
Leveraging Well-Conditioned Bases: Streaming and
Distributed Summaries in Minkowski p-Norms

Graham Cormode * 1 Charlie Dickens * 1 David P. Woodruff * 2

Abstract
Work on approximate linear algebra has led to
efficient distributed and streaming algorithms for
problems such as approximate matrix multipli-
cation, low rank approximation, and regression,
primarily for the Euclidean norm `2. We study
other `p norms, which are more robust for p < 2,
and can be used to find outliers for p > 2. Un-
like previous algorithms for such norms, we give
algorithms that are (1) deterministic, (2) work si-
multaneously for every p ≥ 1, including p =∞,
and (3) can be implemented in both distributed
and streaming environments. We apply our results
to `p-regression, entrywise `1-low rank approxi-
mation, and approximate matrix multiplication.

1. Introduction
Analyzing high dimensional, high volume data can be time-
consuming and resource intensive. Core data analysis, such
as robust instances of regression, involve convex optimiza-
tion tasks over large matrices, and do not naturally dis-
tribute or parallelize. In response to this, approximation
algorithms have been proposed which follow a “sketch and
solve” paradigm: produce a reduced size representation of
the data, and solve a version of the problem on this sum-
mary (Woodruff, 2014). It is then argued that the solution on
the reduced data provides an approximation to the original
problem on the original data. This paradigm is particu-
larly attractive when the summarization can be computed
efficiently on partial views of the full data—for example,
when it can be computed incrementally as the data arrives
(streaming model) or assembled from summarizations of
disjoint partitions of the data (distributed model) (Woodruff,
2014; Agarwal et al., 2012; Feldman et al., 2006). This

*Equal contribution 1Department of Computer Science, Uni-
versity of Warwick, Coventry, UK 2School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. Cor-
respondence to: Charlie Dickens <c.dickens@warwick.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

template has been instantiated for a number of fundamen-
tal tasks in high dimensional linear algebra such as matrix
multiplication, low rank approximation, and regression.

Our understanding is well-established in the common case
of the Euclidean norm, i.e., when distances are measured
under the Minkowski p-norm for p = 2. Here, it suffices to
choose a sketching matrix independent of the data—where
each entry is i.i.d. Gaussian, Rademacher, or more efficient
variants of these. For other p values, less is known, but these
are often needed to handle limitations of the 2-norm. For
instance, p = 1 is widely used as it is extremely robust with
respect to the presence of outliers while p > 2 can be used
to detect outlying observations.

We continue the study of algorithms for `p norms on stream-
ing and distributed data. A particular novelty of our results
is that unlike previous distributed and streaming algorithms,
they can all be implemented deterministically, i.e., our algo-
rithms make no random choices. While in a number of set-
tings randomized algorithms are highly beneficial, leading
to massive computational savings, there are other applica-
tions which require extremely high reliability, for which one
needs to obtain guaranteed performance across a large num-
ber of inputs. If one were to use a randomized algorithm,
then it would need vanishingly small error probability; how-
ever, many celebrated algorithms in numerical linear algebra
succeed with only constant probability. Another limitation
of randomized algorithms was shown in (Hardt & Woodruff,
2013): if the input to a randomized sketch depends on the
output of a preceding algorithm using the same sketch, then
the randomized sketch can give an arbitrarily bad answer.
Hence, such methods cannot handle adaptively chosen in-
puts. Thus, while randomized algorithms certainly have
their place, the issues of high reliability and adaptivity moti-
vate the development of deterministic methods for a number
of other settings, for which algorithms are scarce.

Our techniques can be viewed as a conceptual generaliza-
tion of Liberty’s Frequent Directions (in the 2-norm) (Lib-
erty, 2013), which progressively computes an SVD on sub-
sequent blocks of the input. This line of work (Liberty,
2013; Ghashami & Phillips, 2014; Ghashami et al., 2016;
Ghashami et al., 2016) is the notable exception in numer-
ical linear algebra, as it provides deterministic methods,

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

although all such methods are specific to the 2-norm. Our
core algorithm is similar in nature, but we require a very
different technical analysis to argue that the basis transfor-
mation computed preserves the shape in the target p-norm.

Our main application is to show how high dimensional
regression and low rank approximation problems can be
solved approximately and deterministically in the sketch
and solve paradigm. The core of the summary is to find
rows of the original matrix which have high leverage scores.
That is, they contain a lot of information about the shape of
the data. In the Euclidean norm, leverage scores correspond
directly to row norms of an orthonormal basis. This is less
straightforward for other `p norms, where the scores cor-
respond to the row norms of so-called `p-well-conditioned
bases. Moreover, while leverage scores are often used for
sampling in randomized algorithms, we use them here in
the context of fully deterministic algorithms.

We show how a superset of rows with high leverage scores
can be found for arbitrary `p norms, based on only local in-
formation. This leads to efficient algorithms which identify
rows with high (local) leverage scores within subsets of the
data, and proceed hierarchically to collect a sufficient set of
rows. These rows then allow us to solve regression problems:
essentially, we solve the regression problem corresponding
to just the retained input rows. We apply this technique
to `p-regression and entrywise `p-low rank approximation.
In particular, we use it to solve the `∞-regression problem
with additive error in a stream. Note that the `∞ problem
reduces to finding a ball of minimum radius which covers
the data, and global solutions are slow due to the need to
solve a linear program. Instead, we show that only a subset
of the data needs to be retained in the streaming model to
compute accurate approximations. Given the relationship
between the streaming model and the distributed model that
we later define, this could be seen in the context of having
data stored over multiple machines who could send ‘impor-
tant’ rows of their data to a central coordinator in order to
compute the approximation.

Summary of Results. All our algorithms are deterministic
polynomial time, and use significantly sublinear memory
or communication in streaming and distributed models, re-
spectively. We consider tall and thin n× d matrices A for
overconstrained regression so one should think of n � d.
We implement both deterministic and randomized variants
of our algorithms.
Section 3 presents an algorithm which returns rows of high
‘importance’ in a data matrix with additive error. This
follows by storing a polynomial number (in d) of rows
and using these to compute a well-conditioned basis. The
key insight here is that rows of high norm in the full well-
conditioned basis cannot have their norm decrease too much
in a well-conditioned basis associated with a subblock; in

fact they remain large up to a multiplicative poly(d) factor.
Section 4 gives a method for computing a so-called `p-
subspace embedding of a data matrix in polynomial time.
The space is nγ to obtain dO(1/γ) distortion, for γ ∈ (0, 1)
a small constant. This result is then applied to `p-regression
which is shown to have a poly(d) approximation factor with
the same amount of space.
Section 5 describes a deterministic algorithm which gives a
poly(k)-approximation to the optimal low rank approxima-
tion problem in entrywise `1-norm. It runs in polynomial
time for constant k. This method builds on prior work by
derandomizing a subroutine from (Song et al., 2017).
Section 6 describes an algorithm for computing an additive-
error solution to the `∞-regression problem, and shows a
corresponding lower bound, showing that relative error so-
lutions in this norm are not possible in sublinear space, even
for randomized algorithms.
Section 7 concludes with an empirical evaluation. More
experiments, intermediate results, and formal proofs can
be found in the Supplementary Material, as can results on
approximate matrix multiplication.

Comparison to Related Work. There is a rich literature on
algorithms for numerical linear algebra in general p-norms;
most of which are randomized with the notable exception
of Frequent Directions. The key contributions of our work
for each of the problems considered and its relation to prior
work is as follows:

Finding high leverage rows: our algorithm is a single pass
streaming algorithm and uses small space. We show that the
global property of `p-leverage scores can be understood by
considering only local statistics. Frequent Directions is the
only comparable result to ours and outputs a summary of
the rows only in the `2-norm. However, our method covers
all p ≥ 1. Theorem 3.3 is the key result and is later used
to prove Theorem 6.1 and approximate the `∞-regression
problem.

Subspace embedding, regression and `1 low-rank approx-
imation: various approaches using row-sampling (Cohen
& Peng, 2015; Dasgupta et al., 2008), and data oblivious
methods such as low-distortion embeddings can solve re-
gression in time proportional to the sparsity of the input
matrix (Clarkson et al., 2013; Meng & Mahoney, 2013;
Song et al., 2017; Woodruff & Zhang, 2013). However,
despite the attractive running times and error guarantees of
these works, they are all randomized and do not necessar-
ily translate well to the streaming model of computation.
Our contribution here is a fully deterministic algorithm that
works for all p ≥ 1 in both streaming and distributed mod-
els. Randomized methods for `1 low-rank approximation
have also been developed in (Song et al., 2017) and our
result exploits a derandomized subroutine from this work to
obtain a deterministic result which applies in both models.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

2. Preliminaries and Notation
We consider computing `p-leverage scores of a matrix, low-
rank approximation, regression, and matrix multiplication.
We assume the input is a matrix A ∈ Rn×d and n � d
so rank(A) ≤ d and the regression problems are overcon-
strained. Without loss of generality we may assume that the
columns of the input matrix are linearly independent so that
rank(A) = d. Throughout this paper we rely heavily on
the notion of a well-conditioned basis for the column space
of an input matrix, in the context of the entrywise p-norm
which is ‖A‖p = (

∑
i,j |Aij |p)1/p.

