Mergeable Summaries Graham Cormode

graham@research.att.com

Pankaj Agarwal (Duke) Zengfeng Huang (HKUST) Jeff Philips (Utah) Zheiwei Wei (HKUST) Ke Yi (HKUST)

Summaries

Summaries allow approximate computations:

- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items, Distinct Sampling (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)

Mergeability

Ideally, summaries are algebraic: associative, commutative

- Allows arbitrary computation trees (see also synopsis diffusion [Nath+04], MUD model)
- Distribution "just works", whatever the architecture

- Summaries should have bounded size
 - Ideally, independent of base data size
 - Or sublinear in base data (logarithmic, square root)
 - Should **not** depend linearly on number of merges
 - Rule out "trivial" solution of keeping union of input

Approximation Motivation

- Why use approximate when data storage is cheap?
 - Parallelize computation: partition and summarize data
 - Consider holistic aggregates, e.g. median finding
 - Faster computation (only work with summaries, not full data)
 - Less marshalling, load balancing needed
 - Implicit in some tools
 - E.g. Google Sawzall for data analysis requires mergability
 - Allows computation on data sets too big for memory/disk
 - When your data is "too big to file"

Models of Summary Construction

- Offline computation: e.g. sort data, take percentiles
- Streaming: summary merged with one new item each step
- One-way merge: each summary merges into at most one
 - Single level hierarchy merge structure
 - Caterpillar graph of merges

- Equal-size merges: can only merge summaries of same arity
- Full mergeability (algebraic): allow arbitrary merging schemes
 - Our main interest

Merging: sketches

- Example: most sketches (random projections) fully mergeable
- Count-Min sketch of vector x[1..U]:
 - Creates a small summary as an array of $w \times d$ in size
 - Use d hash functions h to map vector entries to [1..w]
 - Estimate x[i] = min_i CM[h_i(i), j]
 - Error $2|x|_1/w$ with probability 1- $\frac{1}{2}^d$
- Trivially mergeable: CM(x + y) = CM(x) + CM(y)

Merging: sketches

- Consequence of sketch mergability:
 - Full mergability of quantiles, heavy hitters, F0, F2, dot product...
 - Easy, widely implemented, used in practice
- Limitations of sketch mergeability:
 - Probabilistic guarantees
 - May require discrete domain (ints, not reals or strings)
 - Some bounds are logarithmic in domain size

Deterministic Summaries for Heavy Hitters

- Misra-Gries (MG) algorithm finds up to k items that occur more than 1/k fraction of the time in a stream [MG82]
- Keep k different candidates in hand. For each item in stream:
 - If item is monitored, increase its counter
 - Else, if < k items monitored, add new item with count 1
 - Else, decrease all counts by 1

Streaming MG analysis

- N = total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
 - Estimated count a lower bound on true count
 - Each decrement spread over (k+1) items: 1 new one and k in MG
 - Equivalent to deleting (k+1) distinct items from stream
 - At most (N-M)/(k+1) decrement operations
 - Hence, can have "deleted" (N-M)/(k+1) copies of any item
 - So estimated counts have at most this much error

Merging two MG Summaries

Merging alg:

- Merge two sets of k counters in the obvious way
- Take the (k+1)th largest counter = C_{k+1} , and subtract from all
- Delete non-positive counters
- Sum of remaining (at most k) counters is M_{12}
- This alg gives full mergeability:
 - Merge subtracts at least (k+1)C_{k+1} from counter sums
 - So $(k+1)C_{k+1} \le (M_1 + M_2 M_{12})$
 - By induction, error is $((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/(k+1) = ((N_1+N_2) - M_{12})/(k+1)$

```
(prior error) (from merge) (as claimed)
```

Other heavy hitter summaries

The "SpaceSaving" (SS) summary also keeps k counters [MAA05]

- If stream item not in summary, overwrite item with least count
- SS seems to perform better in practice than MG
- Surprising observation: SS is actually isomorphic to MG!
 - An SS summary with k+1 counters has same info as MG with k
 - SS outputs an upper bound on count, which tends to be tighter than the MG lower bound
- Isomorphism is proved inductively
 - Show every update maintains the isomorphism
- Immediate corollary: SS is fully mergeable
 - Just merge as if it were an MG structure

Quantiles (order statistics)

Quantiles generalize median:

– Exact answer: $CDF^{-1}(\phi)$ for $0 < \phi < 1$

- Approximate version: tolerate answer in $CDF^{-1}(\phi \epsilon)...CDF^{-1}(\phi + \epsilon)$
- Quantile summaries solve dual problem: estimate $CDF(x) \pm \epsilon$
- Hoeffding bound: sample of size $O(1/\epsilon^2 \log 1/\delta)$ suffices
- Fully mergeable samples of size s via "Min-wise sampling":
 - Pick a random "tag" for samples in [0...1]
 - Merge two samples: keep the s items with smallest tags
 - Tags of O(log N) bits suffice whp
 - Can draw tie-breaking bits when needed

One-way mergeable quantiles

- Easy result: one-way mergeability in $O(1/\epsilon \log (\epsilon n))$
 - Assume a streaming summary (e.g. [Greenwald Khanna 01])
 - Extract an approximate CDF F from the summary
 - Generate corresponding distribution f over n items
 - Feed f to summary, error is bounded
 - Limitation: repeatedly extracting/inserting causes error to grow

