Computing the
Entropy of a Stream

To appear in SODA 2007

Graham Cormode
graham@research.att.com

Amit Chakrabarti

Dartmouth College

Andrew McGregor
U. Penn/ UCSD

Outline

Introduction

Entropy Upper Bound

Lower Bounds and Higher Orders
Random Walks on Graphs

H(

Q
L+
&

Bertinoro

atat

Y0 world, Delivered.

McGregor

DE

L]
Chakrabarti

E{((

o]
&
it

Entropy

=
atat

Y0 world, Delivered.

]
A simple problem...?

m Given a long sequence of characters

S =<ay,a,a3..a,> eachae{l...n}
m Letf =frequency of i in the sequence
m Compute the empirical entropy:

H(S) = - 2 fym log f/m = - 2; p; log p,

m Example:S=<a, b, a, b, ¢, a, d, a>
— pa=1/2, pb=1/4’ pC=1/8! pd=1/8
- HS)=1"%+1/42+1/8.3+1/8.3=7/4

=L

Q
ey
&

]
Challenge

m Goal: approximate H(S) in space sublinear
(poly-log) in m (stream length), n (alphabet size)
— (&,0) approx: answer is (14+€)H(S) w/prob 1-06

m Easy if we have O(n) space: compute each f. exactly

m More challenging if nis huge, m is huge, and we have
only one pass over the input in order

— (The data stream model)

(0]
2

]
Motivation

m Entropy promoted for anomaly detection in networks

m |f entropy (surrogate for distribution) suddenly changes,
suspect anomaly

m More subtle than “heavy hitters” approach
m Approaches to computing entropy so far

— Exact exhaustive computation
— Heuristic: using compression size as surrogate for entropy

m In general, dimensionality and data are large (232, 264...)

L

Q
L+
&

Prior Work

10

Guha, McGregor, Venkatasubramanian 2006

— Gave O(1/H(S)1/e?log 1/6) space algorithm, amongst others
Chakrabarti, Do Ba, Muthukrishnan 2006

— Gave O(m?* polylog) space for 1/o. approximation

— (&,8) approximation in O(m?? polylog)

Lall, Sekar, Ogihara, Xu, Zhang 2006

— Partially heuristic approach, estimating a related quantity

Bhuvanagiri, Ganguly 2006
— O(1/e3 log® m) space algorithm (allows “deletions”)

2

Q
L+
&

]
Basic Idea (via AMS)

m Simple estimator:
— Randomly sample a position j in the stream
- Count how many times a; appears subsequently = r
— Qutput X = -(r log r/m — (r-1) log(r-1)/m)

m Claim: E[X] = H(S)

— Proof: prob of picking j = 1/m, sum telescopes correctly
m Var[X] = O(log® m)

— Can be proven by bounding [X| < log m

11

H(

Q
ey
&

Analysis of Basic Estimator

12

To get a good estimate, try to apply Chebyshev bounds
Depends critically on ratio Var[X]/E2[X] = O(log2m/H3(S))
Problem: what happens when H(S) is very small?
Space needed for an accurate approx goes as 1/H?!

oy
&

((

|
Low Entropy

m But... what does a low entropy stream look like?
— aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaa
m Very boring most of the time, we are only rarely surprised

m Can there be two frequent items?
— aabababababababaababababbababababababa
— No! That’s high entropy (= 1 bit / character)

m Only way to get H(S) =0(1) is to have only one character
with p; close to 1

((

13

E{((

[
Removing the boring guy

m Write entropy as

~ -py log p, + (1-p,) H(S))

— Where S’ = stream S with all ‘a’s removed
m Can show:

— Doesn’t matter if H(S’) is small: as p, is large, additive
error on H(S’) ensures relative error on (1-p,)H(S’)

— Relative error (1-p,) on p, gives relative error on p, log p,
— Summing both (positive) terms gives relative error overall

14

((

(

oy
&

]
Finding the boring guy

m Ejecting a is easy if we know in advance what it is
— Can then compute p, exactly
m Can find online deterministically
— Assume p, > 2/3 (if not, H(S) > 0.9, and original alg works)
— Run a ‘heavy hitters’ algorithm on the stream
— Modify analysis, find a and p, £ € (1-p,)

m But... how to also compute H(S’) simultaneously if we
don’t know a from the start... do we need two passes?

