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Most database management systems maintain statistics on the underlying relation. One of the
important statistics is that of the “hot items” in the relation: those that appear many times (most
frequently, or more than some threshold). For example, end-biased histograms keep the hot items
as part of the histogram and are used in selectivity estimation. Hot items are used as simple
outliers in data mining, and in anomaly detection in many applications.

We present new methods for dynamically determining the hot items at any time in a relation
which is undergoing deletion operations as well as inserts. Our methods maintain small space
data structures that monitor the transactions on the relation, and when required, quickly output
all hot items, without rescanning the relation in the database. With user-specified probability,
all hot items are correctly reported. Our methods rely on ideas from “group testing”. They are
simple to implement, and have provable quality, space and time guarantees. Previously known
algorithms for this problem that make similar quality and performance guarantees can not handle
deletions, and those that handle deletions can not make similar guarantees without rescanning the
database. Our experiments with real and synthetic data show that our algorithms are accurate
in dynamically tracking the hot items independent of the rate of insertions and deletions.

Categories and Subject Descriptors: H.2.8 [Information Systems]: Database Management—
Database Applications

General Terms: Algorithms, Measurement

1. INTRODUCTION

One of the most basic statistics on a database relation is that of which items are
hot, i.e., they occur frequently, but the set of hot items can change over time.
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This gives a useful measure of the skew of the data. High-biased and end-biased
histograms [Ioannidis and Christodoulakis 1993; Ioannidis and Poosala 1995] specif-
ically focus on hot items to summarize data distributions for selectivity estimation.
Iceberg queries generalize the notion of hot items in the relation to aggregate func-
tions over an attribute (or set of attributes) in order to find aggregate values above a
specified threshold. Hot item sets in market data are influential in decision support
systems. They also influence caching, load balancing and other system performance
issues. There are other areas — such as data warehousing, data mining, and infor-
mation retrieval — where hot items find applications. Keeping track of hot items
also arises in application domains outside traditional databases. For example, in
telecommunication networks such as Internet and telephone, it is of great impor-
tance for network operators to see meaningful statistics about the operation of the
network. Keeping track of which network addresses are generating the most traffic
allows management of the network, as well as giving a warning sign if this pattern
begins to change unexpectedly. This has been studied extensively in context of
anomaly detection [Barbara et al. 2001; Demaine et al. 2002; Gilbert et al. 2001;
Karp et al. 2003].

Our focus in this paper is on dynamically maintaining hot items in the presence
of delete and insert transactions. In many of the motivating applications above,
the underlying data distribution changes, sometimes quite rapidly. Transactional
databases undergo insert and delete operations, and it is important to propagate
these changes to the statistics maintained on the database relations in timely and
accurate manner. In the context of continuous iceberg queries, this is apt since
the iceberg aggregates have to reflect new data items that modify the underlying
relations. In the networking application cited above, network connections start and
end over time, and hot items change over time significantly. A thorough discussion
by Gibbons and Matias [1999] describes many applications for finding hot items
and the challenges in maintaining them over a changing database relation. Also,
Fang et al [1998] present an influential case for finding and maintaining hot items
and more generally, iceberg queries.

Formally, the problem is as follows. We imagine that we observe a sequence
of n transactions on items. Without loss of generality, we assume that the item
identifiers are integers in the range 1 to m. Throughout, we will assume the RAM
model of computation, where all quantities and item identifies can be encoded in
one machine word. The net occurrence of any item x at time t, denoted nx(t), is the
number of times it has been inserted less the number of times it has been deleted.
The current frequency of any item is then given by fx(t) = nx(t)/

∑m
y=1 ny(t).

The most frequent item at time t is the one with fx(t) = maxy fy(t). The k most
frequent items at time t are those with the k largest fx(t)’s. We are interested in
the related notion of frequent items that we call hot items. An item x is said to
be a hot item if fx(t) > 1/(k + 1), that is, it appears a significant fraction of the
entire dataset; here k is a parameter. Clearly, there can be at most k hot items,
and there may be none. We assume throughout that a basic integrity constraint
is maintained, that nx(t) for every item is non-negative (the number of deletions
never exceeds the number of insertions). From now on, we drop the index t, and
all occurrences will be treated as being taken at the current timestep t.
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Our main results are highly efficient, randomized algorithms for maintaining hot
items. There are three important characteristics to consider: the space used, the
time to update the data structure following each transaction (the update time), and
the time to produce the hot items (the query time). Our algorithms monitor the
changes to the data distribution and maintain O(k log(k) log(m)) space summary
data structures. Processing each transaction takes time O(log(k) log(m)). When
queried, we can find all hot items in time O(k log(k) log(m)) from the summary
data structure, without scanning the underlying relation. Additionally, given a
user specified parameter ε, the algorithms return no items whose frequency is less
than 1

k+1 − ε. More formally, for any user specified probability δ, the algorithm
succeeds with probability at least 1− δ, as is standard in randomized algorithms.

Since k is typically very small compared to the size of the data, our results here
maintain small summary data structures — significantly sublinear in the dataset
size — and accurately detect hot items at any time in the presence of the full
repertoire of inserts and deletes. Despite extensive work on this problem (which will
be summarized in Section 2), most of the prior work with comparable guarantees
works only for insert-only transactions. Prior work that deals with the fully general
situation where both inserts and deletes are present can not provide the guarantees
we give, without rescanning the underlying database relation. Thus, our result is
the first provable result for maintaining hot items, with small space.

A common approach to summarizing data distribution or finding hot items relies
on keeping samples on the underlying database relation. These samples — deter-
ministic or randomized — can be updated if data items are only inserted. Samples
can then faithfully represent the underlying data relation. However, in presence of
deletes, in particular cases where the data distribution changes significantly over
time, samples can not be maintained without rescanning the database relation. For
example, the entire set of sampled values may get erased from the relation by a
sequence of deletes if there are very many deletions.

We present two different approaches for solving the problem. Our first result
here relies on random sampling to construct groups (O(k log(k)) sets) of items,
but we further group such sets deterministically into a small number (log m) of
subgroups. Our summary data structure comprises sum of the items in each group
and subgroup. The grouping is based on error correcting codes, and the entire
procedure may be thought of as “group testing” which is described in more detail
later. The second result makes use of log m small space “sketches” to act as oracles
to approximate the count of any item or certain groups of items, and uses an
intuitive divide and conquer approach to find the hot items. This is a different style
of group testing, and the two methods give different guarantees for the problem.
We also give additional time and space tradeoffs for both methods, where the time
to process each update can be reduced by constant factors, at the cost of devoting
extra space to the data structures. We perform a set of experiments on large data
sets, which allow us to characterize further the advantages of each approach. We
also see that in practice, the methods given outperform their theoretical guarantees,
and can operate very quickly using a small amount of space but still give almost
perfect results.

Once the hot items have been identified, a secondary problem is to approximate
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the counts nx of these items. We do not focus on this problem, since there are many
existing solutions which can be applied to the problem of, given x, estimate nx, in
the presence of insertions and deletions [Gilbert et al. 2002; Charikar et al. 2002;
Cormode and Muthukrishnan 2004a]. However, we observe that for the solutions
we propose, no additional storage is needed, since the information needed to make
estimates of the count of items is already present in the data structures that we
propose. We will show how to estimate the counts of individual items, but we do
not give experimental results since experiments for these estimators can be found
in prior work.

The rest of the paper is organized as follows. In Section 2, we summarize pre-
vious work, which is rather extensive. In Section 3 and Section 4 we present our
algorithms and prove their guarantees, and compare the different approaches in
Section 5. In Section 6, we present an experimental study of our algorithm using
synthetic data as well as real network data addressing the application domain cited
earlier and show that our algorithms are effective and practical. Conclusions and
closing remarks are given in Section 7.

2. PRELIMINARIES

If one is allowed O(m) space, then a simple heap data structure will process each
insert or delete operation in O(log m) time and find the hot items in O(k log m)
time in the worst case [Aho et al. 1987]. Our focus here is on algorithms that only
maintain a summary data structure, that is, one that uses sublinear space as it
monitors inserts and deletes to the data.

