
Processing Graph Streams:
Upper and Lower Bounds

Graham Cormode
graham@research.att.com

Processing Graph Streams2

A tale of three graphs

♦ The telephone call-graph

– Each edge denotes a call between two phones

– 2-3 × 109 calls made each day in US, maybe 0.5 × 109 phones

– Can store this information (for billing etc.)

♦ The web graph

– Each edge denotes a link from one web page to another

– > 1010 pages, > 1011 billion links

– Store pages (nodes) in memory, but maybe not all links

♦ The IP graph

– Each edge denotes communication between IP addresses

– 109 packets/hour/router in a large ISP, 232 possible addresses

– Not feasible to store nodes or edges

Processing Graph Streams3

Example: IP Network Data

♦ Networks are sources of massive data: the metadata per hour
per router is gigabytes

♦ Fundamental problem of data stream analysis:
Too much information to store or transmit

♦ So process data as it arrives: one pass, small space:
the data stream approach

♦ Approximate, probabilistic answers to many questions are OK

– if there are guarantees of result quality

Processing Graph Streams4

Models of Graph Streams

♦ Let G=(V,E) be a graph with |V|=n nodes, |E|=m edges…

♦ We observe the edges of G in a stream, one by one

♦ How many times do we see each edge?

– Exactly once (convenient, but unrealistic in some cases)

– Many times, contributing to a weighted edge case

– Many times, but should only count once (trickiest)

♦ What order do we see the edges in?

– Grouped by incident vertex (incidence order)

– In arbitrary (random) order

– In arbitrary (worst-case) order

♦ How many passes over the data can we take (one, or many?)

Processing Graph Streams5

Outline

♦ Graph Streaming Models

♦ Hardness Results

♦ Degree Sequence Computations

– Application to counting triangles

♦ Semi-streaming model

♦ Multigraph model

Processing Graph Streams6

Negative Results

♦ We care about how much space is needed to compute
functions

♦ If graph is big, space should be sublinear in m or n

– Sublinear in m, or streaming model collapses

♦ Many natural properties need at least linear in n space

♦ Given some (binary) property P, decision problem is to report
whether P holds or does not hold on G

♦ Say P is “balanced” if ∀n=|V| ∃ constant c, G and u∈V, s.t.

– There are ≥ cn v’s s.t. E ∪ (u,v) has P

– There are ≥ cn v’s s.t. E ∪ (u,v) has ¬P ?

Processing Graph Streams7

Hardness Proof

♦ Theorem: Deciding P in one pass requires Ω(n) space

– Take a binary string x of length cn

– Relabel vertex set v1 … vcn so that E ∪ (u, vi) has P ⇔ xi = 1

– Assume there exists an algorithm using o(n) space to test P

– Feed this G to the claimed algorithm

– Now for any i, feed (u, vi) to the algorithm, and test

– Result of test (correctly) recovers xi ⇒ must use Ω(n) space

♦ Holds even allowing the algorithm a constant prob of failure

– Formally, reduce to INDEX problem in communication complexity

– Generalizes to Ω(n/p) lower bound in p passes over input

Processing Graph Streams8

Consequences

♦ Easy to see that the following properties are balanced:

– Connectedness

– Bipartiteness

– Is there a vertex with degree exactly d?

♦ All these problems are solved easily in Õ(n) space

– E.g. connectedness: just track the components, and merge

♦ Is anything non-trivial possible on a graph in o(n) space?

?

Processing Graph Streams9

Outline

♦ Graph Streaming Models

♦ Hardness Results

♦ Degree Sequence Computations

– Application to counting triangles

♦ Semi-streaming model

♦ Multigraph model

Processing Graph Streams10

Degree Sequence Computations

♦ Positive results: track properties of edges and degrees

– Given graph G, let dv denote degree of node v

– Frequency moments: Fk = ∑v ∈ V dv
k

– Frequent items: find all v s.t. dv > φ F1 for φ < 1

♦ Can solve these problems in Õ(1) space in one pass!

♦ Will summarize results for:

– F0: how many nodes with non-zero degree are seen?

– Estimate dv (allows finding frequent items)

– F2: sum of squares of degrees (≈ paths of length 2)

Processing Graph Streams11

0

FM Sketch

♦ Estimates number of distinct items (F0)

♦ Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …

– Easy to construct h() from a uniform hash function by counting
trailing zeros

♦ Maintain FM Sketch = bitmap array of L = log U bits

– Initialize bitmap to all 0s

– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

Processing Graph Streams12

FM Analysis

♦ If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)

– Basic estimate d = c2R for scaling constant c ≈ 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s
around log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position ≪ log(d)position ≫ log(d)

1L R

Processing Graph Streams13

FM Properties

♦ With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with
probability at least 1-δ
– 10 copies gets ≈ 30% error, 100 copies < 10% error

– Can pack FM into eg. 32 bits.

