Local Differential Privacy: Solution or Distraction?

Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (Warwick)

Divesh Srivastava (AT&T)

THE UNIVERSITY OF WARWICK

- Local Differential Privacy: ensure that every user's output is DP
 - Aka (private) "Federated analytics"

- Local Differential Privacy: ensure that every user's output is DP
 - Aka (private) "Federated analytics"
- LDP mostly built on variations of randomized response (RR)
 - With probability p > ½, report the true (binary) answer
 - With probability 1-p, lie

- Local Differential Privacy: ensure that every user's output is DP
 - Aka (private) "Federated analytics"
- LDP mostly built on variations of randomized response (RR)
 - With probability p > ½, report the true (binary) answer
 - With probability 1-p, lie
- Now popular for gathering private frequency statistics at scale
 - RAPPOR in Chrome, combining RR with Bloom filters
 - In Apple iOS and MacOS, combining RR with sketches and transforms
 - This yields deployments of over 100 million users

- Local Differential Privacy: ensure that every user's output is DP
 - Aka (private) "Federated analytics"
- LDP mostly built on variations of randomized response (RR)
 - With probability p > ½, report the true (binary) answer
 - With probability 1-p, lie
- Now popular for gathering private frequency statistics at scale
 - RAPPOR in Chrome, combining RR with Bloom filters
 - In Apple iOS and MacOS, combining RR with sketches and transforms
 - This yields deployments of over 100 million users
- Local Differential privacy widely deployed since 2015: Randomized response invented in 1965: five decade lead time!

THE UNIVERSITY OF WARWICK

Going beyond I bit of data

1 bit can tell you a lot, but can we do more?

- Recent work: materializing marginal distributions
 - Each user has d bits of data (encoding sensitive data)
 - We are interested in the distribution of combinations of attributes

Going beyond I bit of data

1 bit can tell you a lot, but can we do more?

- Recent work: materializing marginal distributions
 - Each user has d bits of data (encoding sensitive data)
 - We are interested in the distribution of combinations of attributes

	Gender	Obese	High BP	Smoke	Disease
Alice	1	0	0	1	0
Bob	0	1	0	1	1
Zayn	0	0	1	0	0

Going beyond I bit of data

1 bit can tell you a lot, but can we do more?

- Recent work: materializing marginal distributions
 - Each user has d bits of data (encoding sensitive data)
 - We are interested in the distribution of combinations of attributes

	Gender	Obese	High BP	Smoke	Disease
Alice	1	0	0	1	0
Bob	0	1	0	1	1
Zayn	0	0	1	0	0

Gender/Obese	0	1	Disease/Smoke	0	1
0	0.28	0.22	0	0.55	0.15
1	0.29	0.21	1	0.10	0.20

Instead of materializing projections of data, we can transform it

- Via Hadamard transform (the discrete Fourier transform for the binary hypercube)
 - Simple and fast to apply

$$\begin{array}{l} \textbf{ypercube} \\ \begin{bmatrix} \mathbf{H}^{*} & \mathbf{H}^{*} \\ \mathbf{H}^{*} & -\mathbf{H}^{*} \end{bmatrix} = \end{array}$$

-1	1	1	1	-1	1	1	1
1	-1	1	1	1	-1	1	1
1	1	-1	1	1	1	-1	1
1	1	1	-1	1	1	1	-1
-1	1	1	1	1	-1	-1	-1
1	-1	1	1	-1	1	-1	-1
1	1	-1	1	-1 -	-1	1	-1
1	1	1	-1	-1 -	-1	-1	1

Instead of materializing projections of data, we can transform it

- Via Hadamard transform (the discrete Fourier transform for the binary hypercube) H* H* H* -H*
 - Simple and fast to apply
- Property 1: only (d choose k) coefficients are needed to build any k-way marginal
 - Reduces the amount of information to release

-1	1	1 1	-1 1 1 1
1	-1	1 1	1 -1 1 1
1	1	-1 1	1 1 -1 1
1	1	1 -1	1 1 1 -1
-1	1	1 1	1 -1 -1 -1
1	-1	1 1	-1 1 -1 -1
1	1	-1 1	-1-1 1 -1
1	1	1 -1	-1-1-1 1

Instead of materializing projections of data, we can transform it

- Via Hadamard transform (the discrete Fourier transform for the binary hypercube) H* H* H* -H*
 - Simple and fast to apply
- Property 1: only (d choose k) coefficients are needed to build any k-way marginal
 - Reduces the amount of information to release
- Property 2: Hadamard transform is a linear transform
 - Can estimate global coefficients by sampling and averaging

_				-
-1	1	1	1	-1 1 1 1
1	-1	1	1	1 -1 1 1
1	1	-1	1	1 1 -1 1
1	1	1	-1	1 1 1 -1
-1	1	1	1	1 -1 -1 -1
1	-1	1	1	-1 1 -1 -1
1	1	-1	1	-1-1 1-1
1	1	1	-1	-1-1-1 1

Instead of materializing projections of data, we can transform it

- Via Hadamard transform (the discrete Fourier transform for the binary hypercube) H* H* H* -H*
 - Simple and fast to apply
- Property 1: only (d choose k) coefficients are needed to build any k-way marginal
 - Reduces the amount of information to release
- Property 2: Hadamard transform is a linear transform
 - Can estimate global coefficients by sampling and averaging
- ♦ Yields error proportional to 2^{k/2}d^{k/2}/√N
 - Better than simply materializing marginals (in theory)

UNIVERSIT

-1	1	1	1	-1 1 1 1
1	-1	1	1	1 -1 1 1
1	1	-1	1	1 1 -1 1
1	1	1	-1	1 1 1 -1
-1	1	1	1	1 -1 -1 -1
1	-1	1	1	-1 1 -1 -1
1	1	-1	1	-1-1 1-1
1	1	1	-1	-1-1-1 1

Empirical behaviour [C, Kulkarni, Srivastava SIGMOD 18]

- Compare three methods: Hadamard based (Inp_HT), marginal materialization (Marg_PS), Expectation maximization (Inp_EM)
- Measure sum of absolute error in materializing 2-way marginals
- N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4

Application – building a Bayesian model

- Aim: build the tree with highest mutual information (MI)
- Plot shows MI on the ground truth data for evaluation purposes

- Given data from an ordered domain, we study range queries:
 - "How many data points fall in the range [l, r]"?

