amount of space that they require, the number of passes over the input stream that
they take, and the time taken to process each update. Different variations arise
depending on whether deletions of edges are permitted, or the stream is ‘insert-
only’; and whether arrivals are ordered in a particular way, so that all edges inci-
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dent on one node arrive together, or arrivals are randomly ordered, or adversarially
ordered.

The work of Jowhari and Ghodsi [JG05] first studied the most popular of these
combinations: insert-only, adversarial ordering. The general approach, common
to many streaming algorithms, is to build a randomized estimator for the desired
quantity, and then repeat this sufficiently many times to provide a guaranteed ac-
curacy. Their approach begins by sampling an edge uniformly from the stream of
m arriving edges on n vertices. Their estimator then counts the number of trian-
gles incident on a sampled edge. Since the ordering is adversarial, the estimator
has to keep track of all edges incident on the sampled edge, which in the worst
case is bounded by ∆, the maximum degree. The sampling process is repeated
O( 1

ε2
m∆
T

) times (using the assumed lower bound on the number of triangles, T ),
leading to a total space requirement proportial to O( 1

ε2
m∆2

T
) to give an ε relative

error estimation of t, the (actual) number of triangles in the graph. The param-
eter ε ensures that the error in the count is at most εt (with constant probability,
since the algorithm is randomized). The process can be completed with a sin-
gle pass over the input. Jowhari and Ghodsi also consider the case where edges
may be deleted, in which case a randomized estimator using “sketch” techniques
is introduced, improving over a previous sketch algorithm due to Bar-Yossef et
al. [BYKS02].

The work of Buriol et al. [BFL+06] also adopted a sampling approach, and
built a one-pass estimator with smaller working space. An algorithm is proposed
which samples uniformly an edge from the stream, then picks a third node, and
scans the remainder of the stream to see if the triangle on these three nodes is
present. Recall that n is the number of nodes in the graph, m is number of edges,
and T ≤ t is lower bound on the (true) number of triangles. To obtain an accu-
rate estimate of the number of triangles in the graph, this procedure is repeated
independently O( mn

ε2T
) times to achieve ε relative error.

Recent work by Pavan et al. [PTTW13] extends the sampling approach of
Buriol et al.: instead of picking a random node to complete the triangle with a
sampled edge, their estimator samples a second edge that is incident on the first
sampled edge. This estimator is repeated O(m∆

ε2T
) times, where ∆ represents the

maximum degree of any node. That is, this improves the bound of Buriol et al.
by a factor of n/∆. In the worst case, ∆ = n, but in general we expect ∆ to be
substantially smaller than n.

Braverman et al. [BOV13] take a different approach to sampling. Instead of
building a single estimator and repeating, their algorithms sample a set of edges,
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and then look for triangles induced by the sampled edges. Specifically, an al-
gorithm which takes two passes over the input stream distinguishes triangle-free
graphs from those with T triangles in space O(mT−1/3).

For graphs withW ≥ mwhereW is the number of wedges (paths of length 2),
Jha et al. [JSP13] have shown a single pass O( m

ε2
√
T

) space algorithm that returns
an additive error estimation of the number of triangles where the estimation error
is bounded by εW .

Pagh and Tsourakakis [PT12] propose an algorithm in the MapReduce model
of computation, which depends on the maximum number of triangles on a single
edge (J). However, it can naturally be adapted to the streaming setting. As de-
scribed in Section 3, we make use of this algorithm as a subroutine in the design of
our two pass algorithm. The space used by this algorithms scales asO(mJ

T
+ m√

T
).

Lower bounds for triangle counting. A lower bound in the streaming model
is presented by Bar-Yossef et al. [BYKS02]. They argue that there are (dense)
families of graphs over n nodes such that any algorithm that approximates the
number of triangles must use Ω(n2) space. The construction essentially encodes
Ω(n2) bits of information, and uses the presence or absence of a single triangle
to recover a single bit. Braverman et al. [BOV13] show a lower bound of Ω(m)
by demonstrating a family of graphs with m chosen between n and n2. Their
construction encodes m bits in a graph, then adds τ edges such that there are
either τ triangles or 0 triangles, which reveal the value of an encoded bit.