Definition 2.1 (Well-conditioned basis). Let A ∈ Rn×d
have rank d. For p ∈ [1,∞) let q = p

p−1 be its dual
norm. An n× d matrix U is an (α, β, p)-well-conditioned
basis for A if the column span of U is equal to that of
A, ‖U‖p ≤ α, for all z ∈ Rd, ‖z‖q ≤ β‖Uz‖p , and
α, β, dO(1) are independent of n (Dasgupta et al., 2008).

We focus on the cases p < 2 and p > 2 because the deter-
ministic p = 2 case is relatively straightforward. Indeed, for
p = 2, ATA can be maintained incrementally as rows are
added, allowing xTATAx to be computed for any vector
x. So it is possible to find an exact `2 subspace embedding
using O(d2) space in a stream and O(ndω−1) time (ω is the
matrix multiplication constant). We adopt the convention
that when p = 1 we take q =∞.

Theorem 2.2 ((Dasgupta et al., 2008)). Let A be an n× d
matrix of rank d, let p ∈ [1,∞) and let q be its dual norm.
There exists an (α, β, p)-well-conditioned basis U for the
column space of A such that:

1. if p < 2 then α = d
1
p+ 1

2 and β = 1,
2. if p = 2 then α =

√
d and β = 1, and

3. if p > 2 then α = d
1
p+ 1

2 and β = d
1
p−

1
2 .

Moreover,U can be computed in deterministic timeO(nd2+
nd5 log n) for p 6= 2 and O(nd2) if p = 2.

We freely use the fact that a well-conditioned basis U = AR
can be efficiently computed for the given data matrix A.
Details for the computation can be found in (Dasgupta et al.,
2008) but this is done by computing a change of basis R
such that U = AR is well-conditioned. Similarly, as R can
be inverted we have the relation that UR−1 = A. Both
methods are used so we adopt the convention that U = AR
when writing a well-conditioned basis in terms of the input
and US = A for the input in terms of the basis.

2.1. Computation Models

Our algorithms operate under the streaming and distributed
models of computation. In both settings an algorithm re-
ceives as input a matrix A ∈ Rn×d. For a problem P, the

algorithm must keep a subset of the rows of A and, upon
reading the full input, may use a black-box solver to com-
pute an approximate solution to P with only the subset of
rows stored. In both models we measure the summary size
(storage), the update time which is the time taken to find the
local summary, and the query time which is the time taken
to compute an approximation to P using the summary.

The Streaming Model: The rows of A are given to the
(centralized) algorithm one-by-one. Let b be the maximum
number of rows that can be stored under the constraint that b
is sublinear in n. The stored subset is used to compute local
statistics which determine those rows to be kept or discarded
from the stored set. Further rows are then appended and the
process is repeated until the full matrix has been read. An
approximation to the problem is then computed by solving
P on the reduced subset of rows.

The Distributed Summary Model: Given a small constant
γ ∈ (0, 1), the input in the form of matrix A ∈ Rn×d is
partitioned into blocks among distributed compute nodes
so that no block exceeds nγ rows. The computation then
follows a tree structure: the initial blocks of the matrix
form n1−γ leaves of the compute tree. Each internal node
merges and reduces its input from its child nodes. The first
phase is for the leaf nodes l1, . . . , lm of the tree to reduce
their input by computing a local summary on the block they
receive as input. This is then sent to parent nodes p1, . . . , pm
which merge and reduce the received rows until the space
bound is reached. The resulting summaries are passed up
the tree until we reach the root where a single summary
of bounded size is obtained which can be used to compute
an approximation to P. In total, there are O(1/γ) levels in
the tree. As the methods require only light synchronization
(compute summary and return to coordinator), we do not
model implementation issues relating to synchronization.
Remark 2.3. The two models are quite close: the stream-
ing model can be seen as a special case of the distributed
model with only one participant who individually computes
a summary, appends rows to the stored set, and reduces the
new summary. This is represented as a deep binary tree,
where each internal node has one leaf child. Likewise, the
Distributed Summary Model can be implemented in a full
streaming fashion over the entire binary tree. The experi-
ments in Section 7 perform one round of merge-and-reduce
in the distributed model to simulate the streaming approach.

3. Finding Rows of High Leverage
This section is concerned with finding rows of high leverage
from a matrix with respect to various p-norms. We con-
clude the section with an algorithm that returns rows of high
leverage up to polynomial additive error.
Definition 3.1. Let R be a change of basis matrix such that
AR is a well-conditioned basis for the column space of A.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

The (full) `p-leverage scores are defined as wi = ‖eTi AR‖pp.

Note that wi depends both on A and the choice of R, but we
suppress this dependence in our notation. Next we present
some basic facts about the `p leverage scores.

Fact 1. By Definition 2.1 we have
∑
i wi =∑

i ‖(AR)i‖pp ≤ αp. Theorem 2.2 shows α = poly(d).
Define I = {i ∈ [n] : wi > τ‖AR‖pp} to be the index
set of all rows whose `p leverage exceeds a τ fraction of
‖AR‖pp, then: αp ≥

∑
i wi ≥

∑
i∈I wi ≥ |I| · τ‖AR‖pp.

Hence, |I| ≤ αp/τ‖AR‖pp = poly(d)/τ . So there are at
most poly(d)/τ rows i for which wi ≥ τ‖AR‖pp.

Fact 2. Definition 2.1 and Hölder’s inequality show that for
any vector x we have |(ARx)i|p ≤ β‖eTi AR‖pp · ‖ARx‖pp.
Then τ ≤ |eTi ARx|p/‖ARx‖pp ≤ βwi. From this we
deduce that if a row contributes at least a τ fraction of
‖ARx‖pp then τ ≤ wiβ. That is, τ ≤ wi for p ∈ [1, 2] and
τ ≤ d1/2wi for p ∈ (2,∞) by using Theorem 2.2.

Definition 3.2. Let X be a matrix and Y be a subset of the
rows of X . Define the local `p-leverage scores of Y with
respect to X to be the leverage scores of rows Y found by
computing a well-conditioned basis for Y rather than the
whole matrix X .

A key technical insight to proving Theorem 3.3 below is that
rows of high leverage globally can be found by repeatedly
finding rows of local high leverage. While relative `p row
norms of a submatrix are at least as large as the full relative
`p norms, it is not guaranteed that this property holds for
leverage scores. This is because leverage scores are calcu-
lated from a well-conditioned basis for a matrix which need
not be a well-conditioned basis for a block. However, we
show that local `p leverage scores restricted to a coordinate
subspace of a matrix basis do not decrease too much when
compared to leverage scores in the original space. Let i be
a row in A with local leverage score ŵi and global leverage
score wi. Then ŵi ≥ wi/ poly(d). The proof relies heavily
on properties of the well-conditioned basis and details are
given in the Supplementary Material, Lemma A.1. This
lemma shows that local leverage scores can potentially drop
in arbitrary `p norm, contrasting the behavior in `2. How-
ever, it is possible to find all rows exceeding a threshold
globally by altering the local threshold. That is, to find
all wi > τ globally we can find all local leverage scores
exceeding an adjusted threshold ŵi > τ/poly(d) to obtain
a superset of all rows which exceed the global threshold.
The price to pay for this is a poly(d) increase in space cost
which, importantly, remains sublinear in n. Hence, we can
gradually prune out rows of small leverage and keep only
the most important rows of a matrix. Combining Lemmas
A.1 and A.2 we can present the main theorem of the section.

We prove Theorem 3.3 by arguing the correctness of Al-
gorithm 1 which reads A once only, row by row, and so

operates in the streaming model of computation as follows.
Let A′ be the submatrix of A induced by the b block of
poly(d)/τ rows. Upon storing A′, we compute U , a local
well-conditioned basis for A′ and the local leverage scores
with respect to U , ŵi(U) are calculated. Now, the local
and global leverage scores can be related by Lemma A.1 as
wi/poly(d) ≤ ŵi so we can decide which rows to keep us-
ing an adjusted threshold. Any i for which the local leverage
exceeds the adjusted threshold is kept in the sample and all
other rows are deleted. The sample cannot be too large by
properties of the well-conditioned basis and leverage scores
so these kept rows can be appended to the next block which
is read in before computing another well-conditioned basis
and repeating in the same fashion. The proof of Theorem
3.3 is deferred to Appendix A.
Theorem 3.3. Let τ > 0 be a fixed constant and let
b denote a bound on the available space. There exists
a deterministic algorithm, namely, Algorithm 1, which
computes the `p-leverage scores of a matrix A ∈ Rn×d
with O(bd2 + bd5 log b) update time, poly(d) space, and
returns all rows of A with `p leverage score satisfying
wi ≥ τ/ poly(d).

