
VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN
COMMUNICATION∗

AMIT CHAKRABARTI†, GRAHAM CORMODE‡, ANDREW MCGREGOR§, JUSTIN THALER¶, AND

SURESH VENKATASUBRAMANIAN‖

Abstract.
In the setting of streaming interactive proofs (SIPs), a client (verifier) needs to compute a given function on

a massive stream of data, arriving online, but is unable to store even a small fraction of the data. It outsources
the processing to a third party service (prover), but is unwilling to blindly trust answers returned by this service.
Thus, the service cannot simply supply the desired answer; it must convince the verifier of its correctness via a short
interaction after the stream has been seen.

In this work we study “barely interactive” SIPs. Specifically, we show that one or two rounds of interaction
suffice to solve several query problems—including Index, Median, Nearest Neighbor Search, Pattern Matching,
and Range Counting—with polylogarithmic space and communication costs. Such efficiency with O(1) rounds of
interaction was thought to be impossible based on previous work.

On the other hand, we initiate a formal study of the limitations of constant-round SIPs by introducing a new
hierarchy of communication models called Online Interactive Proofs (OIPs). The online nature of these models
is analogous to the streaming restriction placed upon the verifier in a SIP. We give upper and lower bounds that
(1) characterize, up to quadratic blowups, every finite level of the OIP hierarchy in terms of other well-known
communication complexity classes, (2) separate the first four levels of the hierarchy, and (3) reveal that the hierarchy
collapses to the fourth level. Our study of OIPs reveals marked contrasts and some parallels with the classic Turing
Machine theory of interactive proofs, establishes limits on the power of existing techniques for developing constant-
round SIPs, and provides a new characterization of (non-online) Arthur–Merlin communication in terms of an online
model.

Key words. streaming interactive proofs, Arthur-Merlin communication complexity, probabilistic proof systems

AMS subject classifications. 68Q05, 68Q15

1. Introduction. The surging popularity of commercial cloud computing services, and
more generally outsourced computations, has revealed compelling new applications for the
study of interactive proofs with highly restricted verifiers. Consider, e.g., a retailer (verifier)
who lacks the resources to locally process a massive input (say, the set of all its transactions),
but can access a powerful but untrusted cloud service provider (prover), who processes the
input on the retailer’s behalf. The verifier must work within the confines of the restrictive data
streaming paradigm, using only a small amount of working memory. The prover must both
answer queries about the input (say, “how many pairs of blue jeans have I ever sold?”), and
prove that the answer is correct. We refer to this general scenario as verifiable data stream
computation.

It is useful to look at this computational scenario as “data stream algorithms with access
to a powerful (space-unlimited) prover.” As is well known, most interesting data streaming

∗A preliminary version of this paper appeared in the 2015 Conference on Computational Complexity. This work
was supported in part by the Simons Institute for the Theory of Computing, and was performed while the authors
were visiting the Institute.

†Dartmouth College, Hanover, NH, USA. Supported in part by NSF grant CCF-1217375.
‡University of Warwick, Coventry, UK. Supported in part by European Research Council grant ERC-2014-CoG

647557 and a Royal Society Wolfson Research Merit Award.
§University of Massachusetts, Amherst, Amherst, MA, USA. Supported in part by NSF grants IIS-1251110 and

CCF-1637536.
¶Georgetown University, Washington, DC USA. This work was performed while the author was a Research

Fellow at the Simons Institute for the Theory of Computing, UC Berkeley. Supported by a Research Fellowship
from the Simons Institute for the Theory of Computing.
‖University of Utah, Salt Lake City, UT, USA. Supported in part by NSF grant IIS-1251049 and the Simons

Institute for the Theory of Computing.

1

2 A. CHAKRABARTI ET AL.

problems have no nontrivial (i.e., sublinear space) algorithms unless one allows approxima-
tion. For instance, given a stream σ of tokens from the universe [n] := {1,2, . . . ,n}, which
implicitly defines frequencies f j for each j ∈ [n], some basic questions we can ask about σ are
the number of distinct tokens F0(σ), the kth frequency moment Fk(σ) = ∑

n
j=1 f k

j , the median
of the collection of numbers in σ , and the very basic point queries where, given a specific
j ∈ [n] after σ has been presented, we wish to know f j. In each case, we would like an exact
answer, not an estimate. With the trivial exception of F1(σ)—which is just the length of σ—
not one of these questions can be answered by a (possibly randomized) streaming algorithm
restricted to o(n) space. However, with access to a powerful prover, things improve greatly:
as shown in Chakrabarti et al. [11], point queries, median, and Fk (for integral k > 0) can be
computed exactly by a verifier using Õ(

√
n) space, while receiving Õ(

√
n) bits of “help” from

the prover. Simultaneously achieving sublinear space and help is crucial because, for massive
inputs, it is infeasible for the verifier to store the entire input, and for “help” messages as large
as the input to be transmitted from the prover to the verifier.

Notably, the protocol achieving this Õ(
√

n) cost (space plus amount of help) is non-
interactive: the prover sends a single message to the verifier. Chakrabarti et al. [11] also
showed that under this restriction their protocol is optimal: a cost of Ω(

√
n) is required. In

subsequent work, Cormode et al. [17] considered streaming interactive proofs (SIPs), where
the verifier may engage in several rounds1 of interaction with the prover, seeking to minimize
both the space used by the verifier and the total amount of communication.

Details of the SIP model. In a k-message SIP, the verifier first processes a data stream σ

in a single pass, during which the verifier computes a “summary” of the stream. The space
cost of computing this summary counts against the verifier’s space cost in the SIP protocol. In
the above example of a retailer using the cloud to store and process transactions, the retailer’s
pass over a stream of transactions can happen implicitly as the transactions occur, and each
transaction can be immediately uploaded to the cloud (prover) so that the cloud may also
learn the stream σ .

After the stream has been processed, the verifier exchanges up to k messages with the
prover, who knows σ . The total length of all messages exchanged is the “help cost”. The SIP
model allows the verifier to process each message sent by the prover in a single streaming
pass over the message, and any memory used during the pass contributes to the space cost.2

Following this exchange of messages, the verifier must output a value, ideally equal to g(σ),
where g is the query that the verifier wants to evaluate on σ ; the verifier may also choose to
output a special symbol ⊥, indicating that he suspects the prover to be cheating. Standard
completeness and soundness requirements are imposed. Namely, an “honest” prover should
convince the verifier to output g(σ), and “dishonest” provers should fail to convince the
verifier to output an incorrect value (see Section 2 for details). As both the space and help
costs should be small, the total cost of a SIP is defined to be the sum of the space and help
costs.

Prior Results on the SIP Model and Their Relationship to This Paper. Cormode et
al. [17] gave SIPs in which the prover and verifier exchange 2k− 1 messages, achieving a
cost of Õ(n1/(k+1)) for the above problems. This generalizes the earlier set of results [11],
which gave 1-message SIPs. Moreover, it achieves O(polylogn) cost with O(logn/ log logn)
rounds3 of interaction. Klauck and Prakash [29] further studied this kind of computation and

1Throughout, if the prover and verifier in a protocol exchange k messages, then we say that the protocol takes
dk/2e rounds.

2In most of the SIPs in this paper, both the help and space costs are polylogarithmic in the input size, and hence
the verifier can explicitly store and process the prover’s messages while keeping the space cost polylogarithmic.

3For precision, throughout the paper we quantify the amount of interaction in a SIP in terms of the number of
messages exchanged, as opposed to the number of rounds (since specifying the number of messages in a protocol

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 3

generalized the lower bound for non-interactive protocols, claiming that a (2k−1)-message
SIP must cost Ω(n1/(k+1)), even for very basic point queries.

However, we identify an implicit assumption in the Klauck–Prakash lower bound argu-
ment: it applies only to protocols in which the verifier’s messages to the prover are indepen-
dent of the input. This happened to hold in all previous SIPs, which are ultimately descended
from the sum-check protocol of Lund et al. [32]. Furthermore, this assumption is harmless
in the classical theory of interactive proofs where public-coin protocols can simulate private-
coin ones with just a polynomial blowup in cost [21]. However, these simulation results fail
subtly in the streaming setting, and we show that this failure is intrinsic by giving a number
of new upper bounds.

1.1. New Results: Exponentially Improved Constant-Round SIPs. We start by show-
ing that even two-message SIPs are exponentially more powerful than previously believed,
on certain problems. For now we state our results informally, using the Õ-notation to sup-
press “lower order” factors. We give formal theorem statements later in the paper, after all
definitions are in place.

RESULT 1.1 (Formalized in Theorem 3.1). There is a two-message SIP with cost Õ(logn)
for answering point queries on a stream over the universe [n].

The SIP that achieves this upper bound is based on an abstract protocol that we call the
polynomial evaluation protocol. Crucially, unlike the sum-check protocols used in previous
SIPs, it involves an interaction where the verifier’s message to the prover depends on part of
the input; specifically, it depends on the query. Note that need to exchange at least two mes-
sages is likely unavoidable in practice even if verifiability is not a concern: one message may
be required for the verifier to communicate the query to the prover, with a second message
required for the prover to reply.

Adding a third message allows us to answer selection queries, of which an important
special case is median-finding.

RESULT 1.2 (Formalized in Theorem 3.7). There is a three-message SIP with cost
Õ(logn) for determining the exact median of a stream of numbers from [n].

We can in fact answer fairly complex queries with three messages and polylogarithmic
cost. For instance, given a data set presented as a stream of points from a metric space,
we can answer exact nearest neighbor queries to the data set very efficiently, even in high
dimensions. This is somewhat surprising, given that even the offline version of the problem
seems to exhibit a curse of dimensionality.

RESULT 1.3 (Formalized in Theorem 3.4). For data sets consisting of points from [n]d

under certain metrics, such as the Manhattan distance `d
1 or the Euclidean distance `d

2 , there
is a three-message SIP with cost poly(d, logn) allowing exact nearest neighbor queries to the
data set.

We also give similarly efficient two-message SIPs for other well-studied query problems,
such as range counting queries (Theorem 3.6), where a stream of data points is followed by
a query range and the goal is to determine the number of points in the range that appeared
in the stream, and pattern matching queries (even with wildcards), where a streamed text is
followed by a (short) query pattern. The pattern matching SIP is highlighted in the following
informal result.

RESULT 1.4 (Formalized in Theorem 3.8). There is a 2-message SIP for pattern match-

specifies the number of rounds, but not vice versa). However, we do refer to rounds when such precision is not
required.

4 A. CHAKRABARTI ET AL.

ing with wildcards, with space and help costs at most O(q log(q+m)), where q is the length
of the pattern and m is the length of the stream.

Next, we work towards a detailed understanding of the subtleties of SIPs that caused the
aforementioned Klauck–Prakash lower bound [29] not to apply. Our study naturally leads
into communication complexity, in particular to Arthur–Merlin communication, which we
discuss next.

1.2. The Connection to Arthur–Merlin Communication. Like almost all previous
lower bounds for data stream computations, prior SIP lower bounds [11, 29] use reductions
from problems in communication complexity. To model the prover in a SIP, the appropriate
setting is Arthur–Merlin communication, which we now introduce.

Suppose Alice holds an input x ∈ X , Bob holds y ∈ Y , and they wish to compute f (x,y)
for some Boolean function f :X ×Y →{0,1}, using random coins and settling for some con-
stant probability of error. Say this costs R(f) bits of communication. Can an omniscient but
untrusted Merlin, who knows (x,y), convince “Arthur” (defined as Alice and Bob together)
that f (x,y) = 1, keeping the overall communication within o(R(f))? For several interesting
functions f the answer is “Yes” and this is the general subject of Arthur–Merlin communica-
tion complexity, first considered in seminal work by Babai, Frankl, and Simon [6].

The one-pass streaming restriction on the verifier in a SIP is modeled by requiring that
Alice not receive any communication from either Bob or Merlin. Thus the Alice–Bob com-
munication is one-way, though Bob and Merlin may interact arbitrarily. We refer to this
restricted communication setting as online Arthur–Merlin communication. It should be clear
that a k-message SIP with cost C can be simulated by an online Arthur–Merlin communica-
tion of cost C where Bob and Merlin exchange k messages (see Observation 4.1 in Section 4
for details). Thus, lower bounds on SIPs would follow from corresponding communication
lower bounds in the online Arthur–Merlin setting.

At this point let us recall that the classical Turing-Machine-based theory of interactive
proofs considers two different models of interaction between prover and verifier, correspond-
ing to the complexity classes IPTM,4 where the verifier is allowed private randomness, and
AMTM, where he may only use public randomness. Recall the following classic results about
such interactive proofs.

• Equivalence of private and public coins. Goldwasser and Sipser [21] proved
that a k-message private coin interactive proof (à la IPTM) can be simulated (with
a polynomial blowup in complexity) by a (k + 2)-message public coin one (à la
AMTM). Thus, in the resulting protocol, the verifier can perform his interaction
with the prover before even looking at the input!

• Round reduction. Babai and Moran [7] proved that for k ≥ 1, a (k + 1)-round
interactive proof can be simulated by a k-round interactive proof with a polynomial
blowup in the verifier’s complexity. Thus, a two-message (verifier→prover→verifier)
interactive proof is just as powerful as any constant-round one.

Interestingly, as we shall show in this work, neither of these phenomena holds for the online
communication complexity analogs of IPTM and AMTM. (Recall that “online” means that
the Alice does not receive any communication from either Bob or Merlin.) This point ap-
pears to have been missed in the Klauck–Prakash proof [29], which works in a “public coin”
setting and thus applies only to a restricted class of SIPs. The new SIPs we design in this
work correspond to a “private coin” setting, which allows the aforementioned exponential
improvements.

4Throughout this paper, we use the subscript “TM” to denote a Turing-machine-based complexity class, to
resolve the notation clash with the analogous communication complexity classes.

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 5

Clearly there are nuances in online Arthur–Merlin communication complexity that do
not arise in classical interactive proofs. In particular, we seek a better understanding of the
precise role of rounds and of private randomness in the communication setting. This is the
goal of our next batch of results.

1.3. New Results: Complexity Classes for Arthur–Merlin Communication. As noted
above, we can think of AMTM as a restricted interactive proof model where the verifier must
interact with the prover before looking at his input. We can then define a hierarchy of analo-
gous communication complexity models called OMA[k] (Online Merlin–Arthur), where Bob
and Merlin exchange k messages without looking at his input, and then Alice communicates
with Bob one-way. We defer precise definitions to Section 4. The aforementioned Klauck–
Prakash lower bound essentially says the following:

PROPOSITION 1.5 (Klauck and Prakash [29]). The INDEX problem—where Alice gets
x∈{0,1}n, Bob gets j∈ [n] and Bob must output x j with high probability—requires Ω(n1/(k+1))

cost in the OMA[2k] model.

