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¢ Local Differential Privacy: ensure that every user’s output is DP
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¢ Local Differential Privacy: ensure that every user’s output is DP
— Aka (private) “Federated analytics”

¢ LDP mostly built on variations of randomized response (RR)
— With probability p > ¥4, report the true (binary) answer
— With probability 1-p, lie
¢ Now popular for gathering private frequency statistics at scale
— RAPPOR in Chrome, combining RR with Bloom filters
— In Apple iOS and MacOS, combining RR with sketches and transforms

— This yields deployments of over 100 million users

¢ Local Differential privacy widely deployed since 2015:
Randomized response invented in 1965: five decade lead time!
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Going beyond | bit of data

1 bit can tell you a lot, but can we do more?
¢ Recent work: materializing marginal distributions

— Each user has d bits of data (encoding sensitive data)
— We are interested in the distribution of combinations of attributes
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Hadamard transform

Instead of materializing projections of data, we can transform it
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Hadamard transform

Instead of materializing projections of data, we can transform it

¢ Via Hadamard transform (the discrete Tl o
Fourier transform for the binary hypercube) [11-11 1 1-11

, H* H*| _ 111-1 111-1

— Simple and fast to apply [H* _H*] 1111 1-1-1-1

¢ Property 1: only (d choose k) coefficients i: i i :i i j
are needed to build any k-way marginal 1111 1-1-11)]

— Reduces the amount of information to release
¢ Property 2: Hadamard transform is a linear transform

— Can estimate global coefficients by sampling and averaging
¢ Yields error proportional to 2¥2d%/2/vN

— Better than simply materializing marginals (in theory)
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Empirical behaviour [C, Kulkarni, Srivastava SIGMOD 18]
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Compare three methods: Hadamard based (Inp HT), marginal

materialization (Marg_PS), Expectation maximization (Inp_EM)

¢ Measure sum of absolute error in materializing 2-way marginals

¢ N =0.5M individuals, vary privacy parameter € from 0.4 to 1.4

THE UNIVERSITY OF

WARWICK



Application — building a Bayesian model

um Of Mutual Information Of Chow-Liu Tree Edges

|| non private
(Il Inp_HT
|l Marg_PS

o™ o

1

Mutual Information
OE=ENWARUION

¢ Aim: build the tree with highest mutual information (Ml)
¢ Plot shows Ml on the ground truth data for evaluation purposes

THE UNIVERSITY OF

: WARWICK



—

—

Range Queries

‘_l

]
| I

]

L]

]

L]

]

U

U

U

- O

¢ Given data from an ordered domain, we study range queries:

— “How many data points fall in the range [, r]”?

THE UNIVERSITY OF

WARWICK



Range Queries . .
U U U U O

¢ Given data from an ordered domain, we study range queries:
— “How many data points fall in the range [, r]”?
¢ Hierarchical approaches improve over summing point queries:
a) Impose a regular tree over the input domain, and sample nodes
m Need to do post-processing to obtain consistent answers
b) Apply a Haar wavelet transform to input, and sample coefficients
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¢ Given data from an ordered domain, we study range queries:
— “How many data points fall in the range [, r]”?
¢ Hierarchical approaches improve over summing point queries:
a) Impose a regular tree over the input domain, and sample nodes
m Need to do post-processing to obtain consistent answers
b) Apply a Haar wavelet transform to input, and sample coefficients

¢ Which method is best? Answer: both are competitive!
— Similar variance (up to leading constant) for optimal settings
—  Similar empirical performance, slight preferences for different €
— In contrast to the centralized case, where trees are preferred
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Quantile queries [C, Kulkarni, Srivastava VLDBI9]

¢ Use range queries to find ranges that cover a given fraction
— E.g. the median is the 0.5 quantile query
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Quantile queries [C, Kulkarni, Srivastava VLDB 9]

¢ Use range queries to find ranges that cover a given fraction

— E.g. the median is the 0.5 quantile query

¢ Both Hierarchical Histograms (HH) and Haar wavelets obtain
similar results: very accurate answers for N large enough
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¢ For LDP to really work with good accuracy we need to have:
— Massive number of participating users (ideally millions)
— Relaxed privacy parameters (¢ = 8-16 in Apple deployment)
— “Flexible” attitude to composition results (daily “reset”)
— Relatively simple analytics target (simple statistics)
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— “Flexible” attitude to composition results (daily “reset”)
— Relatively simple analytics target (simple statistics)
¢ LDPis really good for:
— Large deployments by well-resourced tech companies
— Academic research generating new papers in popular model
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— “Flexible” attitude to composition results (daily “reset”)
— Relatively simple analytics target (simple statistics)
¢ LDPis really good for:
— Large deployments by well-resourced tech companies
— Academic research generating new papers in popular model
¢ LDP does not seem so good for:
— Everyone else?
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¢ For LDP to really work with good accuracy we need to have:
— Massive number of participating users (ideally millions)
— Relaxed privacy parameters (¢ = 8-16 in Apple deployment)
— “Flexible” attitude to composition results (daily “reset”)
— Relatively simple analytics target (simple statistics)
¢ LDPis really good for:
— Large deployments by well-resourced tech companies
— Academic research generating new papers in popular model
¢ LDP does not seem so good for:
— Everyone else?

¢ RAPPOR has been replaced in current Chrome versions

THE UNIVERSITY OF

; WARWICK



So is LDP a distraction in federated learning?

LDP in isolation does not provide a rounded solution, but:

¢ LDP plus deidentification of reports gives stronger privacy
— “Shuffling” the messages gives O(e/Vn) (centralized) DP
— Generic bounds for sufficiently restricted LDP protocols
— Tight bounds for core problems (e.g. sums and counts)

— Many recent results [Bitau et al 2017] [Erlingsson et al. 2019]
[Balle et al 2019] [Cheu et al 2019] ...
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¢ LDP protocols are good candidates for implementing with SMC
— Simple partitions of quantities, small data per participant
— One algorithm could “compile” to multiple target models?
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¢ LDP plus deidentification of reports gives stronger privacy
— “Shuffling” the messages gives O(e/Vn) (centralized) DP
— Generic bounds for sufficiently restricted LDP protocols
— Tight bounds for core problems (e.g. sums and counts)

— Many recent results [Bitau et al 2017] [Erlingsson et al. 2019]
[Balle et al 2019] [Cheu et al 2019] ...

¢ LDP protocols are good candidates for implementing with SMC
— Simple partitions of quantities, small data per participant
— One algorithm could “compile” to multiple target models?

¢ LDP may be a stepping stone to more powerful PETS
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