For algorithms which take a constant number of passes over the input stream,
Jowhari and Ghodsi [JG05] show that still Ω(n/T ) space is needed to approxi-
mate the number of triangles up to a constant factor, based on a similar encoding
and testing argument. Specifically, they create a graph that encodes two binary
strings, so that the resulting graph has T triangles if the strings are disjoint, and
2T if they have an intersection. In a similar way, Braverman et al. [BOV13] en-
code binary strings into a graph, so that it either has no triangles (disjoint strings)
or at least T triangles (intersecting strings). This implies that Ω(m/T ) space is
required to distinguish the two cases. In both cases, the hardness follows from the
communication complexity of determining the disjointness of binary strings.

Revision note. This paper is a revision of an earlier version which claimed the
same main two pass dependence on T . However, the algorithm presented in the
earlier version can only obtain a constant factor approximation. In this revision,
our modified algorithm is based on the same general idea, that ‘heavy’ edges with
many incident triangles are those that prevent simple sampling-based algorithms
from succeeding, and handling such heavy edges separately can allow accurate
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n number of vertices
m number of edges
t(G) number of triangles in graph G
T lower bound on t(G)

ε relative error
δ probability of error
∆ maximum degree
t(e) number of triangles that share the edge e
J maxe∈E t(e)

K maximum number of triangles incident on a vertex
Dist(T ) Distinguish graphs with T triangles from triangle-free graphs

Estimate(T, ε) 1 + ε approximate the number of triangles when there are at least T
Disjrp Determine if two length p bitstrings of weight r intersect

Figure 1: Table of notation

algorithms. Our modified algorithm more directly handles heavy edges, and so
can provide the claimed bounds.

2. Preliminaries and Results

In this section, we define additional notation and define the problems that we
study.

As mentioned above, we use t(G) to denote the number of triangles in a graph
G = (V,E). Let J(G) denote the maximum number of triangles that share an
edge in G, and K(G) the maximum number incident on any vertex. We use t, J
and K when G is clear from the context.

Problems Studied. We define some problems related to counting the number
of triangles in a graph stream. These all depend on a parameter T that gives a
promise on the number of triangles in the graph.

Dist(T ): Given a stream of edges, distinguish graphs with at least T triangles
from triangle-free graphs.

Estimate(T, ε): Given the edge stream of a graph with at least T triangles,
output s where (1− ε) · t(G) ≤ s ≤ (1 + ε) · t(G).

Observe that any algorithm which promises to approximate the number of
triangles for ε < 1 must at least be able to distinguish the case of 0 triangles or
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Problem Passes Bound Reference
Dist(T ) 1 Ω(m) [BOV13]
Dist(T ) O(1) Ω(m/T ) [BOV13]
Dist(T ) 2 O( m

T 1/3 ) [BOV13]
Estimate(T, ε) 1 O( 1

ε2
m∆
T

) [PTTW13]
Estimate(T, ε) 1 O( 1

ε2
(mJ

T
+ m√

T
)) [PT12]

Estimate(T, ε) 2 Õ( m
ε2.5
√
T

) Theorem 3

Dist(T ) O(1) Ω( m
T 2/3 ) Theorem 8

Dist(T ) O(1) Ω( m√
T

) for m = Θ(n
√
T ) Theorem 9

Figure 2: Summary of results

T triangles. Consequently, we provide lower bounds for the Dist(T ) problem,
and upper bounds for the Estimate(T, ε) problem. Our lower bounds rely on the
hardness of well-known problems from communication complexity. In particular,
we make use of the hardness of Disjrp:

Problem 1 The Disjrp problem involves two players, Alice and Bob, who each have
binary vectors of length p. Each vector has Hamming weight r, i.e. r entries set
to one. The players want to distinguish non-intersecting inputs from inputs that
do intersect.