We can also define a parallel hierarchy OIP[k] (Online Interactive Proof) of communica-
tion analogs of IPTM. We now hit another subtlety. We could require the Bob–Merlin inter-
action to happen before the Alice→Bob communication; this is how we shall define OIP[k].
Alternatively, we could swap the order, so that Bob’s messages to Merlin could depend on
Alice’s input as well; we shall call the resulting (more powerful) model OIP[k]

+++ .
These communication models correspond to SIPs as follows. Every SIP designed prior

to this work falls into a restricted setting where the verifier’s messages are independent of the
input, so it can be simulated by an OMA[k] protocol with k being the number of messages
exchanges by the prover and verifier in the SIP. The SIPs we design in this work apply to
“query problems” with the data set appearing before the query, and our verifier messages
depend only on the query. Thus our SIPs are naturally simulable by OIP[k] protocols. Finally,
a general SIP, where verifier messages can depend on the entire input stream, is simulable by
an OIP[k]

+++ protocol.
Following Babai et al. [6], given a communication model C, we define a correspond-

ing complexity class, also denoted C, consisting of all problems that have polylogarithmic
cost protocols in the model C. We now have three parallel hierarchies of communication
complexity classes: OMA[k], OIP[k], and OIP[k]

+++ . For our next batch of results, we prove
several inclusion and separation results relating these newly defined classes to each other and
to well-studied classes from earlier work in communication complexity.

RESULT 1.6 (Formalized over several theorems in Section 5). The complexity class
inclusions and separations given in Figure 1.1 hold.

Notice that there are several two-way inclusions (i.e., equalities) amongst these commu-
nication complexity classes. It is worth noting that with one exception (namely OIP[1] =

OIP[1]
+++) none of these equalities is trivial. For instance, consider the switch from the model

R[2,B] to the model OIP[2]: Bob loses the ability to send Alice a message before hearing from
her, but gains access to Merlin. It is not a priori clear that this switch in models will result
in a complexity class that is even comparable to R[2,B], and nontrivial simulation arguments
(Theorems 5.3 and 5.6) are required to prove that R[2,B] = OIP[2].

Many of our simulations incur some blowup in cost. All such blowups are at most
quadratic, so polylogarithmic costs remain polylogarithmic.

The OMA and OIP hierarchies behave quite differently from the classical AMTM and
IPTM:

• In contrast to the Goldwasser–Sipser private-by-public-coin theorem, the class OIP[4]

6 A. CHAKRABARTI ET AL.

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Fig. 1.1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates
that C1 ⊆ C2. If the arrow is double-headed, then the inclusion is strict. Here k > 4 is an arbi-
trary constant. The models R[t,A] (resp. R[t,B]) are standard t-message randomized communication
with Alice (resp. Bob) starting. The model MA[2,B] consists of a message from Merlin followed by
Bob→Alice→Bob communication, while AM is standard (see Section 5).

is strictly more powerful than OMA[k] (in fact, even OIP[2] 6⊆ OMA[k]), for every
constant k.

• In contrast to the Babai–Moran round reduction theorem, there are exactly four dis-
tinct levels (not two) in the OIP[k] hierarchy, for constant k.

In the course of proving the separation results in Figure 1.1, we obtain concrete lower
bounds for explicit functions that are of interest in their own right. Let us highlight one of
these.

RESULT 1.7 (Formalized in Corollary 5.9). The set disjointness problem DISJ—where
Alice and Bob each get a subset of [n] and must decide whether they are disjoint—requires
Ω(n1/3) cost in the OIP[3] model and thus does not belong to the class OIP[3]. This lower
bound is tight up to a logarithmic factor.

This has implications for SIPs. We noted that all SIPs designed thus far (including the
new ones in this work) are simulable in the weaker OIP models. By a standard reduction [5]
from DISJ to the frequency moments problem Fk, it follows that unlike what we achieved
for point queries and median queries, based on currently known techniques, we cannot get a
polylogarithmic cost three-message SIP for Fk (k 6= 1).

Removing the qualifier “based on currently known techniques” above would require a
similar lower bound for OIP[3]

+++ . Unfortunately, at present we are unable to prove any nontriv-

ial lower bounds on OIP[2]
+++ , and doing so appears to be a difficult problem (see the paragraph

on Subsequent Work in Section 1.5 for details). Indeed, this inability is what led us to study
the weaker OIP model. Yet, because the OIP models are online, the separation results in Fig-
ure 1.1 still morally capture the primary way in which SIPs differ from classical interactive
proofs, due to SIPs’ streaming/online nature,

Finally, our result AM = OIP[4] gives a novel characterization of AM in terms of online
communication. This is surprising because online models, where no one talks to Alice, might
be expected to be too weak to capture AM. Proving lower bounds on AM is a longstanding
and notoriously hard problem in communication complexity [27, 28, 31]. We believe our
new characterization of AM is of independent interest, and may prove useful in establishing
non-trivial AM lower bounds.

1.4. Overview of Our Techniques.

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 7

The Key Technique Underlying Our SIPs. All of our SIPs can be described in the fol-
lowing framework. First, for some parameter b (which is typically logarithmic in the size of
the data universe) and some finite field F, a low-degree b-variate polynomial p is identified
such that the following two properties hold. (1) There is some z ∈ Fb such that g(σ) can be
derived from p(z), where g is the query of interest and σ is the data stream. Note that the
polynomial p will depend on the stream σ . Moreover, z may depend on the query g, and z
will not be known to the verifier before processing the stream. (2) For any point r chosen by
the verifier prior to processing the stream, the verifier can evaluate p(r) in small space, with
a single streaming pass over σ .5

Once such a polynomial p is identified, we can adapt a technique of Raz [38], who
used the technique to characterize the complexity class IP/rpolyTM. Specifically, the verifier
chooses r ∈ Fb at random, evaluates p(r) while processing the stream, and sends the prover
the unique line ` in Fb passing through z and r. The prover responds with a univariate poly-
nomial h claimed to equal p restricted to `. Observe that the degree of h is at most the total
degree of p, and hence the help cost of the protocol is proportional to the total degree of p.

As both z and r lie on `, the polynomial h implies claims about both p(z) and p(r). In
order to probabilistically check that h is as claimed, it turns out to be enough for the verifier
to confirm that the latter of these two implied claims agrees with the actual value of p(r) that
the verifier computed from the stream. If this check passes, it is safe for the verifier to output
the claimed value of p(z) implied by h.

This key technique is formalized in our Polynomial Evaluation Protocol (Theorem 2.2
in Section 2.3). With this technique in hand, the remaining effort in obtaining our SIPs for
various query classes lies in identifying low-degree polynomials p satisfying Properties (1)
and (2) above.

The Key Techniques Underlying Our Communication Results. Most of the key ideas in
our communication results appear in our proof of the equivalence R[2,B] = OIP[2]. We prove
this via two simulation theorems, which establish that any R[2,B] protocol can be simulated
by an OIP[2] protocol, and vice versa.

Roughly speaking, to simulate an R[2,B] protocol Q of cost C by an OIP[2] protocol of
cost O(C2), we invoke the Polynomial Evaluation Protocol, applied to a low-degree C-variate
polynomial p that on input z ∈ {0,1}C, outputs a field element in F2C encoding the message
Alice would send to Bob inQ if Bob first sent Alice the message z. The total communication
cost of the resulting OIP[2] protocol is O(C2) bits.

Simulating an OIP[2] protocol Q of cost C for a function f by an R[2,B] protocol for
f of cost O(C2) is more involved. To explain the ideas, it is helpful to first discuss how
to obtain the known result that any OMA[1] protocol Q of cost C can be simulated by an
R[1,A] protocol Q′ of cost O(C2) [1, 11]. First, consider the following OMA[1] protocol Q1
whose soundness error is less than 2−C. In Q1, Alice first repeats her part of Q a total of t
times (using fresh randomness each time), for some t = O(C). This means that in Q1, the
Alice→ Bob communication is t times larger than it is in Q. Upon receiving a message mM
from Merlin in Q1, Bob accepts only if mM would cause him to accept in a majority of the t
runs of Q for which Alice has executed her part.

Observe that while the Alice→ Bob communication cost ofQ1 is O(C) times larger than
Q, the Merlin→ Bob communication cost is the same inQ andQ1. This fact, combined with
the soundness error of Q1 being much less than 2−C, implies that Merlin can simply be “cut
out” of Q1. Specifically, Bob can ignore Merlin, and simply try every possible message that
Merlin might send inQ1, and accept if and only if any of those messages would cause him to
accept in Q1. Since there are only at most 2C messages that Merlin can send in Q1, it is not

5In all of our protocols, the verifier can evaluate p(r) even without knowing the query g in advance.

8 A. CHAKRABARTI ET AL.

hard to show that this yields a valid R[1,A] protocol for f .
Adapting this technique to the case that Q is an OIP[2] protocol instead of an OMA[1]

protocol is a rather subtle endeavor. The key issue is that when Q is an OIP[2] protocol,
Merlin’s message to Bob can depend on Bob’s message to Merlin (whereas in an OMA[1]

protocol, Bob does not send any message to Merlin). This means that one cannot reduce the
soundness error of Q in the manner of Q1 above, unless the Alice → Bob communication
cost, the Bob→Merlin, and the Merlin→ Bob communication costs all increase by a factor
of O(C) relative to Q. This in turn prevents the “cutting of Merlin out of the protocol” by
trying every possible message of Merlin.

Roughly speaking, we address this issue by adding an extra message from Bob to Alice
at the start of Q1. This message specifies O(C) values of the “private randomness” in Q, all
of which would lead Bob to send the same message to Merlin in Q. Bob’s ability to do this
crucially depends on the fact that Q is an OIP[2] protocol and not an OIP[2]

+++ protocol, as this
ensures that Bob’s message to Merlin in Q does not depend on Alice’s message to Bob in Q.

Simplifying a little, the above yields a (non-online) interactive proof protocol with sound-
ness error much less than 2−C, in which the Bob→Merlin and Merlin→Bob communication
cost is the same as in Q. At this point, Merlin can be cut out of the protocol exactly as in the
OMA[1] case described above. The resulting Merlin-less protocol is an R[2,B] protocol of cost
O(C2).

1.5. Related Work.
Stream Computation. Early theoretical work on verifiable stream computation focused

on non-interactive protocols, as in the annotated data streams model of Chakrabarti et al. [11].
In our language, that model corresponds to 1-message SIPs. Work in this model has es-
tablished optimal protocols for several problems including frequency moments and frequent
items [11]; linear algebraic problems such as matrix rank [29]; and graph problems like short-
est s–t path [16] and counting triangles [44]. Many of these protocols have subsequently been
optimized for streams whose length is much smaller than the universe size [10]. More recent
protocols, such as the Arthur–Merlin streaming protocols of Gur and Raz [10,24] are “barely
interactive” in the sense that the prover and the verifier may exchange a constant number of
messages. Meanwhile, the fully general streaming interactive proof (SIP) model of Cormode
et al. [15,17] permits “many” rounds of interaction. Cormode, Thaler, and Yi [17] showed that
several general IPTM protocols can be simulated in this model. These include the powerful,
general-purpose protocol of Goldwasser, Kalai, and Rothblum [20]. Given any problem in
NCTM, the resulting protocol requires only polylogarithmic space and communication while
using polylogarithmic rounds of verifier–prover interaction. Refinements and implementa-
tions of these protocols [15, 43, 45] have demonstrated scalability and the practicality of this
line of work.

Algebraic techniques lie at the core of almost all nontrivial protocols in the above models.
Specifically, a number of 1-message SIPs are inspired by the Aaronson–Wigderson MA com-
munication protocol for DISJ [2], which is in turn inspired by the classic sum-check protocol
of Lund et al. [32]. The sum-check protocol is also the inspiration for the way that all previ-
ous multi-round SIPs make use of interaction. The aforementioned protocol of Goldwasser
et al. [20] also builds upon the sum-check protocol.

The algorithmic results outlined in Subsection 1.1 have a rather different algebraic idea
at their core. They are based on the aforementioned polynomial evaluation protocol, which
is obtained by adapting a result of Raz [38] about IP/rpolyTM to a streaming setting; see the
discussion at the start of Subsection 2.3.

Early work on interactive proofs studied space-bounded verifiers (see the survey by Con-
don [14]), but many protocols developed in this line of work require the verifier to store the

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 9

input, and therefore do not address verifiable stream computation, as we do here. Goldwasser
et al. [19] studied interactive proofs with verifiers in the complexity class NC0

TM. Interest-
ingly, they showed that private randomness is necessary to obtain interactive proofs with
verifiers in NC0

TM, unless the language in question is already in NC0
TM. This is analogous

to our finding that constant-round “public coin” SIPs (where the verifier’s messages do not
depend on the input) are exponentially weaker than general constant-round SIPs.

Computationally Sound Protocols. Protocols for verifiable stream computation have also
been studied in the cryptography community [12, 37, 40]. These works only require sound-
ness to hold against cheating provers that run in polynomial time. In exchange for this
weaker security guarantee, these protocols can achieve properties that are impossible in the
information-theoretic setting we consider. For example, they typically achieve reusability,
allowing the verifier to use the same randomness to answer many queries. In contrast, our
protocols only support “one-shot” queries, because they require the verifier to reveal secret
randomness to the prover.

Chung et al. [12] combine the GKR protocol with fully homomorphic encryption (FHE)
to give reusable, non-interactive protocols of polylogarithmic cost for any problem in NC.
Papamanthou et al. [37] give improved protocols for a class of low-complexity queries in-
cluding point queries and range search: their protocols avoid the use of FHE, and allow the
prover to answer such queries in polylogarithmic time (a similar property was achieved by
Schröder and Schröder [40], but for a simpler class of queries, and with unidirectional com-
munication from the verifier to the prover on each stream update). In contrast, prior work as
well as our own requires the prover to spend time quasilinear in the size of the data stream
after receiving a query, even if the answer itself can be computed in sublinear time (e.g., point
queries, which can be solved with a single access to memory). We note however that our most
interesting protocols, such as those for nearest neighbor search and pattern matching, are for
problems that cannot be solved in sublinear time; hence, the quasilinear time required by our
protocols does not affect the prover’s runtime by more than logarithmic factors.

