Computing the Entropy of a Stream

To appear in SODA 2007

Graham Cormode

graham@research.att.com

Amit Chakrabarti

Dartmouth College

Andrew McGregor

U. Penn / UCSD

Outline

- Introduction
- Entropy Upper Bound
- Lower Bounds and Higher Orders
- Random Walks on Graphs

Bertinoro

McGregor

Chakrabarti

Entropy

A simple problem...?

Given a long sequence of characters

 $S = \langle a_1, a_2, a_3 \dots a_m \rangle \quad \text{ each } a_j \in \{1 \dots n\}$

• Let f_i = frequency of i in the sequence

Compute the empirical entropy:

 $H(S) = -\sum_{i} f_{i}/m \log f_{i}/m = -\sum_{i} p_{i} \log p_{i}$

- Example: S = < a, b, a, b, c, a, d, a>
 - $p_a = 1/2$, $p_b = 1/4$, $p_c = 1/8$, $p_d = 1/8$ - $H(S) = \frac{1}{2} + \frac{1}{4.2} + \frac{1}{8.3} + \frac{1}{8.3} = \frac{7}{4}$

Challenge

- Goal: approximate H(S) in space sublinear (poly-log) in m (stream length), n (alphabet size)
 – (ε,δ) approx: answer is (1±ε)H(S) w/prob 1-δ
- Easy if we have O(n) space: compute each f_i exactly
- More challenging if n is huge, m is huge, and we have only one pass over the input in order
 - (The data stream model)

Motivation

- Entropy promoted for anomaly detection in networks
- If entropy (surrogate for distribution) suddenly changes, suspect anomaly
- More subtle than "heavy hitters" approach
- Approaches to computing entropy so far
 - Exact exhaustive computation
 - Heuristic: using compression size as surrogate for entropy
- In general, dimensionality and data are large (2³², 2⁶⁴...)

Prior Work

- Guha, McGregor, Venkatasubramanian 2006
 - Gave $O(1/H(S)1/\epsilon^2 \log 1/\delta)$ space algorithm, amongst others
- Chakrabarti, Do Ba, Muthukrishnan 2006
 - Gave O(m^{2 α} polylog) space for 1/ α approximation
 - (ε, δ) approximation in O(m^{2/3} polylog)
- Lall, Sekar, Ogihara, Xu, Zhang 2006
 - Partially heuristic approach, estimating a related quantity
- Bhuvanagiri, Ganguly 2006
 - $O(1/\epsilon^3 \log^5 m)$ space algorithm (allows "deletions")

Basic Idea (via AMS)

- Simple estimator:
 - Randomly sample a position j in the stream
 - Count how many times a_i appears subsequently = r
 - Output X = -(r log r/m (r-1) log(r-1)/m)
- Claim: E[X] = H(S)
 - Proof: prob of picking j = 1/m, sum telescopes correctly
- Var[X] = O(log² m)
 - Can be proven by bounding $|X| \le \log m$

Analysis of Basic Estimator

- To get a good estimate, try to apply Chebyshev bounds
- Depends critically on ratio Var[X]/E²[X] = O(log²m/H²(S))
- Problem: what happens when H(S) is very small?
- Space needed for an accurate approx goes as 1/H²!

Low Entropy

- But... what does a low entropy stream look like?
- Very boring most of the time, we are only rarely surprised
- Can there be two frequent items?
 - aabababababababababababababababababa
 - No! That's high entropy (\approx 1 bit / character)
- Only way to get H(S) =o(1) is to have only one character with p_i close to 1

Removing the boring guy

- Write entropy as
 - $-p_a \log p_a + (1-p_a) H(S')$
 - Where S' = stream S with all 'a's removed
- Can show:
 - Doesn't matter if H(S') is small: as p_a is large, additive error on H(S') ensures relative error on (1-p_a)H(S')
 - Relative error $(1-p_a)$ on p_a gives relative error on $p_a \log p_a$
 - Summing both (positive) terms gives relative error overall

Finding the boring guy

Ejecting a is easy if we know in advance what it is

- Can then compute p_a exactly
- Can find online deterministically
 - Assume $p_a > 2/3$ (if not, H(S) > 0.9, and original alg works)
 - Run a 'heavy hitters' algorithm on the stream
 - Modify analysis, find **a** and $p_a \pm \epsilon$ (1- p_a)
- But... how to also compute H(S') simultaneously if we don't know a from the start... do we need two passes?

