A

What's Hot, What's Not,
What's New and What's Next

Graham Cormode, DIMACS
graham@dimacs.rutgers.edu

Joint work with S. Muthukrishnan

Outline

e \What's the problem?

e \What's hot and what's not?

Data Stream Phenomenon

e Networks are sources of massive data: just
metadata per hour per router is gigabytes

e Too much information to store or transmit
e SO0 process data as it arrives: one pass, small space

e Approximate answers to most questions are OK

Network Stream Problems

Questions on networks are often simple, complexity
comes from space and time restrictions.

e How many distinct host addresses?
e Destinations using most bandwidth?

= Address with biggest change in traffic overnight?

Data Stream Algorithms

e Recent interest in "data stream algorithms":
small space, one pass approximations

e Alon, Matias, Szegedy 96: frequency moments
Henzinger, Raghavan, Rajagopalan 98 graph streams

e In last few years:
Counting distinct items, finding frequent items,
guantiles, wavelet and Fourier representations,
histograms...

The Gap

A big gap between theory and practice: good theory
results aren't yet ready for primetime.

Approximate within 1+¢ with probability > 1-6. EQ:
AMS sketches for F, estimation, set e=1%, 6=1%

e Space O(1/¢2 log 1/95) is approx 10° words = 4Mb
Network device may have 100k-4Mb space total/

e Each data item requires pass over whole space
At network line speeds can afford a few dozen
memory accesses, perhaps more with parallelization

Bridging the Gap

e The Count-Min sketch and change detection data
structures attempt to bridge the gap

e Simple, small, fast data stream summaries which
have application to a large number of problems

e Some subtlety: to beat 1/¢? lower bounds, must
explicitly avoid estimating frequency moments

e Applications to fundamental problems in networks,
finding heavy hitters and large changes

Outline

e \What's the problem?

e \What's hot and what's not?

1. Heavy Hitters

e Focus on the Heavy Hitters problem: Find users (IP
addresses) consuming more than 1% of bandwidth

e |n algorithms, "Frequent Items": Find items and their
counts when count more than ¢N

e Heavily studied problem (arrivals only): Charikar,

Chen, Farach-Colton 02, Karp,Papadimitriou,Shenker 03,
Manku, Motwani 02, Demaine, LopezOrtiz, Munro 02

10

Stream of Packets

e Packets arrive in a stream. Extract from header:
|dentifier, 1: Source or destination IP address
Count: connections / packets / bytes

e Stream defines a vector a[1..U], initially all O
Each packet increases one entry, a]i].
In networks U =232 or 2°4, too big to store

e Heavy Hitters are those i's where a[i]=¢N
Maintain N = sum of counts

Heavy Hitters Solution

Naive solution: keep the array a and for every item in
the stream, test whether a[i]=¢N, keep heap of items

Solution here: replace a[i] with a small data structure
which approximates all afi] upto eN with prob 1-6

Ingredients:
—2-wise hash fns h,..h, /5 {1..U}> {1..2/¢}
—Array of counters CM[1..2/¢, 1..log, 1/9]

11

Update Algorithm “\

A
0 e
/,
i count —= Fcount log 1/6
.\Q\@unt
Niog 1/5(1) B
\i;cpunt

\/

< >

2/¢

CM Sketch

12

Approximation

Approximate &[i] = min; CM[h.(i),]
Analysis: In jth row, CM[h,(i),j] = a[i] + X;.
X =% a[k] | hy(i) = h(k)
E(X;;) = = a[K]*Pr[h.(i)=h.(K)]

< Pr[h;(i)=h;(k)] * Z a[K]
= ¢N/2 by pairwise independence of h

13

A

Analysis

PriXi; > eN] = Pr[X;; > 2E(X;)]
< 1/2 by Markov inequality

Hence, Pr[a[i] > a[i] + eN] = Pr[V J. X;; > eN]
<1/2091/% =5

Final result:

with certainty a[i] < a[i] and
with probabllity at least 1-6, a[i]<< a[i]+¢N

14

Results

e Every item with count = ¢N is output and with
prob 1-9, each item in output has count > (¢-¢)N

e Space = 2/¢ log, 1/6 counters + log, 1/6 hash fns
Time per update = log, 1/6 hashes
(2-wise hash functions are fast and simple)

e Fast enough and lightweight enough for use Iin
network implementations

« Something novel: allows arbitrary fractional and
negative updates to counters, so more flexible

15

16

Implementations

Implementations work pretty well, better than theory
suggests: 2 or 3 hash functions suffice in practice
Running in AT&T's Gigascope, on live 2.4Gbs streams

— Each query may fire many instantiations of CM
sketch, how do they scale?