Communication Complexity. Seminal work by Babai et al. [6] introduced and studied
the communication analogs of the major Turing Machine complexity classes, including P,
NP, ΣΣΣ2, ΠΠΠ2. They hinted at similar analogs of MA and the AM hierarchy. Lokam [31]
related the task of placing problems outside of the communication class AM to notions of
matrix rigidity. He also observed that the communication complexity classes IP and AM
behave similarly to their Turing Machine counterparts. In particular, noted theorems such
as IP = PSPACE, Toda’s Theorem, and Babai and Moran’s round reduction results [7] all
hold in the communication world (though not under online communication, as shown by this
work).

Online (also known as one-message) randomized communication complexity was in-
troduced in the mid-1990s and considered by Ablayev [4], Kremer, Nisan, and Ron [30],
and Newman and Szegedy [34]. Aaronson [1] introduced online variants of Merlin–Arthur
communication, in classical and quantum flavors. Aaronson and Wigderson [2] gave an on-
line MA communication protocol for DISJ (more generally, for INNER-PRODUCT) with cost
Õ(
√

n); this is nearly optimal, as shown by a lower bound of Klauck [27] that applies to gen-
eral MA protocols. More recently, Klauck [28] performed a careful study of AM, MA, and
its quantum analogue QMA. In particular, he gave a promise problem PAPPMP separating
QMA from AM; we shall eventually show that PAPPMP separates OIP[3] from OIP[4].

Subsequent Work. Subsequent to the conference version of this paper, Daruki et al. [18]
gave SIPs for a number of problems in computational geometry and data analysis. In two of
their results, they built on our work to give a 2-message SIP of polylogarithmic cost for the
Minimum Enclosing Ball problem, and a 3-message SIP of polylogarithmic cost for comput-
ing a 2-approximation to the k-center in a metric space. Abdullah et al. [3] gave logarithmic

10 A. CHAKRABARTI ET AL.

round SIPs of polylogarithmic cost (plus the cost of specifying an optimal solution) for a
number of graph problems.

Very recently, Bouland et al. [9] have “explained” our inability to prove lower bounds on
OIP[2]

+++ protocols: they showed that the OIP[2]
+++ model, as well as 2-message SIPs themselves,

are powerful enough to compute (partial) functions outside of UPP. UPP is the most powerful
two-party communication model against which existing methods can prove lower bounds
(see, e.g., [22]). Hence, proving OIP[2]

+++ lower bounds is likely to require substantially new
techniques.

1.6. Suggestions for Reading the Rest of the Paper. As should be clear by now, this
paper contains two groups of results. The first group provides upper bounds by designing
SIPs. The reader primarily interested in this group can simply continue with Sections 2 and 3.
The second group concerns Arthur–Merlin communication, lower bounds, and a number of
structural complexity results. The reader primarily interested in these results should first study
the polynomial evaluation protocol, discussed in Section 2, and may then skip to Sections 4
and 5. This order is important: several of the complexity results make use of the polynomial
evaluation protocol.

Section 5 contains a large number of individual theorems. To the reader wishing to get a
small but representative sampling of the salient techniques, we suggest Theorems 5.3 and 5.6
and Proposition 5.13.

2. The SIP Model and the Polynomial Evaluation Protocol.

2.1. The SIP Model. In a data stream problem, the input σ is a stream, or sequence,
of tokens from some data universe U . The goal is to compute or approximate some function
g(σ), keeping space usage sublinear in the two key size parameters: (1) the length of σ , and
(2) the size of the universe |U|. Practically speaking, we would also like to process each
stream update (token arrival) quickly. All our data stream algorithms will be randomized,
and we shall allow them to err with some small constant probability on each input stream.
In the streaming interactive proofs (SIP) model, after processing σ , the algorithm (called the
“verifier”) may exchange k messages with an entity (the “prover”) who knows σ and whose
goal is to lead the verifier to output the correct answer g(σ). The SIP model allows the verifier
to process each message sent by the prover in a single streaming pass over the message; any
memory used during the pass contributes to the space cost. The verifier, being distrustful,
will output “⊥” (indicating “abort”) if he suspects the prover to be cheating.

All of the SIPs in this paper will work in the turnstile streaming model, where σ can
contain deletions of tokens from U , in addition to insertions. In this model it is best to think
of the input as being a stream of integer updates to a vector x = (x1, . . . ,xn) ∈ Zn. Initially
x = 0, and an update is a tuple (i,c) ∈ [n]×Z, which has the effect of adding c to the entry xi.
We will sometimes describe our algorithms as they apply to the vanilla streaming model, but
it will be straightforward to extend them to the turnstile model.

We say that a SIP computes the function g with completeness error εc and soundness
error εs if for all inputs x there exists a prover strategy that will cause the verifier to output
g(x) with probability at least 1− εc, and no prover strategy can cause the verifier to output a
value outside {g(x),⊥} with probability larger than εs. In designing SIPs, our goal will be
to achieve εc,εs ≤ 1/3; clearly the theory remains unchanged if we replace 1/3 by another
constant in (0,1/2). A SIP with εc = 0 is said to have perfect completeness. The total length
of the verifier–prover interaction is the help cost. The space used by the streaming verifier to
process both the input and the prover’s messages is the space cost. The cost of a SIP is the
sum of its help cost and its space cost. When designing SIP protocols we will also discuss the
time complexities of the prover and the verifier. To keep things simple, we consider a model

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 11

in which all arithmetic operations on a finite field of size nO(1) can be executed in unit time.

2.2. Low-Degree and Multilinear Extensions. A recurring technical element in our
SIPs is the notion of the low-degree extensions of any function defined over the Boolean
hypercube. Let F be any field, and let f : {0,1}b→F be any function. A b-variate polynomial
f̃ over F is said to extend f if for all u ∈ {0,1}b, f̃ (u) = f (u). A low-degree extension of f
is any extension that has “low” degree in each variable. Generally speaking, “low-degree” in
this work will mean poly(b).

For any function f : {0,1}b → F, there is a particular low-degree extension of f that
will play an especially prominent role in this work. Specifically, any f has a unique multi-
linear polynomial that extends it.6 For obvious reasons, this polynomial is referred to as the
multilinear extension of f . The multilinear extension of f can be expressed as follows:

f̃ (Z1, . . . ,Zb) = ∑
z∈{0,1}b

f (z)χz(Z1, . . . ,Zb) , where(2.1)

χu(Z1, . . . ,Zb) =
b

∏
i=1

(
(1−ui)(1−Zi)+uiZi

)
.(2.2)

It is straightforward to check that the polynomial f̃ defined in (2.1) is multilinear, and that it
extends f .

2.3. The Polynomial Evaluation Protocol. We shall present a two-message SIP for
an abstract data stream problem called “polynomial evaluation,” where the input consists of
a multivariate polynomial described implicitly, as a table of values, followed by a point at
which the polynomial must be evaluated. Without space constraints, this problem simply
amounts to interpolation followed by direct evaluation, but our goal is to obtain a protocol
where the verifier uses space roughly logarithmic in the size of the table of values, and is
convinced by the prover about the correct answer after a similar amount of communication.
For ease of presentation, we shall first consider a concrete special setting that is important in
its own right: the INDEX problem. Recall that in this problem, the input is a stream of n data
bits x1, . . . ,xn, followed by a query index j ∈ [n]. The goal is to output x j with error at most
1/3.

With very different motivations from ours, Raz [38] gave an interactive proof protocol
placing every language in IPTM/rpoly, the class of languages that have interactive proofs with
polynomial-time verifiers that take randomized advice, where the advice is kept secret from
the prover. Our SIP for INDEX can be seen as an adaptation of Raz’s interactive proof to the
streaming setting.

THEOREM 2.1. The INDEX problem has a two-message SIP with cost O(logn log logn),
in which the verifier processes each stream token in O(logn) time and the prover runs in total
time O(n logn).

Proof. Assume WLOG that n = 2b, for some integer b. Identify each integer z ∈ [n] with
a Boolean vector z = (z1, . . . ,zb)∈ {0,1}b in some canonical way, such as by using the binary
representation of z. We can then view the data bits as a table of values for the Boolean function
gx : {0,1}b→{0,1} given by gx(z) = xz. We shall let F[Z1, . . . ,Zb] be a fixed “large enough”
finite field F, and let g̃x denote the multilinear extension of gx over F. We define a line in
Fb to be the range of a nonconstant affine function from F to Fb. Every line contains exactly
|F| points. Given such a line, `, we define its canonical representation to be the degree-1
polynomial λ`(W) ∈ Fb[W] such that λ`(0) and λ`(1) are, respectively, the lexicographically

6A multilinear polynomial is a polynomial with degree at most 1 in each variable.

12 A. CHAKRABARTI ET AL.

first and second points in `. We define the canonical restriction of a polynomial f (Z1, . . . ,Zb)
to ` to be the univariate polynomial f (λ`(W)) ∈ F[W], whose degree is at most the total
degree of f .

Using the above notations and conventions, our two-message SIP for INDEX works as
shown in Figure 2.1.

Input: Stream of data bits (x1, . . . ,xn) where n = 2b, followed by index j ∈ [n].
Goal: Prover to convince Verifier to output the correct value of x j.
Shared Agreement: Finite field F with 3b+1≤ |F| ≤ 6b+2; bijective map u∈ [n]←→
u ∈ {0,1}b.

Initialization: Verifier picks r ∈R Fb uniformly at random, sets Q← 0.
Stream Processing: Upon reading xz, where z ∈ [n], Verifier updates Q← Q+ xzχz(r).
Query Handling: Upon reading the index j, Verifier interacts with Prover as follows:

1. If j = r, Verifier outputs Q as the answer. Otherwise, he sends Prover `, the
unique line in Fb through j and r.

2. Prover sends Verifier a polynomial h(W) ∈ F[W] of degree at most b, claiming
that it is the canonical restriction of the multilinear polynomial g̃x(Z1, . . . ,Zb)
to the line `. That is, Prover claims that h(W)≡ g̃x(λ`(W)).

3. Let w, t ∈ F be such that λ`(w) = j and λ`(t) = r. Verifier checks that h(t) = Q,
aborting if not. If the check passes, Verifier outputs h(w) as the answer.

Fig. 2.1: A Two-Message Streaming Interactive Proof (SIP) Protocol for the INDEX Problem

To analyze this protocol, first note that after reading all the data bits, the verifier would have
computed Q = g̃x(r), by (2.1). Now the protocol is easily seen to have perfect completeness.
Since g̃x(Z1, . . . ,Zb) is multilinear, it follows that deg(g̃x(λ`(W))) ≤ b, so the prover can
always honestly choose h(W) = g̃x(λ`(W)). If he does so, then we will indeed have h(t) =
g̃x(λ`(t)) = g̃x(r) = Q, and the verifier’s check will pass. Finally, the verifier will output
h(w) = g̃x(λ`(w)) = g̃x(j) = x j, the correct answer to the INDEX instance.

Next, we analyze soundness. If the prover supplies a polynomial h(W) 6≡ g̃x(λ`(W)),
then, since both polynomials have degree at most b, they agree at no more than b points
in F. From the prover’s perspective after he receives the verifier’s message, r is uniformly
distributed in `\{j}. Thus, Prr[h(t) = Q]≤ b/(|F|−1)≤ 1/3.

Now we consider this protocol’s costs. The verifier maintains the random point r ∈ Fb

and the running sum Q∈F, using O(b log |F|) space. He sends the prover `, which is specified
by two elements of Fb, and receives a degree-b polynomial in F[W]; both communications
use at most O(b log |F|) bits. Recalling that |F| ≤ 6b+2, we see that both space and commu-
nication costs are in O(b logb) = O(logn log logn).

Finally, we consider the verifier’s and prover’s runtimes. The honest prover must send the
univariate polynomial g̃x(λ`(W)). Since g̃x has degree at most b, it suffices for the prover to
specify the evaluations of g̃x(λ`(W)) at b+1 = O(logn) points. A direct application of (2.1)
and (2.2) shows that each evaluation can be done in O(n logn) time, resulting in a total runtime
of O(n log2 n). However, using now-standard memoization techniques (see, e.g., [45, Section
5.1]), it is possible for the prover to in fact perform each of these evaluations in just O(n)
time, resulting in a total runtime of O(n logn). The verifier can run in O(b) = O(logn) time
per stream update, as each stream update xz only requires the verifier to compute χz(r), and
it follows from (2.2) that this can be done with O(b) field operations. When interacting with
the prover, the verifier first needs to determine the line ` through j and r, which he can do in

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 13

O(b) = O(logn) time. To process the prover’s reply, he must evaluate the polynomial h at the
points t and w; these evaluations can be done in polylogn time.

The above SIP protocol uses very little of the special structure of the INDEX problem. Let
us abstract out its salient features, so as to handle the general problem described at the start
of this section. First, note the protocol treats the data set given by (x1, . . . ,xn) as an implicit
description of the polynomial g̃x. Second, note that our soundness analysis did not require
multilinearity per se, only an upper bound on the total degree of g̃x. Finally, note that the
specific form of (2.1) and (2.2) is not crucial either; all we used was that it allows the verifier
an easy streaming computation. Thus, we obtain the following generic result.

THEOREM 2.2 (Polynomial Evaluation Protocol). Suppose an input data stream implic-
itly describes a v-variate polynomial g of total degree d over a field F, followed by a point
j∈ Fv. Suppose this implicit description allows a streaming verifier to evaluate g at a random
point r ∈R Fv using space S. Then the technique of the protocol in Figure 2.1 gives a two-
message SIP for computing g(j), with the following properties: (1) perfect completeness; (2)
soundness error bounded by d/(|F|− 1); (3) space usage in O(v log |F|+ S); (4) help cost
in O((d + v) log |F|).

We shall refer to the abstract protocol given by Theorem 2.2 as the polynomial evaluation
protocol.

Discussion: On Using Multilinear Vs. General Low-Degree Extensions. The help cost
of the Polynomial Evaluation Protocol grows linearly with the degree of the polynomial g
to which it is applied. Hence, to control this cost, we seek to minimize the degree of the
polynomial g to which we apply the protocol. In most of our SIPs, the polynomial g to which
we apply the Polynomial Evaluation Protocol is derived from a low-degree extension of some
function f : {0,1}b → F. The multilinear extension of f is the lowest degree extension of
f (it has degree at most 1 in each variable). For this reason, whenever possible, we use
multilinear rather than general low-degree extensions within our SIPs. However, for some of
our protocols (e.g., Theorem 3.4, Theorem 3.6, and Theorem 3.7), we will be forced to use
higher degree extensions if we want to ensure that the verifier runs quickly. This increases
the help cost of the protocols, and it will be necessary to carefully control this increase. This
will typically entail identifying an extension of f that (1) has reasonably low degree and (2)
the verifier can evaluate quickly.

