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Outline

♦ Anonymization and Privacy models

♦ Non-uniformity of data

♦ Optimizing linear queries

♦ Predictability in data
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The anonymization scenario
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Data-driven privacy

♦ Much interest in private data release

– Practical: release of AOL, Netflix data etc.

– Research: hundreds of papers

♦ In practice, many data-driven concerns arise:

– Efficiency / practicality of algorithms as data scales– Efficiency / practicality of algorithms as data scales

– How to interpret privacy guarantees

– Handling of common data features, e.g. sparsity

– Ability to optimize for known query workload

– Usability of output for general processing

♦ This talk: outline some efforts to address these issues
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Differential Privacy [Dwork 06]

♦ Principle: released info reveals little about any individual

– Even if adversary knows (almost) everything about everyone else!

♦ Thus, individuals should be secure about contributing their data

– What is learnt about them is about the same either way

♦ Much work on providing differential privacy♦ Much work on providing differential privacy

– Simple recipe for some data types e.g. numeric answers

– Simple rules allow us to reason about composition of results

– More complex for arbitrary data (exponential mechanism)

♦ Adopted and used by several organizations:

– US Census, Common Data Project, Facebook (?)



Differential Privacy

The output distribution of a differentially private algorithm 

changes very little whether or not any individual’s data is 

included in the input – so you should contribute your data

A randomized algorithm K satisfies ε-differential privacy if:

Given any pair of neighboring data sets, 

D1 and D2, and S in Range(K):

Pr[K(D1) = S]  ≤  eε Pr[K(D2) = S] 



Achieving ε-Differential Privacy

(Global) Sensitivity of publishing:

s = maxx,x’ |F(x) – F(x’)|, x, x’ differ by 1 individual

E.g., count individuals satisfying property P: one individual 

changing info affects answer by at most 1; hence s = 1

For every value that is output:For every value that is output:

� Add Laplacian noise, Lap(ε/s):

� Or Geometric noise for discrete case: 

Simple rules for composition of differentially private outputs:

Given output O1 that is ε1 private and O2 that is ε2 private

� (Sequential composition) If inputs overlap, result is ε1 + ε2 private

� (Parallel composition) If inputs disjoint, result is max(ε1, ε2) private
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Sparse Spatial Data [ICDE 2012]

♦ Consider location data of many individuals

– Some dense areas (towns and cities), some sparse (rural)

♦ Applying DP naively simply generates noise

– lay down a fine grid, signal overwhelmed by noise

♦ Instead: compact regions with sufficient number of points♦ Instead: compact regions with sufficient number of points
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Private Spatial decompositions

♦ Build: adapt existing methods to have differential privacy

♦ Release: a private description of data distribution 

(in the form of bounding boxes and noisy counts)

quadtree kd-tree
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Building a Private kd-tree

♦ Process to build a private kd-tree

� Input: maximum height h, minimum leaf size L, data set

� Choose dimension to split

� Get (private) median in this dimension

� Create child nodes and add noise to the counts� Create child nodes and add noise to the counts

� Recurse until:

� Max height is reached

� Noisy count of this node less than L

� Budget along the root-leaf path has used up

♦ The entire PSD satisfies DP by the composition property
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Building PSDs – privacy budget allocation

♦ Data owner specifies a total budget reflecting the level of 

anonymization desired

♦ Budget is split between medians and counts

– Tradeoff accuracy of division with accuracy of counts

♦ Budget is split across levels of the tree♦ Budget is split across levels of the tree

– Privacy budget used along any root-leaf path should total ε

Sequential 

composition

Parallel composition

12



Privacy budget allocation

♦ How to set an ε
i
for each level?

– Compute the number of nodes touched by a ‘typical’ query

– Minimize variance of such queries

– Optimization: min ∑i 2
h-i / εi2 s.t. ∑i εi = ε

– Solved by εi ∝ (2(h-i))1/3ε : more to leaves– Solved by εi ∝ (2(h-i))1/3ε : more to leaves

– Total error (variance) goes as 2h/ε2

♦ Tradeoff between noise error and spatial uncertainty

– Reducing h drops the noise error

– But lower h increases the size of leaves, more uncertainty
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Post-processing of noisy counts

♦ Can do additional post-processing of the noisy counts

– To improve query accuracy and achieve consistency

♦ Intuition: we have count estimate for a node and for its children

– Combine these independent estimates to get better accuracy

– Make consistent with some true set of leaf counts– Make consistent with some true set of leaf counts

