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Massive Data 

 “Big” data arises in many forms: 

– Physical Measurements: from science (physics, astronomy) 

– Medical data: genetic measurements, detailed time series 

– Activity data: GPS location, social network activity 

– Business data: customer behavior tracking at fine detail 

 Common themes:  

– Data is large, and growing 

– There are important patterns and trends in the data 

– We don’t fully know how to find them 
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Making sense of Big Data 

 Want to be able to interrogate data in different use-cases: 

– Routine Reporting: standard set of queries to run 

– Analysis: ad hoc querying to answer ‘data science’ questions 

– Monitoring: identify when current behavior differs from old 

– Mining: extract new knowledge and patterns from data 

 In all cases, need to answer certain basic questions quickly: 

– Describe the distribution of particular attributes in the data 

– How many (distinct) X were seen? 

– How many X < Y were seen? 

– Give some representative examples of items in the data 
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Summary Structures 

 Much work on building  a summary to (approximately) answer 
such questions 

 To earn the name, should be (very) small! 

– Can keep in fast storage 

 Should be able to build, update and query efficiently 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing 

– Query: may tolerate some approximation 
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Techniques in Summaries 

 Several broad classes of techniques generate summaries: 

– Sketch techniques: linear projections 

– Sampling techniques: (complex) random selection 

– Other special-purpose techniques 

 In each class, will outline ‘classic’ and ‘recent’ results 

 Conclude with “state of the union” of summaries 
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Random Sampling 

 Basic idea: draw random sample, answer query on sample 
(and scale up if needed) 

 Update: include new item in sample with probability 1/n 
 (and kick out an old item if sample is full) 

 Merge: draw items from each input sample with the 
probability proportional to relative input size 

 Query: run query on the sample (and possibly rescale result) 

 

 Accuracy: answers any “predicate query” with additive error 

– E.g. What fraction of input items satisfy property X? 

– Error +/- e with 95% probability for sample size O(1/e2) 
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Structure-aware Sampling 

 Most queries are actually range queries: 

– “How much traffic from region X to region Y at 2am to 4am?” 

 Much structure in data [Cohen, C, Duffield 11] 

– Order (e.g. ordered timestamps, durations etc.) 

– Hierarchy (e.g. geographic and network hierarchies) 

– (Multidimensional) products of structures 

 Make sampling structure-aware when ejecting keys 

– Carefully pick subset of keys to subsample from 

– Empirically: constant factor improvement from same size sample 
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Sampling Pros and Cons 

 Samples are very general, but have some limitations 

 Uniform samples are no good for many problems 

– Anything to do with number of distinct items 

 For some queries, other summaries have better performance 

– Technically: O(1/e2) vs O(1/e) size  

– Practically: may be factors of 10s or 100s 

Small Summaries for Big Data 
8 



Sketch Summaries 

 Subclass of summaries that are linear transforms of input 

– Merge = sum 

– Easy to extend to inputs that have negative weights 

 Efficient sketches approximate quantities of interest: 

– O(e-1) space for point queries with e L1 error [CM] 

– O(e-2) space for point queries with e L2 error [CCFC] 

– O(e-2) space to estimate L2 with e relative error [AMS] 
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Count-Min Sketch [C, Muthukrishnan ’03] 

 Simple(st?) sketch idea, used in many different tasks 

 Applicable when input data modeled as vector x of dimension m  

 Creates a small summary as an array of w  d in size 

 Use d (simple) hash function to map vector entries to [1..w] 

 (Implicit) linear transform of input vector, so flexible 
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Count-Min Sketch Operations 

 Update: each entry in vector x is mapped to one bucket per row 

 Merge: combine two sketches by entry-wise summation 

 Query: Estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than eN in size O(1/e log 1/d)  (Markov ineq) 

– Probability of more error is less than 1-d 
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Lp Sampling 

 Lp sampling: use sketches to sample i w/prob (1±e) fi
p/|f|p

p 

 “Efficient” solutions developed of size O(e-2 log2 n) 

– [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11] 

 Enable novel “graph sketching” techniques 

– Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12] 

 

 Challenge: improve space efficiency of Lp sampling 

– Empirically or analytically 
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Sketching Pros and Cons 