3. Constant-Round SIPs for Query Problems. We shall now apply the polynomial
evaluation protocol to design SIPs proving the various upper bounds outlined in Subsec-
tion 1.1. The first application is immediate; later applications bring in additional ideas.

3.1. Point Queries. In the POINTQUERY problem, the input is a stream in the turnstile
model, updating an initially-zero vector x ∈ Zn, followed by a query j ∈ [n]. The goal is to
output x j.

THEOREM 3.1. Suppose the input to POINTQUERY is guaranteed to satisfy |xi| ≤ q at
the end of the data stream, for all entries of x, where the bound q is known a priori. Then there
is a two-message SIP for POINTQUERY with space and help costs in O(logn log(q+ logn)).

Proof. Assume WLOG that n = 2b for an integer b, and use a bijection u ∈ [n]←→
u ∈ {0,1}b as in Theorem 2.1. The vector x resulting from the updates defines a multilinear
polynomial g̃x(Z1, . . . ,Zb) by (2.1), where gx(z) := xz. We can treat g̃x as a polynomial over
any field we like, but to solve our problem, we need to tell apart the 2q+ 1 possible values
taken on by the entries of x (recall that q is an upper bound on ‖x‖∞ at the end of the stream).
For this it suffices to have char(F)≥ 2q+1.

Applying the polynomial evaluation protocol is now straightforward. The verifier starts

14 A. CHAKRABARTI ET AL.

with r ∈R Fb and Q = 0. Upon receiving an update indicating “xi ← xi + c,” he updates
Q← Q+ cχi(r). The other details are as in Figure 2.1. The space and communication costs
are both in O(b log |F|) as before.

To ensure a soundness error of at most 1/3, we let |F|> 3b as before. This and the earlier
condition on char(F) can both be satisfied by, e.g., taking F = Fp, for a prime p > 3b+ 2q.
This translates to cost bounds in O(logn log(q+ logn)), as claimed.

3.2. Nearest Neighbor Queries. Consider a “premetric” space7 (X ,D) given by a finite
ground set X and distance function D : X ×X → R+ satisfying D(x,x) = 0 for all x ∈ X .
Let BD(z,r) = {x ∈X : D(x,z)≤ r} denote the corresponding ball of radius r ∈R+ centered
at z ∈ X . In the NEARESTNEIGHBOR problem, the input consists of a stream 〈x(1), . . . ,x(m)〉
of m points from X , constituting the data set, followed by a query point z ∈ X . The goal is
to output x??? = argminx(i) D(x(i),z), the nearest neighbor of z in the data set. We shall give
highly efficient SIPs for this problem that handle rather general distance functions D. To keep
our statements of bounds simple, we shall impose the following structure on (X ,D).

• We assume that X = [n]d . We think of d as the dimensionality of the data, and [n]d

as a very fine “grid” over the ambient space of possible points.
• For all x,y ∈ [n]d , D(x,y)≤ 1 is an integer multiple of a small parameter ε ≥ 1/nd .

Overall, this amounts to assuming that our data set has polynomial spread: the ratio between
the maximum and minimum distance. We proceed to give two SIPs for NEARESTNEIGHBOR.
Our basic SIP has cost roughly logarithmic in the stream length and the spread (and therefore
linear in d but only logarithmic in n). After we present it, we shall critique it and then give a
more sophisticated SIP to handle its faults.

THEOREM 3.2. Under the above assumptions on the premetric space (X ,D), the NEAR-
ESTNEIGHBOR problem has a three-message SIP with cost O(d logn log(m+ log(d logn))).

Proof. Let B = {BD(x, jε) : x ∈ X , j ∈ Z,0 ≤ j ≤ 1/ε} be the set of all balls of all
radii between 0 and 1 (quantized at granularity ε). By our assumptions on the structure
of (X ,D), we have |B| ≤ nd/ε ≤ n2d . The input stream 〈x(1), . . . ,x(m)〉 defines a derived
stream, consisting of updates to a vector v indexed by the elements of B. We shall denote by
v[βββ] the entry of v indexed by βββ ∈ B. The derived stream is defined as follows: the token
x(i) increments v[βββ] for every ball βββ that contains x(i). The verifier runs the POINTQUERY
protocol of Theorem 3.1 on this derived stream.

The verifier learns the query point z at the end of the stream. The prover then supplies
a point y claimed to be a valid nearest neighbor (note that there may be more than one valid
answer). To check this claim, it is sufficient for the verifier to check two properties: (1) that y
did appear in the stream, and (2) that the stream contained no point closer to z than y. The first
property holds iff v[BD(y,0)] 6= 0. The second property holds iff v[BD(z,D(y,z)− ε)] = 0.
Clearly, these two properties can be checked by two point queries over the derived stream.

Following the protocol of Theorem 3.1, the two point queries (executed in parallel) in-
volve the exchange of two more messages between the verifier and the prover, for an overall
three-message SIP. Since the entries of v never exceed m, each POINTQUERY protocol re-
quires space and help costs O(d logn log(m+ log(d logn))).

While the protocol of Theorem 3.2 achieves very small space and help costs, the prover’s
and verifier’s runtimes could be as high as Ω(nd), because processing a single stream token
x(i) may require both parties to enumerate all balls containing x(i). Ultimately, this inef-
ficiency is because the protocol assumes hardly anything about the nature of the distance

7 This very general setting, which includes metric spaces as special cases, captures several important distance
functions such as the Bregman divergences from information theory and machine learning that satisfy neither sym-
metry nor the triangle inequality.

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 15

function D and, as a result, does not get to exploit any structural information about the balls
in B.

To rectify this, we shall make the entirely reasonable assumption that the distance func-
tion D is “efficiently computable” in the rather mild sense that membership in a ball generated
by D can be decided by a short (say, polynomial-length) formula. Accordingly, we shall ex-
press our bounds in terms of a parameter that captures this notion of efficient computation.

DEFINITION 3.3. Suppose the distance function D on X satisfies the assumptions for
Theorem 3.2. Let ΦD :B×X →{0,1} be the ball membership function for D, i.e., ΦD(BD(z,r),x)=
1 ⇐⇒ x∈ BD(z,r). Think of ΦD as a Boolean function of (3d logn)-bit inputs. We define the
formula size complexity of D, denoted fsize(D), to be the length of the shortest de Morgan
formula for ΦD.

Since addition and multiplication of b-bit integers can both be computed by Boolean
circuits in depth logb (see, e.g., [36, 46]), they can be computed by Boolean formulae of
size poly(b). It follows that for many natural distance functions D, including the Euclidean,
Hamming, `1, and `∞ metrics (and in fact `p for all suitably “small” positive p), we have
fsize(D) = poly(d, logn).

THEOREM 3.4. Suppose the premetric space (X ,D) satisfies the assumptions made for
Theorem 3.2. Then NEARESTNEIGHBOR on (X ,D) has a three-message SIP, whose space
and help costs are both at most O(fsize(D) log(m+ fsize(D))), in which the verifier processes
each stream update in time O(fsize(D)), and the prover runs in total time m ·poly(fsize(D)).
In particular, if fsize(D) = poly(d, logn), as is the case for many natural distance func-
tions D, then the space and help costs are both poly(d, logm, logn), the verifier runs in time
poly(d, logn) per stream update, and the prover runs in total time m ·poly(d, logn).

Before describing the protocol in detail, let us explain the high level idea that allows us
to avoid the high runtimes of the previous protocol. Essentially, the SIP of Theorem 3.2 ran
our polynomial evaluation protocol on a multilinear extension of the vector v defined by the
derived stream. That SIP took v to be a completely arbitrary table of values. As a result,
the verifier’s computation—evaluating the multilinear extension at a random point—became
costly. The honest prover incurred similar costs. A closer examination of the nature of v
reveals that if D is a “reasonable” distance function, then v itself has plenty of structure. In
particular, an appropriate higher degree extension of v can in fact be evaluated much more
efficiently (by both the verifier and the prover) than the above multilinear extension. Details
follow.

Proof. Put b = d logn and S = fsize(D). According to Definition 3.3, the function ΦD
is computed by a length-S formula that takes a 2b-bit input βββ = (β1, . . . ,β2b) describing a
ball in B and a b-bit input x = (x1, . . . ,xb) describing a point in X . With each gate G of this
formula we associate a polynomial G̃ in the variables W1, . . . ,W2b,X1, . . . ,Xb, as follows:

G = βi =⇒ G̃ =Wi ,

G = xi =⇒ G̃ = Xi ,

G = ¬G1 =⇒ G̃ =−G̃1 ,

G = G1∧G2 =⇒ G̃ = G̃1G̃2 ,

G = G1∨G2 =⇒ G̃ = 1− (1− G̃1)(1− G̃2) .

Let Φ̃D(W1, . . . ,W2b,X1, . . . ,Xb) denote the polynomial thereby associated with the output
gate; this polynomial is the standard arithmetization [41] of the formula. We will interpret Φ̃D

16 A. CHAKRABARTI ET AL.

as a polynomial in F[W1, . . . ,X1, . . .] for a “large enough” finite field F. By construction, Φ̃D
has total degree at most S and agrees with ΦD on every Boolean input. Define the polynomial
Ψ(W1, . . . ,W2b) = ∑

m
i=1 Φ̃D(W1, . . . ,W2b,x(i)).

Observe that the vector v defined by the derived stream in the proof of Theorem 3.2
behaves as follows:

(3.1) v[βββ] =
m

∑
i=1

ΦD(βββ ,x(i)) =
m

∑
i=1

Φ̃D(βββ ,x(i)) = Ψ(βββ) .

Thus, Ψ is a degree-S extension of v to F. The input stream defines Ψ implicitly, and the
verifier can easily evaluate Ψ(r) for random r ∈R F2b. So we can invoke the polynomial
evaluation protocol (twice, in parallel) and answer the NEARESTNEIGHBOR query just as
in Theorem 3.2. For full clarity, we spell out the resulting SIP below. The term “canonical
representation” and notation λ` are as in Subsection 2.3 and Figure 2.1.

Input: Stream of points x(1), . . . ,x(m) from X defining a data set, followed by query
z ∈ X .
Goal: Prover to convince Verifier to output a nearest neighbor of z w.r.t. distance
function D.
Shared Agreement: Finite field F of prime order with 6S+2m≤ |F| ≤ 12S+4m, where
S = fsize(D).

Initialization: Verifier picks r(1),r(2) ∈R F2b independently and uniformly, sets Q1← 0
and Q2← 0.

Stream Processing: Upon reading x ∈ X , Verifier updates Qi ← Qi + Φ̃D(r(i),x) for
i ∈ {1,2}.

Query Handling: Upon reading query z, Verifier interacts with Prover as follows:
1. Prover sends Verifier a point y ∈ X , claiming that it is a nearest neighbor of z

in the data set.
2. Verifier identifies balls βββ

(1) = BD(y,0) and βββ
(2) = BD(z,D(y,z)− ε). For i ∈

{1,2}, if βββ
(i) = r(i), Verifier sets Ai ← Qi and skips Steps 3 and 4 for this i;

otherwise he sends Prover `(i), the unique line in F2b through βββ
(i) and r(i).

3. For i ∈ {1,2}, Prover sends Verifier a polynomial hi(V) ∈ F[V] of degree at
most S, claiming that it is the canonical restriction of Ψ(W1, . . . ,W2b) to the line
`(i). That is, Prover claims that hi(V) ≡ Ψ(λ`(i)(V)), where λ`(V) denotes the
canonical representation of the line ` in F2b.

4. For i∈{1,2}, let vi, ti ∈F be such that λ`(i)(vi)= βββ
(i) and λ`(i)(ti)= r(i). Verifier

checks that hi(ti) = Qi, aborting if not. Otherwise, he sets Ai← hi(vi).
5. If A1 6= 0 and A2 = 0, then Verifier outputs y as the answer. Otherwise he aborts.

Fig. 3.1: A Three-Message SIP for the NEARESTNEIGHBOR Problem

This protocol’s correctness can be analyzed using the same ideas as in the proofs of
Theorems 2.1 and 3.2. It has perfect completeness. If a dishonest prover supplies an incorrect
polynomial for either h1(V) or h2(V), the verifier will fail to notice with probability at most
S/(|F| − 1) ≤ 1/6, leading to a soundness error of at most 1/6+ 1/6 = 1/3. Entries of v
always lie between 0 and m and char(F) = |F|> m, since F is of prime order, therefore there
are no “wrap around” problems in (3.1).

Turning to the protocol’s costs, the verifier needs O(S) space to evaluate Φ̃D and O(b log |F|)
space to maintain r(1),r(2),Q1, and Q2. The prover needs to communicate two degree-S poly-

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 17

nomials, which costs O(S log |F|). Under the reasonable assumption that the optimal for-
mula for ΦD depends on all its input variables, we have S ≥ 3b, which yields a bound of
O(S log(m+S)) on the space and help costs. The claim about the runtimes is straightforward
from the protocol’s description.

We remark that our above theorem made the tacit uniformity assumption that a formula
for ΦD of length fsize(D) could be constructed in space O(fsize(D)) and time poly(fsize(D)).

3.3. Range Counting Queries. Let U be any data universe andR⊆ 2U a set of ranges.
In the RANGECOUNT problem, the data stream σ = 〈x(1), . . . ,x(m),R∗〉 specifies a sequence
of universe elements x(i) ∈ U , followed by a query or target range R∗ ∈ R. The goal is to
output |{i : x(i) ∈ R∗}|, i.e., the number of elements in the target range that appeared in the
stream.

We easily obtain a two-message streaming interactive proof for the RANGECOUNT prob-
lem with cost bounded by O(log |R| log(log |R|+m)). The verifier simply runs a POINT-
QUERY on the derived stream σ ′ defined to have data universe R. σ ′ is obtained from σ as
follows: on each stream update x(i) ∈ U , the verifier inserts into σ ′ one copy of each range
R ∈ R such that x(i) ∈ R. The range count problem is equivalent to a POINTQUERY on σ ′,
with the target item being R∗, and we obtain the following theorem.

THEOREM 3.5. There is a two-message SIP with O(log |R| log(log |R|+m)) cost for
RANGECOUNT.

The above protocol also implies a three-message SIP for the problem of linear classifi-
cation, a core problem in machine learning. Just like the protocol for NEARESTNEIGHBOR
invokes a two-message protocol for INDEX, a SIP for linear classification (find a hyper-
plane that separates red and blue points) verifies that the proposed hyperplane is empty of
red points on one side and blue points on the other using the above two-message RANGE-
COUNT protocol. If the input points lie in [n]d , and R is the set of halfspaces over [n]d , then
|R| ≤ nO(d2); this bound can be established by combining the Sauer-Shelah lemma [39, 42]
with the well-known fact that that VC dimension of halfspaces over Rd is d + 1. It follows
that the cost of the resulting 3-message SIP over domain [n]d , for streams of length at most
m, is O

(
d2 logn log(d logn+m)

)
.