♦ Formulate as a linear system in n unknowns

– Avoid explicitly solving the system

– Expresses optimal estimate for node v in terms of estimates of 

ancestors and noisy counts in subtree of v

– Use the tree-structure to solve in three passes over the tree

– Linear time to find optimal, consistent estimates



Experimental study

♦ 1.63 million coordinates from US TIGER/Line dataset

– Road intersections of US States

♦ Queries of different shapes, e.g. square, skinny

♦ Measured median relative error of 600 queries for each shape
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Experimental study

♦ Effectiveness of geometric budget and post-processing

– Relative error reduced by up to an order of magnitude

– Most effective when limited privacy budget
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Optimizing Linear Queries [ICDE 2013]

♦ Linear queries capture many common cases for data release

– Data is represented as a vector x

– Want to release answers to linear combinations of entries of x

– E.g. contingency tables in statistics

– Model queries as matrix Q, want to know y=Qx– Model queries as matrix Q, want to know y=Qx
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Answering Linear Queries

♦ Basic approach:

– Answer each query in Q directly, and add uniform noise

♦ Basic approach is suboptimal

– Especially when some queries overlap and others are disjoint

♦ Several opportunities for optimization:♦ Several opportunities for optimization:

– Can assign different scales of noise to different queries

– Can combine results to improve accuracy

– Can ask different queries, and recombine to answer Q
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The Strategy/Recovery Approach

♦ Pick a strategy matrix S

– Compute z = Sx + v

– Find R so that Q = RS

– Return y = Rz = Qx + Rv as the set of answers

noise vector

strategy on data

– Return y = Rz = Qx + Rv as the set of answers

– Measure accuracy based on var(y) = var(Rv)

♦ Common strategies used in prior work:
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I: Identity Matrix C: Selected Marginals

Q: Query Matrix H: Haar Wavelets

F: Fourier Matrix P: Random projections



Step 1: Error Minimization

♦ Given Q, R, S, ε want to find a set of values {ε
i
}

– Noise vector v has noise in entry i with variance 1/εi
2

♦ Yields an optimization problem of the form:

– Minimize ∑i bi / εi2 (minimize variance)

– Subject to∑i |Si,j| εi ≤ ε (guarantee ε differential privacy)– Subject to∑i |Si,j| εi ≤ ε (guarantee ε differential privacy)

♦ The optimization is convex, can solve via interior point methods

– Costly when S is large

– We seek an efficient closed form for common strategies
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Grouping Approach

♦ We observe that many strategies S can be broken into groups 

that behave in a symmetrical way

– Rows in a group are disjoint (have zero inner product)

– Non-zero values in group i have same magnitude Ci

♦ All common strategies meet this grouping condition♦ All common strategies meet this grouping condition

– Identity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H)

♦ Simplifies the optimization:

– A single constraint over the εi’s

– New constraint: ∑Groups i Ci εi = ε
– Closed form solution via Lagrangian
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Step 2: Optimal Recovery Matrix

♦ Given Q, S, {ε
i
}, find R so that Q=RS

– Minimize the variance Var(Rz) = Var(RSx + Rv) = Var(Rv)

♦ Find an optimal solution by adapting Least Squares method

♦ This finds x’ as an estimate of x given z = Sx + v

– Define Σ = Cov(z) = diag(2/ε 2) and U = Σ-1/2 S– Define Σ = Cov(z) = diag(2/εi
2) and U = Σ-1/2 S

– OLS solution is x’ = (UT U)-1 UT Σ-1/2 z

♦ Then R = Q(ST Σ-1 S)-1 ST Σ-1

♦ Result: y = Rz = Qx’ is consistent—corresponds to queries on x’

– R minimizes the variance

– Special case: S is orthonormal basis (ST = S-1) then R=QST
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Overall Process

♦ Ideal version: given query matrix Q, compute strategy S, 

recovery R and noise budget {ε
i
} to minimize Var(y)

– Not practical: sets up a rank-constrained SDP

– Follow the 2-step process instead

♦ Given query matrix Q decomposed into Q=(RS), compute ♦ Given query matrix Q decomposed into Q=(RS), compute 

optimal noise budgets {ε
i
} to minimize Var(y) (Step 1)

♦ Given query matrix Q, strategy S and noise budgets {ε
i
}, 

compute new recovery matrix R to minimize Var(y) (Step 2)