4. `p-Subspace Embeddings
Under the assumptions of the Distributed Summary Model
we present an algorithm which computes an `p-subspace em-
bedding. By extension, this applies to both the distributed
and streaming models of computation as described in Sec-
tion 2.1. Two operations are needed for this model of com-
putation: the merge and reduce steps. To reduce the input
at each level a summary is computed by taking a block of
input B (corresponding to a leaf node or a node higher up
the tree) and computing a well-conditioned basis B = US.
In particular, the summary is now the matrix S with U and
B deleted. For the merge step, successive matrices S are
concatenated until the space requirement is met. A further
reduce step takes as input this concatenated matrix and the
process is repeated. Further details, pseudocode, and proofs
for this section are given in Appendix B.
Definition 4.1. A matrix T is a relative error (c1, c2)-`p
subspace embedding for the column space of a matrix A ∈
Rn×d if there are constants c1, c2 > 0 so that for all x ∈ Rd,
c1‖Ax‖p ≤ ‖Tx‖p ≤ c2‖Ax‖p.
Theorem 4.2. Let A ∈ Rn×d, p 6= 2,∞ be fixed and fix a
constant γ ∈ (0, 1). Then there exists a one-pass determinis-
tic algorithm which constructs a (1/dO(1/γ), 1) relative er-
ror `p-subspace embedding in with O(nγd2 +nγd5 log nγ)
update time and O(nγd) space in the streaming and dis-
tributed models of computation.

The algorithm is used in a tree structure as follows: split
inputA ∈ Rn×d into n1−γ blocks of size nγ , these form the
leaves of the tree. For each block, a well-conditioned basis is

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Algorithm 1 Deterministic High Leverage Scores

Require: A ∈ Rn×d, τ ∈ (0, 1)
1: procedure HIGH LEVERAGE SCORES(A, τ)
2: b← poly(d)/τ
3: A′ ← first b rows of A
4: B ← LEVSCORECHECK(wcb(A′), A′, τ/poly(d))
5: while Rows of A unseen do
6: A′ ← next b rows of A
7: B ← LEVSCORECHECK(wcb([A′;B]), [A′;B], τ/poly(d))

Ensure: B

Algorithm 2 Finding high leverage rows

Require: Well-conditioned basis X for matrix
W , threshold parameter τ > 0

1: procedure LEVSCORECHECK(X,W, τ)
2: N ← Number of rows in X
3: Y ← 0
4: for i = 1 : N do
5: if wi(X) > τ then
6: Yi ←Wi

Ensure: Nonzero rows of Y

Figure 1: [X;Y] denotes row-wise appending of matrices, U = wcb(M) denotes that U is a well-conditioned basis for M .

computed and the change of basis matrix S ∈ Rd×d is stored
and passed to the next level of the tree. This is repeated until
the concatenation of all the S matrices would exceed nγ . At
this point, the concatenated S matrices form the parent node
of the leaves in the tree and the process is repeated upon
this node: this is the merge and reduce step of the algorithm.
At every iteration of the merge-and-reduce steps it can be
shown that a distortion of 1/d is introduced by using the
summaries S. However, this can be controlled across all of
the O(1/γ) levels in the tree to give a deterministic relative
error `p subspace embedding which requires only sublinear
space and little communication. In addition, the subspace
embedding can be used to achieve a deterministic relative-
error approximate regression result. The proof relies upon
analyzing the merge-and-reduce behaviour across all nodes
of the tree.

`p-Regression Problem: Given matrix A ∈ Rn×d and tar-
get vector b ∈ Rn, find x̂ = argminx ‖Ax− b‖p.

Theorem 4.3. Let A ∈ Rn×d, b ∈ Rn, fix p 6= 2,∞ and a
constant γ > 0. The `p-regression problem can be solved
deterministically in the streaming and distributed models
with a (d + 1)O(1/γ) = poly(d) relative error approxi-
mation factor. The update time is poly(nγ(d + 1)) and
O((1/γ)nγ(d + 1)) storage. The query time is poly(nγ)
for the cost of convex optimization.

5. Low-Rank Approximation
`1-Low-Rank Approximation Problem: Given matrix
A ∈ Rn×d output a matrix B of rank k s.t., for constant k:

‖A−B‖1 ≤ poly(k) min
A′:rankk

‖A−A′‖1. (1)

Theorem 5.1. Let A ∈ Rn×d be the given data matrix
and k be the (constant) target rank. Let γ > 0 be an
arbitrary (small) constant. Then there exists a determin-
istic distributed and streaming algorithm (namely Algo-
rithm 5 in Appendix C) which can output a solution to

the `1-Low Rank Approximation Problem with relative er-
ror poly(k) approximation factor, update time poly(n, d),
space bounded by nγpoly(d), and query time poly(n, d).

The key technique is similar to that of the previous section
by using a tree structure with merge-and-reduce operations.
For input A ∈ Rn×d and constant γ > 0 partition A into
n1−γ groups of rows which form the leaves of the tree. The
tree is defined as previously with the same ‘merge’ opera-
tion, but the ‘reduce’ step to summarize the data exploits a
derandomization (subroutine Algorithm 4) of (Song et al.,
2017) to compute an approximation to the optimal `1-low-
rank approximation. Once this is computed, k of the rows
in the summary are kept for later merge steps.

This process is continued with the successive k rows from
nγ rows being ‘merged’ or added to the matrix until it has
nγ rows. The process is repeated across all of the groups in
the level and again on the successive levels on the tree from
which it can be shown that the error does not propagate too
much over the tree, thus giving the desired result.

6. Application: `∞-Regression
Here we present a method for solving `∞-regression in a
streaming fashion. Given input A and a target vector b, it
is possible to achieve additive approximation error of the
form ε‖b‖p for arbitrarily large p. This contrasts with both
Theorems 4.2 and 4.3 which achieve a relative error poly(d)
approximation. Both of these theorems require that p is
constant and not equal to the ∞-norm. This restriction
is due to a lower bound for `∞- regression showing that
it cannot be approximated with relative error in sublinear
space. The key to proving Theorem 6.1 below is using
Theorem 3.3 to find high leverage rows and arguing that
these are sufficient to give the claimed error guarantee.

The `∞-regression problem has been previously studied in
the overdetermined case and can naturally be applied to
curve-fitting under this norm. `∞-regression can be solved

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

by linear programming (Sposito, 1976) and such a transfor-
mation allows the identification of outliers in the data. Also,
if the errors are known to be distributed uniformly across
an interval then `∞-regression estimator is the maximum-
likelihood parameter choice (Hand, 1978). The same work
argues that such uniform distributions on the errors often
arise as round-off errors in industrial applications whereby
the error is controlled or is small relative to the signal. There
are further applications such as using `∞-regression to re-
move outliers prior to `2 regression in order to make the
problem more robust (Shen et al., 2014). By applying `∞
regression on subsets of the data an approximation to the
Least Median of Squares (another robust form of regression)
can be found. We now define the problem and proceed to
show that it is possible to compute an approximate solution
with additive error in `p-norm for arbitrarily large p.

Approximate `∞-Regression problem: Given data A ∈
Rn×d, target vector b ∈ Rn, and error parameter ε > 0,
compute an additive ε‖b‖p error solution to:

min
x∈Rd

‖Ax− b‖∞ = min
x∈Rd

[
max
i
|(Ax)i − bi|

]
.

Theorem 6.1. Let A ∈ Rn×d, b ∈ Rn and fix constants
p ≥ 1, ε > 0 with p 6=∞. There exists a one-pass determin-
istic streaming algorithm which solves the `∞-regression
problem up to an additive ε‖b‖p error in dO(p)/εO(1) space,
O(md5 + md2 logm) update time and Tsolve(m, d) query
time.

Note that Tsolve(m, d) query time is the time taken to solve
the linear program associated with the above problem on
a reduced instance size. Also, observe that Theorem 6.1
requires p < ∞. This restriction is necessary to forbid
relative error with respect to the infinity norm. Indeed, p
can be an arbitrarily large constant, but for p = ∞ we
can look for rows above an ε/poly(d) threshold in the case
when A is an all-ones column n-vector (so an n× 1 matrix).
Then ‖Ax‖∞ = ‖x‖∞ since x is a scalar. Also, A is a well-
conditioned basis for its own column span but the number of
rows of leverage exceeding ε/poly(d) = ε is n for a small
constant ε. This intuition allows us to prove the following
theorem.