The prover and verifier in the protocol of Theorem 3.5 may require time Ω(|R|) per
stream update. This could be prohibitively large. However, we can obtain savings analo-
gous to Theorem 3.4 if we make a mild “efficient computability” assumption on our ranges.
Specifically, suppose there exists a (poly(S)-time uniform) de Morgan formula Φ of length S
that takes as input a binary string representing a point x(i) ∈ U , as well as the label of a range
R ∈ R and outputs a bit that is 1 if and only if x(i) ∈ R. We then obtain the following more
practical SIP.

THEOREM 3.6. Suppose membership in ranges from R can be decided by de Morgan
formulas of length S as above. Then there is a two-message SIP for RANGECOUNT on R,
with costs at most O(S log(m+S)), in which the verifier runs in time O(S) per stream update,
and the prover runs in total time m ·poly(S).

3.4. Median and Selection Queries. We give a three-message SIP for SELECTION, of
which MEDIAN is a special case. In the SELECTION problem, defined over data universe
U = [n], the data stream σ = 〈x(1), . . . ,x(m),ρ〉 is a sequence of elements from [n], followed
by a desired rank ρ ∈ [m]. For i ∈ [n], let fi := { j : x(j) = i} denote the number of times
element i appears in the stream. Given a desired rank ρ ∈ [m], the goal is to output an element

18 A. CHAKRABARTI ET AL.

j ∈ [n] such that

(3.2) ∑
k< j

fk < ρ and ∑
k> j

fk ≤ m−ρ.

MEDIAN is the special case of SELECTION when ρ = bm/2c.
Our three-message SIPs for SELECTION essentially work by reducing to the RANGE-

COUNT problem, but an additional message is required for the prover to send the desired
element j to the verifier.

THEOREM 3.7. There is a three-message SIP for SELECTION with cost at most O(logn log(m+
logn)) in which the verifier runs in time poly(logn, logm) per update, and the prover runs in
total time m ·poly(logn, logm).

Proof. While processing the data stream, the verifier runs two parallel independent in-
stances of a RANGECOUNT protocol with the class of ranges being R = {{i, i+ 1, . . . ,n} :
1≤ i≤ n}. At the end of the stream, the prover supplies a j ∈ [n] claimed to satisfy both con-
ditions in Equation (3.2). To check this claim, the verifier need only check that the number
of stream elements from the range { j, . . . ,n} is at least m−ρ +1, and the number of stream
elements from the range { j+1, . . . ,n} is at most m−ρ . Each check can be performed using
one of the invocations of the RANGECOUNT protocol.

Noting that |R| = n, Theorem 3.5 immediately yields a bound of O(logn log(nm)) on
the space and help costs. To obtain the smaller bound in the theorem statement, we use the
RANGECOUNT protocol of Theorem 3.6 instead: The claimed costs follow because member-
ship in an interval of the form {i, . . . ,n} can be computed by a de Morgan formula of length
O(logn). The SIP uses three messages: one for the prover to send j, and two for the parallel
instances of the RANGECOUNT protocol.

3.5. Pattern Matching Queries. In the pattern matching with wildcards problem, de-
noted PMW, we are given a stream σ representing text T = (t1, . . . , tm) ∈ {0,1,∗}m followed
by a pattern P = (p1, . . . , pq) ∈ {0,1,∗}q. The wildcard symbol ∗ is interpreted as “don’t
care”, and the pattern P is said to occur at location i in t if, for every position j in P, ei-
ther p j = ti+ j or at least one of p j and ti+ j is the wildcard symbol. The PMW problem is
to determine the number of locations at which P occurred in T . PATTERNMATCHING refers
to the special case where “don’t care” symbols are not permitted. We focus on a binary al-
phabet; a larger alphabet U can be handled by replacing each character in U with its binary
representation, growing the parameter q by a factor of log |U|.

Pattern matching, both with and without wildcards, has been extensively studied within
the algorithmic literature, with applications ranging from internet search to computational
genetics (see, e.g., [13,25] and the references therein). Verifiable protocols for pattern match-
ing enable searching in the cloud, and complements work on searching in encrypted data
within the cloud (e.g., [8]). Cormode et al. [15] described and implemented a SIP for PMW
that required roughly Θ(log2 m) messages and had space help costs bounded by Θ̃(log2 m);
concretely, their implementation required well over 1,000 messages, even for quite small
streams (of length 217, say). In stark contrast, our new protocol requires the optimal number
of messages: two.

THEOREM 3.8. There is a 2-message SIP for PMW with space and help costs at most
O(q log(q+m)), in which the verifier runs in time O(q) per stream update, and the prover
runs in total time m ·poly(q).

Proof. For concreteness, we begin with a simple protocol for PATTERNMATCHING. The
verifier runs the POINTQUERY protocol of Theorem 3.1 on a derived stream σ ′ defined over
a universe of size 2q, defined as follows. The verifier explicitly stores the most recent q items

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 19

read in the stream at all times (this requires q bits of space). Since in PATTERNMATCHING
there are no wildcards, at each time i, the verifier knows the unique pattern P(i) that the most
recent q items are an instance of, and inserts P(i) into σ ′. The help and space costs of this
protocol are both O(q log(q+m)), and both the prover and verifier run in time O(q log(q+m))
per stream update.

To generalize this to allow wildcards in the pattern and text, the protocol for PMW uti-
lizes a similar approach to the one taken in our NEARESTNEIGHBOR and RANGECOUNT
protocols. Essentially, we let Φ̃ denote the arithmetization of a circuit that takes as input the
binary representation of a pattern P ∈ {0,1,∗}q, and the binary representation of q additional
symbols from {0,1,∗}, and outputs 1 if and only if the pattern P “matches” the q additional
symbols. We then apply the polynomial evaluation protocol to the polynomial g = ∑i≤m Φ̃(i),
where Φ̃(i) is the polynomial that indicates whether or not its input “matches” the most recent
q stream updates at time i.

In more detail, Φ̃ is defined as follows. First define φ : {0,1}4→{0,1} and Φ : {0,1}4q→
{0,1} as follows:

φ(x1,x2,y1,y2) = (x1∧ y1)∨ (¬x1∧¬y1)∨ x2∨ y2 ,

Φ
(
x11,x12,y11,y12, . . . ,xq1,xq2,yq1,yq2

)
=

q∧
i=1

φ (xi1,xi2,yi1,yi2) .

In words, φ(x1,x2,y1,y2) = 1 iff x1 = y1 or at least one of x2 and y2 equals 1. Furthermore,
Φ takes q “blocks” as input, with each block consisting of 4 variables, and outputs 1 iff φ

evaluates to 1 on every block.
Let F be a finite field of size at least 8(m+q), and let φ̃ and Φ̃ be the multilinear exten-

sions of φ and Φ, respectively, over F. Note that Φ̃(X11,X12,Y11,Y12, . . . ,Xq1,Xq2,Yq1,Yq2) =

∏
q
i=1 φ̃ (Xi1,Xi2,Yi1,Yi2), and that Φ̃ can be evaluated at any point using O(q) field operations.

While processing the stream, the verifier maps each symbol ti ∈ {0,1,∗} read from the
stream to a pair of bits (ti1, ti2) as follows: 0 7→ (0,0),1 7→ (1,0),∗ 7→ (0,1). At time i, let
P(i) denote the 2q bits corresponding to the most recent q stream updates. Let Φ̃(i) : F2q→ F
denote the polynomial Φ̃, with the inputs Y11,Y12, . . . ,Yq1,Yq2 fixed to the bits in P(i). Let
g : F2q→ F denote the polynomial

g(X11,X12, . . . ,Xq1,Xq2) := ∑
1≤i≤m

Φ̃
(i)(X11,X12, . . . ,Xq1,Xq2).

The verifier will ultimately apply the polynomial evaluation protocol to g. To do so, the
verifier must evaluate g(r) = ∑i≤m Φ̃(i) while processing the data stream, for a random point
r ∈ F2q. To accomplish this, the verifier explicitly stores P(i) at all times i, which requires 2q
bits of space. This enables the verifier to determine Φ̃(i) at all times i, and hence V can keep
a running sum of the Φ̃(i)(r) values.

At the end of the stream, the verifier learns the pattern P∈ {0,1,∗}q, and must output the
number of occurrences of P in the text. Let j ∈ {0,1}2q denote the binary representation of
P; then the number of occurrences of P is equal to g(j). Hence, it is sufficient for the verifier
to apply the polynomial evaluation protocol to g, thereby evaluating g(j).

The space and help costs are now immediate from the guarantees of Section 2.3 and the
fact that g is multilinear (hence its total degree is bounded above by 2q). The claimed time
bounds follows from the fact that each polynomial Φ(i) can be evaluated at any point in time
O(q).

We remark that the PMW protocol of Theorem 3.8 can be run even if the verifier only
knows an upper bound on the length q of the pattern. This is because, for any q′ ≤ q, a pattern

20 A. CHAKRABARTI ET AL.

P′ ∈ {0,1,∗}q′ is equivalent to the pattern P ∈ {0,1,∗}q obtained from P′ by concatenating
q−q′ wildcard symbols to P′.

4. Communication Protocols and Complexity Classes. We now turn to the study of
communication complexity classes motivated by a desire to understand streaming interactive
proofs (SIPs) from a complexity-theoretic viewpoint. In this section, we lay out the necessary
definitions and terminology to rigorously discuss the notions outlined in Subsection 1.3. In
the next section we prove the many parts of Result 1.6.

Communication problems arise naturally out of data stream problems if we suppose Alice
holds a prefix of the input stream, and Bob the remaining suffix. The primary goal of such
reductions is to obtain space lower bounds on data stream algorithms, so we are free to split
the stream at any place we like. For example, most data stream problems in Section 3 are
query problems, where the input consists of a streamed data set, S, followed by a query, q, to
apply to S. In this case, it would be natural to split the input by giving S to Alice and q to
Bob.

Communication problems that will play an important role in this paper include the fol-
lowing. The index problem, denoted INDEX : {0,1}n× [n]→{0,1}where [n] := {1, . . . ,n}, is
defined via INDEX(x, j)= x j. The set-intersection and set-disjointness problems INTER, DISJ :
{0,1}n×{0,1}n→{0,1} are defined via INTER(x,y) = ¬DISJ(x,y) =

∨n
i=1(xi∧yi). Finally,

the median relation MED : [n]m× [n]m → [n] interprets inputs x ∈ [n]m and y ∈ [n]m as two
halves of a list of numbers, and the valid outputs correspond to the median(s) of the com-
bined list.

Communication Complexity Classes.. All our communication models provide random
coins and allow two-sided error probability up to a constant; when unspecified, this constant
defaults to 1/3. Given a communication model C, we denote the corresponding complexity
measure of a problem f by C(f). Following Babai et al. [6], we also denote by C the corre-
sponding complexity class, defined as the set of all functions f : {0,1}n×{0,1}n → {0,1}
such that C(f) = (logn)O(1), i.e., functions that are “easy” in the model C.

We let R[k,A] denote the model of randomized communication complexity where Alice
and Bob exchange k ≥ 1 messages in total with Alice sending the first; R[k,B] is similar,
except that Bob starts. In the MA model, the super-player Merlin, who sees all of the inputs,
broadcasts a message at the start, following which Alice and Bob run a (two-way, arbitrary-
round) randomized “verification” protocol. The MA[k,A] and MA[k,B] models are restrictions
of MA where Merlin speaks only to Bob8 and the verification protocol following Merlin’s
single message is restricted to lie in R[k,A] and R[k,B] respectively.

The MA model (indeed, its restriction MA[1,A]) allows us to simulate 1-message SIPs in
an obvious way: Merlin sends Bob the prover’s message, and Alice sends Bob the verifier’s
memory contents after it has processed her prefix of the stream. Notice that the order of the
two messages is not important, modulo one crucial consideration: Alice must have a private
channel to Bob and the random coins used to generate the message from Alice to Bob must be
hidden coins, invisible to Merlin but shared between Alice and Bob (which is why we called
them “hidden coins” rather than “private coins”).

The models OMA[k], OIP[k], and OIP[k]
+++ , for k ≥ 1, are obtained by extending MA[1,A]

to simulate k-message SIP protocols. These communication models work as follows. In each
case, Alice and Bob first toss some hidden coins. Then, upon receiving the input, two things
happen: (1) Merlin and Bob exchange k messages, with Merlin sending the last message in
the interaction, and (2) Alice sends Bob a message, randomized using the hidden coins. After
these actions are completed, Bob produces an output in {0,1}. The differences between the

8Our definition breaks symmetry between Alice and Bob because our eventual goal is to study online protocols.

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 21

three series of models are as follows.
• In OMA[k], (1) happens before (2) and Bob must interact with Merlin before look-

ing at his input. This is directly analogous to AMTM; see the discussion in Subsec-
tion 1.2.

• In OIP[k], (1) happens before (2) and Bob may look at his input before talking to
Merlin.

• Finally, OIP[k]
+++ is like OIP[k] except that (2) happens before (1). Thus, Bob’s mes-

sages may depend on Alice’s actual message to Bob, not just on Bob’s input and the
hidden coins.

In the AM model, the parties first choose a public random string, then Merlin broadcasts a
message to Alice and Bob, who then run a deterministic communication protocol to arrive at
a Boolean output. Since Merlin can in fact predict the exact transcript that Alice and Bob will
generate following his message, we can assume without loss of generality that after Merlin’s
message, Alice and Bob output one bit each indicating whether or not they accept Merlin’s
prediction.

Cost and Value of Protocols. Let P be a protocol in a model C involving Merlin. For
each input (x,y), P defines a game between Merlin and Arthur (recall that Alice and Bob
together constitute Arthur), wherein Merlin’s goal is to make Arthur output 1. We define the
value VP(x,y) to be Merlin’s probability of winning this game with optimal play. Given a
Boolean function f , we say that P computes f with soundness error εs and completeness
error εc if, for all x,y we have

(4.1) f (x,y) = 0 ⇒ VP(x,y)≤ εs , and f (x,y) = 1 ⇒ VP(x,y)≥ 1− εc .

When the above holds with εc = 0, we say that P computes f with perfect completeness.
The verification cost of P , denoted vc(P), is the (worst-case) number of bits sent by

Alice plus the number of hidden coin tosses; its help cost hc(P) is the number of bits com-
municated between Merlin and Bob; its communication cost cc(P) = hc(P)+ vc(P). For
a problem f , we define its complexity C(f) = min{cc(Q) : Q is a C protocol that solves f
with max{εs,εc} ≤ 1/3}.