This problem is “hard” in the (randomized) communication complexity set-
ting: it requires a large amount of communication between the players in order
to provide a correct answer with sufficient probability [KN97]. Specifically, Disjrp
requires Ω(r) bits of communication for any r ≤ p/2, over multiple rounds of
interaction between Alice and Bob.

Our Results. We summarize the results for this problem discussed in Section 1,
and include our new results, in Figure 2. We observe that, in terms of dependence
on T , we achieve tight bounds for 2 passes: Theorem 3 shows that we can obtain
a dependence on T−1/2, and Theorem 9 shows that no improvement for constant
passes as a function of T can be obtained. It is useful to contrast to the results
of [PT12], where a one pass algorithm achieves a dependence of m

T 1/2 , but has an
additional term of mJ

T
. This extra term can be large: as big as m in the case that

all triangles are incident on the same edge; here, we show that this term can be
avoided at the cost of an additional pass, in order to identify edges with more than
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√
T triangles and handle them separately. Our results improve over the 2-pass

bounds given in [BOV13]. Comparing with the additive estimator of [JSP13],
while our sampling strategy is somewhat similar, using an extra pass over the
stream we return a relative error estimation of the number of triangles.

Our analysis assumes familiarity with techniques from randomized algorithms:
first, second and exponential moments methods, in the form of the Markov in-
equality, Chebyshev inequality, and Chernoff bounds [MR95].

3. Upper bounds

In this section, we provide an upper bound in the form of a randomized al-
gorithm which succeeds with constant probability. We begin by describing a 2-
pass algorithm that outputs a constant factor approximation of t(G) using a lower
bound T on t(G) (Section 3.1). Next we describe our main algorithm that uses the
constant factor approximation algorithm as a sub-procedure and a summary of the
graph (computed in the first pass) to improve the approximate factor to 1+ε (Sec-
tion 3.3). We make use of the following result by Pagh and Tsourakakis [PT12].

Lemma 1 ([PT12]) Given a simple graph G and arbitrary integer T , there is a
one-pass randomized streaming algorithm that outputs t′ such that |t′ − t(G)| ≤
max {εT, εt(G)}. The expected space usage of the algorithm is Õ( 1

ε2
(mJ

T
+ m√

T
)),

where J denotes the maximum number of triangles incident on a single edge.

The algorithm of Lemma 1 works by conceptually assigning a “color” to each
vertex randomly from C colors (this can be accomplished in the streaming set-
ting with a suitable hash function, for example). The algorithm then stores each
monochromatic edge, i.e. each edge from the input such that both vertices have
the same color. Counting the number of triangles in this induced graph, and scal-
ing up by a factor of C2 gives an estimator for t. The space used is O(m/C)
in expectation. Setting C appropriately yields a one-pass algorithm with space
Õ( 1

ε2
(m
T
J + m√

T
)).

3.1. Constant-factor approximation
The following simple lemma is a key observation in our algorithms. Here Eh

is the set of all edges e ∈ E with t(e) ≥ h.

Lemma 2 The number of triangles that contain two or three edges from the set
Eh is less than (3t

h
)2.
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Algorithm 1 The (3 + ε) Algorithm
Repeat the following l ≥ 16/ε times independently in parallel and output the min-
imum of the outcomes.
Pass 1. Pick every edge with probability p = O( 1

ε4.5
√
T

) (with large enough con-
stants).
Pass 2. Define r to be the number of triangles that are observed where two edges
were sampled in the first pass, and the completing edge is seen in the second pass.
Output r

3p2(1−p)
.

PROOF: From
∑

e∈E t(e) = 3t it follows that |Eh| ≤ 3t
h

. Since every two distinct
edges belong to at most one triangle, the number of triangles that contain two or
more edges from Eh is at most

(
3t/h

2

)
< (3t

h
)2. �

Algorithm 1 describes our two-pass, (3 + ε)-factor approximation algorithm.
Any use of this algorithm will set ε to be a constant, but for completeness our
analysis makes explicit the dependence on ε.

