
Finding Frequent Items
in Data Streams

Graham Cormode

graham@research.att.com

Marios Hadjieleftheriou (AT&T)

S. Muthukrishnan (Rutgers)

Radu Berinde & Piotr Indyk (MIT)

Martin Strauss (U. Michigan)

Finding Frequent Items in Data Streams
2

Data Streams

♦ Many large sources of data are best modeled as data streams

– E.g. streams of network packets, defining traffic distributions

♦ Impractical and undesirable to store and process all data exactly

♦ Instead, seek algorithms to find approximate answers

– With one pass over data, quickly build a small summary

♦ Active research area for last decade, history goes back 30 years

Finding Frequent Items in Data Streams
3

The Frequent Items Problem

♦ The Frequent Items Problem (aka Heavy Hitters):

given stream of N items, find those that occur most frequently

♦ E.g. Find all items occurring more than 1% of the time

♦ Formally “hard” in small space, so allow approximation

♦ Find all items with count ≥ φN, none with count < (φ−ε)N
– Error 0 < ε < 1, e.g. ε = 1/1000

– Related problem: estimate each frequency with error ±εN

Finding Frequent Items in Data Streams
4

Why Frequent Items?

♦ A natural question on streaming data

– Track bandwidth hogs, popular destinations etc.

♦ The subject of much streaming research

– Scores of papers on the subject

♦ A core streaming problem

– Many streaming problems connected to frequent items

(itemset mining, entropy estimation, compressed sensing)

♦ Many practical applications

– Search log mining, network data analysis, DBMS optimization

Finding Frequent Items in Data Streams
5

This Talk

♦ A brief history of the frequent items problem

♦ A tour of some of the most popular algorithms

– Counter-based algorithms: Frequent, LossyCounting, SpaceSaving

– Sketch algorithms: Count-Min Sketch, Count Sketch

♦ Experimental comparison of algorithms

♦ Extensions, new results and future directions

Finding Frequent Items in Data Streams
6

Data Stream Models

♦ We model data streams as sequences of simple tuples

♦ Complexity arises from massive length of streams

♦ Arrivals only streams:

– Example: (x, 3), (y, 2), (x, 2) encodes

the arrival of 3 copies of item x,

2 copies of y, then 2 copies of x.

– Could represent eg. packets on a network; power usage

♦ Arrivals and departures:

– Example: (x, 3), (y,2), (x, -2) encodes

final state of (x, 1), (y, 2).

– Can represent fluctuating quantities, measure differences

between two distributions, or represent general signals

x
y

x
y

Finding Frequent Items in Data Streams
7

The Start of The Problem?

♦ Problem posed by J. S. Moore in Journal of Algorithms, in 1981

♦ Does not require a streaming solution, but first solutions were

[J.Alg 2, P208-209] Suppose we have a list of
n numbers, representing the “votes” of n
processors on the result of some
computation. We wish to decide if there is a
majority vote and what the vote is.

Finding Frequent Items in Data Streams
8

MAJORITY algorithm

♦ MAJORITY algorithm solves the problem in arrivals only model

♦ Start with a counter set to zero. For each item:

– If counter is zero, pick up the item, set counter to 1

– Else, if item is same as item in hand, increment counter

– Else, decrement counter

♦ If there is a majority item, it is in hand

– Proof outline: each decrement pairs up two different items and

cancels them out

– Since majority occurs > N/2 times, not all of its occurrences can

be canceled out.

Finding Frequent Items in Data Streams
9

“Frequent” algorithm

♦ FREQUENT generalizes MAJORITY to find up to k items that

occur more than 1/k fraction of the time

♦ Keep k different candidates in hand. For each item in stream:

– If item is monitored, increase its counter

– Else, if < k items monitored, add new item with count 1

– Else, decrease all counts by 1

7

5

121

4

6

Finding Frequent Items in Data Streams
10

Frequent Analysis

♦ Analysis: each decrease can be charged against k arrivals of

different items, so no item with frequency N/k is missed

♦ Moreover, k=1/ε counters estimate frequency with error εN

– Not explicitly stated until later [Bose et al., 2003]

♦ Some history: First proposed in 1982 by Misra and Gries,

rediscovered twice in 2002

– Later papers showed how to make fast implementations

Finding Frequent Items in Data Streams
11

Lossy Counting

♦ LossyCounting algorithm proposed in [Manku, Motwani ’02]

♦ Simplified version:

– Track items and counts

– For each block of 1/ε items, merge with stored items and counts

– Decrement all counts by one, delete items with zero count

♦ Easy to see that counts are accurate to εN

♦ Analysis shows O(1/ε log εN) items are stored

♦ Full version keeps extra information to reduce error

Finding Frequent Items in Data Streams
12

SpaceSaving Algorithm

♦ “SpaceSaving” algorithm [Metwally, Agrawal, El Abaddi 05]
merges Lossy Counting and FREQUENT algorithms

♦ Keep k = 1/ε item names and counts, initially zero
Count first k distinct items exactly

♦ On seeing new item:

– If it has a counter, increment counter

– If not, replace item with least count, increment count

7

5

123

Finding Frequent Items in Data Streams
13

SpaceSaving Analysis

♦ Smallest counter value, min, is at most εn

– Counters sum to n by induction

– 1/ε counters, so average is εn: smallest cannot be bigger

♦ True count of an uncounted item is between 0 and min

– Proof by induction, true initially, min increases monotonically

– Hence, the count of any item stored is off by at most εn

♦ Any item x whose true count > εn is stored

– By contradiction: x was evicted in past, with count ≤ mint

– Every count is an overestimate, using above observation

– So est. count of x > εn ≥ min ≥ mint, and would not be evicted

So: Find all items with count > εn, error in counts ≤ εn

Finding Frequent Items in Data Streams
14

Experimental Comparison

♦ Implementations of all these algorithms (and more!) at
http://www.research.att.com/~marioh/frequent-items

♦ Experimental comparison highlights some differences not

apparent from analytic study

– All counter algorithms seem to have similar worst-case

performance (O(1/ε) space to give εN guarantee)

– Algorithms are often more accurate than analysis would imply

♦ Compared on a variety of web, network and synthetic data

Finding Frequent Items in Data Streams
15

Counter Algorithms Experiments

♦ Two implementations of SpaceSaving (SSL, SSH) achieve

perfect accuracy in small space (10KB – 1MB)

♦ Very fast: 20M – 30M updates per second

Finding Frequent Items in Data Streams
16

Counter Algorithms Summary

♦ Counter algorithms very efficient for arrivals-only case

– Use O(1/ε) space, guarantee εN accuracy

– Very fast in practice (many millions of updates per second)

♦ Similar algorithms, but a surprisingly clear “winner”

– Over many data sets, parameter settings, SpaceSaving

algorithm gives appreciably better results

♦ Many implementation details even for simple algorithms

– “Find if next item is monitored”: search tree, hash table…?

– “Find item with smallest count”: heap, linked lists…?

♦ Not much room left for improvement in core problem?

Finding Frequent Items in Data Streams
17

Outline

♦ Problem definition and background

♦ “Counter-based” algorithms and analysis

♦ “Sketch-based” algorithms and analysis

♦ Further Results

♦ Conclusions

Finding Frequent Items in Data Streams
18

Sketch Algorithms

♦ Counter algorithms are for the “arrivals only” model, do not

handle “arrivals and departures”

– Deterministic solutions not known for the most general case

♦ Sketch algorithms compute a summary that is a linear

transform of the frequency vector

– Departures are naturally handled by such algorithms

♦ Sketches solve core problem of estimating item frequencies

– Can then use to find frequent items via search algorithm

Finding Frequent Items in Data Streams
19

Count-Min Sketch

♦ Count-Min Sketch proposed in [C, Muthukrishnan ’04]

♦ Model input stream as a vector x of dimension U

– x[i] is frequency of item i

♦ Creates a small summary as an array of w × d in size

♦ Use d hash function to map vector entries to [1..w]

w

d

Array:

CM[i,j]

Finding Frequent Items in Data Streams
20

Count-Min Sketch Structure

♦ Each entry in vector x is mapped to one bucket per row.

♦ Estimate x[j] by taking mink CM[k,hk(j)]

– Guarantees error less than ε||x||1 in size O(1/ε log 1/δ)

– Probability of more error is less than 1-δ

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d=
log 1/δ

w = 2/ε

Finding Frequent Items in Data Streams
21

Count-Min Sketch Analysis

Approximate x’[j] = mink CM[k,hk(j)]

♦ Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j

– Xk,j = Σ x[i] | hk(i) = hk(j)

– E(Xk,j) = Σ x[k]*Pr[hk(i)=hk(j)]

≤ Pr[hk(i)=hk(k)] * Σ a[i]

= ε ||x||1/2 by pairwise independence of h

– Pr[Xk,j ≥ ε||x||1] = Pr[Xk,j ≥ 2E(Xk,j)] ≤ 1/2 by Markov inequality

♦ So, Pr[x’[j]≥ x[j] + ε||x||1] = Pr[∀ k. Xk,j> ε||x||1] ≤1/2log 1/δ = δ

♦ Final result: with certainty x[j] ≤ x’[j] and

with probability at least 1-δ, x’[j]< x[j] + ε||x||1

– Estimate is biased, can correct easily

Finding Frequent Items in Data Streams
22

Count Sketch

♦ Count Sketch proposed in [Charikar, Chen, Farach-Colton ’02]