Theorem 6.2. Any algorithm which outputs an ε‖b‖∞ rel-
ative error solution to the `∞-regression problem requires
min

{
n, 2Ω(d)

}
space.

7. Experimental Evaluation
To validate our approach, we evaluate the use of high
`p-leverage rows in order to approximate `∞-regression1,
focusing particularly on the cases using `1 and `2 well-

1Code available at https://github.com/c-dickens/
stream-summaries-high-lev-rows

conditioned bases. It is straightforward to model `∞-
regression as a linear program in the offline setting. We use
this to measure the accuracy of our algorithm. The imple-
mentation is carried out in the single pass streaming model
with a fixed space constraint, m, and threshold, αp/m for
both conditioning methods to ensure the number of rows
kept in the summary did not exceed m. Recall from Re-
mark 2.3 that the single-pass streaming implementation is
equivalent to the distributed model with only one participant
applying merge-and-reduce, so this experiment can also be
seen as a distributed computation with the merge step being
the appending of new rows and the reduce step being the
thresholding in the new well-conditioned basis.

Methods. We analyze two instantiations of our methods
based on how we find a well-conditioned basis and repeat
over 5 independent trials with random permutations of the
data. The methods are as follows:

SPC3: We use an algorithm of Yang et al. (2013) to com-
pute an `1-wcb. This method is randomized as it em-
ploys the Sparse Cauchy Transform and is only an `1-well-
conditioned basis with constant probability We also imple-
mented a check condition which showed that almost always,
roughly 99% of the time, the randomized construction SPC3
would return a (d2.5, 1, 1)-well-conditioned basis. Thus, we
bypassed this check in our experiment to ensure quick up-
date times.

Orth: In addition, we also used an orthonormal basis using
the QR decomposition which is an `2-wcb. This method
is fully deterministic and outputs a (

√
d, 1, 2)-well- condi-

tioned basis.

Sample: A sample of the data is chosen uniformly at ran-
dom and the retained summary has size exactly m.

Identity: No conditioning is performed. For a block B
of the input, the surrogate scores wi(B) = ‖eTi B‖22/‖B‖2F
are used to determine which rows to keep. As the sum of
these wi(B) is 1, we keep all rows which have wi(B) >
2/m. Since no more than m/2 of the rows can satisfy
wi(B) > 2/m, the size of the stored subset of rows can be
controlled and cannot grow too large.

Remark 7.1. The Identity method keeps only the rows
with high norm which contrasts our conditioning approach:
if most of the mass of the block is concentrated on a few
rows then these will appear heavy locally despite the possi-
bility that they may correspond to previously seen or unim-
portant directions. In particular, if these heavy rows sig-
nificantly outweigh the weight of some sparse directions
in the data it is likely that the sparse directions will not
be found at all. For instance, consider data X ∈ Rn×d
which is then augmented by appending the identity (and
zeros) so that these are the only vectors in the new direc-
tions. That is, set X ′ = [X,0n×k;0k×d, Ik×k] and then

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

permute the rows of X ′. The appended sparse vectors from
Ik×k will have leverage of 1 so will be detected by the well-
conditioned basis methods. However there is no guarantee
that the Identity method will identify these directions
if the entries in X significantly outweigh those in Ik×k. In
addition, there is also no guarantee that using uniform sam-
pling will identify these points, particularly when k is small
compared to n and d. So while choosing to do no condition-
ing seems attractive, this example shows that doing so may
not give any meaningful guarantees and hence we prefer the
approach in Section 3. We compare only to these baselines
as we are not aware of any other competing methods in the
small memory regime for the `∞-regression problem.

Datasets. We tested the methods on a subset of the US Cen-
sus Data containing 5 million rows and 11 columns2 and
YearPredictionMSD3 which has roughly 500,000 rows and
90 columns (although we focus on a fixed 50,000 row sam-
ple so that the LP for regression is tractable: see Figure 4c
in the Supplementary Material, Appendix F). For the census
dataset, space constraints between 50,000 and 500,000 rows
were tested and for the YearPredictionsMSD data space
budgets were tested between 2,500 and 25,000. The gen-
eral behavior is roughly the same for both datasets so for
brevity we primarily show the results for US Census Data,
and defer corresponding plots for YearPredictionsMSD to
Appendix F.

Results on approximation error compared to storage
Let f∗ denote the minimal value of the full regression ob-
tained by x∗ and let x′ be the output of the reduced prob-
lem. The approximate solution to the full problem is then
f̂ = ‖Ax′ − b‖∞ and approximation error is measured as
f̂/f∗ − 1 (note that f̂ ≥ f∗). An error closer to 0 demon-
strates that f̂ is roughly the same as f∗ so the optimal
value is well-approximated. Figures 2a and 2b show that
on both datasets the Identity method consistently per-
forms poorly while Sample achieves comparable accuracy
to the conditioning methods. Despite the simplicity of uni-
form sampling to keep a summary, the succeeding sections
discuss the increased time and space costs of using such
a sample and show that doing so is not favourable. Thus,
neither of the baseline methods output a summary which
can be used to approximate the regression problem both
accurately and quickly, hence justifying our use of lever-
age scores. Our conditioning methods perform particularly
well in the US Census Data data (Figure 2a) with Orth
appearing to give the most accurate summary and SPC3 per-
forming comparably well but with slightly more fluctuation:
similar behaviour is observed in the YearPredictionMSD

2http://www.census.gov/census2000/PUMS5.
html

3https://archive.ics.uci.edu/ml/datasets/
yearpredictionmsd

(Figure 2b) data too. The conditioning methods are also
seen to be robust to the storage constraint, give accurate
performance across both datasets using significantly less
storage than sampling, and give a better estimate in general
than doing no conditioning.

Results on Space Complexity. Recall that the space con-
straint is m rows and throughout the stream, after a local
computation, the merge step concatenates more rows to the
existing summary until the bound m is met, prior to comput-
ing the next reduction. During the initialization of the block
A′ by Algorithm 1, the number of stored rows is exactly m.
However, we measure the maximum number of rows kept
in a summary after every reduction step to understand how
large the returned summary can grow. As seen in Figure
2c, Identity keeps the smallest summary but there is
no reason to expect it has kept the most important rows.
In contrast, if m is the bound on the summary size, then
uniform sampling always returns a summary of size exactly
m. However, we see that this is not optimal as both condi-
tioning methods can return a set of rows which are pruned
at every iteration to roughly half the size and contains only
the most important rows in that block. Both conditioning
methods exhibit similar behavior and are bounded between
both Sample and Identity methods. Therefore, both of
the conditioning methods respect the theoretical bound and,
crucially, return a summary which is sublinear in the space
constraint and hence a significantly smaller fraction of the
input size.

Results on Time Complexity. There are three time costs
measured. The first is the update time taken to com-
pute the local well-conditioned basis which is theoretically
O(md2 +md5 logm) by Theorem 2.2. However, the two
bases that we test are an orthonormal basis, computable in
time O(md2) and the SPC3 transform which takes time
O(nnz(B) logm) for a block B with m rows and nnz(B)
non-zero entries. Figure 3a demonstrates that SPC3 is faster
than Orth on this data in practice but this small absolute
difference becomes negligible over the entirety of the stream
as seen in Figure 3c. The query time in Figure 3b is roughly
proportional to the summary size in all instances but here
the conditioning methods perform noticeably better due to
the smaller summary size that is returned as discussed in
the previous section. However, as seen in Figure 4c, (Sup-
plementary Material, Appendix F) this disparity becomes
hugely significant on higher dimensionality data due to the
increased size summary retained by sampling, further justi-
fying our approach of pruning rows at every stage. While
Identity appears to have fast query time, this is due to
the summary being smaller. Although it may seem that for
smaller summaries more local bases need to be computed
and this time could prohibitively increase over the stream,
Figure 3c demonstrates that even using small blocks does
not cause the overall time (to process the stream and pro-

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

10−2

10−1

100

Er
ro

r:
1−

̂ f/f
*

Orth
SPC3
Sample
Identity

(a) U.S. Census

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Er
ro

r 1
−

̂ f/f
*

Orth
SPC3
Sample
Identity

(b) YearPredictionMSD

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0

100000

200000

300000

400000

500000

M
ax

im
um

 su
m

m
ar

y
si

ze

Orth
SPC3
Sample
Identity

(c) Max summary size vs space constraint

Figure 2: Error vs Space Constraint in (a) and (b) and Maximum Summary Size vs Space Constraint (c). Total input size is
5000000× 11.

