Processing Graph Streams: Upper and Lower Bounds

Graham Cormode

graham@research.att.com

A tale of three graphs

The telephone call-graph

- Each edge denotes a call between two phones
- $2-3 \times 10^9$ calls made each day in US, maybe 0.5×10^9 phones
- Can store this information (for billing etc.)
- The web graph
 - Each edge denotes a link from one web page to another
 - > 10¹⁰ pages, > 10¹¹ billion links
 - Store pages (nodes) in memory, but maybe not all links
- The IP graph
 - Each edge denotes communication between IP addresses
 - 10⁹ packets/hour/router in a large ISP, 2³² possible addresses
 - Not feasible to store nodes or edges

Example: IP Network Data

- Networks are sources of massive data: the metadata per hour per router is gigabytes
- Fundamental problem of data stream analysis: Too much information to store or transmit
- So process data as it arrives: one pass, small space: the *data stream* approach
- Approximate, probabilistic answers to many questions are OK
 - if there are guarantees of result quality

Models of Graph Streams

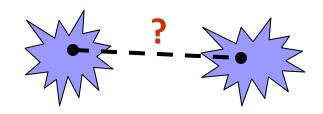
- ◆ Let G=(V,E) be a graph with |V|=n nodes, |E|=m edges...
- We observe the edges of G in a stream, one by one
- How many times do we see each edge?
 - Exactly once (convenient, but unrealistic in some cases)
 - Many times, contributing to a weighted edge case
 - Many times, but should only count once (trickiest)
- What order do we see the edges in?
 - Grouped by incident vertex (incidence order)
 - In arbitrary (random) order
 - In arbitrary (worst-case) order
- How many passes over the data can we take (one, or many?)

Outline

- Graph Streaming Models
- Hardness Results
- Degree Sequence Computations
 - Application to counting triangles
- Semi-streaming model
- Multigraph model

Negative Results

- We care about how much space is needed to compute functions
- If graph is big, space should be sublinear in m or n
 - Sublinear in m, or streaming model collapses
- Many natural properties need at least linear in n space
- Given some (binary) property P, decision problem is to report whether P holds or does not hold on G
- ♦ Say P is "balanced" if $\forall n = |V| \exists$ constant c, G and u ∈ V, s.t.
 - There are \geq cn v's s.t. E \cup (u,v) has P
 - − There are \geq cn v's s.t. E \cup (u,v) has ¬P



Hardness Proof

• Theorem: Deciding P in one pass requires $\Omega(n)$ space

- Take a binary string x of length cn
- Relabel vertex set $v_1 \dots v_{cn}$ so that $E \cup (u, v_i)$ has $P \Leftrightarrow x_i = 1$
- Assume there exists an algorithm using o(n) space to test P
- Feed this G to the claimed algorithm
- Now for any i, feed (u, v_i) to the algorithm, and test
- Result of test (correctly) recovers $x_i \Rightarrow$ must use $\Omega(n)$ space
- Holds even allowing the algorithm a constant prob of failure
 - Formally, reduce to INDEX problem in communication complexity
 - Generalizes to $\Omega(n/p)$ lower bound in p passes over input

Consequences

• Easy to see that the following properties are balanced:

- Connectedness
- Bipartiteness
- Is there a vertex with degree exactly d?
- All these problems are solved easily in Õ(n) space
 - E.g. connectedness: just track the components, and merge
- Is anything non-trivial possible on a graph in o(n) space?

Outline

- Graph Streaming Models
- Hardness Results
- Degree Sequence Computations
 - Application to counting triangles
- Semi-streaming model
- Multigraph model

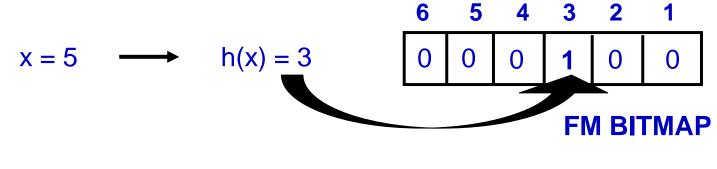
Degree Sequence Computations

Positive results: track properties of edges and degrees

- Given graph G, let d_v denote degree of node v
- Frequency moments: $F_k = \sum_{v \in V} d_v^k$
- Frequent items: find all v s.t. $d_v > \phi F_1$ for $\phi < 1$
- Can solve these problems in Õ(1) space in one pass!
- Will summarize results for:
 - F₀: how many nodes with non-zero degree are seen?
 - Estimate d_v (allows finding frequent items)
 - F_2 : sum of squares of degrees (\approx paths of length 2)