Theorem 3 Algorithm 1 is a 2-pass randomized streaming algorithm that uses
O( m

ε4.5
√
T

) space in expectation and outputs a (3 + ε) factor approximation of t
with constant probability.

PROOF: Let T represent the set of triangles in the graph. Consider one in-
stance of the basic estimator, and let X be the outcome of this instance. Let
Xi denote the indicator random variable associated with the ith triangle in T be-
ing detected. By simple calculation, we have Pr[Xi = 1] = 3p2(1 − p) and
E(X) = 1

3p2(1−p)

∑
i∈T Xi = t. Thus, X is an unbiased estimator for t; however,

R, which is the minimum of l independent repetitions of X , is biased. By the
Markov inequality, Pr[X ≥ (1 + ε)E(X)] ≤ 1/(1 + ε). Therefore, picking ε ≤ 1,
we can conclude,

Pr[R ≤ (1 + ε)t] ≥ (1− Pr[X ≥ (1 + ε)t]16/ε) ≥ 1− 1

2

16

≥ 1− 10−4.

However, proving a lower bound on R is more complex, and requires a more
involved analysis. First, we notice that most triangles share an edge with a limited

number of triangles. Let h =
√

9t
ε

. We call Eh the set of heavy edges. Let Th
denote the set of triangles with two or three heavy edges. From Lemma 2, we
have that |Th| < εt.
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Let S = T /Th. For each triangle i ∈ S, fix two of its light (non-heavy) edges.
Let Yi denote the indicator random variable for the event where the algorithm
picks these two light edges of i ∈ S in the first pass. We have E(Yi) = p2 and
always Yi ≤ Xi. Let Y = 1

p2

∑
i∈S Yi. Assuming p < 1, by definition we have

1/3Y < X . Therefore a lower bound on Y will give us a lower bound on X . We
have

E(Y ) = |S| ≥ (1− ε)t.

Also,

Var(Y ) = E(Y 2)− E2(Y ) ≤ 1

p2
|S|+ 1

p
|S|
√
t/ε.

The first term comes from
∑

i∈S
1
p4
E(Y 2

i ), and the second term arises from pairs
of triangles which share a light edge, of which there are at most |S|

√
t/ε (since

the edge is light), and which are both sampled with probability p3. Using the
Chebyshev inequality and assuming ε < 1

2
, we have

Pr[Y < (1− ε)2t] ≤ Pr[Y < (1− ε)|S|]

≤ Var(Y )

ε2|S|2

≤ 1

ε2

(
1

p2|S|
+

√
t/ε

p|S|

)

<
1

ε2

(
2

p2t
+

2

p
√
εt

)
.

Since T ≤ t, setting p > 320
ε3.5
√
T

, allows the above probability to be bounded
by ε

160
. Now the probability that the minimum of 16/ε independent trials is below

the designated threshold is at most ε
160

16
ε

= 1/10. Therefore with probability
at least 1 − (1/10−4 + 1/10) the output of the algorithm is within the interval
[1/3(1− 2ε)t, (1 + ε)t]. This proves the statement of our theorem. �

It can be shown the above analysis is tight 2. Consider the “crown”-like graph
where t triangles share an edge shown in Figure 3. If we sample edges at a rate of
p = O( 1√

t
), the bottom edge is picked with probabilty p, an unlikely event. That

2An earlier version of this paper erroneously claimed that this algorithm achieved a 1 + ε
approximation; this example shows that this is not the case.
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t

...

Figure 3: “Crown”-like graph

Algorithm 2 Constructing the summary structure SE(q, l)

For i ∈ [l], in parallel.

• Sample each node independently with probability q into Si.

• Ni ← all edges incident on any node in Si

means the random variable r will be concentrated around tp2 which divided by
3p2(1− p) gives roughly t/3 as the estimate for number of triangles. On the other
hand, for t disjoint triangles, r is concentrated around 3tp2(1 − p) which divided
by 3p2(1− p) gives the right estimate for the number of triangles.

