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“Miss Hepburn runs the gamut of emotions from A to B”

Dorothy Parker, 1933



Permutations and Strings

Strings
Web pages, email messages, PS/PDF files, books, letters,
lecture notes… strings are ubiquitous
Sequences of n characters from an alphabet of size Σ

Permutations
Arrangement of n objects is modelled by a permutation
eg arrangement of chromosomes on a gene
Foundational combinatorial objects
A sequence of n integers 1… n, each appears once



Editing Distances

We consider a broad class of metrics on sequences
(Permutations and Strings):

Editing distances — define a set of permitted unit cost
editing operations.  Model this as a graph where
vertices are sequences, edges link unit cost edits

Given two objects A and B, d(A,B) = shortest path in the
graph between nodes A and B

Clearly a metric. Usually, the graph will be connected.



Particular Metrics

We will consider each particular metric in turn

Many different metrics of interest on Strings and
Permutations, most can be classed as editing distances.

Examples:

• Hamming distance on Strings (Communication Theory)

• Edit distance on Strings (Text Mining, Comp Bio)

• Inversion and Transposition Distance on Permutations
(Comp Bio)



Problems on Editing Metrics
Many natural questions are parametrised by the metric in

question.
• “Geometric” questions: approximate nearest neighbors,

furthest neighbors, clustering, data mining
• Approximate Pattern Matching: find the subsequence of a

long sequence that best matches a pattern sequence
• Compact representation: make a sketch of the sequence

so that d(A,B) can be approximated using sketch(A),
sketch(B) — allows efficient communication etc.

We don’t want to solve problems afresh for every metric!



Embedding Approach
Given a metric d, embed into a known space,  solve the
problems in the target space: gives an (approximate)
solution to the problem in the original space.

Low dimension vectors

sketching

Geometric Algorithms

existing methods

approximate embedding

Distance of interest d

Vector space (polynomial dimension)

Other applications



Goals to strive for
• Embed into low dimensional space
• Embed into well-known metric (L1, L2 or Hamming space)
• Low distortion embedding
• Embedding is easy to compute (time polynomial in n)
• Embedding can be computed in restricted model,

especially streaming model
We will often be able to achieve several of these
These are the first results on these problems, drawing on

techniques from geometry, parallel, string matching,
information theory, graph theory, comp bio, databases.



Contrast to other methods
Bourgain-style embeddings: take n items in a metric space

and embed into Euclidean space with O(log n) distortion

We have sequences of length n: Σn strings of length n.

Bourgain embedding would give distortion O(n) - much
too large!

Explicit representation of the metric requires O(Σn) space.

 We give embeddings that are computable for a sequence
based only on that sequence by making observations
about the combinatorial structure of the metric.



Permutations

“A, B, C
It’s as easy as 1, 2, 3
As simple as do re mi
A, B, C, 1, 2, 3,
Baby you and me”

The Jackson Five, 1970

Results from Cormode Muthukrishnan Sahinalp 2001



Toy Example
“Swap distance” between permutations of length n: edit

operation is to swap two adjacent items.
123

213132

312 231

321

Example
A = 123 
B = 321  
d(A,B) = 3

As the size of the permutation grows, the metric
becomes less trivial.  The distance corresponds to
the number of exchanges in a bubblesort.



Combinatorial Structure
We observe that:
• Every swap in an optimal sequence ‘fixes’ a pair that

occur one way round in A and the other way round in B
• No other swaps are necessary
• Therefore, swap distance is exactly the number of pairs

which occur in different orientations
We can encode the relative ordering of each pair (i,j)

occurring in A in a matrix S(A) with O(n2) entries:
Put 1 in location (i,j) if i occurs before j in the permutation,

and put 0 otherwise.



Embedding to Euclidean Space

Straightforward to see that ||S(A) - S(B)||2 = d(A,B)

Therefore, any algorithm to solve a problem in Euclidean
space can be applied to swap distance by using this
transform.

Pros: non-distortive embedding (rare for nontrivial egs)

Cons: bit array of size O(n2) instead of a permutation of n
integers.  Can reduce to O(log n) bits in Euclidean space
using dimensionality reduction techniques.

Most other embeddings will be approximate...



Transposition Distance
Transposition Distance between permutations:

1 3 5 6 8 4 2 7 1 3 4 2 5 6 8 7

The minimum number of transpositions needed to turn
A into B is their Transposition Distance, t(A,B).