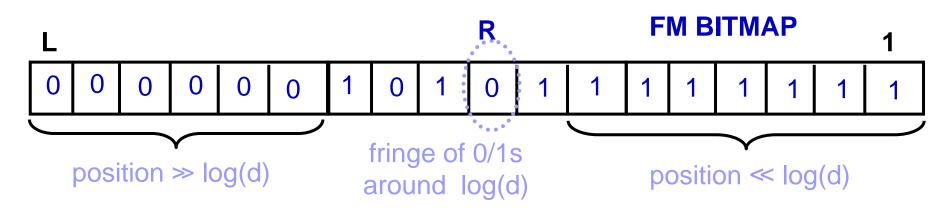
FM Sketch

- Estimates number of distinct items (F₀)
- Uses hash function mapping input items to i with prob 2⁻ⁱ
 - i.e. $Pr[h(x) = 1] = \frac{1}{2}$, $Pr[h(x) = 2] = \frac{1}{4}$, $Pr[h(x)=3] = \frac{1}{8}$...
 - Easy to construct h() from a uniform hash function by counting trailing zeros
- Maintain FM Sketch = bitmap array of L = log U bits
 - Initialize bitmap to all Os
 - For each incoming value x, set FM[h(x)] = 1



FM Analysis

If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]...



- Let R = position of rightmost zero in FM, indicator of log(d)
- Basic estimate $d = c2^R$ for scaling constant $c \approx 1.3$
- Average many copies (different hash fns) improves accuracy

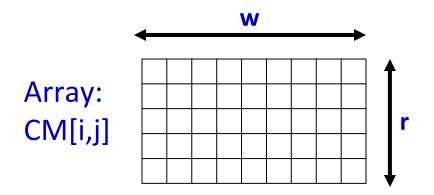
FM Properties

- With O(1/ε² log 1/δ) copies, get (1±ε) accuracy with probability at least 1-δ
 - 10 copies gets ≈ 30% error, 100 copies < 10% error
 - Can pack FM into eg. 32 bits.
- Can merge together two sketches to get sketch of the union

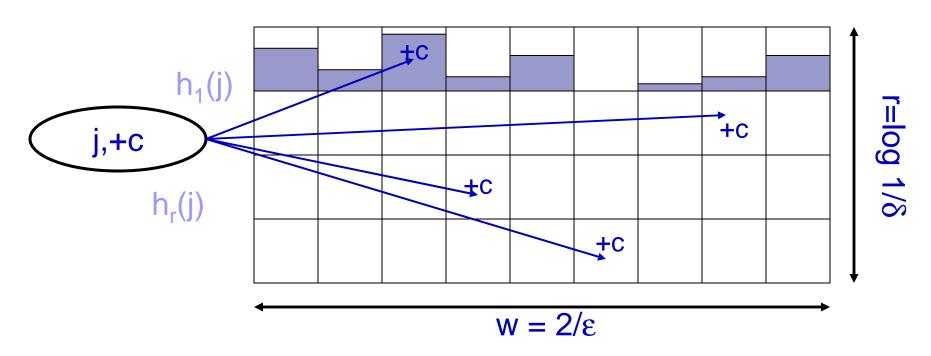
- Much subsequent work on this problem to improve bounds
 - Tighten space requirement, improve update time
 - Allow more general updates (removals of previously seen items)

Count-Min Sketch

- Count-Min Sketch estimates node degrees [C, Muthukrishnan '04]
- Model input stream as a vector d of dimension U
 - d[v] is degree of node v
- Creates a small summary as an array of w × r in size
- Use r hash function to map vector entries to [1..w]



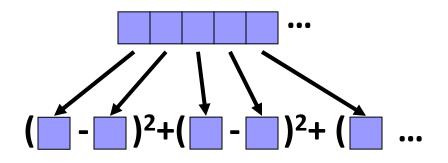
Count-Min Sketch Structure



- Each entry in vector d is mapped to one bucket per row.
- Estimate d[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than ϵF_1 in size O(1/ $\epsilon \log 1/\delta$)
 - Probability of more error is less than 1- δ

F_2 approximation

- Estimate F_2 = median_k $\sum_{i=1}^{w/2} (CM[k,2i]-CM[k,2i+1])^2$
- Each row's result is $\sum_{i} ((-1)^{h(i)}d_i)^2 + \sum_{\lfloor h(i)/2 \rfloor = \lfloor h(j)/2 \rfloor} 2 (-1)^{h(i)-h(j)} d_i d_j$
 - First term: $(-1)^{2h(i)} = -1^2 = 1$, and $\sum_i d_i^2 = F_2$
 - Second term: (-1)^{h(i)-h(j)} is equally likely +1 or –1: expectation is 0