Simulating SIPs with Communication Protocols. The observation that a standard (Merlin-
free) communication protocol can simulate a data streaming algorithm is the basis for almost
all known space lower bounds for streaming algorithms. An analogous simulation motivates
our definition of OIP[k] and OIP[k]

+++ by connecting these models to SIPs.

PROPOSITION 4.1. Suppose that a function f (σ) is computed by a k-message SIP Q of
space cost v and help cost h. Consider the following two-party communication analog f cc of
f . Alice’s input x specifies a prefix of a stream σ , and Bob’s input y specifies the suffix of σ

(i.e., σ is the concatenation, x ◦ y, of x and y). Finally, define f cc(x,y) := f (σ). Then f cc is
computed by an OIP[k]

+++ protocol P with vc(P)≤ v and hc(P)≤ h.
Suppose further that the messages that the verifier sends to the prover when Q is run on

stream x◦ y are independent of the stream prefix x. Then P is an OIP[k] protocol.

Proof. P works as follows. Alice simulates running the stream-processing phase of the
SIP verifier on x (the prefix of the data stream), and sends to Bob a message mA describing
the state of the algorithm at the end of this simulation. Bob picks up where Alice left off,
simulating the SIP verifier’s processing of the stream suffix y. At this point, Bob knows that
state of the SIP verifier after processing the entire stream σ . Bob is then able to simulate the
remainder of the SIP verifier’s protocol, treating Merlin as the prover.

The completeness and soundness properties of the SIP Q imply that P is an OIP[k]
+++

protocol for f cc, and clearly vc(P)≤ v and hc(P)≤ h. If the messages that the verifier sends

22 A. CHAKRABARTI ET AL.

to the prover in Q are independent of the stream prefix x, then the interaction between Bob
and Merlin in P can occur before Bob receives mA. In this case, P is an OIP[k] protocol.

4.1. Relations Among Communication Complexity Classes. We prove a number of
inclusion and separation results among our “new” communication complexity classes and
relate them to previously studied classes. These are summarized in Figure 1.1, replicated
below.

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Fig. 4.1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that
C1 ⊆ C2. If the arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary
constant larger than 4.

Our results shed light on the landscape of online communication complexity in general.
The simplest online communication model is R[1,A], a.k.a. one-way randomized commu-

nication. The result OIP[1] = OIP[1]
+++ = R[1,A] establishes that in the world of online com-

munication, introducing Merlin into the model is not enough to obtain super-polynomial
efficiency improvements, if interaction with Merlin is not permitted. The stronger result
that OMA[k] = R[1,A] for all constants k > 0 (this is the full statement of Theorem 5.20)
establishes that in the “public coin” setting, the addition of Merlin is not enough to obtain
super-polynomial speedups even if interaction with Merlin is permitted.

The result that OIP[2] = R[2,B] (see Corollary 5.7) establishes that in the “hidden coin”
setting, the addition of Merlin to the communication model can yield super-polynomial effi-
ciency improvements, even if only the barest amount of interaction with Merlin is permitted.
However, note that R[2,B] is the simplest non-online communication model. Thus the com-
bination of hidden coins and a minimal amount of interaction is enough to simulate only the
simplest of the non-online communication protocols.

The result that OIP[4] = OIP[4]
+++ = AM (see Corollary 5.14) shows that in the “hidden

coin” setting, the addition of Merlin to the communication model permits the simulation even
of non-online interactive proofs, as soon as Bob is permitted to exchange 4 messages with
Merlin.

This in turn explains the somewhat puzzling result that the OIP and OIP+++ hierarchies
collapse to the fourth level: both Goldwasser–Sipser [21] and Babai–Moran [7] break down
in the OIP and OIP+++ worlds because their transformations do not preserve online-ness: they
will turn an OIP[2] protocol into a “public coin” one, but require Merlin to send a message
to Alice. However, as soon as Bob is permitted to exchange 4 messages with Merlin, even
online interactive proofs can simulate non-online ones. At this point, the phenomena of
classical interactive proofs kick in, and the hierarchies collapse.

5. A Communication Complexity Zoo. We now study our central communication
models OIP[k] and OIP[k]

+++ , and prove the web of relationships given in Figure 4.1. Our re-

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 23

sults are of two types: (1) establishing separations or collapses between levels of the OIP and
OIP+++ hierarchies, as the case may be, and (2) relating these hierarchies to other previously
studied communication complexity classes. We shall first characterize every finite level of
the OIP hierarchy (the vertical bidirectional arrows in Figure 4.1). Next, in Subsections 5.4
and 5.5, we separate the first four levels of the hierarchy (the horizontal double-headed arrows
in the figure). Finally, in Subsection 5.5, we separate the OIP and OMA hierarchies.

Throughout Section 5, f will denote an arbitrary communication problem given by a
Boolean function f : X ×Y → {0,1}, and n will parametrize its “instance size” up to a
constant factor, i.e., we will have log |X |+ log |Y| = Θ(n). We shall use big-O and big-
Ω notation to hide constants independent of f , |X | and |Y|. We shall use the term “ordinary
protocol” to mean a randomized communication protocol involving Alice and Bob alone (and
no Merlin).

The first level of the hierarchy is easy to characterize.

PROPOSITION 5.1. We have OMA[1] = OIP[1] = OIP[1]
+++ = MA[1,A] = R[1,A].

Proof. The definitions immediately show that the first four classes are identical (syn-
tactically) and include R[1,A], because one can always choose to ignore Merlin. The reverse
inclusion MA[1,A] ⊆ R[1,A] follows from previous work: Chakrabarti et al. [11] show that for
all f we have R[1,A](f) = O

(
MA[1,A](f)2

)
.

5.1. A Characterization of OIP[2]. The main goal of this subsection is to prove that
OIP[2] = R[2,B]. We start with the following communication result, obtained by combining
Theorem 2.2 with Proposition 4.1.

LEMMA 5.2 (Polynomial Evaluation Protocol, Communication Version). Suppose Alice
holds a v-variate polynomial g of total degree d over a field F, and Bob holds a point j ∈ Fv.
Assume |F| > 4d. Then there is an OIP[2] protocol with communication cost O((v+ d) ·
log |F|) for evaluating g(j). Hence, OIP[2](INDEX) = O(logn log logn), so that INDEX ∈
OIP[2].

The just-proved fact that INDEX ∈ OIP[2] is striking: combined with the well-known
lower bound R[1,A](INDEX) = Ω(n), it shows that introducing Merlin into the picture while
keeping the one-way restriction on the Alice/Bob communication lowers cost exponentially.
It is now natural to ask whether OIP[2] allows such exponential savings for harder problems,
such as DISJ. Our next result—a lower bound on OIP[2] complexity—implies that it does
not. Our proof of this result shows how to emulate any OIP[2] protocol by a standard (i.e.,
Merlin-less) two-message randomized protocol.

THEOREM 5.3. LetP be an OIP[2] protocol computing f . Then hc(P)vc(P)=Ω(R[2,B](f)).
In particular, OIP[2](f) = Ω

(
R[2,B](f)1/2

)
, which implies OIP[2] ⊆ R[2,B].

Proof. After appropriate parallel repetition, we may assume that the soundness and com-
pleteness errors of P are at most 1/12 each. In general, P takes the following shape: (1) hid-
den coins are tossed, generating random string r according to distribution D; (2) Bob sends
Merlin a message mB = mB(y,r); (3) Merlin responds with a message mM = mM(x,y,mB);
(4) Alice sends Bob a message mA = mA(x,r); (5) Bob outputs a bit given by a function
outP(y,mM,mA).

Let Dm be D conditioned on the event {mB(y,r) = m}. Note that the distribution Dm
depends on both y and m. Since Bob knows y, Bob can determine the distribution Dm for any
value of m (this is not, however, true for Alice, because Alice does not know y).

With this notational setup, we now describe (in Figure 5.1) a two-message ordinary pro-
tocol Q that we claim computes f .

24 A. CHAKRABARTI ET AL.

1. Bob samples r∼D, computes m=mB(y,r), then sends Alice i.i.d. sam-
ples r(1), . . . ,r(h) ∼Dm, where h = 36(hc(P)+4).

2. Alice sends Bob mA
(
x,r(1)

)
, . . . ,mA

(
x,r(h)

)
.

3. Bob outputs 1 iff ∃mM : |{i∈ [h] : outP(y,mM,mA(x,r(i)))= 1}|> h/2.

Fig. 5.1: The R[2,B] protocol Q, which simulates the OIP[2] protocol P .

To analyze this protocol, let us first define the weight Wx,y(m) of a Bob-message m to be
the probability that Merlin, playing optimally after receiving m, convinces Bob to output 1.
That is,

(5.1) Wx,y(m) = max
mM

Pr
r∼Dm

[
outP(y,mM,mA(x,r)) = 1

]
.

Then, with m∼mB(y,D), the expected weight Em[Wx,y(m)] is at least 11/12 when f (x,y) = 1
and at most 1/12 when f (x,y) = 0.

Correctness on 111-inputs. Fix (x,y) ∈ f−1(1). We shall proceed assuming that the
specific Bob-message m chosen in Step 1 of Q satisfies Wx,y(m) > 2/3 = 1− 4(1/12); by
Markov’s inequality, this fails to happen with probability at most 1/4. Studying (5.1) tell
us that there exists a specific Merlin-message m∗M such that Prr[outP(y,m∗M,mA(x,r)) = 1]>
2/3. Therefore, according to the strategy in Steps 2 and 3, the size of the set {i ∈ [h] :
outP(y,m∗M,mA(x,r(i))) = 1} is a sum of h i.i.d. indicators and exceeds 2h/3 in expectation.
By standard Chernoff bounds (e.g., [33, Theorem 4.4]), the probability that Bob outputs 0 is
2−Ω(h). Thus, overall, the probability thatQ outputs 0 on input (x,y) is at most 1/4+2−Ω(h) <
1/3.

Correctness on 000-inputs. Fix (x,y) ∈ f−1(0). We shall proceed assuming that the
specific Bob-message m chosen in Step 1 ofQ satisfies Wx,y(m)< 1/3; by Markov’s inequal-
ity, this fails to happen with probability at most 1/4. For each specific Merlin-message mM ,
define

size(mM) =
∣∣∣{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}

∣∣∣ .
Then size(mM) is a sum of h i.i.d. indicators and has expectation below h/3. By standard
Chernoff bounds, Pr[size(mM) > h/2] ≤ e−h/36. By a union bound over all possible Merlin-
messages mM , the probability that Bob outputs 1 is at most 2hc(P)e−h/36 < 2−4, using our
choice of h. Adding in the 1/4 from our Markov argument earlier, the overall probability that
Q outputs 1 on input (x,y) is at most 1/4+2−4 < 1/3.

Communication Cost. By definition of the OIP[2] model, we have |r| ≤ vc(P) and
|mA| ≤ vc(P). Thus, each of the two messages inQ costs at most h ·vc(P) =O(hc(P)vc(P))
bits.

The above proof exploits a key property of OIP[2] protocols: Bob can sample from the
conditional distribution Dm. This is possible because mB = mB(y,r) is independent of Alice’s
message mA, a property not satisfied in the stronger OIP[2]

+++ model. This explains why The-

orem 5.3 does not apply to OIP[2]
+++ , and indeed we shall later give an exponential separation

between OIP[2] and OIP[2]
+++ in Corollary 5.19.

Theorem 5.3 implies a number of lower bounds for specific problems. We begin with
DISJ.

COROLLARY 5.4. We have Ω(n1/2)≤OIP[2](DISJ)≤O(n1/2 logn). In particular, DISJ /∈
OIP[2].

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 25

Proof. For the lower bound, we combine Theorem 5.3 with the fact that R[2,B](DISJ) ≥
R(DISJ) = Ω(n), the last step being a celebrated lower bound [26]. The upper bound follows
from the Aaronson–Wigderson protocol [2] for DISJ, which is in fact an MA[1,A] protocol.

We remark that we may replace DISJ in Corollary 5.4 with IP2, the “inner product mod 2”
function. Indeed, the Aaronson–Wigderson protocol also applies to IP2, and R(IP2) = Ω(n).

Recall that MED is a relation on inputs in [n]m× [n]m. We next prove a lower bound of
Ω(m1/4) on the cost of any OIP[2] protocol for MED. This justifies our use of three messages
in the polylogarithmic cost SIP for MEDIAN we gave in Theorem 3.7, as it implies that any
2-message SIP for median based on known techniques must have polynomial cost.

COROLLARY 5.5. We have Ω(m1/4)≤ OIP[2](MED)≤ O(m1/2 log3/2 n).

Proof. Guha and McGregor [23, Theorem 6.3] gave a reduction from pointer jumping
to median computation. Their reduction implies that if n = Ω(m3/2), then R[2,B](MED) =
Ω(m1/2). The result that Ω(m1/4)≤OIP[2](MED) then follows from Theorem 5.3. The upper
bound OIP[2](MED) ≤ O(m1/2 log3/2 n) follows from an annotated data stream protocol for
MEDIAN given by Chakrabarti et al. [10, Corollary 3.4].

We have seen that up to polynomial (specifically, quadratic) blowup, OIP[2] is no more
powerful than ordinary R[2,B]. We now show that up to another quadratic blowup this is in
fact a characterization.

THEOREM 5.6. For all f , we have OIP[2](f) = O
(

R[2,B](f)2
)
. In particular, OIP[2] ⊇

R[2,B].

Proof. Let Q be an R[2,B] protocol for f with cost C and error at most 1/6. Assume
without loss of generality that C ≥ 5 and that each of the two messages in Q is a string in
{0,1}C. We shall treat Alice’s messages as elements of the field F= F2C via an agreed-upon
bijection.

We design an OIP[2] protocol P for f , based on Q. Given an input (x,y), P begins by
choosing a (hidden) random string r shared between Alice and Bob exactly asQ would have.
From now on, think of x,y,r as fixed. This then fixes a message mB that Bob would have sent
Alice in Q, as well as a function mA : {0,1}C → F specifying Alice’s response to each Bob-
message. Let m̃A(Z1, . . . ,ZC) ∈ F[Z1, . . . ,ZC] be the multilinear extension of this function mA.
In P , Alice needs to send a message to Bob that allows him to determine mA(mB) = m̃A(mB)
with Merlin’s help. This is an instance of polynomial evaluation, so we solve it by applying
the OIP[2] polynomial evaluation protocol (PEP) from Lemma 5.2.