♦ Can merge together two sketches to get sketch of the union

♦ Much subsequent work on this problem to improve bounds

– Tighten space requirement, improve update time

– Allow more general updates (removals of previously seen items)

00 0 1 11

6 5 4 3 2 1

00 1 1 10

6 5 4 3 2 1

00 1 1 11

6 5 4 3 2 1

+ =

Processing Graph Streams14

Count-Min Sketch

♦ Count-Min Sketch estimates node degrees [C, Muthukrishnan ’04]

♦ Model input stream as a vector d of dimension U

– d[v] is degree of node v

♦ Creates a small summary as an array of w × r in size

♦ Use r hash function to map vector entries to [1..w]

w

r
Array:
CM[i,j]

Processing Graph Streams15

Count-Min Sketch Structure

♦ Each entry in vector d is mapped to one bucket per row.

♦ Estimate d[j] by taking mink CM[k,hk(j)]

– Guarantees error less than εF1 in size O(1/ε log 1/δ)

– Probability of more error is less than 1-δ

+c

+c

+c

+c

h1(j)

hr(j)

j,+c

r=
log 1/δ

w = 2/ε

Processing Graph Streams16

(-)2+(-)2+ (…

F2 approximation

♦ Estimate F2 = mediank ∑i=1
w/2 (CM[k,2i]-CM[k,2i+1])2

♦ Each row’s result is ∑i ((-1)h(i)di)
2 + ∑h(i)/2 =h(j)/2 2 (-1)h(i)-h(j) di dj

– First term: (-1)2h(i) = -12 = 1, and ∑i di
2 = F2

– Second term: (-1)h(i)-h(j) is equally likely +1 or –1: expectation is 0

…

Processing Graph Streams17

F2 accuracy

♦ For w=8/ε2 can show an (ε, δ) approximation

– Expectation of each (row) estimate is F2, variance ≤ ε2F2
2

– Probability that each estimate is within ± εF2 is constant

– Median of log (1/δ) estimates reduces failure probability to δ
♦ Result: O(1/ε2 log 1/δ) size sketch estimates (1±ε)F2

♦ In Practice: Can be very fast, very accurate!

– Used in Sprint ‘CMON’ tool

Processing Graph Streams18

Counting Triangles via Frequency Moments

♦ Given (undirected) graph G, approximate number of triangles T

♦ Generate triple stream TS from E

– for each e=(u,v), create (u, v, w) triple for all w

– Ti denotes number of node triples with exactly i edges

♦ Consider Fi(TS) over stream of triples

♦ Solve for T = T3 = F0 – 3/2 F1 + ½ F2

♦ O(ε-2 log 1/δ) space gives ± ε(nm) with 1-δ probability [BKS 02]

– T must be large for this to be a good (relative) approximation

T1

T3

T2

Processing Graph Streams19

Outline

♦ Graph Streaming Models

♦ Hardness Results

♦ Degree Sequence Computations

– Application to counting triangles

♦ Semi-streaming model

♦ Multigraph model

Processing Graph Streams20

Semi-Streaming Model

♦ In the semi-streaming model, we have space Õ(n) space

– By analogy with semi-external model

♦ Can now easily solve connectivity, bipartiteness

– Results on “harder” problems like matching and path length

Processing Graph Streams21

Semi-Streaming Spanners

♦ Distance Estimation by constructing spanners in one pass

– t-spanner: subgraph of G so no path stretched by a factor > t

♦ t-spanner with Õ(n1+2/(t+1)) edges in Õ(n1+2/(t+1)) space [Elkin 07]

– Add edge e to spanner unless it completes a cycle of length ≤ t+1

– A t-spanner since each edge has a path of length at most t
connecting its end

– Counting shows <t+1 cycle-free graphs have O(n1+2/t+1) edges

Processing Graph Streams22

Semi-Streaming Matching

♦ Unweighted matching (find largest matching)

– A maximal matching (in one pass) is 2-approx of max matching

– 3/2 + ε matching with Õ(1/ε) passes

♦ Sequence of results for edge weighted maximum matching

– 6 approximation via combinatorial argument [FKMSZ04]

– 5.828 via tighter argument [McGregor 05]

– 5.24 latest claimed bound [DasSarma, Lipton, Nanongkai 09]

Processing Graph Streams23

Semi-Streaming Weighted Matching

♦ For each edge e = (v, w) build a matching M:

– Consider edges in M incident on e, C

– If wt(e) > 2wt(C), then M ← M ∪ {e} / C, M’ ← M’ ∪ C

♦ For edge o in optimal solution OPT and e ∈ (M∪M’)

– Charge wt(o) to e if o=e or e alone prevented o being picked

– Split wt(o) between e1 and e2 if both prevent o being picked

– If o charged to e, then wt(o) ≤ 2wt(e) by defn of alg.