F₂ accuracy

- For $w=8/\epsilon^2$ can show an (ϵ, δ) approximation
 - Expectation of each (row) estimate is F_2 , variance $\leq \epsilon^2 F_2^2$
 - Probability that each estimate is within $\pm \epsilon F_2$ is constant
 - Median of log (1/ δ) estimates reduces failure probability to δ
- Result: $O(1/\epsilon^2 \log 1/\delta)$ size sketch estimates $(1\pm\epsilon)F_2$
- In Practice: Can be very fast, very accurate!
 - Used in Sprint 'CMON' tool

Counting Triangles via Frequency Moments

- Given (undirected) graph G, approximate number of triangles T
- Generate triple stream TS from E
 - for each e=(u,v), create (u, v, w) triple for all w
 - T_i denotes number of node triples with exactly i edges
- Consider F_i(TS) over stream of triples

$$\begin{pmatrix} F_0(TS) \\ F_1(TS) \\ F_2(TS) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix}$$

- Solve for $T = T_3 = F_0 3/2 F_1 + \frac{1}{2} F_2$
- $O(\epsilon^{-2} \log 1/\delta)$ space gives $\pm \epsilon(nm)$ with 1- δ probability [BKS 02]
 - T must be large for this to be a good (relative) approximation

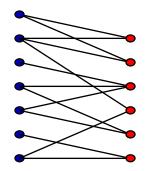
Outline

- Graph Streaming Models
- Hardness Results
- Degree Sequence Computations
 - Application to counting triangles
- Semi-streaming model
- Multigraph model

Semi-Streaming Model

In the semi-streaming model, we have space Õ(n) space

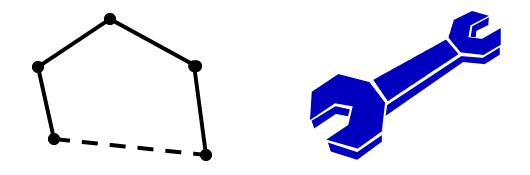
- By analogy with semi-external model
- Can now easily solve connectivity, bipartiteness
 - Results on "harder" problems like matching and path length



Semi-Streaming Spanners

Distance Estimation by constructing spanners in one pass

- t-spanner: subgraph of G so no path stretched by a factor > t
- t-spanner with $\tilde{O}(n^{1+2/(t+1)})$ edges in $\tilde{O}(n^{1+2/(t+1)})$ space [Elkin 07]
 - Add edge e to spanner unless it completes a cycle of length \leq t+1
 - A t-spanner since each edge has a path of length at most t connecting its end
 - Counting shows <t+1 cycle-free graphs have O(n^{1+2/t+1}) edges



Semi-Streaming Matching

Unweighted matching (find largest matching)

- A maximal matching (in one pass) is 2-approx of max matching
- $3/2 + \varepsilon$ matching with $\tilde{O}(1/\varepsilon)$ passes
- Sequence of results for edge weighted maximum matching
 - 6 approximation via combinatorial argument [FKMSZ04]
 - 5.828 via tighter argument [McGregor 05]
 - 5.24 latest claimed bound [DasSarma, Lipton, Nanongkai 09]

Semi-Streaming Weighted Matching

- For each edge e = (v, w) build a matching M:
 - Consider edges in M incident on e, C
 - If wt(e) > 2wt(C), then $M \leftarrow M \cup \{e\} / C$, $M' \leftarrow M' \cup C$
- For edge o in optimal solution OPT and $e \in (M \cup M')$
 - Charge wt(o) to e if o=e or e alone prevented o being picked
 - Split wt(o) between e_1 and e_2 if both prevent o being picked
 - If o charged to e, then $wt(o) \le 2wt(e)$ by defn of alg.
- At end, each edge charged against is either:
 - In M and charged to by at most two o in OPT
 - In M' and charged to by at most one o in OPT
 - wt(OPT) ≤ $2(wt(M') + 2wt(M)) \le 2(3wt(M)) = 6wt(M)$ [

Semi-Streaming Model

Meta-question: when is semi-streaming model applicable?