♦ Uses extra hash functions g1...glog 1/δ {1...U}� {+1,-1}

♦ Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j)

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

d=
log 1/δ

w = 4/ε2

Finding Frequent Items in Data Streams
23

Count Sketch Analysis

♦ Estimate x’k[j] = CM[k,hk(j)]*gk(j)

♦ Analysis shows estimate is correct in expectation

♦ Bound error by analyzing the variance of the estimator

– Apply Chebyshev inequality on the variance

♦ With probability 1-δ, error is at most ε||x||2 < ε N

– ||x||2 could be much smaller than N, at cost of 1/ε2

linear
projection

Count sketch

Finding Frequent Items in Data Streams
24

Hierarchical Search

♦ Sketches estimate the frequency of a single item

– How to find frequent items without trying all items?

♦ Divide-and-conquer approach limits search cost

– Impose a binary tree over the domain

– Keep a sketch of each level of the tree

– Descend if a node is heavy, else stop

♦ Correctness: all ancestors of a frequent item are also frequent

♦ Alternate approach based on “group testing”

– Use sketches to determine identities of frequent items by

running multiple tests.

Finding Frequent Items in Data Streams
25

Sketch Algorithms Experiments

♦ Less clear which sketch is best: depends on data, parameters

♦ Speed less by factor of 10, size more by factor 10:

– A necessary trade off for flexibility to handle departures?

Finding Frequent Items in Data Streams
26

Outline

♦ Problem definition and background

♦ “Counter-based” algorithms and analysis

♦ “Sketch-based” algorithms and analysis

♦ Further Results

♦ Conclusions

Finding Frequent Items in Data Streams
27

Tighter Bounds

♦ Observation: algorithms outperform worst case guarantees

♦ Analysis: can prove stronger guarantees than εN

– Define n1 = highest frequency, n2 = second highest, etc.

– Then define F1
res(k) = N – (n1 + n2 + … nk), ≪ N for skewed dbns

– Result [Berinde, C, Indyk, Strauss, ’09] :

Frequent, SpaceSaving (and others) guarantee εF1
res(k) error

♦ Similar bounds for sketch algorithms

– CountMin sketch also has F1
res(k) bound

– Count sketch has (F2
res(k))1/2 = (∑i=k+1

m ni
2)1/2 bound

– Related to results in Compressed Sensing for signal recovery

Finding Frequent Items in Data Streams
28

Weighted Updates

♦ Weighted case: find items whose total weight is high

– Sketch algorithms adapt easily, counter algs with effort

♦ Simple solution: all weights are integer multiples of small δ
♦ Full solution: define appropriate generalizations of counter algs

to handle real valued weights [Berinde et al ’09]

– Straightforward to extend SpaceSaving analysis to weighted case

– Frequent more complex, action depends on smallest counter value

– No positive results known for LossyCounting

Finding Frequent Items in Data Streams
29

Mergability of Summaries

♦ Want to merge summaries, to summarize the union of streams

♦ Sketches with shared hash fns are easy to merge together

– Via linearity, sum of sketches = sketch of sums

♦ Counter-based algorithms need new analysis [Berinde et al’09]

– Merging two summaries preserves accuracy, but space may grow

– With pruning of the summary, can merge indefinitely

– Space remains bounded, accuracy degrades by at most a constant

Finding Frequent Items in Data Streams
30

Other Extensions

♦ Heavy Changers

– Which items have largest (absolute, relative) change over two

streams?

♦ Assumptions on frequency distribution, order

– Give tighter space/accuracy tradeoff for skewed distributions

– Worst case arrival order vs. random arrival order

♦ Distinct Heavy Hitters

– E.g. which sources contact the most distinct addresses?

♦ Time Decay

– “Weight” of items decay (exponentially, polynomially) with age

Finding Frequent Items in Data Streams
31

Conclusions

♦ Finding the frequent items is one of the most studied

problems in data streams

– Continues to intrigue researchers

– Many variations proposed

– Algorithms have been deployed in Google, AT&T, elsewhere…

♦ Still some room for innovation, improvements

♦ Survey and experiments in VLDB [C, Hadjieleftheriou ’08]

– Code, synthetic data and test scripts at
http://www.research.att.com/~marioh/frequent-items

– Shorter, broader write up in CACM 2009