♦ Fairly fast (matrix multiplications and inversions)

– Faster when S is e.g. Fourier, since can use FFT
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Experimental Study

♦ Used two real data sets:

– ADULT data – census data on 32K individuals

– NLTCS data– binary data on 21K individuals

♦ Tried a variety of query workloads Q over these

– Based on low-degree k-way marginals– Based on low-degree k-way marginals

♦ Compared the original and optimized strategies for:

– Original queries, Q / Q+

– Fourier strategy F/F+ [Barak et al. 07]

– Clustered sets of marginals C/C+ [Bing et al. 11]

– Identity basis I
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Experimental Results

ADULT, 1- and 2-way marginals NLTCS, 2- and 3-way marginals

♦ Optimized error gives constant factor improvement

♦ Time cost for the optimization is negligible on this data
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Revisiting the privacy definition [KDD 2011]

♦ Differential privacy guarantees that what I learn about an 

individual from the released data is about the same whether 

or not they are in the data

♦ So I can’t learn much about an individual from the released 

data, right?data, right?

♦ WRONG!

– Will show how differentially private output can still allow us to 

draw accurate conclusions about individuals



Use Machine Learning to Perform Inference

♦ Key idea: build an accurate classifier under DP

♦ Data model: target (“sensitive”) attribute s ∈ SA

– Think disease status, salary band, etc.

♦ “Observable” attributes t
1
, t

2
… t

m

– Think age, gender, postal code, height etc.– Think age, gender, postal code, height etc.

♦ Goal: build a classifier that given (t
1
, t

2
, … t

m
)
i
predicts s

i

– An accurate classifier reveals the private information

Classifier Noisy statistics
Observations of 

an individual t

Prediction s



Building the Classifier

♦ Build a naïve Bayes classifier for s:

– Prediction is s’ = arg maxs ∈ SA Pr[s] Πj=1
m Pr[ti | s]

♦ Parameters are the marginal distributions 

Pr [t
i
|s] = Pr[t

i
∩s]/Pr[s] ≈ |{r∈T : r

i
= t

i
∩r

s
= s}|/|{ r∈T : r

s
=s}|

i i i i s s

♦ Just need the counts ∀s∈SA, i, v ∈ T
i
|{r ∈ T : t

i
= v ∩ r

s
= s}|

– Can obtain “noisy” versions of these under differential privacy

– Noise is small compared to most counts

♦ Minor corrections: add 1 to counts (Laplacian correction), 

round up to 1 if negative due to noise



Experimental Study

occupation income

♦ Tested accuracy of predicting

– ‘occupation’ (14 options) in UCI Adult data

– ‘income’ (9 options) in UCI Internet-usage data 

♦ Clear improvement in accuracy over baseline methods

– E.g. just predict most common attribute value



High Confidence Results

incomeoccupation

♦ When restricting to high-confidence predictions 

(~ 10% of the data), accuracy is yet higher 



Discussion

♦ Why does this work?

– The classifier is based on correlations between the observable 

attributes and the target attribute

– These are population statistics: they arise from the coarse 

behavior of the whole population

– One individual has almost no influence on them

– More directly, the noise added to mask an individual does not 

substantially change them until the noise is very large

♦ Differential privacy is behaving as advertised

– What we learn about the individual really is the same whether 

they are there or not



Enabling Disclosure

♦ Should we be worried? Correlations are inherent in the data?

– An ‘attacker’ might never be able to collect such data

– But almost ‘for free’ they can use released “privatized” statistics  

and potentially compromise an individual’s privacy

♦ “If the release of the statistic S makes it possible to determine ♦ “If the release of the statistic S makes it possible to determine 

the (microdata) value more accurately than without access to 

S, a disclosure has taken place” – T. Dalenius, 1977

– DP does not prevent disclosure, even when the attacker has no 

other information

– Attempts to remove correlation in data may destroy utility!

– Urges caution when releasing data under any privacy definition



Concluding Remarks

♦ Differential privacy can be applied effectively for data release

♦ Care is still needed to ensure that release is allowable

– Can’t just apply DP and forget it: must analyze whether data 

release provides sufficient privacy for data subjects

♦ Many open problems remain:♦ Many open problems remain:

– Transition these techniques to tools for data release

– Want data in same form as input: private synthetic data?

– Allow joining anonymized data sets accurately

– Obtain alternate (workable) privacy definitions
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Thank you!