3.2. Heavy-estimate data structure
Next we describe a simple summary structure of the graph which we refer to

by SE(q, l) here. An instance of SE(q, l) can be computed in one pass and can
be used to decide whether an arbitrary edge of the graph is heavy or not in an
approximate fashion. It is formed as a collection of l sets of edges Ni, chosen by
sampling as described in Algorithm 2. These sampled edges are used to estimate
whether a given edge e meets the heaviness condition, using Algorithm 3

We prove the following lemma regarding Algorithm 3.

Lemma 4 Let q ≥ 16
ε2d

and l = c log n for some constant c. The procedure heavy-
estimate(e) defined by Algorithm 3 can be used to decide whether t(e) ≥ d or
t(e) < 1

4
d with high probability. Moreover for every edge with t(e) ≥ d/4, t′(e)

approximates t(e) within a (1 + ε) factor.

PROOF: Fix an ordering on the triangles sharing e and let Xi,j be the random
variable corresponding to the event of the jth triangle on e being counted in the
ith edge set Ni. That is, the jth triangle on e is defined by the nodes {u, v, w},
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Algorithm 3 The heavy-estimate(e) procedure
Given edge e = (u, v) and summary structure SE(q, l) (sampled edge sets Ni):
For each i ∈ [l] :

ri(e)← |{w|(u,w) ∈ Ni ∧ (v, w) ∈ Ni}|
(count the number of triangles formed between e and Ni)

Return t′(e) = mediani ri(e)/q as estimate for t(e)

and Xj is 1 if w ∈ Si We have E[Xj] = q and thus E[ri(e) =
∑t(e)

j=1 Xj] = qt(e).
Therefore, E[r(e)/q] = t(e). By a Chernoff bound,

Pr[|t′(e)− t(e))| > εt(e))] ≤ e−
ε2qt(e)

4 .

Therefore, for t(e) ≥ d/4 and choosing q ≥ 16
ε2d

, each estimate t′(e) is close
to the correct value with constant probability greater than 1/e. Hence, taking
the median of O(log n) instances gives us a value within the desired bounds with
probability 1−O(1/n2), via a standard Chernoff bound argument.

On the other hand, for edges with t(e) < 1
4
d, the Markov inequality implies

that Pr[r(e)/q > d] < 1/4. The probability that the median of Θ(log n) repeti-
tions of the estimator goes beyond d is O( 1

n2 ). �

3.3. Relative error approximation
To obtain a relative error guarantee, we overlap the execution of three algo-

rithms in two passes, as detailed in Algorithm 4. Note that to optimize the de-
pendence on ε, the parameters used to invoke each of the Algorithms 1 and 3 are
carefully chosen.

Theorem 5 Algorithm 4 is a 2-pass randomized streaming algorithm that takes
O( m

ε2.5
√
T

polylog(n)) space in expectation and outputs a (1 + ε) factor approxi-
mation of t(G).

PROOF:
In the following, for the sake of simplicity in exposition, we assume the ran-

domized procedures used in the algorithm do not err. With appropriate choice of
parameters the total error probability can always be bounded by a constant smaller
than 1/2.

As in Algorithm 4, let j = max {b ∈ B | b ≤ t′}. Let Ej be the set of edges
that are identified as heavy by the algorithm for parameter j. Also let Gj be the
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Algorithm 4 Relative Error Algorithm
Do the following tasks in parallel:

• Run Algorithm 1 with ε = 1/12 to find t′ such that 1/4t ≤ t′ ≤ t.

• Run Algorithm 3 to compute SE(q, l) for q = Θ(ε−1.5T−0.5) and l =
Θ(log n).

• LetB = {T, 2T, 4T, ..., 2iT}where i is the smallest integer such that 2iT ≥
n3.

In the second pass, instantiate |B| parallel instances of the algorithm PTb

with parameters T = b, J = 24
√
b/ε for all b ∈ B. Also initiate counters

{hb}b∈B with zero.

Upon receiving the edge e ∈ E, first compute t′(e) using the heavy-estimate
procedure. For all b ∈ B, if t′(e) ≥ d = 24

√
b/ε, we add t′(e) to the global

counter hb, otherwise we feed e to PTb.

