Algorithms for Distributed Functional Monitoring

Graham Cormode

AT&T Labs

S. Muthukrishnan

Google Research

Ke Yi

HKUST

Sensor Networks

- Large number of remote, wireless sensors record environmental details, communicate back to base
- Want to monitor environment, and trigger alerts
 - Based on some complex function of *global* values
- Each sensor sees a continuous stream of values
- Communication is the major source of battery drain

Continuous Distributed Model

- Other structures possible (e.g., hierarchical)
- Site-site communication only changes things by factor 2
- Goal: Continuously track (global) function over streams at the coordinator
- Here, study frequency moments: $F_p = \sum_i (f_i)^p$
 - f_i is the count of item i across all sites

Approximate Monitoring

- Must trigger alarm when $F_p > \tau$
- Cannot trigger alarm when $F_p < (1 \varepsilon) \tau$

- Approximate is good enough for most applications.
- Contrast to "one-shot" version: coordinator initiates onetime approximate computation of F_p

General Algorithm for F_p

- Simple approach divides the current "slack" uniformly between sites
- Vector u_i represents total frequencies at round i
- Slack is $s_i = (\tau ||u_i||_p^p)$, set threshold $t_i = s_i/2k^p$
- Each site j sees vector of updates v_{ij}, and monitors $||u_i + v_{ij}||_p^p ||u_i||_p^p > t_i$

Sends a bit when threshold is exceeded

When coordinator has received k bits, terminates round and collects u_{i+1}, computes and sends t_{i+1}.

- O(k) pieces of information sent per round

■ Alert when $|| u_i ||_p^p > (1 - \epsilon/2) \tau$

Analysis of General Algorithm

- By Jensen's inequality, $||u_{i+1}||_p^p ||u_i||_p^p < 2k^p t_i$
 - Since $t_i = s_i/2k^p$, we have $||u_{i+1}||_p^p < \tau$
- By convexity of the function $|| x + y ||_p^p || x ||_p^p$ for p≥1, $||u_{i+1}||_p^p - || u_i ||_p^p \ge k t_i$
- So $t_{i+1} \le t_i (1 k^{1-p}/2)$
 - $t_0 = \tau k^{-p}/2$, and halt when $t_i < \epsilon \tau k^{-p}/2$
 - At most $O(k^{p-1} \log 1/\epsilon)$ rounds
- Algorithm is correct (never exceeds τ without causing an alert), and has few rounds.

Application of General Algorithm

- **F**₁: $\| \mathbf{x} \|_{p}^{p}$ is simply the sum of all updates
 - Don't even need to send $\|\mathbf{u}_i\|_1$ or \mathbf{t}_i values, these are implicit
 - Yields a simple, deterministic $O(k \log 1/\epsilon)$ bits solution
- Deterministic lower bound for F_1 : $\Omega(k \log 1/(\epsilon k))$
 - Folklore lower bound for one-shot computation?
 Based on construction of sufficiently large 'fooling sets'
- F₂: use ε'-approximate sketches to communicate the vectors between sites
 - Need to set ε ' so ε ' || $u_i + v_{i,i} ||_2^2 = O(t_i)$, forcing ε ' = $O(\varepsilon/k^2)$
 - Gives a total cost of $\tilde{O}(k^6/\epsilon^2)$
- **F**_p, p>2. Ganguly et al. sketches, cost $\tilde{O}(p \epsilon^{-3}k^{2p+1}n^{1-2/p})$

Randomized F₁ Algorithm

- At each site: for every ε²τ/k items received, send a signal to coordinator with probability 1/k
- Raise alarm when $1/\epsilon^2$ signals received
 - By Chebyshev, constant probability of (two-sided) error
- Repeat $O(\log(1/\delta))$ times in parallel to reduce error prob

Total communication (worst case): $O(1/\epsilon^2 \log(1/\delta))$ Randomized lower bound: $\Omega(\min\{1/\epsilon, k\})$

F₂ Multi-Round Algorithm

Beginning of a round: each site sends *ɛ*-accurate sketch

F₂ Multi-Round Algorithm

During a round:

Analysis of F₂ Multi-Round Algorithm

End of a round: when k signals are received

New bound on F₂ satisfies: $u_{i-1}^2 + (\tau - u_{i-1}^2) \cdot \epsilon/k < u_i^2 < \tau$ — Bound follows by using Cauchy-Shwartz inequality over the k update vectors

11

Modified F₂ algorithm

- Using Cauchy-Schwartz over the vectors means that we have large uncertainty in the current value (factor of k)
 - Collecting accurate sketches resolves this uncertainty, but at cost of O(k/ε²) communication
- Can improve cost by collecting less accurate sketches, and deciding whether to keep the same t_i or decrease it
 - Collect sketches with O(1) accuracy in O(k) communication
 - Resolves the uncertainty more cheaply
 - At most $O(\sqrt{k})$ "sub-rounds" within each round, and now at most $O(\sqrt{k}/\epsilon)$ rounds

F₂ Round / Sub-Round Algorithm

End of a sub-round: when k signals are received

F₂ Lower Bound

- Via Minimax principle, demonstrate distribution on inputs that are hard for a deterministic algorithm (assuming compact oracle for F₂ computations)
- Proceed in rounds, in each round either send same item to all sites, or different items to each site
 - F_2 increases by either k or k^2
- If same item, $F_2 > \tau = k^2$
- Can send different items for up to k/2 rounds.
- All inputs look about the same to the sites, so a certain amount of communication is necessary each round
 - Implies $\Omega(k)$ bound on communication cost

Continuously Monitoring F₀

Intuition: FM sketch for estimating F₀ is monotone

- Site i calculates zeros(h(x)) for each x and maintains the maximum number Y_i of trailing zeros seen thus far.
- Maintain Y=max_i Y_i at Coordinator so F₀ is estimated by 2^Y
- Y_i is non-decreasing, and $Y_i < \log n$
- Formal proof using variation of Bar-Yossef et al alg for F₀ Total communication: Õ(k/ε²)
- Lower bound: $\Omega(k)$, by similar construction to F_2 bound
 - In each round updates are either all same ($\Delta F_0 = 1$), or all different ($\Delta F_0 = k$)

Summary of Results

	Continuous		One-shot	
Moment	Lower bound	Upper bound	Lower bound	Upper bound
F_0 , randomized	$\Omega(k)$	$\tilde{O}(\frac{k}{\epsilon^2})$	$\Omega(k)$	$\tilde{O}(\frac{k}{\epsilon^2})$
F_1 , deterministic	$\Omega(k \log \frac{1}{\epsilon k})$	$O(k \log \frac{1}{\epsilon})$	$\Omega(k \log \frac{1}{\epsilon k})$	$O(k \log \frac{1}{\epsilon})$
F_1 , randomized	$\Omega(\min\{k, \frac{1}{\epsilon}\})$	$O(\min\{k\log\frac{1}{\epsilon}, \frac{1}{\epsilon^2}\log\frac{1}{\delta}\})$	$\Omega(k)$	$O(k \log \frac{1}{\epsilon \sqrt{k}})$
F_2 , randomized	$\Omega(k)$	$ ilde{O}(k^2/\epsilon + (\sqrt{k}/\epsilon)^3)$	$\Omega(k)$	$\tilde{O}(\frac{k}{\epsilon^2})$

- Good news/Bad news: all continuous bounds (except F₂) are close to their one-shot counterparts
- Other problems have been studied
 - Quantiles/Heavy Hitters of a distribution
 - Tracking approximate clustering of a point set

Open Problems

No clear separation between one-shot and continuous

- F₂ has widest gap currently
- Many other functions *f*
 - Statistics: entropy, heavy hitters
 - Geometric measures: diameter, width, ...
- Variations of the model
 - One-way vs two-way communication
 - Does having a broadcast channel help?
- Need for a "Continuous Communication complexity"?
 - Other formalizations: Alice must inform Bob of an (approx) value of f(x). Analyze competitive ratio.