• Extend every permutation so that the first element
is 0, the last is n+1
• Count the number of “transposition breakpoints”:
when j immediately follows i in B but not in A

A: 0 3 6 5 1 2 4 7      B: 0 5 1 2 3 6 4 7



Approximating
Transposition Distance

The number of Transposition Breakpoints gives a
3-approximation for the Transposition Distance

• Any transposition can remove at most 3 transposition
breakpoints (because only 3 adjacencies change)

• Can remove at least one breakpoint per transposition

B: 0 B1 … Bi Bi+1 … … … Bn n+1

A: 0 B1 … Bi Aj … Bi+1 … An n+1

Therefore, the true transposition distance is at most the
no. of breakpoints, and at least 1/3 the no. of breakpoints



Embedding to Euclidean Space
Embed into Euclidean space: Build a binary matrix T(A)

so that T(A)[i,j] = 1 if j immediately follows i in A
and T(A)[i,j] = 0 otherwise

Each breakpoint between A and B corresponds to a
place where T(A) = 1 and T(B) = 0, and vice-versa.

The Euclidean distance of these matrices leads to a
3-approximation for the Transposition distance.

Improve to 9/4 approx using Walter Dias Meidanis 00

Although O(n2) bits, only O(n) are 1 so process in linear
time by ignoring zero entries.  Can compute on stream.



Permutation Edit Distance
Permutation Edit Distance, e(P,Q) (the Ulam Metric)
Permitted operation is to move a single symbol at a time 

1 3 4 2 3 4 1 2

e(P,Q) = n - LCS(P,Q). Very important foundational problem.

Classical String Edit distance is strongly related to this: edit
distance of two strings is n - Longest Common Subsequence

This problem is more restricted, gives insights into string edits



Embedding Ulam Metric

123

231 312

213 132

321

For n = 3:

E(123) = [0,0,0,0]
E(132) = [0,0,1,1]
E(213) = [1,0,0,1]
E(231) = [1,1,0,0]
E(312) = [0,1,1,0]
E(321) = [1,1,1,1]

||E(A) - E(B)||2 = 2e(A,B)

A non-distortive embedding!  What about n=4?
Arbitrary n?



Embedding into Intersection
Define:
A(P)[i,j] = 1 if i occurs exactly 2k before j in P (for some k)
A(P)[i,j] = 0 otherwise

B(Q)[i,j] = 1 if j occurs before i in Q
B(Q)[i,j] = 0 otherwise

Intersection Size between two bit vectors, X and Y
I(X,Y) = number of places where X and Y are both 1

Claim: e(P,Q) ≤ I(A(P),B(Q)) ≤ log n ∙ e(P,Q)

That is, the intersection size of A(P) and B(Q) is a
log n-approximation for Permutation Edit Distance



Example of Permutation Edit
P =  5   2   3   4   1   7   6   8 
Q = 5   8   3   1   2   7   6   4

What does I(A(P),B(Q)) tell us?
— that we should count one for every pair i,j  where
i occurs 2k before j in P but other way round in Q.

P =  5   2   3   4   1   7   6   8 

Here, I(A(P),B(Q)) = 6,  e(P,Q) = 3,  log n = 3 so 
e(P,Q) ≤ I(A(P),B(Q)) ≤ log n ∙ e(P,Q)

Each “intersecting” pair means one of them must be moved.

Mark on P which pairs contribute to I(A(P),B(Q)):



Upper bound
I(A(P),B(Q)) ≤ log n e(P,Q)

Suppose one move picks up j and puts it in a new place.
There are at most log n i’s for which A(P)[i,j] = 1
Hence I(A(P),B(Q)) changes by at most log n for any move.

When we have finished, we have made Q, and
I(A(Q),B(Q))=0
So overall, we have to reduce I(A(P),B(Q)) to zero
It can reduce by at most log n per move
So log n × e(P,Q) must be at least I(A(P),B(Q)). 



Lower bound
e(P,Q) ≤ I(A(P),B(Q))

Notionally relabel Q so it is 1 … n, and apply relabelling to P 
Q = 5   8  3   1  2   7  6  4 P = 5   2  3  4   1  7  6  8
         ↓   ↓  ↓   ↓   ↓  ↓   ↓  ↓          ↓  ↓   ↓  ↓   ↓  ↓  ↓  ↓
Q'= 1  2  3  4  5  6  7  8  P' = 1 5  3  8  4  6 7  2

To transform P' into Q', have to move everything that is 
not in a Longest Increasing Subsequence (LIS).
So e(P,Q) = e(P',Q') = n - LIS(P')

Also note that I(A(P'),B(Q')) counts one for each pair in P'
where P'[i] > P'[i + 2k] for some k.



Lower bound

Consider only the adjacent items: 1  5  3  8  4  6  7  2
Count the number of “breaks” as b(P') — here, b(P') = 3

Split P' two interleaved parts: P'odd = 1     3     4      7
P'even =    5     8      6      2

Try extending LIS of P'odd to be an increasing sequence of P'.
Betwen 2 consecutive members of LIS(P'odd), either we can
include a member of P'even, or else there is a failed comparison.

This results in an Increasing Subsequence, whose length 
is at most LIS(P'), by definition.