At the end of the pass, let tb be the output of PTb. We output hj + tj as the
final estimate for the number of triangles where j = max {b ∈ B | b ≤ t′}.

graph G after removing the edges Ej . Let t(Ej) be the number of triangles in G
that share at least an edge with Ej . Clearly t(G) = t(Ej) + t(Gj).

First, we prove that hj is indeed a 1 +O(ε) approximation of t(Ej). A source
of error comes from the fact that we will be over-counting triangles that have
more than one heavy edges. We show that number of such triangles is limited.
To see this, observe that with the choice of parameters q = Θ(ε−1.5T−0.5) and

d = 3
√

t
2ε

in Lemma 4, it follows that for each e ∈ Ej we have t(e) ≥ 6
√

j
ε

and

consequently t(e) ≥ 3
√

t
2ε
. The latter follows from the fact that t/8 ≤ j ≤ t.

But, by Lemma 2, the number of triangles that have two or three heavy edges that

are shared by more than 3
√

t
2ε

is at most εt. Another source of error comes from
estimation errors |t(e) − t′(e)|. This is also negligible since, by Lemma 4, for
every identified heavy edge e, we have |t(e)− t′(e)| bounded by εt(e).

On the other hand, the maximum number of triangles on an edge for graph Gj

is at most O(
√

j
ε
). Hence by Lemma 1, tj estimates t(Gj) within εt additive error

using O( m
ε2.5
√
t
) space. Consequently hj + tj estimates t(G) within 4εt additive
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error. Rescaling ε gives the desired result.
It remains to show that the expected space usage of the algorithm is bounded

as claimed. The SE(q, l) summary takes O(nqm
n

) = O( m
ε1.5
√
T

) in expectation.

The constant factor approximation takes O(m/
√
T ) space. The instance of the

PT algorithm with parameter b takes O(
m
√

b/ε

ε2b
+ m

ε2
√
b
) in expectation which is

bounded by O( m
ε2.5
√
T

) as T ≤ b. �

3.4. One pass algorithm
It is natural to ask whether this algorithm can be reduced to a single pass.

There are several obstacles to doing so. Primarily, we need to determine for each
edge whether or not it is heavy, and handle it accordingly. This is difficult if
we have not yet seen the subsequent edges which make it heavy. We can adapt
Algorithm 1 to one pass to obtain a constant factor approximation, under the as-
sumption of a randomly ordered stream.

Corollary 6 Assuming the data arrives in random order, there is a one-pass ran-
domized streaming algorithm that returns a 1/3 + ε factor approximation of t(G)
that uses O( m

ε4.5
√
T

) space.

PROOF: Under random order, we can combine the first and second passes of
Algorithm 1. That is, we sample edges with probability p, and look for triangles
observed based on the stream and the sample. We count all triangles formed as
r: either those with all three edges sampled, or those with two edges sampled and
the third observed subsequently in the stream. The estimator is now r

p2
, since the

probability of counting any triangle is p3 (for all three edges sampled) plus p2(1−
p) (for the first two edges in the stream sampled, and the third unsampled). The
same analysis as for Theorem 3 then follows: we partition the edges in to light and
heavy sets, and bound the probability of sampling a subset of triangles. A triangle
with two light edges is counted if both light edges are sampled, and the heavy
edge arrives last. This happens with probability p2/3. We can nevertheless argue
that we are unlikely to undercount such triangles, following the same Chebyshev
analysis as above. This allows us to conclude that the estimator is good. �

We emphasize random order is critical to make this algorithm work in one
pass: an adversarial order could arrange the heavy edges to always come last
(increasing the probability of counting a triangle under this analysis) or always
first (giving zero probability of counting a triangle under this analysis).
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3.5. Non-simple graphs
All our algorithms can be modified to work when the graphs are not simple.

That is, we may see the same edge multiple times in the graph stream, but are only
interested in counting each unique triangle once. We need two tools to accomplish
this: (1) hash functions which map nodes or edges to real numbers in the range
[0 . . . 1] and can be treated as random (2) count-distinct algorithms which can
approximate the number of unique items (tuples of nodes) that are passed to them,
up to a (1 + ε) factor.