— Should sketching be done at low level (close to
NIC) or at high level (after aggregation)?

— Always allocate space for a sketch, or run exact
algorithm until count of distinct IPs is large?

17

Frequent Items with Deletion

e \When items are deleted (eg in a database relation),
finding frequent items more difficult.

e |tems from the past may become frequent,
following a deletion, so need to be able to recover
item labels.

e |Impose a (binary) tree structure on the universe,
nodes correspond to sum of counts of leaves.

e Keep a sketch for each level and search the tree for
frequent items with divide and conquer.

18

Deletions - Fine Detalls

e Other sketches could be used but CM sketch
guarantees to find all hot items, smaller space

e Binary tree costs factor of log U in update time and
space, can be improved by using tree of higher
branching factor, at cost of search time.

e Meta-question: do deletions really occur in
Network data at the packet level?

e Meta-answer: usually no. But negative values
occur when you compare streams by subtraction...

Outline

e \What's the problem?

e \What's hot and what's not?

20

. Change Detection

e Find items with big change between streams x and y
Find IP addresses with big change in traffic overnight

e "Change" could be absolute difference in counts, or
large ratio, or large variance...

« Absolute difference: find large values in a(x) - a(y)
Relative difference: find large values a(x)[i]/a(y)[i]

e CM sketch can approximate the differences, but how
to find the items without testing everything? Divide
and conquer will not work here!

Change Detection

e Use Non-Adaptive Group Testing: (randomized)
structure of CM sketch defines groups of items

e \Within each group, test for "deltoids": keep more
Information than just counts.

e Test depends on kind of deltoid being searched for,
but same structure of groups used for all.

21

Group Structure

22

Use a 2-wise hash function to divide the universe
Into 2/¢ groups, as in CM sketch

Repeat log 1/6 times to amplify probability

Keep a test for each group to determine if there is a
deltoid within it.

If there Is a deltoid in the group need to identify it,
SO also keep tests on subsets of each group.

Group Sub-Structure

23

Keep 2log U subgroups in each group based on
Hamming code

For each item i in group, include i in subgroup j if
Jth bit of 1 1s 1, else include in subgroup j'

To find deltoids, read results of tests of subgroups:
If test | Is positive, bit j = 1, test J' positive, bit j=0

If j and |’ both positive, two deltoids in same group,
reject the group (also if j and |’ both negative)

Tests

24

How to construct a test for the presence of a
deltoid?

Naively, could keep sketch for each group, but
space blows up (1/g? or worse)

For absolute change deltoids, keeping counts of
items suffices, proof similar to CM sketch

For relative change, appropriate counts also suffice,
new proof needed.

Relative Change Test

- Keep different information for each stream.
- For stream X, keep T(X)[j] = £ a®)[i] | h()) = |

= For streamy, keep T(y)[J] = Z (1/a(y)[i]) | h(i) =
= Test: iIf TOOUI*T(Y)L] = ¢ = (a(x)[1l7aly)[1])

e Test has one-sided error, will always say yes If

@(lil/aly)li)= ¢ Z (a(x)[il7a(y)[1])

25

A

26

Relative Change Test

e To bound false positives, and ensure true positives
are not obscured by noise, need to argue that each
test gives good enough estimate of (a(x)[i]7a(y)I[i])

= Error variable X; = TO)UI*T(y)U] - (aG)[il/aly)[i])
and let p = Pr[h(i) = h(j)] = 1/#groups = /2

27

lllegible Equations Slide “\

E(Xy) = E(TOQDLI*T(Y)D] - (@()lil/aly)l]))
= (@)l +albl | h() = h())*
(L/7ay)ll] + 1/a(y)bl | h() = h(1)
- (@()lil/ay)li)