So LIS(P') ≥ LIS(P'odd) + (LIS(P'odd) - b(P'))



Lower bound
So  LIS(P') ≥ 2 LIS(P'odd) - b(P')
Symmetrically LIS(P') ≥ 2 LIS(P'even) - b(P')
Sum and halve these LIS(P') ≥ LIS(P'even) + LIS(P'odd) - b(P') *

Now split P'even and P'odd into odd and even halves, repeat
the argument… keep going until sequences are unit length.
The LIS of a unit length sequence is trivially 1.

Substitute back into *:
LIS(P') ≥ 1 + 1 + … + 1 - b(P') - b(P'even) - b(P'odd) - ...{ {= n = -I(A(P'),B(Q'))

Hence I(A(P),B(Q)) ≥ n - LIS(P') = e(P',Q') = e(P,Q)



Consequences
Permutation Edit Distance can be approximated by
comparing independent binary matrices.

Intersection size is not a metric space, and it is harder to
deal with than Euclidean space.
But the weight of these matrices is fixed, |A(P)| = n log n
and one is much smaller than the other |B(Q)| = n2/2
So can approximate |A(P) ∩ B(Q)| with

n2/2 |A(P) ∩ B(Q)| / |A(P) ∪ B(Q)|
Can find eg Approx Furthest Neighbors under this measure
after preprocessing, adapting results of Indyk-Motwani 98.



Strings
Initial ideas in Cormode Paterson Sahinalp Vishkin 00
Developed in Muthukrishnan Sahinalp 00
Extended in Cormode Muthukrishnan 02

“Bypasses are devices which allow some people to drive from point A to
point B very fast while people dash from point B to point A very fast.
People living at point C, being a point directly in between, are often given
to wonder what’s so great about point A that so many people of point B
are so keen to get there, and  what’s so great about point B that so many
people of point A are so keen to get there.  They often wish that people
would just once and for all work out where the hell they wanted to be.”

Douglas Adams, 1979



q-grams

Embedding ideas have been used in strings for a while…
not always deliberately!

q-grams: A q-gram is just a substring of length q

The q-gram representation of a string A is the histogram
of q-grams of that string.  Call this Fq(A).

We can then look at ||Fq(A) - Fq(B)||1 as a measure of
string distance (Ukkonen 92).

But : Fq(A) = Fq(B) does not mean A = B, so not a metric

Still a good heuristic, often used in database applications.



Other Failed Ideas

We want to take same approach to strings as permutations

Look for Combinatorial features that capture edit distances

Presence / Frequency of substrings: q-grams don’t work.

Try a binary tree structure: but a single character insert
changes the substring set completely

Try all substrings of length 2i: edits still have too much
effect on the set

So we will need something more sophisticated



Same idea,
different substrings...

Now describe a method that uses the same underlying idea:
represent a string by a histogram of substrings so that L1
difference of histograms approximates an editing distance.

Difference is that we obtain a guaranteed distortion
embedding, poly-log in max length of string.

The embedding is fairly efficient to compute, based on
parsing derived from deterministic coin tossing

Same ideas used in string matching by Sahinalp Vishkin 96,
Mehlhorn Sundar Uhrig 97, Alstrup Brodal Rauhe 00.



String Edit Distance
with Moves

We will study the string edit distance with moves:

d(A,B)= smallest no. of editing operations to turn A into B
• insert a character
• delete a character
• replace a character
• move a substring

Substring moves are relevant to many situations, eg
Computational Biology, Text Editing, Web Page updates etc.

We embed with a distortive factor of O(log n log*n)



Overview of Structure
We will build a 2-3 tree on the string

Each node corresponds to a substring that we will store in
a histogram

Iterative procedure: parse the string into pairs and triples
to make the nodes at the next level, then repeat on
shorter string

Parsing has several parts:
• isolate simple patterns
• alphabet reduction on remainder
• mark certain features
• use these to divide into pairs and triples



Parsing for the Embedding
Embedding is based on parsing strings in a deterministic way

We parse the strings in a way so that edit operations have
only a limited effect on the parsing — this will allow us to
make the approximation.

Find ‘landmarks’ in the string based only on their locality.

• Repetitions (aaa) are easily identifiable landmarks

• Local maxima are good landmarks in varying sequences,
but may be far apart — so reduce the alphabet to ensure
landmarks occur often enough.

So: Isolate repetitions, leave substrings with no repeats.



Alphabet Reduction
Write each character as a bitstring ie a = 00000, b = 00001

Reduce the alphabet.  For each character, find a new
label as:

Smallest bit location where it differs from its left
neighbor + Bit value there

Char    b     d     a
Binary 00001 00011 00000
Location    -   001   000
Label    -   0011   0000

e.g.