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3

(a) Time to compute local basis

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3
Sample
Identity

(b) Solution time for `∞-regression

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

10−4

10−3

10−2

10−1

100

101

To
ta

l T
im

e

Orth
SPC3
Sample
Identity
Brute Force

(c) Total time

Figure 3: Computation Times compared to summary size

duce an approximate query) to increase too much. Hence,
an approximation can be obtained which is highly accurate,
and in total time faster than the brute force solver.

Experimental Summary. While it might seem attractive
not to perform any conditioning on the matrix and just pick
heavy rows, our experiments show that this strategy is not
effective in practice, and delivers poor accuracy. Although
a simple sample of randomly chosen rows can be easily
maintained, this appears less useful due to the increased time
costs associated with larger summaries when conditioning
methods output a similar estimate in less time over the
entire stream. As the `∞-regression problems depend only
on a few rows of the data there are cases when uniform
sampling can perform well: if many of the critical rows
look similar then there is a chance that uniform sampling
will select some examples. In this case, the leverage of the
important direction is divided across the repetitions, and
so it is harder to ensure that desired direction is identified.
Despite this potential drawback we have shown that both
Orth and SPC3 can be used to find accurate summaries
which perform robustly across each of the measures we
have tested. It appears that SPC3 performs comparably

to Orth; both are relatively quick to compute and admit
accurate summaries in similar space. In particular, both
conditioning methods return summaries which are a fraction
of the space budget and hence highly sublinear in the input
size, which give accurate approximations and are robust to
the concatenation of new rows. All of these factors make
the conditioning method fast in practice to both find the
important rows in the data and then compute the reduced
regression problem with high accuracy.

Due to the problems in constructing summaries which can
be used to solve regression quickly and accurately when
using random sampling or no transformation, our methods
are shown to be efficient and accurate alternatives. Our
approach is vindicated both theoretically and practically:
this is most clear in the U.S. Census dataset where small
error can be achieved using a summary roughly 2% the
size of the data. This also results in an overall speedup as
solving the optimization on the reduced set is much faster
than solving on the full problem. Such significant savings
show that this general approach can be useful in large-scale
applications.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Acknowledgements
The work of G. Cormode and C. Dickens is supported by
European Research Council grant ERC-2014-CoG 647557
and The Alan Turing Institute under the EPSRC grant
EP/N510129/1. D. Woodruff would like to acknowledge
the support by the National Science Foundation under Grant
No. CCF-1815840.

References
Agarwal, Pankaj, Cormode, Graham, Huang, Zengfeng,

Phillips, Jeff, Wei, Zheiwei, and Yi, Ke. Mergeable
summaries. In ACM Principles of Database Systems,
2012.

Clarkson, K. L., Drineas, P., Magdon-Ismail, M., Mahoney,
M. W., Meng, X., and Woodruff, D. P. The fast cauchy
transform and faster robust linear regression. In Proc. of
the 24-th Annual SODA, pp. 466–477, 2013.

Cohen, Michael B and Peng, Richard. `p row sampling by
lewis weights. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 183–192.
ACM, 2015.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for lp
regression. In Proc. of the 19th Annual SODA, pp. 932–
941, 2008.

Feldman, Jon, Muthukrishnan, S., Sidiropoulos, Anastasios,
Stein, Cliff, and Svitkina, Zoya. On the complexity of pro-
cessing massive, unordered, distributed data. Technical
Report CoRR abs/cs/0611108, ArXiV, 2006.

Ghashami, M., Liberty, E., and Phillips, J. M. Efficient Fre-
quent Directions Algorithm for Sparse Matrices. ArXiv
e-prints, 2016.

Ghashami, Mina and Phillips, Jeff M. Relative errors for de-
terministic low-rank matrix approximations. In Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pp. 707–717, 2014.

Ghashami, Mina, Liberty, Edo, Phillips, Jeff M., and
Woodruff, David P. Frequent directions: Simple and
deterministic matrix sketching. SIAM J. Comput., 45(5):
1762–1792, 2016.

Hand, Michael Lawrence. Aspects of linear regression esti-
mation under the criterion of minimizing the maximum
absolute residual. 1978.

Hardt, Moritz and Woodruff, David P. How robust are linear
sketches to adaptive inputs? In Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing,

STOC ’13, pp. 121–130, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.
2488624. URL http://doi.acm.org/10.1145/
2488608.2488624.

Kremer, Ilan, Nisan, Noam, and Ron, Dana. On randomized
one-round communication complexity. Computational
Complexity, 8(1):21–49, 1999.

Kushilevitz, E. and Nisan, N. Communication Complexity.
Cambridge University Press, 1997.

Liberty, Edo. Simple and deterministic matrix sketching.
In The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013,
Chicago, IL, USA, August 11-14, 2013, pp. 581–588,
2013.

Meng, Xiangrui and Mahoney, Michael W. Low-distortion
subspace embeddings in input-sparsity time and applica-
tions to robust linear regression. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pp. 91–100, 2013.

Shen, Fumin, Shen, Chunhua, Hill, Rhys, van den Hengel,
Anton, and Tang, Zhenmin. Fast approximate l∞ mini-
mization: speeding up robust regression. Computational
Statistics & Data Analysis, 77:25–37, 2014.

Song, Z., Woodruff, D., and Zhong, P. Low rank approxi-
mation with entrywise `1-norm error. In STOC, 2017.

Sposito, VA. Minimizing the maximum absolute deviation.
ACM SIGMAP Bulletin, (20):51–53, 1976.

Woodruff, David. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1–157, 2014.

Woodruff, David and Zhang, Qin. Subspace embeddings
and lp-regression using exponential random variables.
JMLR: Workshop and Conference Proceedings, 30:1–22,
2013.

Yang, J., Meng, X., and Mahoney, M. W. Quantile regres-
sion for large-scale applications. Proc. of the 30th ICML
Conference, JMLR W&CP, 28(3):881–887, 2013.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Supplementary Material for Leveraging
Well-Conditioned Bases: Streaming and
Distributed Summaries in Minkowski
p-Norms

A. Proofs for Section 3
Lemma A.1. Denote the ith global leverage score of A by
wi and its associated local leverage score in a block of input
A be denoted ŵk. Then wi/poly(d) ≤ ŵk. In particular,
wi/(dα

pβ) ≤ ŵk.

Proof of Lemma A.1. Let U = AR. Recall that wi =
‖eTi AR‖pp. Then for some coordinate j we must have
|eTi ARej |p ≥ wi/d. Taking x = ej we see that

|(ARx)i|p ≥
wi
d
. (2)

However, Fact 1 implies :

‖ARx‖pp ≤ ‖AR‖pp ≤ αp ≤ poly(d). (3)

Hence, there exists a y ∈ col(A) with y = ARx such that
|yi|p ≥ wi/d from Equation (2). Also, ‖y‖pp ≤ αp from
Equation (3). Thus,

|yi|p

‖y‖pp
≥ |yi|

p

αp
(4)

≥ wi
dαp

(5)

≥ wi
poly(d)

. (6)

From this we see;

wi ≤
|yi|pdαp

‖y‖pp
. (7)

Now, let B be a block of rows from A. We manipulate
B by considering it either as an individual matrix or as a
coordinate subspace of A; i.e all rows are zero except for
those contained in B which will be denoted by Â. Define
ŷ = ÂRx. Then ŷj′ = yj′ when j′ is a row from B and
ŷj′ = 0 otherwise. Thus, ‖ŷ‖pp ≤ ‖y‖pp and:

wi ≤
|yi|pdαp

‖ŷ‖pp
. (8)

For rows i which are also found in B (indexed as k) we see
that |ŷk|p = |yi|p. So, for such indices, using Equations (7)
and (8):

wi ≤
|ŷk|pdαp

‖ŷ‖pp
. (9)

Since ŷ is the restriction of y to coordinates of B we
can write ŷ = BR̂x̂ where BR̂ is well-conditioned. Let
ŵk = ‖eTkBR̂‖pp be the kth local leverage score in B. By
applying the same argument as in Fact 2 it can be shown
that |ŷk|p/‖ŷ‖pp ≤ poly(d)ŵk. Indeed,

|ŷk|p = |(ÂR̂x̂)k|p (10)

≤ ‖eTk ÂR̂‖pp‖x̂‖pq by Hölder’s inequality (11)

≤ ŵkβ‖BR̂x̂‖pp (12)

≤ βŵk‖ŷ‖pp. (13)

The second inequality uses condition 2 from Theorem 2.1
and the fact thatBR̂ is a well-conditioned basis. Then using
Equation 9, the following then proves the latter claim of the
lemma:

wi
dαp

≤ |ŷk|
p

‖ŷ‖pp
≤ βŵk.