In a fundamental paper, Alon, Matias and Szegedy [1996] proved that estimating
f∗(t) = maxx fx(t) is impossible with o(m) space. Estimating the k most frequent
items is at least as hard. Hence, research in this area studies related, relaxed
versions of the problems. For example, finding hot items, that is, items each of
which has frequency above 1/(k + 1), is one such related problem. The lower
bound of [Alon et al. 1996] does not directly apply to this problem. But a simple
information theory argument suffices to show that solving this problem exactly
requires the storage of a large amount of information if we give a strong guarantee
about the output. We provide the simple argument here for completeness.

Lemma 2.1. Any algorithm which guarantees to find all and only items which

have frequency greater than 1/(k + 1) must store Ω(m) bits.

Proof. Consider a set S ⊆ {1 . . .m}. Transform S into a sequence of n = |S|
insertions of items by including x exactly once if and only if x ∈ S. Now process
these transactions with the proposed algorithm. We can then use the algorithm
to extract whether x ∈ S or not: for some x, insert bn/kc copies of x. Suppose
x 6∈ S, then the frequency of x is bn/kc/(n + bn/kc) = bn/kc/bn(k + 1)/kc ≤
bn/kc/(k + 1)bn/kc = 1/(k + 1), and so x will not be output. On the other hand,
if x ∈ S then (bn/kc+ 1)/(n+ bn/kc) > (n/k)/(n+ n/k) = 1/(k + 1) and so x will
be output. Hence, we can extract the set S, and so the space stored must be Ω(m)
since, by an information theoretic argument, the space to store an arbitrary subset
S is m bits.

This also applies to randomized algorithms. Any algorithm which guarantees to
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Algorithm Type Time Per Item Space

Lossy Counting Deterministic O(log(n/k)) amortized Ω(k log(n/k))
[Manku and Motwani 2002]

Misra-Gries Deterministic O(log k) amortized O(k)
[Misra and Gries 1982]

Frequent Randomized (LV) O(1) expected O(k)
[Demaine et al. 2002]

Count Sketch Approximate, O(log(1/δ)) Ω(k/ε2 log n)
[Charikar et al. 2002] Randomized (MC)

Table I. Summary of previous results on insert-only methods. LV (Las Vegas) and MC (Monte
Carlo) are types of randomized algorithms. See [Motwani and Raghavan 1995] for details.

output all hot items with probability at least 1− δ, for some constant δ, must also
use Ω(m) space. This follows by observing that the above reduction corresponds
to the Index problem in communication complexity [Kushilevitz and Nisan 1997],
which has one-round communication complexity Ω(m). If the data structure stored
was o(m) in size, then it could be sent as a message, and this would contradict the
communication complexity lower bound.

This argument suggests that, if we are to use less than Ω(m) space then we must
sometimes output items which are not hot, since we will endeavor to include every
hot item in the output. In our guarantees, we will instead guarantee that (with
arbitrary probability), all hot items are output, and no items which are far from
being hot will be output. That is, no item which has frequency less than 1

k+1 − ε
will be output, for some user specified parameter ε.

2.1 Prior Work

Finding which items are hot is a problem that has a history stretching back over
two decades. We divide the prior results into groups: those which find frequent
items by keeping counts of particular items; those which use a filter to test each
item; and those which accommodate deletions in a heuristic fashion. Each of these
approaches is explained in detail below. The most relevant works mentioned are
summarized in Table I.

Insert-only Algorithms with Item Counts. The earliest work on finding frequent
items considered the problem of finding an item which occurred more than half of
the time [Boyer and Moore 1982; Fischer and Salzberg 1982]. This procedure can be
viewed as a two pass algorithm: after one pass over the data a candidate is found,
which is guaranteed to be the majority element if any such element exists. A second
pass verifies the frequency of the item. Only a constant amount of space is used.
A natural generalization of this method to find items which occur more than n/k
times in two passes was given by Misra and Gries [1982]. The total time to process
n items is O(n log k), with space O(k) (recall that we assume throughout that any
item label or counter can be stored in constant space). In their implementation,
the time to process any item is bounded by O(k log k) but this time is only incurred
O(n/k) times, giving the amortized time bound. The first pass generates a set of at
most k candidates for the hot items, and the second pass computes the frequency of
each candidate exactly, so the infrequent items can be pruned out. It is possible to
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drop the second pass, in which case at most k items will be output amongst which
all hot items are guaranteed to be included.

Recent interest in processing data streams, which can be viewed as one-pass
algorithms with limited storage, has reopened interest in this problem (see surveys
such as [Muthukrishnan 2003; Garofalakis et al. 2002]). Several authors [Demaine
et al. 2002; Karp et al. 2003] have rediscovered the algorithm of Misra and Gries,
and using more sophisticated data structures they are able to process each item
in expected O(1) time while still keeping only O(k) space. As before, the output
guarantees to include all hot items, but some others will be included in the output,
about which no guarantee of frequency is made. A similar idea is used by Manku
and Motwani [2002] with the stronger guarantee of finding all items which occur
more than n/k times and not reporting any that occur fewer than n( 1

k − ε) times.
The space required is bounded by O( 1

ε log εn) — note that ε ≤ 1
k and so the space

is effectively Ω(k log(n/k)). If we set ε = c
k for some small c then it requires time

at worst O(k log(n/k)) per item, but this occurs only every 1/k items, and so the
total time is O(n log(n/k)). Another recent contribution is that of Babcock and
Olston [2003]. This is not immediately comparable to our work, since their focus
is on maintaining the top-k items in a distributed environment, and the goal is
to minimize communication. Counts of all items are maintained exactly at each
location, so the memory space is Ω(m). All of these mentioned algorithms are
deterministic in their operation: the output is solely a function of the input stream
and the parameter k.

All the methods discussed thus far have certain features in common: in particular,
they all hold some number of counters, each of which counts the number of times
a single item is seen in the sequence. These counters are incremented whenever
their corresponding item is observed, and are decremented or reallocated under
certain circumstances. As a consequence, it is not possible to directly adapt these
algorithms to the dynamic case where items are deleted as well as inserted. We
would like the data structure to have the same contents following a deletion of an
item as if that item had never been inserted. But it is possible to insert an item so
that it takes up a counter, and then later delete it: it is not possible to decide which
item would otherwise have taken up this counter. So the state of the algorithm will
be different to that reached without the insertions and deletions of the item.

Insert-only Algorithms with Filters. An alternative approach to finding frequent
items is based on constructing a data structure which can be used as a filter. This
has been suggested several times, with different ways to construct such filters being
suggested. The general procedure is as follows: as each item arrives, the filter is
updated to reflect this arrival and then the filter is used to test whether this item
is above the threshold. If it is, then it is retained (for example, in a heap data
structure). At output time, all retained items can be rechecked with the filter, and
those which pass the filter are output. An important point to note is that in the
presence of deletions, this filter approach cannot work directly, since it relies on
testing each item as it arrives. In some cases the filter can be updated to reflect
item deletions. However, it is important to realize that this does not allow the
current hot items to be found from this: after some deletions, items seen in the
past may become hot items. But the filter method can only pick up items which
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are hot when they reach the filter, it cannot retrieve items from the past which
have since become frequent.

The earliest filter method appears to be due to [Fang et al. 1998] where it is used
in the context of iceberg queries. The authors advocate a second pass over the data
to count exactly those items which passed the filter. A paper which has stimulated
interest in finding frequent items in the Networking community is due to Estan and
Varghese [2002], who propose a variety of filters to detect network addresses which
are responsible for a large fraction of the bandwidth. In both these papers, the
analysis assumed very strong hash functions which exhibit ‘perfect’ randomness.
An important recent result is that of Charikar et al [2002], who give a filter based
method using only limited (pairwise) independent hash functions. These were used
to give an algorithm to find k items whose frequency is at least (1 − ε) times the
frequency of the kth most frequent item, with probability 1− δ. If we wish to only
find items with count greater than n/(k +1) then the space used is O( k

ε2 log(n/δ)).
A heap of frequent items is kept, and if the current items exceeds the threshold,
then the least frequent item in the heap is ejected, and the current item inserted.
We shall return to this work later in Section 4.1, when we adapt and use the filter
as the basis of a more advanced algorithm to find hot items. We will describe the
algorithm in full detail, and give an analysis of how it can be used as part of a
solution to the hot items problem.

