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Big data, big problem? 

 The big data meme has taken root 

– Organizations jumped on the bandwagon 

– Entered the public vocabulary 

 But this data is mostly about individuals  

– Individuals want privacy for their data 

– How can researchers work on sensitive data? 

 The easy answer: anonymize it and share 

 The problem: we don’t know how to do this 
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Outline 

 Why data anonymization is hard 

 Differential privacy definition and examples 

 Some snapshots of recent work 

 A handful of new directions 
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A moving example 

 NYC taxi and limousine commission released 2013 trip data 

– Contains start point, end point, timestamps, taxi id, fare, tip amount 

– 173 million trips “anonymized” to remove identifying information 

 Problem: the anonymization was easily reversed  

– Anonymization was a simple hash of the identifiers 

– Small space of ids, easy to brute-force dictionary attack 

 But so what?  

– Taxi rides aren’t sensitive? 

4 



Almost anything can be sensitive 

 Can link people to taxis and find out where they went 

– E.g. paparazzi pictures of celebrities 
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Bradley Cooper (actor) Jessica Alba (actor) 

Sleuthing by Anthony Tockar while interning at Neustar 



Finding sensitive activities 

 Find trips starting at remote, “sensitive” locations 

– E.g. Larry Flynt’s Hustler Club [an “adult entertainment venue”] 

 Can find where the venue’s customers live with high accuracy 

– “Examining one of the clusters revealed that only one of the 5 
likely drop-off addresses was inhabited; a search for that 
address revealed its resident’s name.  
In addition, by examining other drop-offs at this address, I 
found that this gentleman also frequented such establishments 
as “Rick’s Cabaret” and “Flashdancers”.  
Using websites like Spokeo and Facebook, I was also able to find 
out his property value, ethnicity, relationship status, court 
records and even a profile picture!” 

 Oops 
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We’ve heard this story before... 
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We need to solve this 
data release problem... 



Encryption is not the (whole) solution 

 Security is binary: allow access to data iff you have the key 

– Encryption is robust, reliable and widely deployed 

 Private data release comes in many shades:   
reveal some information, disallow unintended uses 

– Hard to control what may be inferred 

– Possible to combine with other data sources to breach privacy 

– Privacy technology is still maturing 

 Goals for data release: 

– Enable appropriate use of data while protecting data subjects 

– Keep CEO and CTO off front page of newspapers 

– Simplify the process as much as possible: 1-click privacy? 
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Differential Privacy (Dwork et al 06) 

A randomized algorithm K satisfies ε-differential 
privacy if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

• Can achieve differential privacy for counts by adding a random 
noise value 

• Uncertainty due to noise “hides” whether someone is present 
in the data 



Privacy with a coin toss 

Perhaps the simplest possible DP algorithm 

 Each user has a single private bit of information 

– Encoding e.g. political/sexual/religious preference, illness, etc. 

 Toss a (biased) coin 

– With probability p > ½, report the true answer 

– With probability 1-p, lie 

 Collect the responses from a large number N of users 

– Can ‘unbias’ the estimate (if we know p) of the population fraction 

– The error in the estimate is proportional to 1/√N 

 Gives differential privacy with parameter ln (p/(1-p)) 

– Works well in theory, but would anyone ever use this?  
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Privacy in practice 

 Differential privacy based on coin tossing is widely deployed 

– In Google Chrome browser, to collect browsing statistics 

– In Apple iOS and MacOS, to collect typing statistics 

– This yields deployments of over 100 million users 

 The model where users apply differential privately and then 
aggregated is known as “Local Differential Privacy” 

– The alternative is to give data to a third party to aggregate 

– The coin tossing method is known as ‘randomized response’  

 Local Differential privacy is state of the art in 2017: 
Randomized response invented in 1965: five decade lead time! 
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Going beyond 1 bit of data 

 1 bit can tell you a lot, but can we do more?  

 Recent work: materializing marginal distributions 

– Each user has d bits of data (encoding sensitive data) 

– We are interested in the distribution of combinations of attributes 
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Gender Obese High BP Smoke Disease 

Alice 1 0 0 1 0 

Bob 0 1 0 1 1 

… 

Zayn 0 0 1 0 0 

Disease/Smoke 0 1 

0 0.55 0.15 

1 0.10 0.20 

Gender/Obese 0 1 

0 0.28 0.22 

1 0.29 0.21 



Nail, meet hammer 

 Could apply Randomized Reponse to each entry of each marginal 

– To give an overall guarantee of privacy, need to change p 

– The more bits released by a user, the closer p gets to ½ (noise) 

 Need to design algorithms that minimize information per user 

 First observation: a sampling trick 

– If we release n bits of information per user, the error is n/√N 

– If we sample 1 out of n bits, the error is √(n/N) 

– Quadratically better to sample than to share! 
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What to materialize? 