Finally, Theorem 2.2 states that β is at most poly(d) which
proves the result.

Lemma A.2. All global leverage scores above a thresh-
old can be found by computing local leverage scores and
increasing the space complexity by a poly(d) factor.

Proof of Lemma A.2. First we determine the space nec-
essary to find all leverage scores exceeding δ. Let I =
{i : wi > δ}. Then αp ≥

∑n
i=1 wi ≥

∑
i∈I wi ≥ δ|I|

by arguing as in Fact 1 Hence, the space necessary is
|I| ≤ αp/δ. Now focus on finding these rows in the stream-
ing fashion. By Lemma A.1 we see that for rows k in the
block which is stored from the stream we have the prop-
erty that wi/dαpβ ≤ ŵk. Hence, any wi > δ results in
ŵk > δ/dαpβ for the local thresholding. So to keep all
such wi > δ, we must store all ŵk > δ/dαpβ = δ̂. Argu-
ing similarly as in Fact 1 again define Î = {k : ŵk > δ̂}
so that: αp ≥

∑
k ŵk ≥

∑
k∈Î ŵk ≥ δ̂|Î|. Hence

|Î| ≤ αp/δ̂ = dα2pβ/δ. That is, |Î| ≤ dβαp · |I| which
proves the claim as Theorem 2.2 states that all of the param-
eters are poly(d).

Proof of Theorem 3.3. We claim that the output of Algo-
rithm 1 is a matrix B which contains rows of high leverage
in A. The algorithm initially reads in b rows and inserts
these to matrix A′. A well-conditioned basis U for A′ is
then computed using Theorem 2.2 and incurs the associ-
ated O(bd2 + bd5 log b) time. The matrix U and A′ are
passed to Algorithm 2 whereby if a row i in U has local
leverage exceeding τ then row i of A′ is kept. There are at
most poly(d)/τ of these rows as seen in Lemma A.2 and
the space required is poly(d) by the same lemma. So on
the first call to Algorithm 2 a matrix is returned with rows

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

whose `p local leverage satisfies wi/poly(d) ≤ ŵi (where
wi is the global leverage score and ŵi is the associated local
leverage score) and only those exceeding τ/ poly(d) are
kept.

The algorithm proceeds by repeating this process on a new
set of rows from A and an improved matrix B which con-
tains high leverage rows from A already found. Proceeding
inductively, we see that when Algorithm 2 is called with
matrix [A′;B] then a well-conditioned basis U is computed.
Again [A′;B]i is kept if and only if the local leverage score
from U , wi(U) > τ . By Lemma A.2 this requires poly(d)
space and the local leverage score is at least a 1/poly(d) fac-
tor as large as the global leverage score by Lemma A.1. Re-
peating over all blocks B in A, only the rows of high lever-
age are kept. Any row of leverage smaller than τ/poly(d)
is ignored so this is the additive error incurred.

B. Proofs for Section 4
Algorithm and Discussion

The pseudocode for the first level of the tree structure of the
deterministic `p subspace embedding described in Section 4
is given in Algorithm 3. We use the following notation: m is
a counter to index the block of input currently held, denoted
A[m], and ranges from 1 to n1−γ for the first level of the
tree. Similarly, t indexes the current summary, P (t) which
are all initialized to be an empty matrix. Again we use the
notation [X;Y] to denote the row-wise concatenation of
two matrices X and Y with equal column dimension.

Note that Algorithm 3 can be easily distributed as any block
of sublinear size can be given to a compute node and then
a small-space summary of that block is returned to con-
tinue the computation. In addition, the algorithm can be
performed using sublinear space in the streaming model
because at any one time a summary T of the input can be
computed which is of size d×d. Upon reading A[1], a small
space summary P (1) is computed and stored with the algo-
rithm proceeding to read in A[2]. Similarly, the summary
P (2) is computed and if [P (1);P (1)] does not exceed the
storage bound, then the two summaries are merged and this
process is repeated until at some point the storage bound
is met. Once the summary is large enough that it meets
the storage bound, it is then reduced by performing the
well-conditioned basis reduction (line (5)) and the reduced
summary is stored with the algorithm continuing to read
and summarize input until a corresponding block in the tree
is obtained (or the blocks can be combined to terminate the
algorithm).

Proof of Theorem 4.2. Let A ∈ Rn×d and B ∈ Rnγ×d.
We compute an `p well-conditioned basis for B in time
poly(nγd) by Theorem 2.2; so let B = US for U ∈ Rnγ×d

Algorithm 3 Deterministic `p subspace embedding

1: procedure `p-SUBSPACEEMBEDDING(A, p, γ < 1))
2: Counters m, t← 1
3: Summaries P (t) ← EMPTY for all t.
4: for m = 1 : n1−γ do
5: A[m] = US # U an `p wcb for A
6: if num. rows(P (t)) + d ≤ nγ then
7: P (t) ← [P (t);S]
8: else
9: P (t+1) ← S

10: t← t+ 1

11: Merge all P (t): T = [P (1); . . . ;P (·)]
12: Reduce T by splitting into blocks of nγ and repeat-

ing lines (2) - (10) with T in place of A.
13: return T

and S ∈ Rd×d a change of basis matrix.

From (Dasgupta et al., 2008), U satisfies ‖x‖p ≤ ‖Ux‖p ≤
d‖x‖p. This is because ‖x‖2 ≤ ‖Ux‖p ≤

√
d‖x‖2. There

are then two cases: if p < 2 then

‖x‖p√
d
≤ ‖x‖2 ≤ ‖Ux‖p ≤

√
d‖x‖2 ≤

√
d‖x‖p

so that ‖x‖p ≤ ‖Ux‖p ≤ d‖x‖p by rescaling by
√
d. The

third inequality is from (Dasgupta et al., 2008). Similarly, if
p > 2 then

‖x‖p ≤ ‖x‖2 ≤ ‖Ux‖p ≤
√
d‖x‖2 ≤ d‖x‖p

from which ‖x‖p ≤ ‖Ux‖p ≤ d‖x‖p. Next, the algo-
rithm ignores U and retains only S after computing the
well-conditioned basis. Using the above two bounds we
readily see that ‖Sx‖p ≤ ‖USx‖p = ‖Bx‖p. Also,
‖Sx‖p ≥ ‖USx‖p/d = ‖Bx‖p/d. Now we have obtained
a matrix S which satisfies:

‖Bx‖p
d

≤ ‖Sx‖p ≤ ‖Bx‖p. (14)

So ‖Sx‖p agrees with ‖Bx‖p up to a distortion factor of d.

Algorithm 3 applies the merge and reduce framework. The
matrix A is seen a row at a time and nγ rows are stored
which are used to construct a tree. So at every level a sub-
space embedding with distortion d is constructed. This error
propagates through each of the O(1/γ) levels in the tree so
the overall distortion to construct the subspace embedding
for A is dO(1/γ). The space bound is similar; we need nγd
storage per group so require O(1/γ)nγd overall.

Proof of Theorem 4.3. The task is to minimise ‖Ax− b‖p.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Let Z = [A, b] ∈ Rn×(d+1) and compute a subspace em-
bedding S for Z using Theorem 4.2. Note that R has
O(1/γ)nγ(d + 1) rows. Let ∆ = (d + 1)O(1/γ), then
for all y ∈ Rd+1 we have:

‖Zy‖p
∆

≤ ‖Sy‖ ≤ ‖Zy‖. (15)

Since this condition holds for all y ∈ Rd+1 it must hold,
in particular, for vectors y′ = (x,−1)T where x ∈ Rd is
arbitrary. However, observe that:

‖Zy′‖p =

∥∥∥∥[A, b]

[
x
−1

]∥∥∥∥
p

= ‖Ax− b‖p. (16)

Denote the first d columns of S by S1:d and the last column
by Sd+1. Then

‖Sy′‖p =

∥∥∥∥[S1:d, Sd+1]

[
x
−1

]∥∥∥∥
p

= ‖S1:dx− Sd+1‖p.