Insert and Delete Algorithms. Previous work that studied hot items in presence of
both of inserts and deletes is sparse [Gibbons and Matias 1998; 1999]. These papers
propose methods to maintain a sample and count of times the sample appears in the
data set, and focus on the harder prolem of monitoring the k most frequent items.
These methods work provably for insert-only case, but provide no guarantees for
the fully dynamic case with deletions. However, the authors study how effective
these samples are for the deletion case through experiments. [Gibbons et al. 1997]
presents methods to maintain various histograms in presence of inserts and deletes
using “backing sample”, but these methods too need access to large portion of the
data periodically in the presence of deletes.

A recent theoretical work presented provable algorithms for maintaining his-
tograms with guaranteed accuracy and small space [Gilbert et al. 2002]. The meth-
ods in this paper can yield algorithms for maintaining hot items, but the methods
are rather sophisticated and use powerful range summable random variables result-
ing in k logO(1) n space and time algorithms where the O(1) term is quite large. We
draw some inspiration from the methods in this paper — we will use ideas similar to
the “sketching” developed in [Gilbert et al. 2002], but our overall methods are much
simpler and more efficient. Finally, recent work in maintaining quantiles [Gilbert
et al. 2002] is similar to ours since it keeps the sum of items in random subsets.
However, our result is, of necessity, more involved, involving a random group gen-
eration phase based on group testing which is not needed in [Gilbert et al. 2002].
Also, once such groups are generated, we maintain sums of deterministic sets (in
contrast to the random sets as in [Gilbert et al. 2002]) given again by error correct-
ing codes. Finally, our algorithm is more efficient than the Ω(k2 log2 m) space and
time algorithms [Gilbert et al. 2002].
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2.2 Our Approach

We propose some new approaches to this problem, based on ideas from group
testing and error correcting codes. Our algorithms depend on ideas drawn from
Group Testing [Du and Hwang 1993]. The idea of group testing is to arrange a
number of tests, each of which groups together a number of the m items in order
to find up to k items which test “positive”. Each test reports either ‘positive’ or
‘negative’ to indicate whether there is a positive item amongst the group, or none
of them is positive. The familiar puzzle of how to use a pan balance to find one
“positive” coin among n good coins of equal weight, where the positive coin is
heavier than the good coins is an example of group testing. The goal is to minimize
the number of tests, where each test in group testing is applied to a subset of the
items (a group). Our goal of finding up to k hot items can be neatly mapped onto
an instance of group testing: the hot items are the positive items we want to find.

Group Testing methods can be categorized as adaptive or non-adaptive. In adap-
tive group testing, the members of the next set of groups to test can be specified
after learning the outcome of the previous tests. Each set of tests is called a round,
and Adaptive Group Testing methods are evaluated in terms of the number of
rounds, as well as the number of tests required. By contrast, Non-Adaptive Group
Testing has only one round, and so all groups must be chosen without any in-
formation about which groups tested positive. We shall give two main solutions
for finding frequent items, one based on non-adaptive group testing, the other on
adaptive. For each, we must describe how the groups are formed from the items,
and how the tests are performed. An additional challenge is that our tests here are
not perfect, but have some chance of failure (reporting the wrong result). We will
prove that, in spite of this, our algorithms can guarantee to find all hot items. The
algorithms we propose differ in the nature of guarantees that they give, and result
in different time and space guarantees. In our experimental studies, we are able to
explore these differences in more detail, and describe the different situations which
each of these algorithms is best suited to.

3. NON-ADAPTIVE GROUP TESTING

Our general procedure is as follows: we divide all items up into several (overlap-
ping) groups. For each transaction on an item x, we determine which groups it is
included in (denote these G(x)). Each group is associated with a counter, and for
an insertion, we increment the counter for all G(x); for a deletion, we correspond-
ingly decrement these counters. The test will be whether the count for a subset
exceeds a certain threshold: this is evidence that there may a hot item within the
set. Identifying the hot items is a matter of putting together the information from
the different tests to find an overall answer.

There are a number of challenges involved in following this approach: (1) Bound-
ing the number of groups required; (2) Finding a concise representation of the
groups; and (3) Giving an efficient way to go from the results of tests to the set of
hot items. We shall be able to address all of these issues. To give greater insight
into this problem, we first give a simple solution to the k = 1 case, which is to find
an item that occurs more than half of the time. Later, we will consider the more
general problem of finding k > 1 hot items, which will use the below procedure as
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groups

of items

space of m items

log m

Fig. 1. Each test includes half of the range [1 . . .m], corresponding to the binary representation
of values

a subroutine.

3.1 Finding the Majority Item

If an item occurs more than half the time, then it is said to be the majority item.
While finding the majority item is mostly straightforward in the insertions only case
(it is solved in constant space and constant time per insertion by the algorithms of
Boyer and Moore [1982], and Salzberg and Fischer [1982]), in the dynamic case, it
looks less trivial. We might have identified an item which is very frequent, only for
this item to be the subject of a large number of deletions, meaning that some other
item is now in the majority.

We give an algorithm to solve this problem by keeping dlog2 me + 1 counters.
The first counter, c0 merely keeps track of n(t) =

∑

x nx(t) which is how many
items are ‘live’: in other words, we increment this counter on every insert, and
decrement it on every deletion. The remaining counters are denoted c1 . . . cj . We
make use of the function bit(x, j), which reports the value of the jth bit of the
binary representation of the integer x; and gt(x, y), which returns 1 if x > y and 0
otherwise. Our procedures are as follows:

Insertion of item x: Increment each counter cj such that bit(x, j) = 1 in time
O(log m).
Deletion of x: Decrement each counter cj such that bit(x, j) = 1 in time O(log m).

Search: If there is a majority, then it is given by
∑log

2
m

j=1 2jgt(cj , n/2), computed
in time O(log m).

The arrangement of the counters is shown graphically in Figure 1. The two pro-
cedures of this method — one to process updates, another to identify the majority
element — are given in Figure 2 (where trans denotes whether the transaction is
an insertion or a deletion).

Theorem 3.1. The algorithm in Figure 2 finds a majority item if there is one

with time O(log m) per update and search operation.

Proof. We make two observations: firstly, that the state of the data structure
is equivalent to that following a sequence of c0 insertions only, and secondly that
in the insertions only case, this algorithm identifies a majority element. For the
first point, it suffices to observe that the effect of each deletion of an element x
is to precisely cancel out the effect of a prior insertion of that element. Following
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UpdateCounters(x, trans, c[0 . . . log m])

if (trans = insertion) then

d← 1
else

d← −1
c[0]← c[0] + d
for j = 1 to log m

c[j]← c[j] + bit(x, j) ∗ d

FindMajority(c[0 . . . log m])

x← 0
t← 1
for j ← 1 to log m

if (c[j] > c[0]/2) then

x← x + t
t← 2 ∗ t

return(x)

Fig. 2. Algorithm to find the majority element in a sequence of updates

a sequence of I insertions and D deletions, the state is precisely that obtained if
there had been I −D = n insertions only.

The second part relies on the fact that if there is an item whose count is greater
than n/2 (that is, it is in the majority), then for any way of dividing the elements
into two sets, the set containing the majority element will have weight greater
than n/2, and the other will have weight less than n/2. The tests are arranged
so that each test determines the value of a particular bit of the index of the ma-
jority element. For example, the first test determines whether its index is even
or odd by dividing on the basis of the least significant bit. The log m tests with
binary outcomes are necessary and sufficient to determine the index of the majority
element.

Note that this algorithm is completely deterministic, and guarantees always to
find the majority item if there is one. If there is no such item, then still some

item will be returned, and it will not be possible to distinguish the difference based
on the information stored. The simple structure of the tests is standard in group
testing, and also resembles the structure of the Hamming single error-correcting
code.

3.2 Finding k hot items

When we perform a test based on comparing the count of items in two buckets, we
extract from this a single bit of information: whether there is a hot item present
in the set or not. This leads immediately to a lower bound on the number of tests
necessary: to locate k items amongst m locations requires log2 (m

k ) ≥ k log(m/k)
bits.

We make the following observation: suppose we selected a group of items to
monitor which happened to contain exactly one hot item. Then we could apply the
algorithm of Section 3.1 to this group (splitting it into a further log m subsets) and,
by keeping log m counters, identify which item was the hot one. We simply have
to “weigh” each bucket, and, providing that the total weight of other items in the
group is not too much, the hot item is always in the heavier of the two buckets.