The transformation of the algorithms is to replace sampling with hashing and
testing if the hash value is less than the threshold p. This has the effect of sampling
each unique edge (or node) with probability p. We replace counting triangles with
a count-distinct of the triangles.

For example, Algorithm 1 uses hashing to determine which (distinct) edges to
sample in pass 1, then approximately counts the set of distinct triangles in pass
2. The one-pass algorithm of Lemma 1 can correspondingly be modified, as can
Algorithm 3. The main change needed for Algorithm 4 is that we should extract
the set of triangles counted in each invocation of Algorithm 3, and pass these to
an instance of a count-distinct algorithm hb. Consequently, our results also apply
to the case of repeated edges. The space cost increases due to replacing counters
with approximate counters. In each algorithm, the number of instances of count-
distinct algorithms is small. Hence, these modifications increase the space cost by
an additional Õ(1/ε2), which does not change the asymptotic bounds.

4. Lower bounds

We now show lower bounds for the problem Dist(T ), to distinguish between
the case t = 0 and t ≥ T . Our first result builds upon a lower bound from prior
work, and amplifies the hardness. We formally state the previous result:

Lemma 7 [BOV13] Every constant pass streaming algorithm for Dist(T ) re-
quires Ω(m

T
) space.

Theorem 8 Any constant pass streaming algorithm for Dist(T ) requires Ω( m
T 2/3 )

space.

PROOF: Given a graph G = (V,E) with m edges we can create a graph G′ =
(V ′, E ′) with mT 2 edges and t(G′) = T 3t(G). We do so by replacing each vertex
v ∈ V with T vertices {v1, . . . , vT} and replacing the edge (u, v) ∈ E with the
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edge set {u1, . . . , uT} × {v1, . . . , vT}. Clearly any triangle in G will be replaced
by T 3 triangles in G′ and every triangle in G′ corresponds to a triangle in G.
Moreover this reduction can be peformed in a streaming fashion usingO(1) space.
Therefore a streaming algorithm for Dist(T ) using o( m

T 2/3 ) (applied to G′) would
imply an o(m) streaming algorithm for Dist(1). But from Lemma 7, we have that
Dist(1) requires Ω(m) space for constant pass algorithms. This is a contradiction
and as a result our claim is proved. �

Our next lower bound more directly shows the hardness by a reduction to the
hard communication problem of Disjrp.

Theorem 9 For any ρ > 0 and T ≤ n2, there is no constant pass streaming
algorithm for Dist(T ) that takes O( m

T 1/2+ρ ) space.

PROOF: We show that there are families of graphs with Θ(n
√
T ) edges and T

triangles such that distinguishing them from triangle-free graphs in a constant
number of passes requires Ω(n) space. This is enough to prove our theorem.

We use a reduction from the standard set intersection problem, here denoted
by Disjn/2

n . Given y ∈ {0, 1}n, Bob constructs a bipartite graph G = (A ∪ B,E)
where A = {a1, . . . , an} and B = {b1, . . . , b√T}. He connects ai to all vertices
in B iff y[i] = 1. On the other hand, Alice adds vertices C = {c1, . . . , c√T}
to G. She adds the edge set C × B. Also for each i ∈ [

√
T ] and j ∈ [n], she

adds the edge (ci, aj) iff x[j] = 1. We observe that if x and y (uniquely) intersect
there will be precisely T triangles passing through each vertex of C. Since there
is no edge between the vertices in C, in total we will have T triangles. On the
other hand, if x and y represent disjoint sets, there will be no triangles in G. In
both cases, the number of edges is between 2n

√
T and 3n

√
T , over O(n) vertices

(using the bound T 2 ≤ n). Considering the lower bound for the Disjrp (Section 2),
our claim is proved following a standard argument: a space efficient streaming
algorithm would imply an efficient communication protocol whose messages are
the memory state of the algorithm. �
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