15

H(

Q
L+
&

[
Always have a back up plan...

m |dea: keep two samples to build our estimator
— If at the end one of our samples is ‘a’, use the other
— How to do this and ensure uniform sampling?
m Base on ‘min-wise sampling’:
— For each token in the stream, pick a random label in the
range [0...1]
— Keep the token which has the smallest label
— Each token has uniform probability of being picked

((

16

E{((

]
Sampling One Token

Stream: cC A A B B /A\B D C A B
2 L > 5 R(8/8 8§ 2 2 &
Tags: ¥ ® N - NJ|lo/® & oW = ©
o o o o o o o o o o o
Repeats: A A
min tag

m Assign random tag € [0,1] for each token

m Choose token with min tag (= uniform random choice)
m Implementation: keep track of

(min tag, corresponding token, number of repeats)

17

0.202 »

>

=L

Q
ey
&

]
Back up sampling

m |f at the end of the stream the sampled character = ‘a’,
we want to sample from the stream ignoring all ‘a’s

m This is just “the character achieving the smallest label
distinct from the one that achieves the smallest label”

m Can track information to do this in a single pass,
constant space

18

H(

Q
ey
&

]
Sampling Two Tokens

Stream: C A A D C B A
g o K % g N
Tags: = 5 N N To) © N
o o o o o o o
Repeats: Al B A

min tag amongsin tag |

m Assign tags, choose first token as before @d. but we don’t
: want this; same

m Delete all occurrences of first token token as min tag

m Choose token with min remaining tag; count repeats

m Implementation: keep track of two triples

(min tag, corresponding token, number of repeats)

19

L

Q
~+
&

Putting it all together

20

Can combine all these pieces

Build an estimator based on tracking this information,
deciding whether there is a boring guy or not

A slightly fiddly Chernoff bounds argument improves
number of repetitions of estimator from O(e2Var[X]/E?[X])
to O(e2Range[X]/E[X]) = O(e? log m)

In space O(e? log m log 1/8) space we can compute an
(¢,0) approximation to H(S) in a single pass

L

]
Sliding Window Computation

m Suppose we only want entropy of last W tokens
m Observe we want to find min label so its token in last W

m Can find, if current minimum not in range, what would be
next smallest token?

— Expect smallest token to be ~ W/2 ago
— Next smallest ~ W/4, then W/8...

— Whp., need to keep log W candidates

m Extend analysis to tracking minimum and backup: need
log® W with high probability
m Also need to find p, in window with sufficient accuracy

21

H(

Q
ey
&

]
Outline

Introduction

Entropy Upper Bound

Lower Bounds and Higher Orders
Random Walks on Graphs

22

((

oy
&

L1
Lower Bound

GAP-HAMM communication problem:

m Alice holds x € {0,1}N, Bob holds y € {0,1}N
m Promise: A(x,y) is either <N/2 or > N/2 + /N
m Which is the case?

m Model: one message from Alice to Bob

Requires ©(N) bits of communication
[Indyk, Woodruff03, Woodruff'04]

23

H(

Q
L+
&

Lower Bound, Reduction

24

Alice: x € {0,1}N, Bob:y € {0,1}N

Entropy estimation algorithm A
Alice runs A on enc(x) = {(1,X4), (2,X5), ..., (N,Xy))
Alice sends over memory contents to Bob
Bob continues A on enc(y) = {(1,y4), (2,¥5), ---, (N,yn))

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0

EL(

Q
L+
&

Lower Bound

m QObserve: there are

- 2A(X,y) tokens with frequency 1 each
- N-A(x,y) tokens with frequency 2 each

m So, H(S) =log N + A(x,y)/N
m Thus size of Alice’s memory contents = Q(N).