< a(x)[I]*p*= 1/a(y)l] + 1/a(y)[]*p*Z a(x)[]
+ p*(Z. a)D])* (2. Laly)bl)

< pZa(x)[i])*(Z1/a(y)[)= ella)ll; [[1/aly)[]./2

Conseguences

28

Expected error is 1/2 of ¢ ||a(X)||, ||1/a(y)||,

By Markov again, constant probability that there is
error at most ¢ |[a(x)||, [|1/a(y)||, for each test,
amplify to probability 1-6 with log 1/6 tests

Can argue that if this condition is met, and € < ¢,
then will find relative change deltoid with
probability at least 1-6

With probability 1-3, every item output has change
at least ¢ X (a(x)[1]/a(y)[1]) - € [a()ll; [|1/a(y)ll,

Nuances

29

Error term is g||a(x)||, ||1/a(y)||; not X (a(x)[i]/a(y)[i])
— but the latter is not possible in small space

Requires one of the streams to be aggregated and
reformatted, to compute 1/a(y).

No problem if streams are naturally aggregated (eg
SNMP data)

Scenario: enough space to capture one stream,
then "compress” into Group Testing data structure
for later comparison and analysis with new streams

Results

e Show that with probability 1-5, all deltoids are
found, no items which are far from being deltoids

e Space is O(1/¢ log U log 1/5)
Update time is O(log U log 1/0)
Time to search is linear in the space used

e First one pass solution for absolute change deltoids,
and first result on relative change deltoids

30

Experiments

Precision of Relative Deltoids on phone data, Recall of Relative Deltoids on phone data,
phi=0.1%, delta=0.25 phi=0.1%, delta=0.25
1 _
0.8 - e —
c = — = =
& opr---— s
S | :) 0.4 G Testi
) 0.4 Group Testing 14 roup Testing
- 0.2 1 — — — — Sampling 0.2 1 — — — — Sampling
0 : : : : 0 ‘ ‘ ‘ ‘
S T T T T TS S S P NN S° S S0 S P o I S o P
S L@ L PG L LS S PSS
Q'» Q° Q° Q° Q° Q° Q° Q° Q° Q° Q° Q Q Q Q Q- Q- Q Q Q Q
Epsilon Epsilon

Reca” — fractlon Of deItOIdS found Timing Comparison for Detecting Different

Changes with Group Testing

Precision = fraction of returned B0 000 |

.] 2,000,000 -
Iitems that are deltoids 1,500,000 -
1,000,000 -

90,000 -

Full details to appear in B |
INFOCOM ‘04 s> '1(90 Q@o 096% Q‘Q%NQQ';O Q.QQQ)

plta ©

B Relative Change
@ Absolute Change
O Variance

>
S
N

F &
& S

32

lmprovements

e Can keep additional tests (CM sketches) to verify
the candidate items, reduces space for identification

e |og U factor can be painful for high speed data, can
decrease this at the cost of more space...

e Instead of reading off one bit at a time, read off
one nibble (4x speed, 4x space),
or one byte (8x speed, 32x space)

Outline

e \What's the problem?

e \What's hot and what's not?

Other Applications

These techniques can be applied to several other
fundamental stream problems:

— Range Sum Estimation

— Inner Product Estimation

— Approximate Quantiles Finding

— Hierarchical Heavy Hitters (HHH) etc.
— Wavelets and Histograms...

Pairwise independence sufficient for all

Group testing paradigm approach is fundamental

34

35

Ongoing Work

e Agenda: Move other stream algorithms from the
theoretical to the practical

e More implementations and experiments with
existing and developing work

e Other problems: eg Burst detection on text streams

e Other scenarios: Items in hierarchies, eg IP
addresses (HHH in VLDB 03, HHHH in progress)

Other Directions

e Massive geometric data — streams of points from
mobile clients. Massive Graphs — streams of edges

e Some problems can be solved by turning them into
vector style problems and using sketches etc.

e More satisfying to find new solutions. Eg, Radial

Histogram: a division space allowing approximation
of geometric aggregates, join size estimation.

36

Questions

e \Why do ghouls and demons hang out together?

e Because demons are a ghouls best friend.

37