Always have a back up plan...

- Idea: keep two samples to build our estimator
 - If at the end one of our samples is 'a', use the other
 - How to do this and ensure uniform sampling?
- Base on 'min-wise sampling':
 - For each token in the stream, pick a random label in the range [0...1]
 - Keep the token which has the smallest label
 - Each token has uniform probability of being picked

Sampling One Token

- Assign random tag $\in [0,1]$ for each token
- Choose token with min tag (= uniform random choice)
- Implementation: keep track of (min tag, corresponding token, number of repeats)

Back up sampling

- If at the end of the stream the sampled character = 'a', we want to sample from the stream ignoring all 'a's
- This is just "the character achieving the smallest label distinct from the one that achieves the smallest label"
- Can track information to do this in a single pass, constant space

Sampling Two Tokens

Putting it all together

- Can combine all these pieces
- Build an estimator based on tracking this information, deciding whether there is a boring guy or not
- A slightly fiddly Chernoff bounds argument improves number of repetitions of estimator from O(ε⁻²Var[X]/E²[X]) to O(ε⁻²Range[X]/E[X]) = O(ε⁻² log m)
- In space O(ε⁻² log m log 1/δ) space we can compute an (ε,δ) approximation to H(S) in a single pass

Sliding Window Computation

- Suppose we only want entropy of last W tokens
- Observe we want to find min label so its token in last W
- Can find, if current minimum not in range, what would be next smallest token?
 - Expect smallest token to be \approx W/2 ago
 - Next smallest \approx W/4, then W/8...
 - Whp., need to keep log W candidates
- Extend analysis to tracking minimum and backup: need log² W with high probability
- Also need to find p_a in window with sufficient accuracy

Outline

- Introduction
- Entropy Upper Bound
- Lower Bounds and Higher Orders
- Random Walks on Graphs

Lower Bound

GAP-HAMM communication problem:

- Alice holds $x \in \{0,1\}^N$, Bob holds $y \in \{0,1\}^N$
- Promise: $\Delta(x,y)$ is either $\leq N/2$ or $\geq N/2 + \sqrt{N}$
- Which is the case?
- Model: one message from Alice to Bob

Requires $\Omega(N)$ bits of communication

[Indyk, Woodruff'03, Woodruff'04]

Lower Bound, Reduction

Alice: $x \in \{0,1\}^N$, Bob: $y \in \{0,1\}^N$ Entropy estimation algorithm **A**

- Alice runs A on enc(x) = $\langle (1,x_1), (2,x_2), \dots, (N,x_N) \rangle$
- Alice sends over memory contents to Bob
- Bob continues **A** on enc(y) = $\langle (1,y_1), (2,y_2), ..., (N,y_N) \rangle$

Lower Bound

- Observe: there are
 - $2\Delta(x,y)$ tokens with frequency 1 each
 - $N-\Delta(x,y)$ tokens with frequency 2 each
- So, $H(S) = \log N + \Delta(x,y)/N$
- Thus size of Alice's memory contents = $\Omega(N)$. Set $\varepsilon = 1/(\sqrt{(N) \log N})$ to show bound of $\Omega(\varepsilon/\log 1/\varepsilon)^{-2}$)

Higher Orders

- Define $f_{i0i1...it}$ = frequency of substring i_0 , i_1 ... i_t
- Define $p_{it|i0i1...it-1} = f_{i0i1...it}/f_{i0i1...it-1}$
- $H_k(S) = -\sum_{i0} p_{i0} \sum_{i1} p_{i1|i0} \dots \sum_{ik} p_{ik|i0i1\dots ik-1} \log p_{ik|i0\dots ik-1}$
- Reduce H₁(S) to **PREFIX** problem:
 - Alice has bitstring $x \in \{0,1\}^N$, Bob has bitstring $y \in \{0,1\}^M$
 - Bob determines if y is a prefix of x
 - Show communication complexity of **PREFIX** is $\Omega(N/\log N)$
 - else Bob could determine x one bit at a time

Reduction to PREFIX

- Same encoding: $enc(101) \rightarrow \langle (1,1) (2,0) (3,1) \rangle$
- For H₁(S), observe that if y is a prefix of x then the stream enc(y)enc(x) has every "character" (i,b) followed by the same (j,c), so H₁(S)=0
- Else it is non-zero, so approximation could distinguish
- Thus, cannot approximate with o(m/log m) space.

