
Computing the
Entropy of a Stream

To appear in SODA 2007

Graham Cormode
graham@research.att.com

Amit Chakrabarti

Dartmouth College

Andrew McGregor

U. Penn / UCSD

2

Outline

� Introduction

� Entropy Upper Bound

� Lower Bounds and Higher Orders

� Random Walks on Graphs

3

Bertinoro

4

McGregor

5

Chakrabarti

6

Entropy

7

A simple problem…?

� Given a long sequence of characters

S = <a1, a2, a3… am> each aj ∈ {1… n}

� Let fi = frequency of i in the sequence

� Compute the empirical entropy:

H(S) = - ∑i fi/m log fi/m = - ∑i pi log pi

� Example: S = < a, b, a, b, c, a, d, a>

– pa = 1/2, pb = 1/4, pc = 1/8, pd = 1/8

– H(S) = ½ + 1/4.2 + 1/8.3 + 1/8.3 = 7/4

8

Challenge

� Goal: approximate H(S) in space sublinear
(poly-log) in m (stream length), n (alphabet size)

– (ε,δ) approx: answer is (1±ε)H(S) w/prob 1-δ

� Easy if we have O(n) space: compute each fi exactly

� More challenging if n is huge, m is huge, and we have

only one pass over the input in order

– (The data stream model)

9

Motivation

� Entropy promoted for anomaly detection in networks

� If entropy (surrogate for distribution) suddenly changes,

suspect anomaly

� More subtle than “heavy hitters” approach

� Approaches to computing entropy so far

– Exact exhaustive computation

– Heuristic: using compression size as surrogate for entropy

� In general, dimensionality and data are large (232, 264…)

10

Prior Work

� Guha, McGregor, Venkatasubramanian 2006

– Gave O(1/H(S)1/ε2log 1/δ) space algorithm, amongst others

� Chakrabarti, Do Ba, Muthukrishnan 2006

– Gave O(m2α polylog) space for 1/α approximation

– (ε,δ) approximation in O(m2/3 polylog)

� Lall, Sekar, Ogihara, Xu, Zhang 2006

– Partially heuristic approach, estimating a related quantity

� Bhuvanagiri, Ganguly 2006

– O(1/ε3 log5 m) space algorithm (allows “deletions”)

11

Basic Idea (via AMS)

� Simple estimator:

– Randomly sample a position j in the stream

– Count how many times aj appears subsequently = r

– Output X = -(r log r/m – (r-1) log(r-1)/m)

� Claim: E[X] = H(S)

– Proof: prob of picking j = 1/m, sum telescopes correctly

� Var[X] = O(log2 m)

– Can be proven by bounding |X| � log m

12

Analysis of Basic Estimator

� To get a good estimate, try to apply Chebyshev bounds

� Depends critically on ratio Var[X]/E2[X] = O(log2m/H2(S))

� Problem: what happens when H(S) is very small?

� Space needed for an accurate approx goes as 1/H2!

13

Low Entropy

� But... what does a low entropy stream look like?

– aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaa

� Very boring most of the time, we are only rarely surprised

� Can there be two frequent items?

– aabababababababaababababbababababababa

– No! That’s high entropy (≈ 1 bit / character)

� Only way to get H(S) =o(1) is to have only one character

with pi close to 1

14

Removing the boring guy

� Write entropy as

– -pa log pa + (1-pa) H(S’)

– Where S’ = stream S with all ‘a’s removed

� Can show:

– Doesn’t matter if H(S’) is small: as pa is large, additive

error on H(S’) ensures relative error on (1-pa)H(S’)

– Relative error (1-pa) on pa gives relative error on pa log pa

– Summing both (positive) terms gives relative error overall

15

Finding the boring guy

� Ejecting a is easy if we know in advance what it is

– Can then compute pa exactly

� Can find online deterministically

– Assume pa > 2/3 (if not, H(S) > 0.9, and original alg works)

– Run a ‘heavy hitters’ algorithm on the stream

– Modify analysis, find a and pa ± ε (1-pa)

� But... how to also compute H(S’) simultaneously if we
don’t know a from the start... do we need two passes?

16

Always have a back up plan...

� Idea: keep two samples to build our estimator

– If at the end one of our samples is ‘a’, use the other

– How to do this and ensure uniform sampling?