(17)

Now we have transformed the subspace embedding rela-
tionship into an instance of regression. In particular, S1:d

has only O(1/γ)nγd rows so is a smaller instance than the
original problem. We now focus on the task of finding
minx∈Rd ‖S1:dx−Sd+1‖p. By using Equation (15) with y′

and utilising Equations (16), (17) we have:

‖Ax− b‖p
∆

≤ ‖S1:dx− Sd+1‖p ≤ ‖Ax− b‖p. (18)

Convex optimisation can now be used to find
minx∈Rd ‖S1:dx−Sd+1‖p. Let x̂ = argminx∈Rd ‖S1:dx−
Sd+1‖p which is output from the optimisation and let
x∗ = argminx∈Rd ‖Ax − b‖p be the optimal solution we
would like to estimate. By optimality of x̂ we have:

‖S1:dx̂− Sd+1‖p ≤ ‖S1:dx
∗ − Sd+1‖p. (19)

However, combining Equation (19) with Equation (18) we
see that:

‖Ax̂− b‖p
∆

≤ ‖S1:dx̂− Sd+1‖p (20)

≤ ‖S1:dx
∗ − Sd+1‖p (21)

≤ ‖Ax∗ − b‖p (22)

Therefore, ‖Ax̂−b‖p ≤ ∆‖Ax∗−b‖p and ∆ = poly(d+1)

Algorithm 4 Deterministic `1 low rank approximation (de-
randomized version of algorithm from (Song et al., 2017))

1: procedure L1-KRANKAPPROX(X,n, d, k)
2: r = O(k log k)
3: m = O(r log r)
4: t1 = O(r log r)
5: t2 = O(m logm)
6: Generate all diagonal R ∈ Rd×d with only r 1s
7: Compute all possible sampling and rescaling matri-

ces D,T1 ∈ Rn×n corresponding to Lewis Weights of
AR whose entries are powers of 2 between 1 and 1/nd.
There are m and t1 nonzero entries on the diagonal,
respectively.

8: Compute all sampling and rescaling matrices TT2 ∈
Rd×d according to the Lewis weights of (DA)T with
t2 nonzero entries, powers of 2 between 1 and 1/nd on
the diagonal.

9: Evaluate ‖T1ARXYDAT2 − T1AT2‖1 for all
choices of above matrices.

10: Take the minimal solution
11: return ARX,Y DA

so the `p-regression problem has been solved up to a poly-
nomial d+ 1 approximation factor. The overall time com-
plexity is the time taken to compute the subspace embed-
ding, which is poly(nd) by Theorem 4.2, and the time for
the convex optimisation. However, the optimisation costs
poly(O(1/γ)nγ) (Woodruff & Zhang, 2013) which is sub-
sumed by the dominant time cost for computing the embed-
ding. Finally, the space cost is immediate from computing
the subspace embedding in Theorem 4.2.

C. Proofs for Section 5
To prove correctness of Algorithm 5 for Theorem 5.1 we
will need to invoke the following algorithm at each level of
the tree. This is a derandomized version of an algorithm
which returns a low rank approximation to an input matrix.
The derandomization follows from generating and testing
all possible combinations of the necessary matrices.

Lemma C.1. Algorithm 4 runs in time poly(nd).

Proof. Every matrix which is generated in Algorithm 4 has
a number of nonzero entries bounded by O(kpolylog(k)).
We can test all of the matrices which will take time propor-
tional to the dimension of the matrix (n or d) with exponent
O(kpolylog(k)) resulting in time poly(nd) overall, since k
is constant.

We need one further lemma which describes the approxi-
mation error induced by using well-conditioned bases to
decompose a matrix.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Lemma C.2. Let M ∈ RN×D have rank ρ and suppose
U ∈ RN×ρ is a well-conditioned basis for M . Let M =
US for a change of basis S ∈ Rρ×D. Then for all x ∈ RD:

‖Sx‖1
poly(D)

≤ ‖Mx‖1 ≤ poly(D)‖Sx‖1.

Proof. For the left-hand side we can just calculate:

‖Sx‖1 ≤ D · ‖Sx‖∞ (23)
≤ D · poly(D)‖USx‖1 (24)
= poly(D) · ‖Mx‖1. (25)

The second inequality follows from a property of the well-
conditioned basis U . The result follows from observing:

‖Mx‖1 = ‖USx‖1 ≤ ‖U‖1‖Sx‖∞ (26)
= poly(D)‖Sx‖1 (27)

C.1. Proof of Theorem 5.1

For the proof of Theorem 5.1 we introduce Algorithm 5. It
is enough to show that for every level, the low rank approx-
imations of each group is polynomially bounded by k in
error. The result follows by reasoning how this error grows
as we progress through the tree. Denote the jth block of A
by A[j].

Algorithm 5 Deterministic `1 low rank approx

1: procedure `1-k-RANKAPPROX(A, k, γ)
2: m, t← 1, Pt ← 0
3: for i = 1 : 1/γ do
4: while m < n1−iγ do
5: while number of rows of Pm < nγ do
6: Run Algorithm 4 on A[m] and k which

outputs matrix B ∈ Rk×d
7: B ←WV T (k-rank decomposition)
8: Set W = US for well-conditioned basis
U

9: Pt ← SV T

10: m← m+ 1

11: Merge-and-Reduce all Pm until we have an nγ × d
matrix.

12: Set P to be matrix of final k rows.
13: Solve minQ ‖QP −A‖1.
14: return QP

For every level in the tree we can take a group of rows, C,
and perform Algorithm 4. For every C used as input to
Algorithm 4 a k-rank matrix B of dimensions nγ × d is
returned. In particular, B has the following property:

‖C −B‖1 ≤ poly(k) min
B′rankk

‖C −B′‖1. (28)

Now factor B using a k rank decomposition. That is, set
B = WV T where W has k columns and V T has k rows.
Further decompose W as W = US for a well-conditioned
basis U . Note that W is nγ × k (and of rank k) by the rank
decomposition so U is also nγ × k and S is k × k. The
dimensions of these matrices ensure that individually they
do not exceed the space budget from the theorem.

Apply Lemma C.2 with W and k. Then we have for every
x ∈ Rk that ‖Sx‖1 = poly(k)‖Wx‖1. Since U is nγ by
k and k < poly(d), U remains within the required space
bound when we use it for the calculation. Now ignore U and
store SV T . Note that each SV T is a matrix of k directions
in Rd. Pass SV T to the next level of the tree.

Merge the SV T for each group until we have a matrix of nγ

rows. Repeat the process over all O(1/γ) levels in the tree.
We require nγd storage for every group so as we merge and
pass SV T down the levels this combines to total storage of
O(1/γ)nγpoly(d). This part of the algorithm is a repeated
use of Algorithm 4 which is poly(nd) by Lemma C.1 and
some further lower time cost manipulations. Repeating
these steps gives poly(nd) as the overall time complexity.

When this is done over all levels we will again have k
directions in Rd. Let P be the matrix with these directions
as rows. Then we claim that P can be used to construct our
approximate `1 low-rank approximation.

Proposition C.3. Let P be as described above. Then there
exists QP which is an `1 low-rank approximation for A:

min
Q
‖QP −A‖1 ≤ poly(k)‖A−A′‖1

Proof. Each use of Algorithm 4 admits a poly(k) approx-
imation at every level of the tree. Every time the well-
conditioned basis U is constructed and then ignored we
admit a further poly(k) error due to property 1 of Definition
2.1. The distortion is blown up by a factor of poly(k) ev-
ery time we use Lemma C.2 which is at every level in the
tree. Hence, the total contribution of using Algorithm 4 is
poly(k)O(1/γ) = poly(k) for constant γ.

Proposition C.3 proves the approximation is poly(k) as
claimed. By Lemma C.1 we know that Algorithm 4 is
poly(nd) time. The most costly steps in Algorithm 5 are
invocations of Algorithm 4 so combining this we see that
the overall time cost is poly(nd) as claimed, proving the
theorem.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

D. Proofs for Section 6
Proof of Theorem 6.1. Given A, the first step is to store
all rows of A whose `p leverage score is above the thresh-
old ε/poly(d). This step requires a polynomial increase to
poly(d)/ε storage from Lemma A.2. Next the change of
basis matrix R is computed so that AR is well-conditioned.
The stored matrix is B with rows corresponding to those of
large `p leverage scores from A′ and zero elsewhere. Also,
store all entries in b whose magnitude is greater than ε‖b‖p
and zero the rest out. Call this vector b′.

We now focus on the task of solving minx∈Rd ‖A′Rx −
b′‖∞. Any solution must necessarily have ‖x‖p ≤
poly(d)‖b‖p as otherwise x = 0 is a better solution. Recall
that α = d1/p+1/2 for a well-conditioned basis AR with
p > 2. Hence, the sum of all the `p leverage scores is αp =
dO(p). Then the number of rows with leverage score greater
than the ε/poly(d) is at most poly(d)/ε·dO(p) = poly(d)/ε
for a constant p.

Now, take any row for which the `p leverage score is less
than the ε/poly(d) threshold. Then:

|〈(AR)i, x〉| ≤ ‖(AR)i‖∞‖x‖1
≤ ‖(AR)i‖p‖x‖1
≤ ‖(AR)i‖p · d‖x‖p

≤ d ε

poly(d)
poly(d)‖b‖p.