We could choose each group as a completely random subset of the items, and
apply the algorithm for finding a single majority item described at the start of this
section. But for a completely random selection of items then in order to store the
description of the groups, we must list every member of every group explicitly. This
consumes a very large amount of space, at least linear in m. So instead, we shall
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look for a concise way to describe each group, so that given an item we can quickly
determine which groups it is a member of. We shall make use of hash functions,
which will map items onto the integers 1 . . . W , for some W that we shall specify
later. Each group will consists of all items which are mapped to the same value
by a particular hash function. If the hash functions have a concise representation,
then this describes the groups in a concise fashion. It is important to understand
exactly how strong the hash functions need to be to guarantee good results.

Hash Functions. We will make use of universal hash functions derived from those
given by Carter and Wegman [1979]. We define a family of hash functions fa,b as
follows: fix a prime P > m > W , and draw a and b uniformly at random in the
range [0 . . . P − 1]. Then set

fa,b(x) = ((ax + b mod P ) mod W ).

Using members of this family of functions will define our groups. Each hash function
is defined by a and b, which are integers less than P . P itself is chosen to be O(m),
and so the space required to represent each hash function is O(log m) bits.

Fact 3.2. Proposition 7 of [Carter and Wegman 1979]. Over all choices of a and
b, for x 6= y, Pr[fa,b(x) = fa,b(y)] ≤ 1/W

We can now describe the data structures that we will keep in order to allow us
to find up to k hot items.

Non-Adaptive Group Testing Data Structure. The group testing data structure
is initialized with two parameters W and T , and has three components:

—A three-dimensional array of counters c, of size T ×W × (log(m) + 1).

—T universal hash functions h, defined by a[1 . . . T ] and b[1 . . . T ] so hi = fa[i],b[i].

—The count n of the current number of items.

The data structure is initialized by setting all the counters, c[1][0][0] to c[T ][W −
1][log m] to zero; and by choosing values for each entry of a and b uniformly at ran-
dom in the range [0 . . . P−1]. The space used by the data structure is O(TW log m).
We shall specify values for W and T later. We will write hi to indicate the ith hash
function, so hi(x) = a[i] ∗ x + b[i] mod P mod W . Let Gi,j = {x|hi(x) = j} be
the (i, j)th group. We will use c[i][j][0] to keep the count of the current number
of items within the Gi,j . For each such group, we shall also keep counts for log m
subgroups, defined as Gi,j,l = {x|x ∈ Gi,j ∧ bit(x, l) = 1}. These correspond to the
groups we kept for finding a majority item. We will use c[i][j][l] to keep the count
of the current number of items within subgroup Gi,j,l. This leads to the following
update procedure:

Update Procedure. Our procedure in processing an input item x is to determine
which groups it belongs to, and to update the log m counters for each of these
groups based on the bit representation of x in exactly the same way as the al-
gorithm for finding a majority element. If the transaction is an insertion, then
we add one to the appropriate counters, and delete one for a deletion. The cur-
rent count of items is also maintained. This procedure is shown in pseudocode as

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.



12 · Graham Cormode and S. Muthukrishnan

ProcessItem(x, trans, T, W ) in Figure 3. The time to perform an update is the
time taken to compute the T hash functions, and to modify O(T log m) counters.

At any point we can search the data structure to find hot items. Various checks
are made to avoid including in the output any items which are not hot. In group
testing terms, the test that we will use is whether the count for a group or subgroup
exceeds the threshold needed for an item to be hot, which is n/(k + 1). Note that
any group which contains a hot item will pass this test, but that it is possible that
a group which does not contain a hot item can also pass this test. We will later
analyze the probability of such an event, and show that it can be made quite small.

Search Procedure. For each group, we will use the information about the group
and its subgroups to test whether there is a hot item in the group, and if so, to
extract the identity of the hot item. We process each group Gi,j in turn. First, we
test whether there can be a hot item in the group. If c[i][j][0] ≤ n/(k + 1) then
there cannot be a hot item in the group, and so the group is rejected. Then we
look at the count of every subgroup, compared to the count of the whole group,
and consider the four possible cases:

c[i][j][l] > n

k+1
? c[i][j][0] − c[i][j][l] > n

k+1
? Conclusion

No No Cannot be a hot item in the group,
so reject group

No Yes If a hot item x is in group,
then bit(l, x) = 0

Yes No If a hot item x is in group,
then bit(l, x) = 1

Yes Yes Not possible to identify the hot item,
so reject group

If the group is not rejected, then the identity of the candidate hot item, x, can
be recovered from the tests. Some verification of the hot items can then be carried
out.

—The candidate item must belong to the group it was found in, so check hi(x) = j.

—If the candidate item is hot, then every group it belongs in should be above the
threshold, so check that c[i][hi(x)][0] > n/(k + 1) for all i.

The time to find all hot items is O(T 2W log m). There can be at most TW candi-
dates returned, and checking them all takes worst case time O(T ) each. The full
algorithms are illustrated in Figure 3. We now show that for appropriate choices
of T and W we can firstly ensure that all hot items are found, and secondly ensure
that no items are output which are far from being hot.

Lemma 3.3. Choosing W ≥ 2k and T = log2(
k
δ ) for a user chosen parameter δ

ensures that the probability of all hot items being output is at least 1− δ.

Proof. Consider each hot item x, in turn, remembering that there are at most
k of these. Using Fact 3.2 about the hash functions, then the probability for any
other item to fall into the same group as x under the ith hash function is given by
1/W ≤ 1

2k . Using linearity of expectation, then expectation of the total frequency
of other items which land in the same group as item x is
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Initialize(T, W )

n← 0
for i = 1 to T
for j = 0 to W − 1

for k = 0 to log m
c[i][j][k] = 0

a[i] = Random(0, P − 1)
b[i] = Random(0, P − 1)

ProcessItem(x, tt, T,W)

if (tt = insertion) then

n← n + 1
else

n← n− 1
for i← 1 to T

UpdateCounters(x, tt, c[i][hi(x)])

GroupTest(T, W, k)

for i← 1 to T
for j ← 0 to W − 1

r← 1; t← n/(k + 1); x← 0
if (c[i][j][0]) > t then

for l← 1 to log m
p← c[i][j][l]; q ← c[i][j][0]− p;
if (p ≤ t ∧ q ≤ t) ∨ (p > t ∧ q > t)
then

skip to next value of i
if (p > t) then

x← x + r
r← 2 ∗ r

if hi(x) = j then

for l = 1 to T
check c[l][hl(x)][0] > t

if checks passed then

output(x)

Fig. 3. Procedures for finding hot items using Non-Adaptive Group Testing

E





∑

y 6=x,hi(y)=hi(x)

fy



 =
∑

y 6=x

fy · Pr[hi(y) = hi(x)] ≤
∑

y 6=x

fy

2k
≤

1− fx

2k
≤

1

2(k + 1)
.

(1)
Our test cannot fail if the total weight of other items which fall in the same bucket
is less than 1/(k + 1). This is because, each time we compare the counts of items
in the group, we conclude that the hot item is in the half with greater count. If the
total frequency of other items is less than 1/(k + 1), then the hot item will always
be in the heavier half, and so, using a similar argument to the majority case, we
will be able to read off the index of the hot item using the results of log m groups.
The probability of failing due to the weight of other items in the same bucket being
more than 1/(k + 1) is bounded by the Markov inequality as 1/2, since this is at
least twice the expectation. So the probability that we fail on every one of the T
independent tests is less than 1/2log(k/δ) = δ/k. Using the Union bound, then over
all hot items, the probability of any of them failing is less than δ, and so each hot
item is output with probability at least 1− δ.

Lemma 3.4. For any user specified fraction ε ≤ 1
k+1 , if we set W ≥ 2

ε and

T = log2(k/δ), then the probability of outputting any item y with fy < 1
k+1 − ε is

at most δ/k.

Proof. This lemma follows because of the checks we perform on every item
before outputting it. Given a candidate item, we check that every group it is a
member of is above the threshold. Suppose the frequency of the item y is less than
( 1

k+1 − ε). Then the frequency of items which fall in the same group under hash
function i must be at least ε, to push the count for the group over the threshold
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for the test to return positive. By the same argument as in the above lemma, the
probability of this event is at most 1

2 . So the probability that this occurs in all

groups is bounded by 1
2

log k/δ
= δ/k.