� Base on ‘min-wise sampling’:

– For each token in the stream, pick a random label in the

range [0...1]

– Keep the token which has the smallest label

– Each token has uniform probability of being picked

17

Sampling One Token

AAARepeats:

0
.2

0
2

0
.6

2
7

0
.1

7
3

0
.5

4
9

0
.2

2
8

0
.3

6
6

0
.0

8
2

0
.7

7
0

0
.1

9
1

0
.2

1
7

0
.8

1
5

0
.4

0
8

Tags:

ABACDBABBAACStream:

min tag

� Assign random tag ∈ [0,1] for each token

� Choose token with min tag (= uniform random choice)

� Implementation: keep track of
(min tag, corresponding token, number of repeats)

18

Back up sampling

� If at the end of the stream the sampled character = ‘a’,
we want to sample from the stream ignoring all ‘a’s

� This is just “the character achieving the smallest label
distinct from the one that achieves the smallest label”

� Can track information to do this in a single pass,

constant space

19

Sampling Two Tokens

Repeats:

0
.6

2
7

0
.5

4
9

0
.2

2
8

0
.3

6
6

0
.7

7
0

0
.1

9
1

0
.4

0
8

Tags:

BCDBBB

AAA

0
.2

0
2

0
.1

7
3

0
.0

8
2

0
.2

1
7

0
.8

1
5

AAAAACStream:

min tag

� Assign tags, choose first token as before

� Delete all occurrences of first token

� Choose token with min remaining tag; count repeats
� Implementation: keep track of two triples

(min tag, corresponding token, number of repeats)

second smallest
tag, but we don’t

want this; same
token as min tag!

min tag amongst
remaining tokens

BBBB

20

Putting it all together

� Can combine all these pieces

� Build an estimator based on tracking this information,

deciding whether there is a boring guy or not

� A slightly fiddly Chernoff bounds argument improves

number of repetitions of estimator from O(ε-2Var[X]/E2[X])

to O(ε-2Range[X]/E[X]) = O(ε-2 log m)

� In space O(ε-2 log m log 1/δ) space we can compute an
(ε,δ) approximation to H(S) in a single pass

21

Sliding Window Computation

� Suppose we only want entropy of last W tokens

� Observe we want to find min label so its token in last W

� Can find, if current minimum not in range, what would be
next smallest token?

– Expect smallest token to be ≈ W/2 ago

– Next smallest ≈ W/4, then W/8…

– Whp., need to keep log W candidates

� Extend analysis to tracking minimum and backup: need
log2 W with high probability

� Also need to find pa in window with sufficient accuracy

22

Outline

� Introduction

� Entropy Upper Bound

� Lower Bounds and Higher Orders

� Random Walks on Graphs

23

Lower Bound

GAP-HAMM communication problem:

� Alice holds x ∈ {0,1}N, Bob holds y ∈ {0,1}N

� Promise: ∆(x,y) is either ≤ N/2 or ≥ N/2 + √N

� Which is the case?

� Model: one message from Alice to Bob

Requires Ω(N) bits of communication
[Indyk, Woodruff’03, Woodruff’04]

24

Lower Bound, Reduction

Alice: x ∈ {0,1}N, Bob: y ∈ {0,1}N

Entropy estimation algorithm A

� Alice runs A on enc(x) = 〈(1,x1), (2,x2), …, (N,xN)〉

� Alice sends over memory contents to Bob

� Bob continues A on enc(y) = 〈(1,y1), (2,y2), …, (N,yN)〉

010011

(6,0)(5,1)(4,0)(3,0)(2,1)(1,1)

Bob

(6,1)(5,1)(4,0)(3,0)(2,1)(1,0)

110010
Alice

25

Lower Bound

� Observe: there are

– 2∆(x,y) tokens with frequency 1 each

– N-∆(x,y) tokens with frequency 2 each

� So, H(S) = log N + ∆(x,y)/N

� Thus size of Alice’s memory contents = Ω(N).
Set ε = 1/(√(N) log N) to show bound of Ω(ε/log 1/ε)-2)

010011

(6,0)(5,1)(4,0)(3,0)(2,1)(1,1)

Bob

(6,1)(5,1)(4,0)(3,0)(2,1)(1,0)

110010
Alice

26

Higher Orders

� Define fi0i1...it = frequency of substring i0, i1 .. it
� Define pit|i0i1...it-1 = fi0i1...it/fi0i1...it-1

� Hk(S) = -∑i0 pi0 ∑i1 pi1|i0 ... ∑ik pik|i0i1...ik-1 log pik|i0...ik-1

� Reduce H1(S) to PREFIX problem:

– Alice has bitstring x ∈ {0,1}N, Bob has bitstring y ∈ {0,1}M

– Bob determines if y is a prefix of x

– Show communication complexity of PREFIX is Ω(N/log N)

– else Bob could determine x one bit at a time

27

Reduction to PREFIX

� Same encoding: enc(101)� 〈〈〈〈(1,1) (2,0) (3,1)〉〉〉〉

� For H1(S), observe that if y is a prefix of x then the
stream enc(y)enc(x) has every “character” (i,b)
followed by the same (j,c), so H1(S)=0

� Else it is non-zero, so approximation could distinguish

� Thus, cannot approximate with o(m/log m) space.

(Partly a defect of the definition – a little unnatural that such

a long string holds “zero” information)

28

Positive Result

� Can additively approximate Hk(S):

� Write Hk(S) = H(Sk+1) – H(Sk)

– Where Sk = S with a new token for each k substring

– E.g. S = 101011 S2 = 2 1 2 1 3

� Relative error approximate each term up to ε/(2k lg n) –
since H(Sk) � k log n, error is ± ε

� Total space required: O(k2ε-2 log-1 δ log2 n log2 m)

29

Outline

� Introduction

� Entropy Upper Bound

� Lower Bounds and Higher Orders

� Random Walks on Graphs

30

Random Walks on a Graph

� Can define the Graph Random Walk entropy

– On an undirected unweighted graph, perform a random

walk

– Entropy of the stationary distribution is exactly

HG = 1/(2|E|) ∑i di log di, where di = degree of node i

– Suppose we see a stream of edges from this random walk,

can we compute HG(S)?

– With some work, yes!

31

Additional Wrinkles

Some trouble ahead, we need “distinct sampling”:

� Need to sample uniformly from set of edges, but each

edge may occur many times

– Replace min-wise sampling with min-wise hashing: hash

on edge name, sample the one with smallest hash value

� We want to compute dis, but we may see same edge
many times, should only count once to the degree

– Will replace counting occurrence with approx count distinct

� Multiple occurrences of same edge may bias sampling

– Reset the counters every time the sampled edge reoccurs

32

Relative Error

� Important detail: because G is connected, |E| > n
(assuming walk visit every node), so HG≥ log(2(1-1/n)),

i.e. at least a constant

� Because of approximations, we end up with an estimator
that is (1±ε)HG, and bounded variance

� Space becomes large: still need O(ε-2 polylog)
estimators, each estimator needs space O(ε-2 polylog)
for approximate counting.

� Space bound: O(ε-4 log2 n log2 δ-1) for (ε,δ) approx

– don’t actually need to see a random walk, any ordering

and repetition of edges is sufficient

33

Open Problems

� We have focused on space, speed is important too

– Current estimator is slow (relative to network line speeds)

– Maybe use some hashing tricks to speed up – each new

token only updates a subset of estimators?

� Generalize the random walk entropy to other settings –

weighted graphs?

34

Conclusions

� Bertinoro is good to visit

� Relatively simple algorithm for (ε,δ) approximating
entropy

� Can’t improve the ε-2 term

� Higher orders are harder for relative error, can do
additive error

� Can also do relative error for entropy of random walks

35

Implementation: Some Details

Maintain (tag1, tok1, rep1), (tag2, tok2, rep2); tag1 < tag2

tok1 will be sample from A, tok2 will be sample from A’

On reading next token, a:

� x = random tag ∈ [m3]

� if a == tok1:

– if x < tag1 then (tag1,tok1,rep1) = (x,a,1) else rep1++

� else:

– if a == tok2 then rep2++

– if x < tag1:

� (tag2,tok2,rep2) = (tag1,tok1,rep1)

� (tag1,tok1,rep1) = (x,a,1)

– else:

� if x < tag2 then (tag2,tok2,rep2) = (x,a,1)

36

Example Run

a =

x =

(tag1,tok1,rep1) =

(tag2,tok2,rep2) =

0
.3

9
1

0
.4

0
8

Tags:

C

0
.2

1
7

0
.8

1
5

AACStream:

CA

0.408

(1, 0, 0)

(1, 0, 0)

(0.408, C, 1)

(0.815, A, 1)

0.8150.217

(0.815, A, 2)(0.408, C, 1)

(0.217, A, 1)

0.391

(0.408, C, 2)(0.391, C, 1)