By an appropriate choice of the poly(d) factors scaling ε we
see that |〈(AR)i, x〉| ≤ ε‖b‖p. On such coordinates the `∞
cost is |bi| ± ε‖b‖p so by replacing the row with one which
is all zero we still pay |bi| which is within the ε‖b‖p had we
included the row. The remaining high-leverage score rows
are stored in their entirety so the cost on these rows is the
same as in the original regression problem.

Proof of Theorem 6.2. Let S be a set of 2Ω(d) strings in
{0, 1}d with each coordinate in a string uniformly sampled
randomly from {0, 1}. Let x, y ∈ S and fix a constant
0 < c < 1. By a Chernoff bound it follows that there are
at least cd coordinates in [d] for which xi = 0 and yi = 1
with probability 1 − 2−Ω(d). This implies for appropriate
constants in the Ω(·), by a union bound, all pairs of strings
x, y ∈ S have this property. Hence, such an S exists and we
will fix this for the proof.

The regression problem can be reduced to an instance of the
Indexing problem (Kremer et al., 1999) in data streams
as follows. In the stream, the vector b will be all 1s. We will
see a random subset T of some elements from S. We claim
that it is possible to decide which case we are in: given a ran-
dom string y, whether y is in S independent of T , or y is in
T . This corresponds to solving Indexing which requires

space Ω(|S|) = Ω(min{n, 2Ω(d)}) even with randomiza-
tion, via communication complexity arguments (Kushilevitz
& Nisan, 1997).

Given a test vector y, negate its coordinates so that y ∈
{0,−1}d. Now, append y as a row to the final b coordinate
of 1 at the end of the stream to obtain the last item in the
stream (y, 1). If y were in S then both y and its complement
would be seen as rows of the matrix A. Hence, the optimal
cost for `∞-regression is at least 1. Otherwise, y is not in
S. Consider the set of coordinates R where yi = 0. Set
xi = 1/d for i ∈ R and −c/2d otherwise.

Now we consider the cost of using x. On the row cor-
responding to the negated vector y the value will be at
least (−1)(−c/2d)(cd) = c2/2. Since bi = 1 the cost
will be at most |1− c2/2| for this coordinate. On all other
rows, by using the fact there are at least cd occurrences of
xi = 0, yi = 1 the value will be at least

cd(1/d)− (d− cd)(c/2d) ≥ c− c/2 = c/2.

Hence the cost on these coordinates is at most |1 − c/2|.
Since c < 1, the `∞ cost is at most |1 − c2/2|. This is a
constant factor less than the `∞ cost of 1 from the previous
case so it is possible to decide which of the two cases we
are in and hence the space is Ω(min{n, 2Ω(d)}) as claimed.

E. Deterministic Approximate Matrix
Multiplication

Despite the generality of the subspace embedding result in
Theorem 4.2, there may be occasions where the overheads
are sufficiently large that it does not make sense to employ
this method. One such example is for the matrix multipli-
cation problem. Let A,B ∈ Rn×d and consider the task of
finding a matrix C for which ‖ATB − C‖1 < ε‖A‖1‖B‖1
where 0 < ε < 1 and the norm is entrywise 1-norm.

Lemma E.1. Let x, y ∈ Rn have unit entrywise 1-norm.
Let ε > 0. Define:

x̄i =

{
xi if |xi| > ε/2,

0 otherwise,
ȳi =

{
yi if |yi| > ε/2,

0 otherwise.

Then 〈x, y〉− ε ≤ 〈x̄, ȳ〉 ≤ 〈x, y〉 and this can be computed
using space O(1/ε).

Proof. Observe that x̄i ≤ xi and ȳi ≤ yi for 1 ≤ i ≤ n.
Hence, 〈x̄, ȳ〉 ≤ 〈x, y〉. For the left-hand side define the
following sets: Hu = {i : ui > ε/2}, Lu = {i : ui ≤ ε/2}

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

for u = x, y. Then we can write

〈x, y〉 =
∑
i∈Hx

xiyi +
∑
i∈Lx

xiyi

=
∑

i∈Hx∩Hy

xiyi +
∑

i∈Hx∩Ly

xiyi +
∑

i∈Lx∩Hy

xiyi +
∑

i∈Lx∩Ly

xiyi

≤ 〈x̄, ȳ〉+
ε

2

∑
i∈Hx

xi +
ε

2

∑
i∈Hy

yi +
ε

2

∑
i∈Ly

yi

≤ 〈x̄, ȳ〉+ ε.

Note that the sum can be written this way as the pairHx, Lx
are disjoint, and likewise for Hy, Ly. The first inequality
follows from the second line because i ∈ Hx ∩Hy means
xi and yi are retained in x̄, ȳ so this summation corresponds
directly to 〈x̄, ȳ〉. Then for every i ∈ Hx ∩ Ly we must
have that yi ≤ ε/2 so is bounded by ε

2

∑
i∈Hx xi. The same

argument holds for the remaining two summations in the
inequality. Finally, each of the three summations are at most
1 since both x and y have unit 1-norm. The summations
over Hy and Ly when combined are at most the norm of y
so can be combined such that

∑
i yi ≤ 1. This is enough to

prove the result.

The result for unit vectors is sufficient because we can sim-
ply normalize a vector, use Lemma E.1 and then rescale by
the norm of x and y. This results in 〈x, y〉 − ε‖x‖1‖y‖1 ≤
〈x̄, ȳ〉 ≤ 〈x, y〉. This result can be used to prove the follow-
ing theorem.

Theorem E.2. Let A,B ∈ Rn×d and let ε > 0. Let Ai
denote the ith row of A and Bi denote the ith column of B.
For X = A and X = B define:

Xij =

{
Xij if |Xij | > ε

2‖Xi‖1,
0 otherwise.

Then in entrywise 1-norm:

‖ABT −ABT ‖1 ≤ ε‖A‖1‖B‖1.

Proof. Fix ε > 0. The matrix product takes a row of A with
a column of BT which is simply a row of B. These are both
vectors in Rd so we can apply the transformation as in the
Theorem statement, which is equivalent to that in Lemma
E.1. By applying the rescaled version of Lemma E.1 we see
that:

|〈Ai, Bj〉 − 〈Ai, Bj〉 ≤ ε‖Ai‖1‖Bj‖1. (29)

Now the norm ‖ABT −ABT ‖1 is the sum of all summands
defined as in Equation 29 over all pairs of i and j. Comput-
ing the sum then gives the desired result.

The argument from Lemma E.1 can easily be adapted to
obtain a result for the matrix profuct ATB. Observe that
approximating ATB is equivalent to approximating inner
products between columns of A and columns of B. The
modification is that the summary must be applied column-
wise instead of row-wise as in Theorem E.2.

Theorem E.3. Let A,B ∈ Rn×d and let ε > 0. Then there
exists a deterministic algorithm which uses O(1/ε) space
and outputs A and B which satisfy:

‖ATB −ATB‖1 ≤ ε‖A‖1‖B‖1.

Proof. For a matrix X let Xi denote the ith row and Xj

denote the jth column. Let ‖Xj
:i‖1 denote the 1-norm of

column j of X up to and including row i. It is clear that this
norm is monotonic as more rows are seen in the stream. In
particular, ‖Xj

:n‖1 = ‖X‖1. Therefore, the algorithm can
be modified as follows: upon seeing a row i, if |Xij | > ε/2 ·
‖Xj

:i‖1 then keep the entry Xij and otherwise set Xoj = 0.
It is sufficient to consider only the last row. At this stage all
rows which have not exceeded the running threshold upon
seeing a particular row will have been ignored and only
those which exceed ε/2 · ‖Xj

:n−1‖1 will be stored. Then
by increasing the threshold upon seeing row n only the
Xij which exceed ‖Xj

:n‖1 = ‖X‖1 will be kept and this
is exactly the same set of rows as had the summary been
applied given full access to the rows.

Hence, we may apply the result from Lemma E.1 on the
columns of A and B as described above. It is then straight-
forward to show in a similar way to the lemma that the claim
of the theorem holds.

F. Further Experimental results
Here we illustrate the remaining experimental results on the
YearPredictionMSD dataset which include the space and
time plots. The experimental setup is the same as outline in
Section 7.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

0

2000

4000

6000

8000

10000

12000

14000

M
ax

im
um

 su
m

m
ar

y
si

ze

Orth
SPC3
Sample
Identity

(a) Summary Size

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

10−2

10−1

100

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3

(b) Update Time

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

100

101

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3
Sample
Identity

(c) Query Time

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

100

101

102

To
ta

l T
im

e

Orth
SPC3
Sample
Identity
Brute Force

(d) Total Time

Figure 4: Remaining plots for YearPredictionMSD data.