(Partly a defect of the definition – a little unnatural that such a long string holds "zero" information)

Positive Result

- Can additively approximate H_k(S):
- Write $H_k(S) = H(S^{k+1}) H(S^k)$
 - Where $S^k = S$ with a new token for each k substring
 - E.g. S = 101011 S² = 2 1 2 1 3
- Relative error approximate each term up to ε/(2k lg n) − since H(S^k) ≤ k log n, error is ± ε
- Total space required: $O(k^2 \epsilon^{-2} \log^{-1} \delta \log^2 n \log^2 m)$

Outline

- Introduction
- Entropy Upper Bound
- Lower Bounds and Higher Orders
- Random Walks on Graphs

Random Walks on a Graph

- Can define the Graph Random Walk entropy
 - On an undirected unweighted graph, perform a random walk
 - Entropy of the stationary distribution is exactly $H_G = 1/(2|E|) \sum_i d_i \log d_i$, where $d_i = degree$ of node i
 - Suppose we see a stream of edges from this random walk, can we compute H_G(S)?
 - With some work, yes!

Additional Wrinkles

Some trouble ahead, we need "distinct sampling":

- Need to sample uniformly from set of edges, but each edge may occur many times
 - Replace min-wise sampling with min-wise hashing: hash on edge name, sample the one with smallest hash value
- We want to compute d_is, but we may see same edge many times, should only count once to the degree
 - Will replace counting occurrence with approx count distinct
- Multiple occurrences of same edge may bias sampling
 - Reset the counters every time the sampled edge reoccurs

Relative Error

- Important detail: because G is connected, |E| > n (assuming walk visit every node), so H_G≥ log(2(1-1/n)), i.e. at least a constant
- Because of approximations, we end up with an estimator that is (1±ε)H_G, and bounded variance
- Space becomes large: still need O(ε⁻² polylog) estimators, each estimator needs space O(ε⁻² polylog) for approximate counting.
- Space bound: $O(\epsilon^{-4} \log^2 n \log^2 \delta^{-1})$ for (ϵ, δ) approx
 - don't actually need to see a random walk, any ordering and repetition of edges is sufficient

Open Problems

We have focused on space, speed is important too

- Current estimator is slow (relative to network line speeds)
- Maybe use some hashing tricks to speed up each new token only updates a subset of estimators?
- Generalize the random walk entropy to other settings weighted graphs?

Conclusions

- Bertinoro is good to visit
- Relatively simple algorithm for (ε,δ) approximating entropy
- Can't improve the ε^{-2} term
- Higher orders are harder for relative error, can do additive error
- Can also do relative error for entropy of random walks

Implementation: Some Details

Maintain (tag1, tok1, rep1), (tag2, tok2, rep2); tag1 < tag2 tok1 will be sample from A, tok2 will be sample from A' On reading next token, a:

- $x = random tag \in [m^3]$
- if a == tok1:

- if x < tag1 then (tag1, tok1, rep1) = (x, a, 1) else rep1++

else:

- if a == tok2 then rep2++
- if x < tag1:
 - (tag2,tok2,rep2) = (tag1,tok1,rep1)
 - (tag1,tok1,rep1) = (x,a,1)

- else:

• if x < tag2 then (tag2, tok2, rep2) = (x, a, 1)

Example Run

Stream:	С	А	А	С
Tags:	0.408	0.815	0.217	0.391

a = **A** x = **0.293**

(tag1,tok1,rep1) = (tag2,tok2,rep2) = (0,20,8))&, 1) ((0,39,8),)&, 2)