 “Linear” summaries: can add, subtract, scale easily 

– Useful for forecasting models, large feature vectors in ML 

 Other sketches have been designed for: 

– Count-distinct, Set sizes (Flajolet-Martin and beyond) 

– Set membership (Bloom Filter) 

– Vector operations: Euclidean norm, cosine similarity 

 Some sketch types are large, slow to update (but parallel) 

 Tricky to adapt to large domains (e.g. strings) 

 Don’t support complex operations (e.g. arbitrary queries) 
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Special-purpose Summaries 

 Misra-Gries (MG) algorithm finds up to k items that occur 
more than 1/k fraction of the time in the input 

 Update: Keep k different candidates in hand.  For each item: 

– If item is monitored, increase its counter 

– Else, if < k items monitored, add new item with count 1 

– Else, decrease all counts by 1 
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Streaming MG analysis 

 N = total weight of input 

 M = sum of counters in data structure 

 Error in any estimated count at most (N-M)/(k+1) 

– Estimated count a lower bound on true count 

– Each decrement spread over (k+1) items: 1 new one and k in MG 

– Equivalent to deleting (k+1) distinct items from stream 

– At most (N-M)/(k+1) decrement operations 

– Hence, can have “deleted” (N-M)/(k+1) copies of any item 

– So estimated counts have at most this much error 
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Merging two MG Summaries [ACHPWY ‘12] 

 Merge algorithm: 

– Merge the counter sets in the obvious way 

– Take the (k+1)th largest counter = Ck+1, and subtract from all 

– Delete non-positive counters 

– Sum of remaining counters is M12 

 This keeps the same guarantee as Update: 

– Merge subtracts at least (k+1)Ck+1 from counter sums 

– So (k+1)Ck+1  (M1 + M2 – M
12

) 

– By induction, error is  
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)  

(prior error) (from merge) (as claimed) 



Special Purpose Summaries: Pros and Cons 

 Tend to work very well for their target domain 

 But only work for certain problems, not general  

 Other special purpose summaries for: 

– Summarize distributions (medians): q-digest, GK summary 

– Graph distances, connectivity: limited results so far 

– (Multidimensional) geometric data: for clustering, range queries 

 Coresets, e-approximations, e-kernels, e-nets 
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Applications shown for Summaries 

 Machine learning over huge numbers of features  

 Data mining: scalable anomaly/outlier detection 

 Database query planning 

 Password quality checking [HSM 10] 

 Large linear algebra computations 

 Cluster computations (MapReduce) 

 Distributed Continuous Monitoring 

 Privacy preserving computations 

 … [Your application here?] 
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Summary of Summary Issues 

Strengths 

 (Often) easy to code and use 
– Can be easier than exact algs 

 

 Small — cache-friendly 
– So can be very fast 

 Open source implementations 
– (maybe barebones, rigid) 

 Easily teachable 
– As intro to probabilistic analysis 

 

 (Mostly) highly parallel 

Weaknesses 

 (Still) resistance to random, 
approx algs 
– Less so for Bloom filter, hashes 

 Memory/disk is cheap 
– So can do it the slow way 

 Not yet in standard libraries 
– Developing: MadLib, Stream-lib 

 Not yet in courses / textbooks  
– “this CM sketch sounds like the bomb! 

(although I have not heard of it before)” 

 Few public success stories 
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Resources 

 Sample implementations on web 

– Ad hoc, of varying quality 

 Technical descriptions 

– Original papers  

– Surveys, comparisons 

 (Partial) wikis and book chapters 

– Wiki:  sites.google.com/site/countminsketch/ 

– “Sketch Techniques for Approximate Query Processing” 
 dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf 
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Example: Bloom Filters (1970) 

 A well-known and widely used summary 

 Bloom filters compactly encode set membership 

– Create: Pick k hash functions to map items to (empty) bit vector 

– Update: Hash and set k entries to 1 to indicate item is present 

– Merge: Take bit-wise OR of two Bloom Filter vectors 

– Query: Hash item to vector, assume in set if all k entries are 1 

 Analysis: store set size n in ~10n bits with few false positive 
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