Mergeable Summaries Graham Cormode

graham@research.att.com

Pankaj Agarwal (Duke)
Zengfeng Huang (HKUST)
Jeff Philips (Utah)
Zheiwei Wei (HKUST)
Ke Yi (HKUST)

Summaries

- Summaries allow approximate computations:
- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items, Distinct Sampling (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)

Mergeability

- Ideally, summaries are algebraic: associative, commutative
- Allows arbitrary computation trees (see also synopsis diffusion [Nath+04], MUD model)
- Distribution "just works", whatever the architecture

- Summaries should have bounded size
- Ideally, independent of base data size
- Or sublinear in base data (logarithmic, square root)
- Should not depend linearly on number of merges
- Rule out "trivial" solution of keeping union of input

Approximation Motivation

- Why use approximate when data storage is cheap?
- Parallelize computation: partition and summarize data
- Consider holistic aggregates, e.g. median finding
- Faster computation (only work with summaries, not full data)
- Less marshalling, load balancing needed
- Implicit in some tools
- E.g. Google Sawzall for data analysis requires mergability
- Allows computation on data sets too big for memory/disk
- When your data is "too big to file"

Models of Summary Construction

- Offline computation: e.g. sort data, take percentiles
- Streaming: summary merged with one new item each step
- One-way merge: each summary merges into at most one
- Single level hierarchy merge structure
- Caterpillar graph of merges

- Equal-size merges: can only merge summaries of same arity
- Full mergeability (algebraic): allow arbitrary merging schemes
- Our main interest

Merging: sketches

- Example: most sketches (random projections) fully mergeable
- Count-Min sketch of vector x[1..U]:
- Creates a small summary as an array of $w \times d$ in size
- Use d hash functions h to map vector entries to [1..w]
- Estimate $x[i]=\min _{j} C M\left[h_{j}(i), j\right]$
- Error $2|x|_{1} / w$ with probability $1-1 / 2^{d}$
- Trivially mergeable: $C M(x+y)=C M(x)+C M(y)$

Array: CM[i,j]

Merging: sketches

- Consequence of sketch mergability:
- Full mergability of quantiles, heavy hitters, F0, F2, dot product...
- Easy, widely implemented, used in practice
- Limitations of sketch mergeability:
- Probabilistic guarantees
- May require discrete domain (ints, not reals or strings)
- Some bounds are logarithmic in domain size

Deterministic Summaries for Heavy Hitters

- Misra-Gries (MG) algorithm finds up to k items that occur more than $1 / k$ fraction of the time in a stream [MG82]
- Keep k different candidates in hand. For each item in stream:
- If item is monitored, increase its counter
- Else, if < k items monitored, add new item with count 1
- Else, decrease all counts by 1

Streaming MG analysis

- $N=$ total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
- Estimated count a lower bound on true count
- Each decrement spread over ($k+1$) items: 1 new one and k in MG
- Equivalent to deleting $(k+1)$ distinct items from stream
- At most ($\mathrm{N}-\mathrm{M}$)/($k+1$) decrement operations
- Hence, can have "deleted" (N-M)/(k+1) copies of any item
- So estimated counts have at most this much error

Merging two MG Summaries

- Merging alg:
- Merge two sets of k counters in the obvious way
- Take the $(k+1)$ th largest counter $=C_{k+1}$, and subtract from all
- Delete non-positive counters
- Sum of remaining (at most k) counters is M_{12}
- This alg gives full mergeability:
- Merge subtracts at least $(k+1) C_{k+1}$ from counter sums
- So $(k+1) C_{k+1} \leq\left(M_{1}+M_{2}-M_{12}\right)$
- By induction, error is

$$
\begin{gathered}
\left(\left(N_{1}-M_{1}\right)+\left(N_{2}-M_{2}\right)+\left(M_{1}+M_{2}-M_{12}\right)\right) /(k+1)=\left(\left(N_{1}+N_{2}\right)-M_{12}\right) /(k+1) \\
\text { (prior error) } \quad \text { (from merge) }
\end{gathered}
$$

