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Munro-Paterson 78 [MP78]

� One of the first papers to consider computing with limited 
storage

– Storage sublinear in the size of the input

� Considered what could be accomplished in one or few 

passes over input treated as a one-way tape

– Effectively the now-popular ‘streaming model’

� Focused on the problem of selection (median and 

generalized median) 

– ‘Selection’: Find the K’th ranked item (integer) out of N

– Dozens of papers on variations of these problems in the 

streaming world in last decade
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Results in MP78

� P-pass deterministic algorithm for selection

– In each pass, narrow down the range of interest

– Compute the exact ranks of a small range in the final pass

– Recursively merge and thin out pairs of buffers, tracking 

bounds on the ranks of each retained item

– Gives O(N1/P poly-log(N)) space for P passes

� Implies P=log N passes in poly-log(N) space

� Revisited by Manku, Rajagopalan and Lindsay [1998]:

– Obtain εN error in ranks in O(ε-1log2εN) space, one pass

– Improved to O(ε-1log εN) by Greenwald and Khanna
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Results in MP78

� Deterministic lower bound of Ω(N1/P) space for P-passes

– Based on an adversary who ensures that there are many 

elements not stored whose relative ordering is unknown

� Later, Ω(1/ε) bound for one pass approximate selection 
allowing randomness—implies Ω(N) bound for exact

– Shown by Henzinger, Raghavan, Rajagopalan [1998]
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Results in MP78

� Bounds “assuming that all input orderings are equally 
likely”

– Now known as the “random order streams assumption”

� Shows a problem is hard even under favourable order

– O(N1/2P) upper bound, and Ω(N1/2) 1 pass lower bound

� Guha and McGregor [2006] give a P=O(log log N) pass 
algorithm for exact selection in O(polylog(N)) space

– An exponential gap between the adversarial order case

– Resolves a question posed in MP78.

– Is this optimal?
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Outline

� Selection and Sorting with Limited Storage

� One pass approximate selection with deletions

� Lower bounds for P pass selection on random order input
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Approximate Selection with Deletions

� ε-approximate selection: 

– Find any item with rank between (Φ-ε)N and (Φ+ε)N

� Streams with deletions:

– Stream contains both “insertion” and “deletion” of items

– Assume no deletions without preceding matching insertion

– Captures e.g. database transactions, network connections

� Assumption: items drawn from bounded universe of size U

– Model as integers 1…U

� Approach: solve a different streaming problem, then 
reduce

– Estimate frequency of some item j with additive error εN
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Count-Min Sketch

� Simple sketch idea, can be used for as the basis of many 
different stream analysis.

� Model input stream as a vector x of dimension U

� Creates a small summary as an array of w × d in size

� Use d hash function to map vector entries to [1..w]

� Works on arrivals only and arrivals & departures streams

W

d
Array: 
CM[i,j]
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CM Sketch Structure

� Each entry in vector x is mapped to one bucket per row.

� Merge two sketches by entry-wise summation

� Estimate x[j] by taking mink CM[k,hk(j)]

– Guarantees error less than ε||x||1 in size O(1/ε log 1/δ)

– Probability of more error is less than 1-δ
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Approximation

Approximate x’[j] = mink CM[k,hk(j)]

� Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j

– Xk,j = Σ x[i] | hk(i) = hk(j)

– E(Xk,j) = Σ x[k]*Pr[hk(i)=hk(j)] 

≤ Pr[hk(i)=hk(k)] * Σ a[i]
= ε ||x||1/2 by pairwise independence of h

– Pr[Xk,j ≥ ε||x||1] = Pr[Xk,j ≥ 2E(Xk,j)] ≤ 1/2 by Markov inequality 

� So, Pr[x’[j]≥ x[j] + ε ||x||1] = Pr[∀ k. Xk,j>ε ||x||1] ≤1/2log 1/δ = δ

� Final result: with certainty x[j] ≤ x’[j] and 

with probability at least 1-δ,  x’[j]< x[j] + ε ||x||1
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Application To Selection

� Impose a binary tree over the domain of input items

– Each node corresponds to the union of its leaves

� Keep a CM sketch to summarize each level of the tree

� Estimate the rank of any item from O(log U) dyadic 

ranges and estimate each from relevant sketch

� For selection, binary search over the domain of items to 

find one with the desired estimated rank 

� Result: solve one-pass ε-approximate selection with 

probability at least 1-δ using O(1/ε log2 U log 1/δ) space

– Deterministic solution requires Ω(1/ε2) space
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Outline

� Selection and Sorting with Limited Storage

� One pass approximate selection with deletions

� Lower bounds for P pass selection on random order input
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Bounds Via Communication Complexity

� Viewing contents of memory as a message being 
passed, communication complexity techniques give 

space lower bounds

– Sending the contents of memory gives a communication 
protocol

– Similar style of argument used in [MP78] to bound space 

of a P-pass sorting algorithm

� Proving lower bounds for streams in random order led us 

to consider communication bounds for random partitions 

of the input between players [Chakrabarti, C, McGregor 08]
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� The P players (Alice, Bob, Charlie…) each receive a 
random partition of input (could be non-uniform)

� Each communicates a message in order to the next, 
in up to r rounds

� Lower bounds on communication imply streaming 

space lower bounds

5 212 6 23... 8 24241 8 ... 25250 0 0 ...

The Model
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� Instance: Function on nodes of P-level, t-ary tree,

– if v is an internal node: f maps v to a child of v

– if v is a leaf: f maps v to {0,1}

� Goal: Compute f(f(... f(vroot)....)).

� For P-players, if ith player knows f(v) when level(v)=i:

Any (P-1)-round protocol requires Ω(t/P2) communication.

– Even when input is picked uniformly at random

f=0 f=1 f=0 f=0 f=1 f=0 f=0 f=1 f=1

f=1 f=2 f=1

f=3

Tree Pointer Jumping (TPJ)

Level 3

Level 2

Level 1
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� With each node v associate two values α(v) < β(v) such 

that α(v) < α(u) < β(u) < β(v) for any descendent u of v.

� For each node: Generate more copies of α(v) and β(v)
such that median of values corresponds to TPJ solution.

� Relationship between t and # copies determines bound.

– Need more copies higher up in tree

2 5 7 11 13 15 19 21 223 4 6 10 12 14 18 20 23

0 25

1 8 9 16 17 24

5 10 13 212 6 1814 23

Reduction from TPJ to Median

171 8 9 16 17

25252525252525252525
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α α αβ β β βα

� Consider tree node v where f(v) is known to Bob.

� Create Instance of Random-Partition Tree-Pointer Jumping:

1) Using public coin, players determine partition of tokens 

and set half to α and half to β.
2) Bob “fixes” balance of tokens under his control.

� The resulting distribution is “close” so algorithm expecting a 

random partition should succeed with only slightly lower prob

α α α β β β β βα α αβ β β βα β

Simulating Random-Partition Protocol
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Implications for Selection

� Implies a communication lower bound of Ω(N1/2P
)

(supressing lesser factors)

� Means any P-pass algorithm for median finding (more 

generally, selection) requires Ω(N1/2P
/2P) space

– poly(log N) space requires P=θ(log log N) passes

– 3 pass algorithm requires Ω(N1/10) space
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Conclusions

� ‘Selection and Sorting with Limited Storage’ continues to 
be an influential paper, three decades later.

� Several related papers accepted to SODA 2009:

– Comparison-Based, Time-Space Lower Bounds for 

Selection (Timothy M. Chan)

– Sorting and Selection in Posets (Constantinos Daskalakis, 

Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld
and Elad Verbin)


