On “‘Selection and Sorting with
Limited Storage’

Graham Cormode

Joint work with S. Muthukrishnan,
Andrew McGregor, Amit Chakrabarti

Mike Paterson

SELECTION AND SORTING WITH LIMITED STORAGE

J.I. Munmo ®

Dept. of Computer Science
University of Waterloc
Ontario, Canada.

Abstract

When selecting from,cr sorting, a file stored
on & read-cnly tape and the internal storage is
rather limited, several passes of the input tape
may be required. We study the relation between
the amount of internal sterage available and the
number of passes required to select the Fth highest
of N inputs. We show, for exasple, that to find
the median in two passes requires at least H(H%]
and at most D{H; log M) internmal storage. For
probabilistic methods, H{H;J internal storage is
necessary and sufficient for a single pass method
which finds the median with arbitrardly high

probability.

M.5. Paterscn

Dept. of Computer Sclience
imiversity of Warwick
Coventry, U.K.

storage. The elements are from some totally order-
ed set (for éxample the real numbers) and a binary
comparisen can be made at any time between any two
elements within the random-access storage.
Initially the storage is empty and the tape is
placed with the reading head at the beginning.

fter each pass the tape is rewound to this

poeition with no reading permitted.

Motational note.

For functions of several arguments we shall
write £(X) = 0{g(¥)) when de » O such that
[£{&)] < c.gl®) for all X except those naturally
or explicitly excluded. We also use £ = @(g) for
£ = 0(f); and we use £ = Q(g} for f = O{g) and
g = D{F).

]
Munro-Paterson 78 [MP78]

m One of the first papers to consider computing with limited
storage

— Storage sublinear in the size of the input

m Considered what could be accomplished in one or few
passes over input treated as a one-way tape
— Effectively the now-popular ‘streaming model’

m Focused on the problem of selection (median and
generalized median)

— ‘Selection’: Find the K'th ranked item (integer) out of N

— Dozens of papers on variations of these problems in the
streaming world in last decade

L]
Results in MP78

m P-pass deterministic algorithm for selection
— In each pass, narrow down the range of interest
— Compute the exact ranks of a small range in the final pass

— Recursively merge and thin out pairs of buffers, tracking
bounds on the ranks of each retained item

— Gives O(N'P poly-log(N)) space for P passes
m Implies P=log N passes in poly-log(N) space
m Revisited by Manku, Rajagopalan and Lindsay [1998]:
— Obtain N error in ranks in O(e'log?eN) space, one pass
— Improved to O(e'log €N) by Greenwald and Khanna

L]
Results in MP78

m Deterministic lower bound of Q(N'P) space for P-passes

— Based on an adversary who ensures that there are many
elements not stored whose relative ordering is unknown

m Later, Q(1/¢) bound for one pass approximate selection
allowing randomness—implies Q(N) bound for exact

— Shown by Henzinger, Raghavan, Rajagopalan [1998]

L]
Results in MP78

m Bounds “assuming that all input orderings are equally
likely”
— Now known as the “random order streams assumption”

= Shows a problem is hard even under favourable order

— O(N'2P) upper bound, and ©(N'2) 1 pass lower bound

m Guha and McGregor [2006] give a P=O(log log N) pass
algorithm for exact selection in O(polylog(N)) space
- An exponential gap between the adversarial order case
— Resolves a question posed in MP78.
— Is this optimal?

L]
Outline

m Selection and Sorting with Limited Storage
m One pass approximate selection with deletions
m Lower bounds for P pass selection on random order input

]
Approximate Selection with Deletions

m e-approximate selection:
— Find any item with rank between (®-¢)N and (d+¢)N
m Streams with deletions:
— Stream contains both “insertion” and “deletion” of items
— Assume no deletions without preceding matching insertion
— Captures e.g. database transactions, network connections
m Assumption: items drawn from bounded universe of size U
— Model as integers 1...U

m Approach: solve a different streaming problem, then
reduce

— Estimate frequency of some item j with additive error eN

L]
Count-Min Sketch

m Simple sketch idea, can be used for as the basis of many
different stream analysis.