Other heavy hitter summaries

- The "SpaceSaving" (SS) summary also keeps k counters [MAA05]
- If stream item not in summary, overwrite item with least count
- SS seems to perform better in practice than MG
- Surprising observation: SS is actually isomorphic to MG!
- An SS summary with $k+1$ counters has same info as MG with k
- SS outputs an upper bound on count, which tends to be tighter than the MG lower bound
- Isomorphism is proved inductively
- Show every update maintains the isomorphism
- Immediate corollary: SS is fully mergeable
- Just merge as if it were an MG structure

Quantiles (order statistics)

- Quantiles generalize median:
- Exact answer: $\operatorname{CDF}^{-1}(\phi)$ for $0<\phi<1$
- Approximate version: tolerate answer in $\operatorname{CDF}^{-1}(\phi-\varepsilon) \ldots \operatorname{CDF}^{-1}(\phi+\varepsilon)$
- Quantile summaries solve dual problem: estimate $\operatorname{CDF}(x) \pm \varepsilon$
- Hoeffding bound: sample of size $O\left(1 / \varepsilon^{2} \log 1 / \delta\right)$ suffices
- Fully mergeable samples of size s via "Min-wise sampling":
- Pick a random "tag" for samples in [0...1]
- Merge two samples: keep the s items with smallest tags
- Tags of O(log N) bits suffice whp
- Can draw tie-breaking bits when needed

One-way mergeable quantiles

- Easy result: one-way mergeability in $O(1 / \varepsilon \log (\varepsilon n))$
- Assume a streaming summary (e.g. [Greenwald Khanna 01])
- Extract an approximate CDF F from the summary
- Generate corresponding distribution f over n items
- Feed f to summary, error is bounded
- Limitation: repeatedly extracting/inserting causes error to grow

Equal-weight merging quantiles

- A classic result (Munro-Paterson '78):
- Input: two summaries of equal size k
- Base case: fill summary with k input items
- Merge, sort summaries to get size $2 k$
- Take every other element

- Deterministic bound:
- Error grows proportional to height of merge tree
- Implies $O\left(1 / \varepsilon \log ^{2} n\right.$) sized summaries (for n known upfront)
- Randomized twist:
- Randomly pick whether to take odd or even elements

Equal-sized merge analysis: absolute error

- Consider any interval I over sample S from a single merge
- Estimate $2|I \cap S|$ has absolute error at most 1
- $|I \cap D|$ is even: $2|I \cap S|=|I \cap X|$ (no error)
- $|I \cap D|$ is odd: $2|I \cap S|-|I \cap X|= \pm 1$
- Error is zero in expectation (unbiased)
- Analyze total error after multiple merges inductively
- Binary tree of merges

Equal-sized merge analysis: error at each level

- Consider j'th merge at level i of $\mathrm{L}^{(i-1)}, \mathrm{R}^{(i-1)}$ to $\mathrm{S}^{(i)}$
- Estimate is $2^{i}\left|I \cap S^{(i)}\right|$
- Error introduced by replacing L, R with S is

$$
\begin{array}{cc}
X_{i, j}=2^{i}\left|I \cap S^{i}\right| & \left(2^{i-1}| | \cap\left(L^{(i-1)} \cup R^{(i-1)}\right) \mid\right) \\
\text { (old estimate) }
\end{array}
$$

- Absolute error $\left|\mathrm{X}_{\mathrm{i}, \mathrm{j}}\right| \leq 2^{\mathrm{i}-1}$ by previous argument
- Bound total error over all merges by summing errors:
- $M=\sum_{i, j} X_{i, j}=\sum_{1 \leq i \leq m} \sum_{1 \leq j \leq 2^{m-i}} X_{i, j}$
- Analyze sum of unbiased bounded variables via Chernoff bound