The polynomial m̃A is C-variate and has total degree C. Therefore, PEP has communica-
tion cost O(C log |F|) = O(C2), as does P . Next, PEP has perfect completeness, so an honest
Merlin can cause P to output 1 whenever the choice of r would have caused Q to output 1.
Finally, PEP has soundness error at most C/(|F| − 1) = C/(2C − 1) < 1/6, so a dishonest
Merlin can cause P to differ in output from Q with probability at most 1/6. Using the error
bound of 1/6 on Q, we conclude that P has completeness error at most 1/6 and soundness
error at most 1/6+1/6 = 1/3.

COROLLARY 5.7. For all f , we have Ω
(

R[2,B](f)1/2
)
≤OIP[2](f)≤O

(
R[2,B](f)2

)
. Thus,

OIP[2] = R[2,B].

Proof. Combine Theorems 5.3 and 5.6.

5.2. A Characterization of OIP[3]. The main goal of this subsection is to prove that
OIP[3] = MA[2,B]. We give a lower bound that builds on the argument in Theorem 5.3. Just
as before, we can then derive a lower bound for the specific problem DISJ.

26 A. CHAKRABARTI ET AL.

THEOREM 5.8. Let P be an OIP[3] protocol computing f . Then there is an MA[2,B]

protocol Q computing f with hc(Q) ≤ hc(P) and vc(Q) = O(hc(P)vc(P)). In particular,
OIP[3](f) = Ω

(
MA[2,B](f)1/2

)
, which implies OIP[3] ⊆MA[2,B].

Proof. The high-level idea for building Q is as follows. After Merlin sends his first
message to Bob in P , the remainder of P is an OIP[2] protocol. Theorem 5.3 shows how
to cut Merlin out of this remaining protocol, replacing it with R[2,B] protocol. After this
replacement, the result is an MA[2,B] protocol.

In more detail, suppose P has completeness and soundness errors at most 1/12. Let Pm

denote the OIP[2] protocol obtained from P by fixing Merlin’s first message to m. LetQm be
the R[2,B] protocol simulating Pm as in Figure 5.1. Note that cc(Qm) = O(hc(Pm)vc(Pm)).
Let Q be the MA[2,B] protocol where we use Qm as Arthur’s verification strategy for a mes-
sage from Merlin. We claim that Q computes f .

Completeness. Fix (x,y) ∈ f−1(1). By the completeness of P , there exists some
first message m∗ from Merlin such that Pm∗ outputs 1 with probability at least 11/12. By the
completeness analysis in Theorem 5.3,Qm∗ outputs 1 with probability at least 2/3. Therefore,
if Merlin sends the message m∗ inQ, he will cause the output to be 1 with probability at least
2/3.

Soundness. Fix (x,y) ∈ f−1(0). By the soundness of P , for every possible first mes-
sage, m, that Merlin may send, Pm outputs 1 with probability at most 1/12. By the soundness
analysis in Theorem 5.3, for all m, Qm outputs 1 with probability at most 1/3. Therefore, no
matter what Merlin sends as his message inQ, he can cause the output to be 1 with probability
at most 1/3.

Costs. Merlin in Q sends only part of what Merlin in P sends; therefore hc(Q) ≤
hc(P). Furthermore, vc(Q)≤maxm cc(Qm) = maxm O(hc(Pm)vc(Pm)) = O(hc(P)vc(P)).

COROLLARY 5.9. We have Ω(n1/3)≤OIP[3](DISJ)≤O(n1/3 logn). In particular, DISJ /∈
OIP[3].

Proof. Klauck [27] proved that MA(DISJ) = Ω(n1/2). Applying Theorem 5.8 to this
result gives the non-tight bound OIP[3](DISJ) = Ω(n1/4). But we observe that Klauck’s proof
shows something stronger: namely, if an MA protocolQ computes DISJ, then hc(Q)vc(Q) =
Ω(n). Combining Theorem 5.8 with this result, we conclude that if an OIP[3] protocol P
computes DISJ, then hc(P)2 vc(P) = Ω(n), and therefore hc(P)+vc(P) = Ω(n1/3).

For the upper bound, we note that Aaronson and Wigderson [2] also gave an online
MAMA protocol for DISJ of cost O(n1/3 logn). Every online MAMA protocol admits a
simulation in OIP[3].

As with Corollary 5.4, we may replace DISJ in the above result with IP2. Indeed, Klauck’s
result [27] implies that MA(IP2) =Ω(n1/2), and Aaronson and Wigderson’s MAMA protocol
also applies to IP2.

As we did for the second level in the OIP hierarchy, we give an upper bound that applies
to the third level and gives a characterization that is tight up to a quadratic blowup.

THEOREM 5.10. For all f , we have OIP[3](f)=O
(

MA[2,B](f)2
)
. In particular, OIP[3]⊇

MA[2,B].

Proof sketch. We build on the argument in Theorem 5.6 exactly as the proof of The-
orem 5.8 builds on Theorem 5.3. Given an MA[2,B] protocol Q of cost C, the verification
strategy used by Alice and Bob in Q is an R[2,B] protocol of cost C, which we can replace
with an OIP[2] protocol of cost O(C2), by Theorem 5.6. After this replacement we have an
OIP[3] protocol. The remaining analysis is routine.

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 27

COROLLARY 5.11. For all f , Ω
(

MA[2,B](f)1/2
)
≤OIP[3](f)≤O

(
MA[2,B](f)2

)
. Thus,

OIP[3] = MA[2,B].

Proof. Combine Theorems 5.8 and 5.10.

5.3. A Characterization of OIP[4] and Beyond. The fourth level of the OIP hierarchy
turns out to have surprising power. It can capture all of AM, a model that lies at the frontier
of our current understanding of communication complexity classes in the sense that we do
not know any nontrivial AM lower bounds. Thanks to this surprising power, we can show
that all constant-height levels of the OIP hierarchy collapse to the fourth level.

PROPOSITION 5.12. For all f , we have OIP[4](f) = O(AM(f) logAM(f)). In particu-
lar, OIP[4] ⊇ AM.

Proof. Suppose AM(f) =C. Without loss of generality, there is a protocolQ for f with
the following shape: Bob tosses coins to generate a random string r and sends it to Merlin,
who responds with a message m, where |r|+ |m| ≤ C. Bob then sends (r,m) to Alice, who
responds with a single bit, after which Bob announces the output.

The interaction between Bob and Alice is an R[2,B] protocol (in fact, it is deterministic)
of cost C. Theorem 5.6 shows that it can be replaced with an OIP[2] protocol of cost O(C2).
Performing this replacement gives us an OIP[4] protocol for f . The cost bound can be im-
proved to O(C logC) by revisiting the analysis of the polynomial evaluation protocol used to
prove Theorem 5.6 and using the fact that Alice’s message in Q is just a single bit.

PROPOSITION 5.13. For each k > 0, there exists a constant ck > 0 such that for all
f , OIP[k]

+ (f)≥Ω
(

AM(f)ck
)
. In particular, for every constant k, we have OIP[k]

+++ ⊆ AM.

Proof. Let C = OIP[k]
+ (f) and let P be an OIP[k]

+++ protocol with cost C that computes
f . By definition, P uses a hidden random string and Merlin learns about this string only
indirectly, from Bob’s computed messages. We apply the Goldwasser–Sipser set lower bound
technique [21] to convert P into a protocol where all random coins are directly revealed.
Specifically, we can convert P into an AMAM · · ·AM protocol Q′, where k + 3 messages
are sent in total: Merlin’s messages are broadcast and after his final message Alice sends a
message to Bob, who announces the output. We have cc(Q′) = O(Cak) for some constant
ak ≥ 1.

We apply Babai and Moran’s round elimination techniques [7] to turnQ′ into a standard
AM protocol Q of cost at most O(cc(Q′)bk) for some constant bk ≥ 1. The result follows by
taking ck = 1/(akbk).

This bring us to the main result of this section.

THEOREM 5.14 (Collapse of OIP hierarchy). For all f , Ω
(

AM(f)c4
)
≤ OIP[4](f) ≤

O(AM(f) logAM(f)), where c4 is the constant from Proposition 5.13. In particular, OIP[4]=

AM, and in fact OIP[k] = AM for every constant k ≥ 4.

Proof. Combine Propositions 5.12 and 5.13, noting that OIP[k] ⊆ OIP[k]
+++ for every k ≥

4.

Here is an interesting point worth contemplating. On the one hand, our transformations
in the proof of Proposition 5.13 perform round reduction at the expense of destroying online-
ness: the final protocol Q is no longer online, i.e., we cannot require communications to
go to Bob alone. On the other hand, the transformation in the proof of Proposition 5.12
“restores” online-ness at only a “slight” expense of requiring Bob and Merlin to exchange
four messages, whereas AM uses only two. Overall, we have a collapse of the OIP hierarchy
to its fourth level.

28 A. CHAKRABARTI ET AL.

We have also noted earlier (Sections 1.3 and 1.5) that we (regretfully) do not yet know
how to place a concrete problem outside OIP[2]

+++ , and subsequent work of Bouland et al. [9]
implies that achieving this will require new techniques in communication complexity. Never-
theless, Propositions 5.12 and 5.13 together establish a weakness of OIP[2]

+++ : up to polynomial
factors this model is no more powerful than OIP[4].

5.4. Exponential Separations in Our Complexity Zoo. Among the first four levels
of the OIP hierarchy, we can now show that every pair of adjacent levels is exponentially
separated. The next three results make this precise. Recall that INTER = ¬DISJ is the set
intersection problem.

THEOREM 5.15. We have OIP[1](INDEX)=Ω(n1/2) whereas OIP[2](INDEX)=O(logn log logn).

Proof. Combine Proposition 5.1 and Lemma 5.2, and then the known results that MA[1,A](f)=
Ω
(

R[1,A](f)1/2
)

for all f [11] (see also Theorem 5.20 in Section 5.5), and that R[1,A](INDEX)=
Ω(n) [4].

THEOREM 5.16. We have OIP[2](INTER)=Ω(n1/2) whereas OIP[3](INTER)=O(log2 n).

Proof. For the lower bound, use R[2,B](INTER)≥ R(INTER) = R(DISJ) = Ω(n) and then
apply Theorem 5.3.

For the upper bound, note that INTER has a nondeterministic protocol with cost O(logn),
wherein Alice and Bob guess an element in the intersection of their respective sets and they
verify membership. In particular this gives MA[2,B](INTER) = O(logn); in fact, Bob need not
send anything to Alice in the MA[2,B] protocol. Now apply Theorem 5.10.

While we do not know of a total Boolean function that separates OIP[3] from OIP[4], we
do know of a partial Boolean function whose OIP[3] communication complexity is exponen-
tially larger than its OIP[4] communication complexity. Specifically, Klauck [28, Corollary
3] gives a promise problem he calls PAPPMP which has Quantum Merlin-Arthur (QMA)
communication complexity Ω(n1/6) and AM communication complexity O(logn). Since
Theorem 5.8 shows that any OIP[3] protocol can be transformed into an equivalent MA[2,B]

protocol with a quadratic blowup in cost, and MA[2,B] protocols are simply restricted ver-
sions of QMA protocols, Klauck’s lower bound on the QMA cost of PAPPMP implies that
OIP[3](PAPPMP) = Ω(n1/12).

Meanwhile, Proposition 5.12 shows that any AM communication protocol can be trans-
formed into an equivalent OIP[4] protocol with a logarithmic blowup in costs. Thus, Klauck’s
upper bound on the AM communication complexity of PAPPMP implies that OIP[4](PAPPMP)=
O(logn log logn).

THEOREM 5.17. We have OIP[3](PAPPMP) = Ω(n1/12) whereas OIP[4](PAPPMP) =
O(logn log logn).

Next, we show that, up to polynomial factors, OIP[2]
+++ is at least as powerful as R[3,A],

the class of three-message randomized communication protocols in which Alice speaks first.
This will enable us to exhibit an explicit function f on domain {−1,1}n×{−1,1}n such that
OIP[2](f) = Ω(

√
n/ logn), while OIP[2]

+ (f) = O(log2 n).

THEOREM 5.18. For all f , we have OIP[2]
+ (f) = O

(
R[3,A](f)2

)
.

Proof. LetQ be any three-message randomized communication protocol of cost C, with
Alice speaking first. We show how to convert Q into an OIP[2]

+++ protocol P of cost O(C2).

We think of Q as consisting of one message m(1)
A from Alice to Bob, followed by a two-

message communication protocol Q′ in which Bob speaks first. Theorem 5.6 shows how to

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 29

transform Q′ into an equivalent OIP[2] protocol P ′ of cost O(C2) (note this OIP[2] protocol
depends on m(1)

A).
Thus, we obtain an OIP[2]

+++ protocol P as follows. Alice’s message to Bob in P consists

of two parts. The first specifies m(1)
A , and the second is the message she would have sent to

Bob in P ′. Bob, who learns m(1)
A from the first part of Alice’s message, now knows what

OIP[2] protocol P ′ to execute, and simply behaves the same as he would in P ′.
Exponential separations between R[3,A] and R[2,B] are known. In particular, consider

the k-step (bipartite) pointer jumping function PJk, which interprets each of Alice and Bob’s
inputs as a list of N = Θ(n/ logn) pointers, a pointer being a (logN)-bit integer. Each pointer
in a player’s list is interpreted as pointing to (i.e., indexing) a pointer in the other player’s list.
The goal is to follow these pointers, starting at the first pointer in Alice’s list, and output the
kth pointer encountered. For example, if Alice’s input is x = (00,01,10,00) and Bob’s input
is y = (01,10,11,00), then PJ1(x,y) = 01, PJ2(x,y) = 01, PJ3(x,y) = 10, and so on. To turn
PJk into a Boolean function BPJk, we take the parity of the (logN)-bit output of PJk.

COROLLARY 5.19. We have OIP[2](BPJ2)=Ω(
√

n/ logn), while OIP[2]
+ (BPJ2)=O(log2 n).

Proof. Nisan and Wigderson [35] showed that R[k,B](BPJk) = Ω(N/k2−k logN). In par-
ticular, any two-message randomized communication protocol in which Bob speaks first has
cost Ω(N). Hence, Theorem 5.3 implies that OIP[2](BPJ2) = Ω(

√
n/ logn).

To prove the upper bound on OIP[2]
+ (BPJ2), note that there is a trivial three-message

protocol for PJ2 (and hence for BPJ2) of cost O(logn) in which Alice speaks first. Now apply
Theorem 5.18.

5.5. An Exponential Separation Between OIP[2] and OMA[k]. In this subsection, we
establish that for any function f , OMA[2k](f) = Ω

(
R[1,A](f)1/(k+1)

)
. An essentially identical

lower bound was proven by Klauck and Prakash for a closely related (though not identical)
communication model; we provide details for completeness, and in the process identify the
crucial details of the communication model that enable the lower bound to hold.