Putting these two lemmas together allows us to state our main result on non-
adaptive group testing:

Theorem 3.5. With probability at least 1 − δ, then we can find all hot items

whose frequency is more than 1
k+1 , and, given ε ≤ 1

k+1 , with probability at least

1 − δ/k each item which is output has frequency at least 1
k+1 − ε using space

O( 1
ε log(m) log(k/δ)) words. Each update takes time O(log(m) log(k/δ)). Queries

take time no more than O( 1
ε log2(k/δ) log m).

Proof. This follows by setting W = 2
ε and T = log(k/δ), and applying the

above two lemmas. To process an item, we compute T hash functions, and update
T log m counters, giving the time cost. To extract the hot items involves a scan
over the data structure in linear time, plus a check on each hot item found that
takes time at most O(T ), giving total time O(T 2W log m).

Next, we describe additional properties of our method which implies its stability
and resilience.

Corollary 3.6. The data structure created with T = log(k/δ) can be used to

find hot items with parameter k′ for any k′ < k with the same probability of success

1− δ.

Proof. Observe in Lemma 3.3 that to find k′ hot items, we required W ≥ 2k′.
If we use a data structure created with W ≥ 2k, then W ≥ 2k > 2k′, and so the
data structure can be used for any value of k less than the value it was created for.
Similarly, we have more tests than we need, which can only help the accuracy of
the group testing. All other aspects of the data structure are identical. So, if we
run the procedure with a higher threshold, then with probability at least 1− δ, we
will find the hot items.

This property means that we can fix k to be as large as we want, and are then
able to find hot items with any frequency greater than 1/(k + 1) determined at
query time.

Corollary 3.7. The output of the algorithm is the same for any reordering of

the input data.

Proof. During any insertion or deletion, the algorithm takes the same action
and does not inspect the contents of the memory. It just adds or subtracts val-
ues from the counters, as a function solely of the item value. Since addition and
subtraction commute, the corollary follows.

Estimation of count of Hot Items. Once the hot items have been identified, we
may wish to additionally estimate the count, nx, of each of these items. One
approach would be to keep a second data structure enabling the estimation of the
counts to be made. Such data structures are typically compact, fast to update, and
give accurate answers for items whose count is large, i.e. hot items [Gilbert et al.
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2002; Charikar et al. 2002; Cormode and Muthukrishnan 2004a]. However, note
that the data structure that we keep embeds a structure that allows us to compute
an estimate of the weight of each item [Cormode and Muthukrishnan 2004a].

Corollary 3.8. Computing mini c[i][hi(x)][0] gives a good estimate for nx with

probability at least 1− (δ/k).

Proof. This follows from the proofs of Lemma 3.3 and Lemma 3.4. Each es-
timate c[i][hi(x)][0] = nx +

∑

y 6=x,hi(x)=hi(y) ny. But by Lemma 3.3, this addi-

tional noise is bounded by εn with constant probability at least 1
2 , as shown in

Equation (1). Taking the minimum over all estimates amplifies this probability to
1− (δ/k).

3.3 Time-Space Tradeoff

In certain situations when transactions are occurring at very high rates, it is vital to
make the update procedure as fast as possible. One of the drawbacks of the current
procedure is that it depends on the product of T and log m, which can be slow for
items with large identifiers. For reducing the time dependency on T , note that the
data structure is intrinsically parallelizable: each of the T hash functions can be
applied in parallel, and the relevant counts modified separately. In the experimental
section we will show that good results are observed even for very small values of T ;
therefore, the main bottleneck is the dependence on log m.

The dependency on log m arises because we need to recover the identifier of each
hot item, and we do this one bit at a time. Our observation here is that we can
find the identifier in different units, for example, one byte at a time, at the expense
of extra space usage. Formally, define dig(x, i, b) to be the ith digit in the integer
x when x is written in base b ≥ 2. Within each group, we keep (b − 1) × logb m
subgroups: the i, jth subgroup counts how many items have dig(x, i, b) = j for
i = 1 . . . logb m and j = 1 . . . b − 1. We do not need to keep a subgroup for j = 0
since this count can be computed from the other counts for that group. Note that
b = 2 corresponds to the binary case discussed already, and b = m corresponds to
the simple strategy of keeping a count for every item.

Theorem 3.9. Using the above procedure, with probability at least 1 − δ, then

we can find all hot items whose frequency is more than 1
k+1 , and with probability

at least 1 − (δ/k), each item which is output has frequency at least 1
k+1 − ε using

space O( b
ε logb(m) log(k/δ)) words. Each update takes time O(logb(m) log(k/δ))

and queries take O( b
ε logb(m) log2(k/δ)) time.

Proof. Each subgroup now allows us to read off one digit in the base-b repre-
sentation of the identifier of any hot item x. Lemma 3.3 applies to this situation
just as before, as does Lemma 3.4. This leads us to set W and T as before. We have
to update one counter for each digit in the base b representation of each item for
each transaction, which corresponds to logb m counters per test, giving update time
of O(T logb(m)). The space required is for the counters to record the subgroups
of TW groups, and there are (b − 1) logb(m) subgroups of every group, giving the
space bounds.

For efficient implementations, it will generally be preferable to choose b to be
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a power of two, since this allows efficient computation of indices using bit-level
operations (shifts and masks). The space cost can be relatively high for speed
ups: choosing b = 28 means that each update operation is 8 times faster than for
b = 2, but requires 32 times more space. A more modest value of b may strike
the right balance: choosing b = 4 doubles the update speed, whilst the space
required increases by 50%. We investigate the effects of this tradeoff further in our
experimental study.

4. ADAPTIVE GROUP TESTING

The more flexible model of Adaptive Group Testing allows conceptually simpler
choices of groups, although the data structures required to support the tests be-
comes more involved. The idea is a very natural “divide-and-conquer” style ap-
proach, and as such may seem straightforward. We give full details here to empha-
sise the relation between viewing this as an adaptive group testing procedure and
the above non-adaptive group testing approach. Also, this method does not seem
to have been published before, so we give the full description for completeness.

Consider again the problem of finding a majority item, assuming that one exists.
Then an adaptive group testing strategy is as follows: test whether the count of
all items in the range {1 . . .m/2} is above n/2, and also whether the count of all
items in the range {m/2 + 1 . . .m} is over the threshold. Recurse on which ever
half contains more than half the items, and the majority item is found in dlog2 me
rounds.

The question is, how to support this adaptive strategy as transactions are seen?
As counts increase and decrease, we do not know in advance which queries will be
posed, and so the solution seems to be to keep counts for every test that could be
posed — but there are Ω(m) such tests, which is too much to store. The solution
comes by observing that we do not need to know counts exactly, but rather it suffices
to use approximate counts, and these can be supported using a data structure that
is much smaller, with size dependent on the quality of approximation. We shall
make use of the fact that the range of items can be mapped onto the integers
1 . . .m. We will initially describe an adaptive group testing method in terms of an
oracle that is assumed to give exact answers, and then show how this oracle can be
realized approximately.

Definition 4.1. A dyadic range sum oracle returns the (approximate) sum of the
counts of items in the range l = (i2j + 1) . . . r = (i + 1)2j for 0 ≤ j ≤ log m and
0 ≤ i ≤ m/2j.

Using such an oracle which reflects the effect of items arriving and departing, it is
possible to find all hot items, with the following binary search divide-and-conquer
procedure. For simplicity of presentation, we assume that m, the range of items, is
a power of two. Beginning with the full range, recursively split in two. If the total
count of any range is less than n/(k + 1), then do not split further. Else, continue
splitting until a hot item is found. It follows that O(k log(m/k)) calls are made to
the oracle. The procedure is presented as AdaptiveGroupTest on the right in
Figure 4.
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Implementing Dyadic Range Sum Oracles. Define an Approximate Count Oracle
to return the (approximate) count of the item x. A Dyadic Range Sum Oracle
can be implemented using j = 0 . . . log m Approximate Count Oracles: For each
item in the stream x, insert b x

2j c into the jth approximate count oracle, for all
j. Recent work has given several methods of implementing the approximate count
oracle, which can be updated to reflect the arrival or departure of any item. We
now list three examples of these and give their space and update time bounds:

—The “tug of war sketch” technique of [Alon et al. 1999] uses space and time
O( 1

ε2 log 1
δ ) to approximate any count up to εn with probability at least 1− δ.