- Social networks: average degree is < 100 (so m = O(n))
- Diameters are small so constant stretch does not help!
- Algorithms can assume each edge is seen exactly once
 - Reasonable for web exploration (incidence order)
 - Questionable for IP, call graph monitoring

Outline

- Graph Streaming Models
- Hardness Results
- Degree Sequence Computations
 - Application to counting triangles
- Semi-streaming model
- Multigraph model

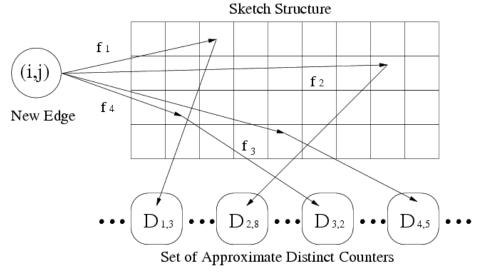
Multigraph Model

Each edge seen many times, but only counts once

- E.g. observing communications, want to study support graph
- Some algorithms seen earlier robust to repeated edges
 - Spanner construction, matching: will make same decisions
 - F₀ is by definition robust to repetition
- Others not robust
 - Will inflate degree sequence computations
 - Any random sampling algorithm will get confused
- Need to use "duplicate insensitive" methods, such as F₀

Distinct Frequent Items

- Given v, estimate $d_v = |\{w : (v, w) \in E\}|$
 - Large d_v indicates unusual net activity (port scans, worms)
- Take existing frequent items algs and put in F₀ sketch
 - Care needed: if algorithm subtracts two estimated counts, accuracy is not preserved, as $(1 \pm \varepsilon)X (1 \pm \varepsilon)Y \neq (1 \pm \varepsilon)(X-Y)$
- Count-Min sketch only uses additions, so can apply:

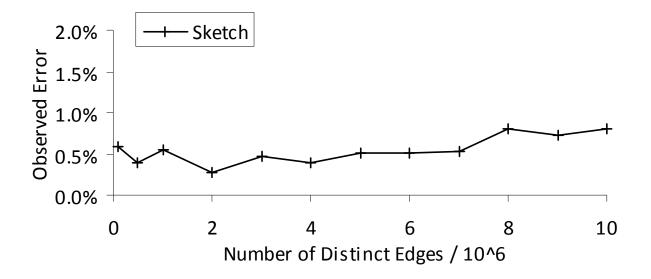


Processing Graph Streams

Result

- Can prove estimate has only small bias in expectation
- Estimate any d_v given v with error εF_0 in space $O(\varepsilon^{-3} \log^2 n)$.
- Time per update is O(log² n).

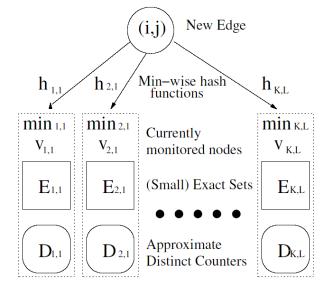




Processing Graph Streams

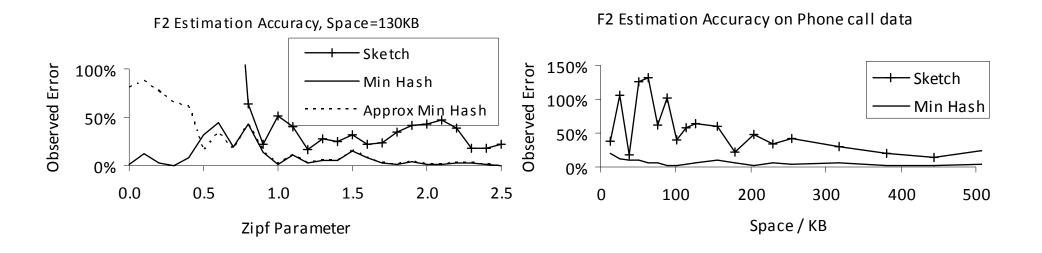
Distinct F₂ estimation

- CM sketch approach of subtracting counts no longer works
- Use a min-wise hashing technique
- Sample almost uniformly from E
 - For each edge in stream, compute h((i,j))
 - Store info on v if h((v,j)) is smallest so far
 - Collect all edges (v,j) matching v till >1/ ϵ^2 , then *approx count* (F₀) these edges
 - Estimate of F₂ is m * (2d -1),
 d = number of edges seen matching on v



Experimental Study

- Expectation of estimate = $(1+\varepsilon)F_2$
- Variance = $(1+\varepsilon)n^{1/2}F_2^2$
- Repeat enough times to increase accuracy.
- ♦ Space = O(ε⁻⁴ n^{1/2} log n)



Processing Graph Streams

Concluding Remarks

- Graph streaming yields challenging models of computation
 - Many natural graph questions are "hard" in these models
- Some global properties can be computed very compactly
 - Degree sequence computation, high degree nodes
- Even in semi-streaming, local properties are only approximated
 - E.g. distance between nodes stretches by constant factors
- Some results take multiple passes (e.g. PageRank) realistic?
- Next challenge: assume some small-world scale-free model and prove stronger algorithmic results for graph streaming?