Alphabet Reduction

If starting alphabet is Σ, new alphabet has 2 log |Σ| values

Repeat the procedure on the string iteratively until the
alphabet is size 6, Σ` = {0,1,2,3,4,5}

Then reduce from 6 to 3, ensuring no adjacent pair are
identical (first remove all 5s, then all 4s, then all 3s)

Properties of the final labels:
• Final alphabet is {0,1,2}
• No adjacent pair is identical
• Takes log* |Σ| iterations
• Each label depends on O(log* |Σ|) characters to left



Marking characters

Consider the final labels, and mark certain characters:
• Mark labels that are local maxima (greater than left & right)
• Also mark any local minima not adjacent to a marked char

Clearly, no two adjacent characters are marked.
Also, marked labels are separated by at most two labels

Text   c   a   b   a   g   e   f   a   c   e   d

Labels   - 010 001 000 011 010 001 000 011 010 011

Final   -   2   1   0 3  1   2   1   0 3  1   2 3  0



Group into pairs and triples
Now, whole string can be arranged into pairs and triples:
• For repeats, parse in a regular way

aaaaaaa → (aaa)(aa)(aa)
• For varying substrings, use alphabet reduction, define
pairs and triples based on the marked characters.

Text   c   a   b   a   g   e   f   a   c   e   d

Final -   2   1   0   1   2   1   0   1   2   0

Parsing of each character depends on log*n + c neighborhood

Relabel each pair or triple — do this deterministically, building
a dictionary of labels using Karp-Miller-Rosenberg labelling.



Build Hierarchical Structure
Given new labels, repeat the process… this builds a 2-3 tree

B A B B A G E _ D E B A G G E D _ A _ D E A F _ C A B B A G E _ D E B A

 3  12    2    16  21    8  7   20  16   10 14   6  12   2     16  21

17         13        7       5        10       20           13

23                   15                    3

10

Can be constructed in time O(n log*n)

Level 0

Level 1

Level 2

Level 3

Level 4



Vector Representation
From the structure, derive vector representation V
recording occurrence frequency of each (level, label) pair:

(0,a) (0,b) (0,c) (0,d) (0,e) (0,f) (0,g) (0,_)

   8    7    1    4    6    1    4    5

(1,2) (1,3) (1,6) (1,7) (1,8) (1,10) (1,12) (1,14) (1,16) (1,20)  (1,21)

   2    1    1    1    1     1     2     1     3     1     2

(2,5) (2,7) (2,10) (2,13) (2,17) (2,20) (3,3) (3,15) (3,23) (4,10)

   1    1     1     2     1     1    1     1     1     1

Theorem: ½d(A,B) ≤ || V(A) - V(B) ||1 ≤ O(log n log*n) d(A,B)



Upper bound
|| V(A) - V(B) ||1 ≤ O(log n log* n) d(A,B)

Consider the effect of each permitted edit operation:

• Insert / change / delete a character:
  Fairly straightforward, at most log* n nodes can
change per level

• Move a substring:
  Within the substring, there are no changes.
  At fringes, only O(log* n) nodes change per level

As each operation changes V by O(log n log* n), so
||V(A) - V(B)||1 / O(log n log* n) ≤ d(A,B)

Hence the bound holds.



Lower bound
A constructive proof: we give an algorithm to transform
A into B using at most 2||V(A) - V(B)||1 operations.

Be sure to keep hold of large pieces of the string that are
common to both, so ‘protect’ enough pieces of A that are
needed in B, and avoid changing these.

Then we will go through level by level to turn A into B:
• At the bottom, add or remove characters as needed.
• For each subsequent level, proceed inductively:

 Assume we have enough nodes of the level below.
Then to make any node only need to move at most
2 nodes from the level below.



Extensions to this method
• Can allow the editing distance to include copy
substring operations by keeping the same parsing but
embedding into Hamming distance instead of L1!

• Can add other operations with some extra technology
(linear scaling, substring reversals etc.)

• Can compute the embedding in the streaming model
(feeding into a streaming algorithm for L1 eg Indyk 00)

Open question: what are other applications for this
structure outside embedding — new kinds of wavelets?



Questions

Why do string metrics seem to require so much more
effort than permutations?  Are there “neater”
embeddings?

Can the distortion factors be improved?  To O(log n)?
To O(1)?  To 1 + ε ?

Can we extend to non-editing metrics eg with
weighted operation costs instead of unit costs?

What about other combinatorial object distances:
between trees, graphs, restricted classes of graphs?



String Edit Distance
There are very few results on embedding string distances
— no other work on the subject, plenty of open problems.

My open question for several years now:

Is there a computable embedding of unit cost edit distance
(insert / delete characters only) into another metric space?

Related results in Cormode Paterson Sahinalp Vishkin 00,
some recent progress by Indyk and Sahinalp.

Permutation Edit Distance (Ulam Metric) is strongly
related, but only limited results there.