—The method of Random Subset Sums described in [Gilbert et al. 2002] uses space
and time O( 1

ε2 log 1
δ ).

—The method of Charikar et al builds a structure which can be used to approximate
the count of any item correct upto εn in space O( 1

ε2 log 1
δ ) and time per update

O(log 1
δ ).

The fastest of these methods is that of Charikar et al, and so we shall adopt this
as the basis of our adaptive group testing solution. In the next section we describe
and analyze the data structure and algorithms for our purpose of finding hot items.

4.1 CCFC Count Sketch

We shall briefly describe and analyze the CCFC Count Sketch1. This is a different
and shorter analysis compared to that given in [Charikar et al. 2002], since here the
goal is to estimate each count to within an error in terms of the total count of all
items rather than in the count of the kth most frequent item, as is the case in the
original paper.

Data Structure. The data structure used consists of a table of counters t, with
width W and height T , initialized to 0. We also keep T pairs of universal hash
functions: h1 . . . hT which map items onto 1 . . .W and g1 . . . gT which map items
onto {−1, +1}.

Update Routine. When an insert transaction of item x occurs, we update t[i][hi(x)]←
t[i][hi(x)]+gi[x] for all i = 1 . . . T . For a delete transaction, we update t[i][hi(x)]←
t[i][hi(x)] − gi[x] for all i = 1 . . . T .

Estimation. To estimate the count of x, compute mediani(t[i][hi(x)] · gi(x)).

Analysis. Use the random variable Xi to denote t[i][hi(x)]·gi(x). The expectation
of each estimate is

E(Xi) = nx +
∑

y 6=x

Pr[hi(y) = hi(x)] · (Pr[gi(x) = gi(y)]− Pr[gi(x) 6= gi(y)]) = nx

1CCFC denotes the initials of the authors of [Charikar et al. 2002].
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AdaptiveUpdateItem(x, tt, T, W )

if tt = insertion then

d← 1
else

d← −1
n← n + d
for i← 1 to log m
for j ← 1 to T

t[i][j][hi(x)]← t[i][j][hi(x)] + gi(x) ∗ d

Adaptive(l, r, thresh)

if oracle(l, r) > thresh then

if (l = r) then

output(l);
else

Adaptive(l, (l + r − 1)/2, thresh);
Adaptive((l + r + 1)/2, r, thresh);

AdaptiveGroupTest(k)
call Adaptive(1, m, n/(k + 1))

Fig. 4. Adaptive Group Testing algorithms

since Pr[gi(x) = gi(y)] = 1
2 . The variance of each estimate is

Var(Xi) = E(X2
i )− E(Xi)

2

= E(gi(x)2(t[i][hi(x)])2)− n2
x

= 2
∑

y 6=x,z nynzPr[hi(y) = hi(z)](Pr[gi(x) = gi(y)]− Pr[gi(x) 6= gi(y)])

+n2
x +

∑

y 6=x g2
i (y)n2

yPr[hi(y) = hi(x)] − n2
x

=
∑

y 6=x

n2

y

W ≤
n2

W

Using the Chebyshev inequality, it follows that Pr[|Xi − x| >
√

2n√
W

] < 1
2 . Taking

the median of T estimates amplifies this probability to 2T/4, by a standard Chernoff
bounds argument [Motwani and Raghavan 1995].

Space and Time. The space used is for the WT counters and the 2T hash func-
tions. The time taken for each update is the time to compute the 2T hash functions,
and update T counters.

Theorem 4.2. By setting W = 2
ε2 and T = 4 log 1

δ then we can estimate the

count of any item up to error ±εn with probability at least 1− δ.

4.2 Adaptive Group Testing Using CCFC Count Sketch

We can now implement an adaptive group testing solution to finding hot items.
The basic idea is to apply the adaptive binary search procedure using the above
Count Sketch to implement the dyadic range sum oracle. The full procedure is
shown in Figure 4.

Theorem 4.3. Setting W = 2
ε2 and T = log k log m

δ allows us to find every item

with frequency greater than 1
k+1 + ε, and report no item with frequency less than

1
k+1 − ε, with probability at least 1 − δ. The space used is O( 1

ε2 log(m) log k log m
δ )

words, and the time to perform each update is O(log(m) log k log m
δ ). The query time

is O(k log m log k log m
δ ) with proabability at least 1− δ.

Proof. We set the probability of failure to be low ( δ
k log m ), so that for the

O(k log m) queries that we pose to the oracle, there is probability at most δ of any

of them failing, by the union bound. Hence, we can assume that with probability
at least 1 − δ, all approximations are within the ±εn error bound. Then, when
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we search for hot items, any range containing a hot item will have its approximate
count reduced by at most εn. This will allow us to find the hot item, and output
it if its frequency is at least 1

k+1 + ε. Any item which is output must pass the final
test, based on the count of just that item, which will not happen if its frequency is
less than 1

k+1 − ε.
The space needed for log(m) sketches, each of which has size O(TW ) words. For

these settings of T and W , we obtain the space bounds listed in the theorem. The
time per update is that to compute 2T log(m) hash values, and then to update up
to this many counters, which gives the stated update time.

Hot Item Count Estimation. Note that we can immediately extract the estimated
counts for each hot item using the data structure, since the count of item x is given
by using the lowest level approximate count. Hence, the count nx is estimated with
error at most εn in time O(log(m) log k log m

δ ).

4.3 Time-Space Tradeoffs

As with the non-adaptive group testing method, the time cost for updates depends
on T and log m. Again, in practice we found that small values of T could be used,
and that computation of the hash functions could be parallelized for extra speed
up. Here, the dependency on log m is again the limiting factor. A similar trick
to the non-adaptive case is possible, to change the update time dependency to
logb m for arbitrary b: instead of basing the oracle on dyadic ranges, base it on
b-adic ranges. Then only logb m sketches need to be updated for each transaction.
However, under this modification, the same guarantees do not hold. In order to
extract the hot items, many more queries are needed: instead of making at most
two queries per hot item per level, we make at most b queries per hot item per level,
and so we need to reduce the probability of making a mistake to reflect this. One
solution would be to modify T to give a guarantee — but this can lose the point of
the exercise, which is to reduce the cost of each update. So instead we treat this as
a heuristic to try out in practice, and to see how well it performs.

A more concrete improvement to space and time bounds comes from observing
that it is wasteful to keep sketches for high levels in the hierarchy, since there are
very few items to monitor. It is therefore an improvement to keep exact counts for
items at high levels in the hierarchy.

5. COMPARISON BETWEEN METHODS AND EXTENSIONS

We have described two methods to find hot items after observing a sequence of
insertion and deletion transactions, and proved that they can give guarantees about
the quality of their output. These are the first methods to be able to give such
guarantees in the presence of deletions, and we now go on to compare these two
different approaches. We will also briefly discuss how they can be adapted when
the input may come in other formats.

Under the theoretical analysis, it is clear that the adaptive and non-adaptive
methods have some features in common. Both make use of universal hash functions
to map items to counters where counts are maintained. However, the theoretical
bounds on the adaptive search procedure look somewhat weaker than those on the
non-adaptive methods. To give a guarantee of not outputting items which are more
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than ε from being hot items, the adaptive group testing depends on 1/ε2 in space,
whereas non-adaptive uses 1/ε. The update times look quite similar, depending on
the product of the number of tests, T , and the bit depth of the universe, logb(m).
It will be important to see how these methods perform in practice, since these are
only worst-case guarantees. In order to compare these methods in concrete terms,
we shall use the same values of T and W for adaptive and non-adaptive group
testing in our tests, so that both methods are allocated approximately the same
amount of space.

Another difference is that the adaptive group testing requires many more hash
function evaluations to process each transaction compared to non-adaptive group
testing. This is because adaptive group testing computes a different hash for each of
log m prefixes of the item, whereas non-adaptive group testing computes one hash
function to map the item to a group, and then allocates it to subgroups based on its
binary representation. Although the universal hash functions can be implemented
quite efficiently [Thorup 2000], this extra processing time can become apparent for
high transaction rates.