Model input stream as a vector x of dimension U
Creates a small summary as an array of w x d in size
Use d hash function to map vector entries to [1..w]

Works on arrivals only and arrivals & departures streams
W

< >

A

Array:
CMIi,j] d

10

L]
CM Sketch Structure

/-tC
/, > (”D_
j,+C — *e g
~—
\<\-kc i
\\ i
\\;I-C
W = 2/¢

m Each entry in vector x is mapped to one bucket per row.
m Merge two sketches by entry-wise summation
m Estimate x[j] by taking min, CM[k,h,(j)]

— Guarantees error less than ¢||x||, in size O(1/e log 1/9)

— Probability of more error is less than 1-0 .
[C, Muthukrishnan '04]

11

[
Approximation

Approximate x’[j] = min, CM[k,h,(j)]
m Analysis: In k'th row, CM[K,h,(j)] = X[j] + X,
= X;= ZX[i] [hy(i) = hy())

- E(X)) =X x[K]"Pr[h(i)=hy())]
< Prihy(i)=hy(k)] * £ afi
= ¢ ||x||{/2 by pairwise independence of h

~ PriX,;> ellx|l,] = Pr[X,; > 2E(X,)] < 1/2 by Markov inequality
m So, Pr{X[j]> X[j] + € |[x]|;] = Pr[¥ k. X, >€ ||x]|,] <1/209 15 = §

m Final result: with certainty x[j] < x’[j] and
with probability at least 1-0, X'[j]< x[j] + € ||X|;

12

Application To Selection

13

Impose a binary tree over the domain of input items
— Each node corresponds to the union of its leaves
Keep a CM sketch to summarize each level of the tree

Estimate the rank of any item from O(log U) dyadic
ranges and estimate each from relevant sketch

For selection, binary search over the domain of items to
find one with the desired estimated rank

Result: solve one-pass e-approximate selection with
probability at least 1-6 using O(1/¢ log® U log 1/9) space

— Deterministic solution requires Q(1/€2) space

L]
Outline

m Selection and Sorting with Limited Storage
m One pass approximate selection with deletions
m Lower bounds for P pass selection on random order input

14

]
Bounds Via Communication Complexity

m Viewing contents of memory as a message being
passed, communication complexity techniques give
space lower bounds

— Sending the contents of memory gives a communication
protocol

— Similar style of argument used in [MP78] to bound space
of a P-pass sorting algorithm

m Proving lower bounds for streams in random order led us
to consider communication bounds for random partitions
of the input between players [Chakrabarti, C, McGregor 08]

15

L]
The Model

90o . 88

m The P players (Alice, Bob, Charlie...) each receive a
random partition of input (could be non-uniform)

m Each communicates a message in order to the next,
in up to r rounds

m Lower bounds on communication imply streaming
space lower bounds

16

]
Tree Pointer Jumping (TPJ)

Level 2

- - - " M -

[
= = = o= Em & o= o= = leE

m [nstance: Function on nodes of P-level, t-ary tree,
— if viis an internal node: f maps v to a child of v
— if vis aleaf: f maps v to {0,1}

m Goal: Compute f(f(... f(vroot)....)).

m For P-players, if it player knows f(v) when level(v)=i:
Any (P-1)-round protocol requires Q(t/P?) communication.

17 —Even when input is picked uniformly at random

L]
Reduction from TPJ to Median

32} ps)sfls)shsishs

16 &

m With each node v associate two values a(v) < B(v) such
that a(v) < a(u) < B(u) < B(v) for any descendent u of v.

m [For each node: Generate more copies of a(v) and B(v)
such that median of values corresponds to TPJ solution.

m Relationship between t and # copies determines bound.

— Need more copies higher up in tree
18

]
Simulating Random-Partition Protocol

B® (o)) {JBXEDE®E

m Consider tree node v where f(v) is known to Bob.

m Create Instance of Random-Partition Tree-Pointer Jumping:
1) Using public coin, players determine partition of tokens
and set half to o and half to f3.

2) Bob “fixes” balance of tokens under his control.

m The resulting distribution is “close” so algorithm expecting a
random partition should succeed with only slightly lower prob

19

]
Implications for Selection

m Implies a communication lower bound of Q(N1/2P)
(supressing lesser factors)

m Means any P-pass algorithm for median finding (more
generally, selection) requires Q(N1/2P/2P) space

— poly(log N) space requires P=6(log log N) passes
— 3 pass algorithm requires Q(N'19) space

20

L]
Conclusions

m ‘Selection and Sorting with Limited Storage’ continues to
be an influential paper, three decades later.
m Several related papers accepted to SODA 2009:

- Comparison-Based, Time-Space Lower Bounds for
Selection (Timothy M. Chan)

- Sorting and Selection in Posets (Constantinos Daskalakis,
Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld
and Elad Verbin)

21