Range Queries

- Given data from an ordered domain, we study range queries:
 - "How many data points fall in the range [I, r]"?
- Hierarchical approaches improve over summing point queries:
 - a) Impose a regular tree over the input domain, and sample nodes
 - Need to do post-processing to obtain consistent answers
 - b) Apply a Haar wavelet transform to input, and sample coefficients

Range Queries

- Given data from an ordered domain, we study range queries:
 - "How many data points fall in the range [I, r]"?
- Hierarchical approaches improve over summing point queries:
 - a) Impose a regular tree over the input domain, and sample nodes
 - Need to do post-processing to obtain consistent answers
 - b) Apply a Haar wavelet transform to input, and sample coefficients
- Which method is best? Answer: both are competitive!
 - Similar variance (up to leading constant) for optimal settings
 - Similar empirical performance, slight preferences for different ε
 - In contrast to the centralized case, where trees are preferred

Quantile queries [C, Kulkarni, Srivastava VLDB19]

• Use range queries to find ranges that cover a given fraction

– E.g. the median is the 0.5 quantile query

Quantile queries [C, Kulkarni, Srivastava VLDB19]

• Use range queries to find ranges that cover a given fraction

- E.g. the median is the 0.5 quantile query
- Both Hierarchical Histograms (HH) and Haar wavelets obtain similar results: very accurate answers for N large enough

- For LDP to really work with good accuracy we need to have:
 - Massive number of participating users (ideally millions)
 - Relaxed privacy parameters ($\epsilon = 8-16$ in Apple deployment)
 - "Flexible" attitude to composition results (daily "reset")
 - Relatively simple analytics target (simple statistics)

- For LDP to really work with good accuracy we need to have:
 - Massive number of participating users (ideally millions)
 - Relaxed privacy parameters ($\epsilon = 8-16$ in Apple deployment)
 - "Flexible" attitude to composition results (daily "reset")
 - Relatively simple analytics target (simple statistics)
- LDP is really good for:
 - Large deployments by well-resourced tech companies
 - Academic research generating new papers in popular model

- For LDP to really work with good accuracy we need to have:
 - Massive number of participating users (ideally millions)
 - Relaxed privacy parameters ($\epsilon = 8-16$ in Apple deployment)
 - "Flexible" attitude to composition results (daily "reset")
 - Relatively simple analytics target (simple statistics)
- LDP is really good for:
 - Large deployments by well-resourced tech companies
 - Academic research generating new papers in popular model
- LDP does not seem so good for:
 - Everyone else?

- For LDP to really work with good accuracy we need to have:
 - Massive number of participating users (ideally millions)
 - Relaxed privacy parameters ($\epsilon = 8-16$ in Apple deployment)
 - "Flexible" attitude to composition results (daily "reset")
 - Relatively simple analytics target (simple statistics)
- LDP is really good for:
 - Large deployments by well-resourced tech companies
 - Academic research generating new papers in popular model
- LDP does not seem so good for:
 - Everyone else?
- RAPPOR has been replaced in current Chrome versions

THE UNIVERSITY OF WARWICK

So is LDP a distraction in federated learning?

LDP in isolation does not provide a rounded solution, but:

- LDP plus deidentification of reports gives stronger privacy
 - "Shuffling" the messages gives $O(\epsilon/\sqrt{n})$ (centralized) DP
 - Generic bounds for sufficiently restricted LDP protocols
 - Tight bounds for core problems (e.g. sums and counts)
 - Many recent results [Bitau et al 2017] [Erlingsson et al. 2019]
 [Balle et al 2019] [Cheu et al 2019] ...

So is LDP a distraction in federated learning?

LDP in isolation does not provide a rounded solution, but:

- LDP plus deidentification of reports gives stronger privacy
 - "Shuffling" the messages gives $O(\epsilon/\sqrt{n})$ (centralized) DP
 - Generic bounds for sufficiently restricted LDP protocols
 - Tight bounds for core problems (e.g. sums and counts)
 - Many recent results [Bitau et al 2017] [Erlingsson et al. 2019]
 [Balle et al 2019] [Cheu et al 2019] ...
- LDP protocols are good candidates for implementing with SMC
 - Simple partitions of quantities, small data per participant
 - One algorithm could "compile" to multiple target models?

So is LDP a distraction in federated learning?

LDP in isolation does not provide a rounded solution, but:

- LDP plus deidentification of reports gives stronger privacy
 - "Shuffling" the messages gives $O(\epsilon/\sqrt{n})$ (centralized) DP
 - Generic bounds for sufficiently restricted LDP protocols
 - Tight bounds for core problems (e.g. sums and counts)
 - Many recent results [Bitau et al 2017] [Erlingsson et al. 2019]
 [Balle et al 2019] [Cheu et al 2019] ...

LDP protocols are good candidates for implementing with SMC

- Simple partitions of quantities, small data per participant
- One algorithm could "compile" to multiple target models?
- LDP may be a stepping stone to more powerful PETS

WARWICK