Other Update Models. In this work we assume that we modify counts by one
each time to model insertions or deletions. But there is no reason to insist on
this: the above proofs work for arbitrary count distributions, hence it is possible
to allow the counts to be modified by arbitrary increments or decrements, in the
same update time bounds. The counts can even include fractional values if so
desired. This holds for both the adaptive and non-adaptive methods. Another
feature is that it is straightforward to combine the data structures for the merge
of two distributions: providing both data structures were created using the same
parameters and hash functions, then summing the counters co-ordinate wise gives
the same set of counts as if the whole distribution had been processed by a single
data structure. This should be contrasted to other approaches [Babcock and Olston
2003], which also compute the overall hot items from multiple sources, but keeps
a large amount of space at each location: instead the focus is on minimizing the
amount of communication. Immediate comparison of the approaches is not possible,
but for periodic updates (say, every minute) it would be interesting to compare the
communication used by the two methods.

6. EXPERIMENTS

To evaluate our approach, we implemented our Group Testing algorithms in C. We
also implemented two algorithms which operate on non-dynamic data, the algorithm
Lossy Counting [Manku and Motwani 2002] and Frequent [Demaine et al. 2002].
Neither algorithm is able to cope with the case of the deletion of an item, and
there is no obvious modification to accommodate deletions and still guarantee the
quality of the output. We instead performed a “best effort” modification: since
both algorithms keep counters for certain items, which are incremented when that
item is inserted, we modified the algorithms to decrement the counter whenever the
corresponding item is deleted. When an item without a counter is deleted, then we
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take no action.2 This modification ensures that when the algorithms encounter an
inserts-only dataset, then their action is the same as the original algorithms. Code
for our implementations is available on the web, from http://www.cs.rutgers.

edu/~muthu/massdal-code-index.html.

Evaluation Criteria. We ran tests on both synthetic and real data, and measured
time and space usage of all four methods. Evaluation was carried out on a 2.4GHz
desktop PC with 512Mb RAM. In order to evaluate the quality of the results, we
used two standard measures: the recall and the precision.

Definition 6.1. The recall of an experiment to find hot items is the proportion
of the hot items that are found by the method. The precision is the proportion of
items identified by the algorithm which are hot items.

It will be interesting to see how these properties interact. For example, if an
algorithm outputs every item in the range 1 . . .m then it clearly has perfect recall
(every hot item is indeed included in the output), but its precision is very poor. At
the other extreme, an algorithm which is able to identify only the most frequent
item will have perfect precision, but may have low recall if there are many hot
items. For example, the Frequent algorithm gives guarantees on the recall of its
output, but does not strongly bound the precision, whereas for Lossy Counting,
the parameter ε affects the precision indirectly (depending on the properties of the
sequence). Meanwhile, our group testing methods give probabilistic guarantees of
perfect recall and good precision.

Setting of parameters. In all our experiments, we set ε = 1
k+1 and hence set

W = 2
k+1 , since this keeps the memory usage quite small. In practice, we found

that this setting of ε gave quite good results for our group testing methods, and that
smaller values of ε did not significantly improve the results. In all experiments, we
ran both group testing methods with the same values of W and T , which ensured
that on most base experiments that they used the same amount of space. In our
experiments, we look at the effect of varying the value of the parameters T and
b. We gave the parameter ε to each algorithm and saw how much space it used
to give a guarantee based on this ε. In general, the deterministic methods used
less space than the Group Testing methods. However, when we made additional
space available to the deterministic methods equivalent to that used by the Group
Testing approaches, we did not see any significant improvement in their precision
and a similar pattern of dependency on the zipf parameter.

6.1 Insertions Only Data

Although our methods have been designed for the challenges of transaction se-
quences that contain a mix of insertions and deletions, we first evaluated a sequence
of transactions which contained only insertions. These were generated by a Zipf
distribution, whose parameter was varied from 0 (uniform) to 3 (highly skewed).
We set k = 1000 so we were looking for all items with frequency 0.1% and higher.

2Many variations of this theme are possible. Our experimental results here that compare our
algorithms to modifications of Lossy Counting [Manku and Motwani 2002] and Frequent [Demaine
et al. 2002] should be considered proof-of-concept only.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.



22 · Graham Cormode and S. Muthukrishnan

Recall on Insert Only Synthetic Data

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zipf Parameter

R
ec

al
l 

%

CGT CCFC Lossy Counting Frequent

Precision on Insert Only Synthetic Data

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf Parameter

P
re

ci
si

o
n

 %

CGT CCFC Lossy Counting Frequent

Fig. 5. Experiments on a sequence of 107 insertion-only transactions. Left: testing recall (propor-
tion of the hot items reported). Right: testing precision (proportion of the output items which
are hot)

Throughout, we worked with a universe of size m = 232. Our first observation
on the performance of group testing based methods is that they gave good results
with very small values of T . The plots in Figure 5 show the precision and recall of
the methods with T = 2, meaning that each item was placed in two groups in non-
adaptive group testing, and two estimates were computed for each count in adaptive
group testing. Non-adaptive group testing is denoted as algorithm ‘NAGT’, and
adaptive group testing as algorithm ‘Adapt’. Note that on this data set, the algo-
rithms Lossy Counting and Frequent both achieved perfect recall, i.e. they returned
every hot item. This is not surprising: the deterministic guarantees ensure that
they will find all hot items when the data consists of inserts only. Group Testing
approaches did pretty well here: non-adaptive got almost perfect recall, and adap-
tive missed only a few for near uniform distributions. On distributions with small
zipf parameter, many items have counts which are close to the threshold for being
a hot item, meaning that adaptive group testing can easily miss an item which is
just over the threshold, or include an item which is just below. This is also visible
in the precision results: while non-adaptive group testing includes no items which
are not hot, adaptive group testing does include some. However, the deterministic
methods also do quite badly on precision: frequent includes many items which are
not hot in its output while, for this value of ε, Lossy Counting does much better
than Frequent, but consistently worse than group testing. As we increased T , then
both non-adaptive and adaptive group testing got perfect precision and recall on
all distributions. For the experiment illustrated, the group testing methods both
used about 100Kb of space each, while the deterministic methods used a smaller
amount of space (around half as much).

6.2 Synthetic Data with Insertions and Deletions

We created synthetic datasets designed to test the behavior when confronted with
a sequence including deletes. The datasets were created in three equal parts: first,
a sequence of insertions distributed uniformly over a small range; next, a sequence
of inserts was drawn from a zipf distribution with varying parameter; lastly, a
sequence of deletes was distributed uniformly over the same range as the starting
sequence. The net effect of this sequence is that first and last groups of transactions
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Fig. 6. Experiments on synthetic data consisting of 107 transactions.

should (mostly) cancel out, leaving the “true” signal from the zipf distribution. The
dataset was designed to test whether the algorithms could find this signal from the
added noise. We generated a dataset of 10,000,000 items so it was possible to
compute the exact answers in order to compare, and searched for the k = 1000
hot items while varying the zipf parameter of the signal. The results are shown in
Figure 6, with the recall plotted on the left, and the precision on the right. Each
data point comes from one trial, rather than averaging over multiple repetitions.

The purpose of this experiment is to demonstrate a scenario where insert-only
algorithms will not be able to cope when the data set includes many deletes (in this
case, one in three of the transactions is a deletion). Lossy counting performs worst
on both recall and precision, while Frequent manages to get good recall only when
the signal is very skewed, meaning the hot items have very high frequencies com-
pared to all other items. Even when the recall of the other algorithms is reasonably
good (finding around three-quarters of the hot items), their precision is very poor:
for every hot item that is reported, around ten infrequent items are also included in
the output, and we cannot distinguish between these two types. Meanwhile, both
group testing approaches succeed in finding almost all hot items, and outputting
few infrequent items.

There is a price to pay for the extra power of the Group Testing algorithm: it
takes longer to process each item under our implementation, and requires more
memory. However, these memory requirements are all very small compared to the
size of the dataset: both Group Testing methods used 187Kb, Lossy Counting
allocated 40Kb on average, and Frequent used 136Kb.3 In a later section, we look
at the time and space costs of the group testing methods in more detail.