THEOREM 5.20. For any function f and constant k, OMA[2k](f) = Ω
(

R[1,A](f)1/(k+1)
)
.

Proof. We begin by proving the result for the case k = 1, showing how to transform any
OMA[2] protocol P into an R[1,A] protocol Q of cost O(hc(P)vc(P)). This transformation
is almost identical to the one of Theorem 5.3, with one crucial change.

Analogously to the proof of Theorem 5.3, P takes the following shape: (1) hidden
coins are tossed, generating random string r according to distribution D; (2) Bob sends
Merlin a message mB = mB(r); (3) Merlin responds with a message mM = mM(x,y,mB);
(4) Alice sends Bob a message mA = mA(x,r); (5) Bob outputs a bit given by a function
outP(y,mM,mA).

The key difference between our current setting and that of Theorem 5.3 is that here mB
is a function only of r and not of Bob’s input y. The proof of Theorem 5.3 (see Figure 5.1)
described a standard protocol Q in which Bob sends to Alice i.i.d. samples r(1), . . . ,r(h) ∼
(D | mB = m), where h = 36(hc(P)+ 4). In our case, Alice can choose these i.i.d. samples
herself, because mB does not depend on Bob’s input y. We therefore obtain an R[1,A] protocol
Q of cost O(hc(P)vc(P)), instead of an R[2,B] protocol as in Theorem 5.3.

The general case proceeds by induction on k. We view an OMA[2k] protocol P as an
OMA[2] protocol P1 followed by an OMA[2k−2] protocol P2. Inductively, we can replace P2
with a R[1,A] protocol Q2 of cost O

(
hc(P2)

k−1 vc(P2)
)
≤ O

(
hc(P)k−1 vc(P)

)
. By concate-

natingP1 andQ2, we obtain an OMA[2] protocolP3 for f with vc(P3)=O
(
hc(P)k−1 vc(P)

)

30 A. CHAKRABARTI ET AL.

and hc(P3)≤ hc(P). By our argument in the case k = 1, we can transform P3 into an R[1,A]

protocol Q of cost O
(
hc(P)k vc(P)

)
.

In particular, if C = max{hc(P),vc(P)}, then the cost of Q is O(Ck+1). This immedi-
ately implies that OMA[2k](f) = Ω

(
R[1,A](f)1/(k+1)

)
, completing the proof.

The main property of the OMA[k] communication model exploited in our proof of Theo-
rem 5.20 is the following: in any OMA[k] protocol P , for all i≤ k, Alice can determine Bob’s
ith message to Merlin in P on her own. In particular, the same lower bound would apply to
any variant of online Arthur-Merlin communication models in which Bob’s messages to Mer-
lin must be independent of his input y. This is the intuitive reason why the OIP[2] model is
exponentially more powerful than the OMA[k] model for any constant k: in the OIP[2] model,
Bob’s message to Merlin may depend on his input y, while this is not allowed in the OMA[k]

model.
Combining Theorem 5.20 with Lemma 5.2, which says that OIP[2](INDEX)=O(logn log logn),

we obtain an exponential separation between OIP[2] and OMA[k] for any constant k > 0.

COROLLARY 5.21. For every constant k > 0, we have OIP[2] 6⊆OMA[k].

6. Conclusion. Our primary objects of study in this paper were constant-round inter-
active protocols for verifying outsourced streaming computations. Our main algorithmic
contributions were to give constant-round streaming interactive proofs for a large class of
“query” problems. Our protocols are exponentially more efficient than what was believed
possible based on prior work, and demonstrate that in the streaming setting, “hidden” coins
are exponentially more powerful than public coins.

We also introduced new “online” communication hierarchies, OIP+++ and OIP, which can
be seen as restricted variants of the standard Arthur-Merlin communication model. The flow
of information in the OIP+++ and OIP models is severely restricted (neither Bob nor Merlin
can speak to Alice), yet OIP+++ is still powerful enough to simulate any streaming interactive
proof, and OIP powerful enough to simulate all known streaming interactive proofs. Our
study revealed that the online nature of these communication models leads them to behave
very differently from classical interactive proofs, and allowed us to establish strong limita-
tions on the power of existing techniques for developing constant-round SIPs. It also yielded
a surprising characterization of the communication complexity class AM in terms of online
communication models (namely, AM = OIP[4] = OIP[4]

+++). We believe this characterization
may prove useful in establishing non-trivial AM lower bounds, a problem that has been iden-
tified [28] as an important “first step” toward resolving the ΠΠΠ222 6= ΣΣΣ222 problem in two-party
communication complexity, one of the most important problems left open by Babai et al. [6].

Many questions remain for future work, but here we highlight just one: proving a super-
logarithmic lower bound on the OIP[2]

+++ communication cost of an explicit function. Progress
on this question would yield the first superlogarithmic lower bounds on the cost of two-
message SIPs. Moreover, we have shown that standard techniques easily establish that OIP[2]

+++

is a subset of AM, but have been unable to prove any superlogarithmic lower bounds against
OIP[2]

+++ protocols. Proving OIP[2]
+++ lower bounds therefore represents an important (and poten-

tially tractable) “zeroth step” toward resolving ΠΠΠ222 6= ΣΣΣ222.

REFERENCES

[1] S. AARONSON, QMA/qpoly ⊆ PSPACE/poly: De-Merlinizing quantum protocols, in 21st Annual IEEE Con-
ference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, 2006,
pp. 261–273.

[2] S. AARONSON AND A. WIGDERSON, Algebrization: A new barrier in complexity theory, TOCT, 1 (2009).

VERIFIABLE STREAM COMPUTATION AND ARTHUR–MERLIN COMMUNICATION 31

[3] A. ABDULLAH, S. DARUKI, C. D. ROY, AND S. VENKATASUBRAMANIAN, Streaming verification of graph
properties, in 27th International Symposium on Algorithms and Computation, ISAAC 2016, December
12-14, 2016, Sydney, Australia, 2016, pp. 3:1–3:14.

[4] F. ABLAYEV, Lower bounds for one-way probabilistic communication complexity and their application to
space complexity, Theoretical Computer Science, 175 (1996), pp. 139–159.

[5] N. ALON, Y. MATIAS, AND M. SZEGEDY, The space complexity of approximating the frequency moments,
J. Comput. Syst. Sci., 58 (1999), pp. 137–147.

[6] L. BABAI, P. FRANKL, AND J. SIMON, Complexity classes in communication complexity theory, in Proc.
27th Annual IEEE Symposium on Foundations of Computer Science, 1986, pp. 337–347.

[7] L. BABAI AND S. MORAN, Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity
class, J. Comput. Syst. Sci., 36 (1988), pp. 254–276.

[8] D. BONEH, G. D. CRESCENZO, R. OSTROVSKY, AND G. PERSIANO, Public key encryption with key-
word search, in Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
vol. 3027 of Lecture Notes in Computer Science, Springer, 2004, pp. 506–522.

[9] A. BOULAND, L. CHEN, D. HOLDEN, J. THALER, AND P. N. VASUDEVAN, On the power of statistical
zero knowledge, in Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on,
IEEE, 2017, pp. 708–719.

[10] A. CHAKRABARTI, G. CORMODE, N. GOYAL, AND J. THALER, Annotations for sparse data streams, in
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, Society for In-
dustrial and Applied Mathematics, 2014, pp. 687–706.

[11] A. CHAKRABARTI, G. CORMODE, A. MCGREGOR, AND J. THALER, Annotations in data streams, ACM
Transactions on Algorithms, 11 (2014), p. 7. A preliminary version of this paper by A. Chakrabarti, G.
Cormode, and A. McGregor appeared in ICALP 2009.

[12] K. CHUNG, Y. T. KALAI, F. LIU, AND R. RAZ, Memory delegation, in Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
2011, pp. 151–168.

[13] R. CLIFFORD, K. EFREMENKO, E. PORAT, AND A. ROTHSCHILD, From coding theory to efficient pat-
tern matching, in Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2009, pp. 778–784.

[14] A. CONDON, The complexity of space bounded interactive proof systems, Complexity Theory: Current Re-
search, (1993), pp. 147–190.

[15] G. CORMODE, M. MITZENMACHER, AND J. THALER, Practical verified computation with streaming in-
teractive proofs, in Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, 2012, pp. 90–112.

[16] , Streaming graph computations with a helpful advisor, Algorithmica, 65 (2013), pp. 409–442.
[17] G. CORMODE, J. THALER, AND K. YI, Verifying computations with streaming interactive proofs, PVLDB,

5 (2011), pp. 25–36.
[18] S. DARUKI, J. THALER, AND S. VENKATASUBRAMANIAN, Streaming verification in data analysis, in Al-

gorithms and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December
9-11, 2015, Proceedings, 2015, pp. 715–726.

[19] S. GOLDWASSER, D. GUTFREUND, A. HEALY, T. KAUFMAN, AND G. N. ROTHBLUM, A (de)constructive
approach to program checking, in Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, STOC ’08, New York, NY, USA, 2008, ACM, pp. 143–152.

[20] S. GOLDWASSER, Y. T. KALAI, AND G. N. ROTHBLUM, Delegating computation: Interactive proofs for
muggles, in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
New York, NY, USA, 2008, ACM, pp. 113–122.

[21] S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems, in Proceed-
ings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, New York, NY,
USA, 1986, ACM, pp. 59–68.

[22] M. GÖÖS, T. PITASSI, AND T. WATSON, The landscape of communication complexity classes, in 43rd In-
ternational Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, 2016, pp. 86:1–86:15.

[23] S. GUHA AND A. MCGREGOR, Stream order and order statistics: Quantile estimation in random-order
streams, SIAM J. Comput., 38 (2009), pp. 2044–2059.

[24] T. GUR AND R. RAZ, Arthur-Merlin streaming complexity, in Automata, Languages, and Programming,
F. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg, eds., vol. 7965 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2013, pp. 528–539.

[25] A. KALAI, Efficient pattern-matching with don’t cares, in Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., 2002, pp. 655–656.

[26] B. KALYANASUNDARAM AND G. SCHINTGER, The probabilistic communication complexity of set intersec-
tion, SIAM J. Discret. Math., 5 (1992), pp. 545–557.

32 A. CHAKRABARTI ET AL.

[27] H. KLAUCK, Rectangle size bounds and threshold covers in communication complexity, in 18th Annual IEEE
Conference on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, 2003,
pp. 118–134.

[28] , On Arthur Merlin games in communication complexity, in Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC 2011, San Jose, California, June 8-10, 2011, 2011,
pp. 189–199.

[29] H. KLAUCK AND V. PRAKASH, Streaming computations with a loquacious prover, in Proceedings of the
4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, New York, NY, USA, 2013,
ACM, pp. 305–320.

[30] I. KREMER, N. NISAN, AND D. RON, On randomized one-round communication complexity, in Proceedings
of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC ’95, New York, NY,
USA, 1995, ACM, pp. 596–605.

[31] S. V. LOKAM, Spectral methods for matrix rigidity with applications to sizedepth trade-offs and communica-
tion complexity, Journal of Computer and System Sciences, 63 (2001), pp. 449 – 473.

[32] C. LUND, L. FORTNOW, H. KARLOFF, AND N. NISAN, Algebraic methods for interactive proof systems, J.
ACM, 39 (1992), pp. 859–868.

[33] M. MITZENMACHER AND E. UPFAL, Probability and Computing: Randomized Algorithms and Probabilistic
Analysis, Cambridge University Press, New York, NY, USA, 2005.

[34] I. NEWMAN AND M. SZEGEDY, Public vs. private coin flips in one round communication games (extended
abstract), in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, 1996, pp. 561–570.

[35] N. NISAN AND A. WIGDERSON, Rounds in communication complexity revisited, SIAM Journal on Comput-
ing, 22 (1993), pp. 211–219.

[36] Y. OFMAN, On the algorithmic complexity of discrete functions, Doklady Akademii Nauk SSSR, 145 (1962),
pp. 48–51. English Translation in Soviet Physics Doklady 7: 589-591, 1963.

[37] C. PAPAMANTHOU, E. SHI, R. TAMASSIA, AND K. YI, Streaming authenticated data structures, in Ad-
vances in Cryptology – EUROCRYPT, Springer, 2013, pp. 353–370.

[38] R. RAZ, Quantum information and the PCP theorem, Algorithmica, 55 (2009), pp. 462–489.
[39] N. SAUER, On the density of families of sets, Journal of Combinatorial Theory, Series A, 13 (1972), pp. 145–

147.
[40] D. SCHRÖDER AND H. SCHRÖDER, Verifiable data streaming, in the ACM Conference on Computer and

Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp. 953–964.
[41] A. SHAMIR, IP = PSPACE, J. ACM, 39 (1992), pp. 869–877.
[42] S. SHELAH, A combinatorial problem; stability and order for models and theories in infinitary languages,

Pacific Journal of Mathematics, 41 (1972), pp. 247–261.
[43] J. THALER, Time-optimal interactive proofs for circuit evaluation, in Advances in Cryptology - CRYPTO

2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, 2013, pp. 71–89.

[44] , Semi-streaming algorithms for annotated graph streams, in 43rd International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, eds., vol. 55 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016, pp. 59:1–59:14.

[45] V. VU, S. T. V. SETTY, A. J. BLUMBERG, AND M. WALFISH, A hybrid architecture for interactive verifiable
computation, in 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-
22, 2013, 2013, pp. 223–237.

[46] C. WALLACE, A suggestion for a fast multiplier, Electronic Computers, IEEE Transactions on, EC-13 (1964),
pp. 14–17.

	Introduction
	New Results: Exponentially Improved Constant-Round SIPs
	The Connection to Arthur–Merlin Communication
	New Results: Complexity Classes for Arthur–Merlin Communication
	Overview of Our Techniques
	Related Work
	Suggestions for Reading the Rest of the Paper

	The SIP Model and the Polynomial Evaluation Protocol
	The SIP Model
	Low-Degree and Multilinear Extensions
	The Polynomial Evaluation Protocol

	Constant-Round SIPs for Query Problems
	Point Queries
	Nearest Neighbor Queries
	Range Counting Queries
	Median and Selection Queries
	Pattern Matching Queries

	Communication Protocols and Complexity Classes
	Relations Among Communication Complexity Classes

	A Communication Complexity Zoo
	A Characterization of 2
	A Characterization of 3
	A Characterization of 4 and Beyond
	Exponential Separations in Our Complexity Zoo
	An Exponential Separation Between 2 and k

	Conclusion
	References