Different approaches based on how information is revealed 

1. We could reveal information about all marginals of size k 

– There are (d choose k) such marginals, of size 2k each 

2. Or we could reveal information about the full distribution  

– There are 2d entries in the d-dimensional distribution 

– Then aggregate results here (obtaining additional error) 

 Still using randomized response on each entry 

– Approach 1 (marginals): cost proportional to 23k/2 dk/2/√N 

– Approach 2 (full): cost proportional to 2(d+k)/2/√N 

 If k is small (say, 2), and d is large (say 10s), Approach 1 is better 

– But there’s another approach to try… 
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Hadamard transform 

Instead of materializing the data, we can transform it 

 The Hadamard transform is the discrete  
Fourier transform for the binary hypercube 

– Very simple in practice 

 Property 1: only (d choose k) coefficients  
are needed to build any k-way marginal 

– Reduces the amount of information to release 

 Property 2: Hadamard transform is a linear transform 

– Can estimate global coefficients by sampling and averaging 

 Yields error proportional to 2k/2dk/2/√N 

– Better than both previous methods (in theory) 
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Outline of error bounds 

How to prove these error bounds? 

 Create a random variable Xi encoding the error from each user 

– Show that it is unbiased: E[Xi]=0, error is zero in expectation 

 Compute a bound for its variance, E[Xi
2] (including sampling) 

 Use appropriate inequality to bound error of sum, |∑i=1
N Xi| 

– Bernstein or Hoeffding in equalities: error like √(N/E[Xi
2]) 

– Typically, error in average of N goes as 1/√N 

 Possibly, second round of bounding error for further aggregation 

– E.g. first bound error to reconstruct full distribution, then error 
when aggregating to get a target marginal distribution 
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Empirical behaviour 

 Compare three methods: Hadamard based (Inp_HT), marginal 
materialization (Marg_PS), Expectation maximization (Inp_EM) 

 Measure sum of absolute error in materializing 2-way marginals 

 N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4 
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Applications – χ-squared test 

 Anonymized, binarized NYC taxi data 

 Compute χ-squared statistic to test correlation 

 Want to be same side of the line as the non-private value! 
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Application – building a Bayesian model 

 Aim: build the tree with highest mutual information (MI) 

 Plot shows MI on the ground truth data for evaluation purposes 
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Centralized Differential Privacy 

 There are a number of building blocks for centralized DP: 

– Geometric and Laplace mechanism for numeric functions 

– Exponential mechanism for sampling from arbitrary sets 

 Uses a user-supplied “quality function” for (input, output) pairs 

 And “cement” to glue things together: 

– Parallel and sequential composition theorems 

 With these blocks and cement, can build a lot 

– Many papers arrive from careful combination of these tools! 
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Differential privacy for data release 

 Differential privacy is an attractive model for data release 

– Achieve a fairly robust statistical guarantee over outputs 

 Problem: how to apply to data release where f(x) = x?  

 General recipe: find a model for the data  

– Choose and release the model parameters under DP 

 A new tradeoff in picking suitable models 

– Must be robust to privacy noise, as well as fit the data 

– Each parameter should depend only weakly on any input item 

– Need different models for different types of data 
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age 

Example: PrivBayes [TODS, 2017] 

 Directly materializing tabular data: low signal, high noise 

 Use a Bayesian network to approximate the full-dimensional 
distribution by lower-dimensional ones: 

 age workclass 

education title 

income 

low-dimensional distributions: high signal-to-noise 
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 STEP 1: Choose a suitable Bayesian Network BN 

       - in a differentially private way 
       - sample (via exponential mechanism) edges in the network 

       - design surrogate quality function with low sensitivity 

 STEP 2: Compute distributions implied by edges of BN 

       - straightforward to do under differential privacy (Laplace) 

 STEP 3: Generate synthetic data by sampling from the BN 

        - post-processing: no privacy issues 

 Evaluate utility of synthetic data for variety of different tasks 
 - performs well for multiple tasks (classification, regression) 

PrivBayes 
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DP Pros and Cons 

 Differential privacy is currently popular 

– Why? Easy mechanisms and composition properties, deep theory 

– Proposed as an interactive mechanism, but easy to use for release 

 Still some doubts and questions: 

– How to interpret e?  How to set a value of e? 

 My answer: let e   [let noise  0] 

– How robust is differential privacy in the wild? 

 It is possible to build an accurate classifier and make inferences 

– Sometimes the noise is just too high for utility: too much for some 

 But alternate privacy definitions have a high bar to entry... 
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Challenge: Transition ideas to practice 

 Many organizations would like academics to work on their data 
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We have some great data for your team to look at! 

Thanks, but how are you going to 
deal with privacy issues? 

It’s fine, we can get you the data  

… er, how’s the release process going? 

OK, you can work on the data so long as you get 
security clearance, a credit check, swear an oath in 

blood, and travel to our secure data centre in Aachen 
where you can access the data on a TRS-80 and… 



Conclusions 

 Private data release is a confounding problem! 

– We haven’t yet got it right consistently enough 

– The idea of “1 click privacy” is still a long way off 

 Current privacy work gives some cause for optimism 

– Statistical privacy, safety in numbers, and robust models 

 Lots of opportunity for new work:  

– Designing optimal mechanisms for local differential privacy 

– Extend beyond simple counts and marginals 

– Structured data: graphs, movement patterns 

– Unstructured data: text, images, video? 
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