6.3 Real Data with Insertions and Deletions

We obtained data from one of AT&Ts networks for part of a day, totaling around
100Mb. This consisted of a sequence of new telephone connections being initiated,
and subsequently closed. The duration of the connections varied considerably,
meaning that at any one time there were huge numbers of connections in place. In

3These reflect the space allocated for the insert only algorithms based on upper bounds on the
space needed. This was done to avoid complicated and costly memory allocation whilst processing
transactions.
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Fig. 7. Performance results on real data

total, there were 3.5 million transactions. We ran the algorithms on this dynamic
sequence in order to test their ability to operate on naturally occurring sequences.
After every 100,000 transactions we posed the query to find all (source,destination)
pairs with current frequency greater than 1%. We were grouping connections by
their regional codes, giving many millions of possible pairs, m, although we dis-
covered that geographically neighboring areas generated the most communication.
This meant that there were significant numbers of pairings achieving the target
frequency. Again, we computed recall and precision for the three algorithms, with
the results shown in Figure 7: we set T = 2 again and ran non-adaptive group
testing (NAGT) and adaptive group testing (Adapt).

The non-adaptive group testing approach is shown to be justified here on real
data. In terms of both recall and precision, it is near perfect. On one occasion, it
overlooked a hot item, and a few times it includes items which are not hot. Under
certain circumstances this may be acceptable if the items included are “nearly hot”,
that is, are just under the threshold for being considered hot. However, we did not
pursue this line. In the same amount of space, adaptive group testing does almost as
well, although its recall and precision are both less good overall than non-adaptive.
Both methods reach perfect precision and recall as T is increased: non-adaptive
group testing achieves perfect scores for T = 3, and adaptive for T = 7.

Lossy Counting performs generally poorly on this dynamic dataset, its quality of
results swinging wildly between readings but on average finding only half the hot
items. The recall of the Frequent algorithm looks reasonably good especially as
time progresses, but its precision, which begins poorly, appears to degrade further.
One possible explanation is that the algorithm is collecting all items which are
ever hot, and outputting these whether they are hot or not. Certainly, it outputs
between two to three times as many items as are currently hot, meaning that its
output will necessarily contain many infrequent items.

Next, we ran tests which demonstrated the flexibility of our approach. As noted
in Section 3.2, if we have created a set of counters for non-adaptive group testing
for a particular frequency level f = 1/(k + 1), then we can use these counters to
answer a query for a higher frequency level without any need for re-computation.
To test this, we computed the data structure for the first million items of the real
data set based on a frequency level of 0.5%. We then asked for all hot items for a
variety of frequencies between 10% and 0.5%. The results are shown in Figure 8. As
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Fig. 8. Choosing the frequency level at query time: the data structure was built for queries at the
0.5% level, but was then tested with queries ranging from 10% to 0.01%
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Fig. 9. Timing results on real data

predicted, the recall level was the same (100% throughout), and precision was high,
with a few non-hot items included at various points. We then examined how much
below the designed capability we could push the group testing algorithm, and ran
queries asking for hot items with progressively lower frequencies. For non-adaptive
group testing with T = 1, the quality of the recall began deteriorating after the
query frequency descended below 0.5%, but for T = 3, then the results maintained
an impressive level of recall down to around the 0.05% level, after which the quality
deteriorated (around this point, the threshold for being considered a hot item was
down to having a count in single figures, due to deletions removing previously
inserted items). Throughout, the precision of both sets of results were very high,
close to perfect even when used far below the intended range of operation.

6.4 Timing Results

On the real data, we timed how long it took to process transactions, as we varied
certain parameters of the methods. We also plotted the time taken by the insert
only methods for comparison. Timing results are shown in Figure 9. On the left
are timing results for working through the whole data set. As we would expect,
the time scales roughly linearly with the number of transactions processed. Non-
adaptive group testing is a few times slower than insertion only methods, which
are very fast. With T = 2, non-adaptive group testing processed over a million
transactions per second. Adaptive group testing was somewhat slower. Although
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Fig. 10. Time and Space Costs of varying b

asymptotically the two methods have the same update cost, here we see the effect
of the difference in the methods: since adaptive group testing computes many more
hash functions than non-adaptive (see Section 5), the cost of this computation is
clear. It is therefore desirable to look at how to reduce the number of hash function
computations done by adaptive group testing. Applying the ideas discussed in
Sections 3.3 and 4.3, we tried varying the parameter b from 2.

The results for this are shown on the right in Figure 9. Here, we plot the time to
process two million transactions for different values of b against T , the number of
repetitions of the process. It can be seen that increasing b does indeed bring down
the cost of adaptive and non-adaptive group testing. For T = 1, non-adaptive
group testing becomes competitive with the insertion methods in terms of time to
process each transaction. We also measured the output time for each method. The
adaptive group testing approach took on average 5ms per query, while the non-
adaptive group testing took 2ms. The deterministic approaches took less than 1ms
per query.

6.5 Time-Space Tradeoffs

To see in more detail the effect of varying b, we plotted the time to process two
million transactions for eight different values of b (2,4,8,16,32,64,128 and 256) and
three values of T (1,2,3) at k = 100. The results are shown in Figure 10. Although
increasing b does improve the update time for every method, the effect becomes
much less pronounced for larger values of b, suggesting that the most benefit is to
be had for small values of b. The benefit seems strongest for adaptive group testing,
which has the most to gain. Non-adaptive group testing still computes T functions
per item, so eventually the benefit of larger b is insignificant compared to this fixed
cost.

For non-adaptive group testing, the space must increase as b increases. We
plot this on the right in Figure 10. It can be seen that the space increases quite
significantly for large values of b, as predicted. For b = 2 and T = 1, then the space
used is about 12Kb, while for b = 256, the space has increased to 460Kb. For T = 2
and T = 3 the space used is twice and three times this, respectively.

It is important to see the effect of this tradeoff on accuracy as well. For non-
adaptive group testing, the precision and recall remained the same (100% for both)
as b and T were varied. For adaptive group testing, we kept the space fixed and
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Fig. 11. Precision and recall on real data as b and T vary

looked at how the accuracy varied for different values of T . The results are given
in Figure 11. It can be seen that there is little variation in the recall with b, but
it increases slightly with T as we would expect. For precision, the difference is
more pronounced. For small values of T , increasing b to speed up processing has
an immediate effect on the precision: more items which are not hot are included in
the output as b increases. For larger values of T , this effect is reduced: increasing
b does not affect precision by as much. Note that the transaction processing time
is proportional to T/ log(b), so it seems that good tradeoffs are achieved for T = 1
and b = 4 and for T = 3 and b = 8 or 16. Looking at Figure 10, we see that these
points achieve similar update times, of approximately one million items per second
in our experiments.

7. CONCLUSIONS

We have proposed two new methods for identifying hot items which occur more
than some frequency threshold. These are the first methods which can cope with
dynamic datasets, that is, the removal as well as the addition of items. They
perform to a high degree of accuracy in practice, as guaranteed by our analysis of
the algorithm, and are quite simple to implement. In our experimental analysis, it
seemed that an approach based on non-adaptive group testing is slightly preferable
to one based on adaptive group testing, in terms of recall, precision and time.

Recently, we have taken these ideas of using group testing techniques to identify
items of interest in small space, and applied them to other problems. For example,
consider finding items which have the biggest frequency difference between two
datasets. Using a similar arrangement of groups but a different test allows us to
find such items while processing transactions at very high rates and keeping only
small summaries for each dataset [Cormode and Muthukrishnan 2004b]. This is of
interest in a number of scenarios, such as trend analysis, financial data sets and
anomaly detection [Yi et al. 2000]. One point of interest is that for that scenario, it
is straightforward to generalize the non-adaptive group testing approach, but the
adaptive group testing approach cannot be applied so easily.

Our approach of group testing may have application to other problems, notably
in designing summary data structures for maintenance of other statistics of interest
and in data stream applications. An interesting open problem is to find combinato-
rial designs which can achieve the same properties as our randomly chosen groups,
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in order to give a fully deterministic construction for maintaining hot items. The
main challenge here is to find good “decoding” methods: given the result of testing
various groups, how to determine what the hot items are. We need such methods
that work quickly in small space.

A significant problem that we have not approached here is that of continuously
monitoring the hot items. That is, to maintain a list of all items that are hot, and
keep this updated as transactions are observed. A simple solution is to keep the
same data structure, and to run the query procedure when needed, say once every
second, or whenever n has changed by more than k (after an item is inserted, it is
easy to check whether it is now a hot item. Following deletions, other items can
become hot, but the threshold of n/(k + 1) only changes when n has decreased by
k + 1). In our experiments, the cost of running queries is a matter of milliseconds
and so is quite a cheap operation to perform. In some situations this is sufficient,
but a more general solution is needed for the full version of this problem.
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