25

Set € = 1/(1/(N) log N) to show bound of Q(e/log 1/¢€)2)

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0

E{((

Q
ey
&

]
Higher Orders

m Define f,;; ;; = frequency of substring iy, 14 .. I,
m Define Pitjioi1...it1 = Fioir it/ fioit _it-1
m H(S) = -2 Pio i1 Pitfio -+ 2k Pikjioit...i-1 109 Pikjio...ik-1

m Reduce H,(S) to PREFIX problem:
— Alice has bitstring x € {0,1}N, Bob has bitstring y € {0,1}M
— Bob determines if y is a prefix of x

— Show communication complexity of PREFIX is Q(N/log N)
— else Bob could determine x one bit at a time

26

E{((

Q
ey
&

]
Reduction to PREFIX

m Same encoding: enc(101)-> ((1,1) (2,0) (3,1))

m For H,(S), observe that if y is a prefix of x then the
stream enc(y)enc(x) has every “character” (i, b)
followed by the same (3, ¢), so H,(S)=0

m Else it is non-zero, so approximation could distinguish
m Thus, cannot approximate with o(m/log m) space.

(Partly a defect of the definition — a little unnatural that such
a long string holds “zero” information)

27

H(

Q
ey
&

]
Positive Result

m Can additively approximate H,(S):

m Write H (S) = H(S*1) — H(SK)
— Where Sk = S with a new token for each k substring
- Eg.S=101011 S?=21 2 1 3

m Relative error approximate each term up to €/(2k Ig n) —
since H(SX) <k log n, erroris & ¢

m Total space required: O(k?c2 log™ & log? n log? m)

28

E{((

Q
ey
&

]
Outline

Introduction

Entropy Upper Bound

Lower Bounds and Higher Orders
Random Walks on Graphs

29

((

oy
&

]
Random Walks on a Graph

m Can define the Graph Random Walk entropy

— On an undirected unweighted graph, perform a random
walk

— Entropy of the stationary distribution is exactly
Hg = 1/(2|E|) X d. log d;, where d. = degree of node |

— Suppose we see a stream of edges from this random walk,
can we compute Hg(S)?

— With some work, yes!

((

30

E{((

L]
Additional Wrinkles

Some trouble ahead, we need “distinct sampling”:

m Need to sample uniformly from set of edges, but each
edge may occur many times

— Replace min-wise sampling with min-wise hashing: hash
on edge name, sample the one with smallest hash value

m We want to compute d;s, but we may see same edge
many times, should only count once to the degree

— Will replace counting occurrence with approx count distinct
m Multiple occurrences of same edge may bias sampling
— Reset the counters every time the sampled edge reoccurs

(

31

=

Relative Error

32

Important detail: because G is connected, |E| > n
(assuming walk visit every node), so Hz> log(2(1-1/n)),

l.e. at least a constant

Because of approximations, we end up with an estimator
that is (1+€)H, and bounded variance

Space becomes large: still need O(e2 polylog)

estimators, each estimator needs space O(e* polylog)

for approximate counting.

Space bound: O(e* log? n log? 1) for (&,8) approx

— don’t actually need to see a random walk, any ordering
and repetition of edges is sufficient

L

[
Open Problems

m We have focused on space, speed is important too
— Current estimator is slow (relative to network line speeds)

- Maybe use some hashing tricks to speed up — each new
token only updates a subset of estimators?

m Generalize the random walk entropy to other settings —
weighted graphs?

33

H(

Q
ey
&

Conclusions

34

Bertinoro is good to visit

Relatively simple algorithm for (g,0) approximating
entropy

Can’t improve the €2 term

Higher orders are harder for relative error, can do
additive error

Can also do relative error for entropy of random walks

H(

Q
ey
&

]
Implementation: Some Details

Maintain (tag1, tok1, rep1), (tag2, tok2, rep2); tagl < tag2
tok1 will be sample from A, tok2 will be sample from A’
On reading next token, a:
m X =random tag € [m?I]
m if a ==tokl:
- if x <tag1 then (tag1,tok1,rep1) = (x,a,1) else rep1++
m else:
— if a == tok2 then rep2++
- ifx <tagl:
m (tag2,tok2,rep2) = (tag1,tok1,rep1)
m (tag1,tokl,rep1) = (x,a,1)
~ else:
m if X < tag2 then (tag2,tok2,rep2) = (x,a,1)

=L

Q
g
&

35

Example Run

Stream: cC A
(0 @) Lo
Tags: S ©
o o
a= a
X = 0.2938

(
(

36

tag1,tok1,repl) =
tag2,tok2,rep2) =

i

0.217

@]

0.391

(0,208))8, 1)
Mﬂ))@u 1)

(

(

oy
&