Equal-sized merge analysis: Chernoff bound

- Give unbiased variables Y_{j} s.t. $\left|Y_{j}\right| \leq y_{j}$:

$$
\operatorname{Pr}\left[\operatorname{abs}\left(\sum_{1 \leq j \leq t} Y_{j}\right)>\alpha\right] \leq 2 \exp \left(-2 \alpha^{2} / \sum_{1 \leq j \leq t}\left(2 y_{j}\right)^{2}\right)
$$

- Set $\alpha=h 2^{m}$ for our variables:

$$
\begin{aligned}
- & 2 \alpha^{2} /\left(\sum_{i} \sum_{j}\left(2 \max \left(X_{i j}\right)^{2}\right)\right. \\
& =2\left(h 2^{m}\right)^{2} /\left(\sum_{i} 2^{-i-i} \cdot 2^{2 i}\right) \\
& =2 h^{2} 2^{2 m} / \sum_{i} 2^{m+i} \\
& =2 h^{2} / \sum_{i} 2^{i-m} \\
& =2 h^{2} / \sum_{i} 2^{-i} \\
& \geq 2 h^{2}
\end{aligned}
$$

- From Chernoff bound, error probability is at most $2 \exp \left(-2 h^{2}\right)$
- Set $\mathrm{h}=\mathrm{O}\left(\log ^{1 / 2} \delta^{-1}\right)$ to obtain 1- δ probability of success

Equal-sized merge analysis: finishing up

- Chernoff bound ensures absolute error at most $\alpha=h 2^{m}$
- m is number of merges $=\log (n / k)$ for summary size k
- So error is at most hn/k
- Set size of each summary k to be $O(h / \varepsilon)=O\left(1 / \varepsilon \log ^{1 / 2} 1 / \delta\right)$
- Guarantees give εN error with probability 1- δ
- Neat: naïve sampling bound gives $O\left(1 / \varepsilon^{2} \log 1 / \delta\right)$
- Tightens randomized result of [Suri Toth Zhou 04]

Fully mergeable quantiles

- Use equal-size merging in a standard logarithmic trick:

- Merge two summaries as binary addition
- Fully mergeable quantiles, in $O\left(1 / \varepsilon \log (\varepsilon n) \log ^{1 / 2} 1 / \delta\right)$
- $\mathrm{n}=$ number of items summarized, not known a priori
- But can we do better?

Hybrid summary

- Observation: when summary has high weight, low order blocks don't contribute much
- Can't ignore them entirely, might merge with many small sets

- Hybrid structure:
- Keep top O(log $1 / \varepsilon$) levels as before
- Also keep a "buffer" sample of (few) items
- Merge/keep equal-size summaries, and sample rest into buffer
- When buffer is "full", extract points as a sample of lowest weight

Hybrid analysis (sketch)

- Keep the buffer (sample) size to $O(1 / \varepsilon)$
- Accuracy only Ven
- If buffer only summarizes $O(\varepsilon n)$ points, this is OK
- Analysis rather delicate:
- Points go into/out of buffer, but always moving "up"
- Number of "buffer promotions" is bounded
- Similar Chernoff bound to before on probability of large error
- Gives constant probability of accuracy in $O\left(1 / \varepsilon \log ^{1.5}(1 / \varepsilon)\right)$ space

Other Fully Mergeable Summaries

- ε-approximations generalize quantiles for range queries in multiple dimensions
- Generalize the "odd-even" trick to low-discrepancy colorings
- ε-approx for constant VC-dimension v queries in $\tilde{O}\left(\varepsilon^{-2 v /(v+1)}\right)$
- ε-kernels in d-dimensional space approximately preserve the projected extent in any direction
- ε-kernels in $O\left(\varepsilon^{(1-d) / 2}\right)$ for "fat" pointsets: bounded ratio between extents in any direction
- Equal-weight merging for k-median implicit from streaming
- Implies O(poly n) fully-mergeable summary via logarithmic trick

Open Problems

- Weight-based sampling over non-aggregated data
- Fully mergeable ε-kernels without assumptions
- More complex functions, e.g. cascaded aggregates
- Lower bounds for mergeable summaries
- Implementation studies (e.g. in Hadoop)