Equal-weight merging quantiles

A classic result (Munro-Paterson '78):

- Input: two summaries of equal size k
- Base case: fill summary with k input items
- Merge, sort summaries to get size 2k
- Take every other element
- Deterministic bound:
 - Error grows proportional to height of merge tree
 - Implies $O(1/\epsilon \log^2 n)$ sized summaries (for n known upfront)
- Randomized twist:
 - Randomly pick whether to take odd or even elements

Equal-sized merge analysis: absolute error

- Consider any interval I over sample S from a single merge
- ◆ Estimate 2 | I ∩ S | has absolute error at most 1
 - $|I \cap D|$ is even: $2|I \cap S| = |I \cap X|$ (no error)
 - $|I \cap D|$ is odd: $2|I \cap S| |I \cap X| = \pm 1$
 - Error is zero in expectation (unbiased)
- Analyze total error after multiple merges inductively
 - Binary tree of merges

Equal-sized merge analysis: error at each level

Consider j'th merge at level i of L⁽ⁱ⁻¹⁾, R⁽ⁱ⁻¹⁾ to S⁽ⁱ⁾

– Estimate is $2^i \mid I \cap S^{(i)} \mid$

- Error introduced by replacing L, R with S is

– Absolute error $|X_{i,j}| \le 2^{i-1}$ by previous argument

Bound total error over all m merges by summing errors:

-
$$M = \sum_{i,j} X_{i,j} = \sum_{1 \le i \le m} \sum_{1 \le j \le 2} m^{-i} X_{i,j}$$

- Analyze sum of unbiased bounded variables via Chernoff bound

Equal-sized merge analysis: Chernoff bound

• Give unbiased variables Y_j s.t. $|Y_j| \le y_j$: Pr[abs($\sum_{1 \le j \le t} Y_j$) > α] $\le 2\exp(-2\alpha^2/\sum_{1 \le j \le t} (2y_j)^2)$

• Set $\alpha = h 2^m$ for our variables:

 $\begin{array}{l} -2\alpha^2/(\sum_i \sum_j (2 \max(X_{i,j})^2) \\ =2(h2^m)^2 / (\sum_i 2^{m-i} \cdot 2^{2i}) \\ =2h^2 2^{2m} / \sum_i 2^{m+i} \\ =2h^2 / \sum_i 2^{i-m} \\ \geq 2h^2 \end{array}$ Level i=4
Level i=4
Level i=2
Level i=1

From Chernoff bound, error probability is at most 2exp(-2h²)

- Set h = $O(\log^{1/2} \delta^{-1})$ to obtain 1- δ probability of success

Equal-sized merge analysis: finishing up

Chernoff bound ensures absolute error at most α=h2^m

- m is number of merges = log (n/k) for summary size k
- So error is at most hn/k
- Set size of each summary k to be $O(h/\epsilon) = O(1/\epsilon \log^{1/2} 1/\delta)$
 - Guarantees give εN error with probability 1- δ
 - Neat: naïve sampling bound gives $O(1/\epsilon^2 \log 1/\delta)$
 - Tightens randomized result of [Suri Toth Zhou 04]

Fully mergeable quantiles

• Use equal-size merging in a standard logarithmic trick:

- Merge two summaries as binary addition
- Fully mergeable quantiles, in O(1/ ϵ log (ϵ n) log^{1/2} 1/ δ)
 - n = number of items summarized, not known a priori
- But can we do better?

Hybrid summary

- Observation: when summary has high weight, low order blocks don't contribute much
 - Can't ignore them entirely, might merge with many small sets

- Hybrid structure:
 - Keep top $O(\log 1/\epsilon)$ levels as before
 - Also keep a "buffer" sample of (few) items
 - Merge/keep equal-size summaries, and sample rest into buffer
 - When buffer is "full", extract points as a sample of lowest weight

Hybrid analysis (sketch)

• Keep the buffer (sample) size to $O(1/\epsilon)$

- Accuracy only √εn
- If buffer only summarizes $O(\epsilon n)$ points, this is OK
- Analysis rather delicate:
 - Points go into/out of buffer, but always moving "up"
 - Number of "buffer promotions" is bounded
 - Similar Chernoff bound to before on probability of large error
 - Gives constant probability of accuracy in $O(1/\epsilon \log^{1.5}(1/\epsilon))$ space

Other Fully Mergeable Summaries

- ε-approximations generalize quantiles for range queries in multiple dimensions
 - Generalize the "odd-even" trick to low-discrepancy colorings
 - ε -approx for constant VC-dimension v queries in $\tilde{O}(\varepsilon^{-2v/(v+1)})$
- ε-kernels in d-dimensional space approximately preserve the projected extent in any direction
 - ϵ -kernels in O($\epsilon^{(1-d)/2}$) for "fat" pointsets: bounded ratio between extents in any direction
- Equal-weight merging for k-median implicit from streaming
 - Implies O(poly n) fully-mergeable summary via logarithmic trick

Open Problems

- Weight-based sampling over non-aggregated data
- Fully mergeable ε-kernels without assumptions
- More complex functions, e.g. cascaded aggregates
- Lower bounds for mergeable summaries
- Implementation studies (e.g. in Hadoop)