♦ At end, each edge charged against is either:

– In M and charged to by at most two o in OPT

– In M’ and charged to by at most one o in OPT

– wt(OPT) ≤ 2(wt(M’) + 2wt(M)) ≤ 2(3wt(M)) = 6wt(M) �

e1

e2

o

Processing Graph Streams24

Semi-Streaming Model

♦ Meta-question: when is semi-streaming model applicable?

– Social networks: average degree is < 100 (so m = O(n))

– Diameters are small – so constant stretch does not help!

– Algorithms can assume each edge is seen exactly once

� Reasonable for web exploration (incidence order)

� Questionable for IP, call graph monitoring

Processing Graph Streams25

Outline

♦ Graph Streaming Models

♦ Hardness Results

♦ Degree Sequence Computations

– Application to counting triangles

♦ Semi-streaming model

♦ Multigraph model

Processing Graph Streams26

Multigraph Model

♦ Each edge seen many times, but only counts once

– E.g. observing communications, want to study support graph

♦ Some algorithms seen earlier robust to repeated edges

– Spanner construction, matching: will make same decisions

– F0 is by definition robust to repetition

♦ Others not robust

– Will inflate degree sequence computations

– Any random sampling algorithm will get confused

♦ Need to use “duplicate insensitive” methods, such as F0

Processing Graph Streams27

Distinct Frequent Items

♦ Given v, estimate dv = |{ w : (v, w) ∈ E}|

– Large dv indicates unusual net activity (port scans, worms)

♦ Take existing frequent items algs and put in F0 sketch

– Care needed: if algorithm subtracts two estimated counts,
accuracy is not preserved, as (1 ±ε)X – (1± ε)Y ≠ (1± ε)(X-Y)

♦ Count-Min sketch only uses additions, so can apply:

Processing Graph Streams28

Result

♦ Can prove estimate has only small bias in expectation

♦ Estimate any dv given v with error εF0 in space O(ε-3 log2 n).

♦ Time per update is O(log2 n).

Degree Estimation Accuracy, Space=175KB, Z=1.2

0.0%

0.5%

1.0%

1.5%

2.0%

0 2 4 6 8 10

Number of Distinct Edges / 10^6

O
b

se
rv

ed
 E

rr
o

r

Sketch

Processing Graph Streams29

Distinct F2 estimation

♦ CM sketch approach of subtracting counts no longer works

♦ Use a min-wise hashing technique

♦ Sample almost uniformly from E

– For each edge in stream, compute h((i,j))

– Store info on v if h((v,j)) is smallest so far

– Collect all edges (v,j) matching v till >1/ε2,
then approx count (F0) these edges

– Estimate of F2 is m * (2d –1),
d = number of edges seen matching on v

Processing Graph Streams30

Experimental Study

F2 Es timation Accuracy, Space=130KB

0%

50%

100%

0.0 0.5 1.0 1.5 2.0 2.5

Zipf Parameter

O
b

se
rv

ed
 E

rr
o

r

Sketch

Min Hash

Approx Min Hash

F2 Estimation Accuracy on Phone call data

0%

50%

100%

150%

0 100 200 300 400 500

Space / KB

O
b

se
rv

ed
 E

rr
o

r

Sketch

Min Hash

♦ Expectation of estimate = (1+ε)F2

♦ Variance = (1+ε)n1/2F2
2

♦ Repeat enough times to increase accuracy.

♦ Space = O(ε-4 n1/2 log n)

Processing Graph Streams31

Concluding Remarks

♦ Graph streaming yields challenging models of computation

– Many natural graph questions are “hard” in these models

♦ Some global properties can be computed very compactly

– Degree sequence computation, high degree nodes

♦ Even in semi-streaming, local properties are only approximated

– E.g. distance between nodes stretches by constant factors

♦ Some results take multiple passes (e.g. PageRank) – realistic?

♦ Next challenge: assume some small-world scale-free model and
prove stronger algorithmic results for graph streaming?

