Progress in Data Anonymization: from k-anonymity to the minimality attack Graham Cormode

graham@research.att.com

Tiancheng Li, Ninghua Li, Divesh Srivastava

Why Anonymize?

For Data Sharing

- Give real(istic) data to others to study without compromising privacy of individuals in the data
- Allows third-parties to try new analysis and mining techniques not thought of by the data owner
- For Data Retention and Usage
 - Various requirements prevent companies from retaining customer information indefinitely
 - E.g. Google progressively anonymizes IP addresses in search logs
 - Internal sharing across departments (e.g. billing \rightarrow marketing)

Models of Anonymization

Interactive Model (akin to statistical databases)

- Data owner acts as "gatekeeper" to data
- Researchers pose queries in some agreed language
- Gatekeeper gives an (anonymized) answer, or refuses to answer
- Send me your code" model
 - Data owner executes code on their system and reports result
 - Cannot be sure that the code is not malicious, compiles...
- Offline, aka "publish and be damned" model
 - Data owner somehow anonymizes data set
 - Publishes the results, and retires
 - Seems to best model many real releases

Objectives for Anonymization

- Prevent (high confidence) inference of associations
 - Prevent inference of salary for an individual in census data
 - Prevent inference of individual's video viewing history
 - Prevent inference of individual's search history in search logs
 - All aim to prevent linking sensitive information to an individual
- Have to model what knowledge might be known to attacker
 - Background knowledge: facts about the data set (X has salary Y)
 - Domain knowledge: broad properties of data (illness Z rare in men)

Utility

- Anonymization is meaningless if utility of data not considered
 - The empty data set has perfect privacy, but no utility
 - The original data has full utility, but no privacy
- What is "utility"? Depends what the application is...
 - For fixed query set, can look at max, average distortion
 - Problem for publishing: want to support unknown applications!
 - Need some way to quantify utility of alternate anonymizations

Outline

- Introduction to Anonymization
- Linking Attack and k-anonymization
- Homogeneity Attack and I-diversity
- Minimality Attack and analysis

Tabular Data Example

Census data recording incomes and demographics

SSN	DOB	Sex	ZIP	Salary	
11-1-111	1/21/76	Μ	53715	50,000	
22-2-222	4/13/86	F	53715	55,000	
33-3-333	2/28/76	Μ	53703	60,000	
44-4-444	1/21/76	Μ	53703	65,000	
55-5-555	4/13/86	F	53706	70,000	
66-6-666	2/28/76	F	53706	75,000	

◆ Releasing SSN → Salary association violates individual's privacy

- SSN is an identifier, Salary is a sensitive attribute (SA)

Tabular Data Example: De-Identification

Census data: remove SSN to create de-identified table

DOB	Sex	ZIP	Salary	
1/21/76	Μ	53715	50,000	
4/13/86	F	53715	55,000	
2/28/76	Μ	53703	60,000	
1/21/76	Μ	53703	65,000	
4/13/86	F	53706	70,000	
2/28/76	F	53706	75,000	

Does the de-identified table preserve an individual's privacy?

- Depends on what other information an attacker knows

Tabular Data Example: Linking Attack

De-identified private data + publicly available data

DOB	Sex	ZIP	Salary		SSN	DOB
1/21/76	Μ	53715	50,000	/	11-1-111	1/21/76
4/13/86	F	53715	55,000		33-3-333	2/28/76
2/28/76	Μ	53703	60,000	1		
1/21/76	Μ	53703	65,000			
4/13/86	F	53706	70,000			
2/28/76	F	53706	75,000	Y		

Cannot uniquely identify either individual's salary

- DOB is a quasi-identifier (QI)

Tabular Data Example: Linking Attack

De-identified private data + publicly available data

DOB	Sex	ZIP	Salary		SSN	DOB	Sex
1/21/76	Μ	53715	50,000		11-1-111	1/21/76	Μ
4/13/86	F	53715	55,000		33-3-333	2/28/76	Μ
2/28/76	Μ	53703	60,000	1			
1/21/76	Μ	53703	65,000				
4/13/86	F	53706	70,000				
2/28/76	F	53706	75,000				

Uniquely identified one individual's salary, but not the other's

– DOB, Sex are quasi-identifiers (QI)

Tabular Data Example: Linking Attack

De-identified private data + publicly available data

DOB	Sex	ZIP	Salary	SSN	DOB	Sex	ZIP
1/21/76	Μ	53715	50,000	11-1-111	1/21/76	Μ	53715
4/13/86	F	53715	55,000	33-3-333	2/28/76	Μ	53703
2/28/76	Μ	53703	60,000			-	
1/21/76	Μ	53703	65,000				
4/13/86	F	53706	70,000				
2/28/76	F	53706	75,000				

Uniquely identified both individuals' salaries

- [DOB, Sex, ZIP] is unique for majority of US residents [Sweeney 02]

Tabular Data Example: Anonymization

Anonymization through QI attribute generalization

DOB	Sex	ZIP	Salary		SSN	DOB	Sex	ZIP
1/21/76	Μ	537**	50,000		11-1-111	1/21/76	Μ	53715
4/13/86	F	537**	55,000		33-3-333	2/28/76	Μ	53703
2/28/76	*	537**	60,000	\square				-
1/21/76	М	537**	65,000					
4/13/86	F	537**	70,000					
2/28/76	*	537**	75,000	Y				

Cannot uniquely identify tuple with knowledge of QI values

- E.g., ZIP = 537^{**} → ZIP ∈ {53700, ..., 53799}

Tabular Data Example: Anonymization

Anonymization through sensitive attribute (SA) permutation

DOB	Sex	ZIP	Salary	SSN	DOB	Sex	ZIP
1/21/76	Μ	53715	55,000	11-1-111	1/21/76	Μ	53715
4/13/86	F	53715	50,000	33-3-333	2/28/76	Μ	53703
2/28/76	Μ	53703	60,000				
1/21/76	Μ	53703	65,000				
4/13/86	F	53706	75,000				
2/28/76	F	53706	70,000				

Can uniquely identify tuple, but uncertainty about SA value

- Much more precise form of uncertainty than generalization

k-Anonymization [Samarati, Sweeney 98]

- k-anonymity: Table T satisfies k-anonymity wrt quasi-identifiers
 QI iff each tuple in (the multiset) T[QI] appears at least k times
 - Protects against "linking attack"
- k-anonymization: Table T' is a k-anonymization of T if T' is generated from T, and T' satisfies k-anonymity

DOB	Sex	ZIP	Salary		DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000		1/21/76	Μ	537**	50,000
4/13/86	F	53715	55,000		4/13/86	F	537**	55,000
2/28/76	М	53703	60,000	\rightarrow	2/28/76	*	537**	60,000
1/21/76	Μ	53703	65,000		1/21/76	Μ	537**	65,000
4/13/86	F	53706	70,000		4/13/86	F	537**	70,000
2/28/76	F	53706	75,000		2/28/76	*	537**	75,000

Outline

- Introduction to Anonymization
- Linking Attack and k-anonymization
- Homogeneity Attack and I-diversity
- Minimality Attack and analysis

Homogeneity Attack [Machanavajjhala+ 06]

- ◆ Issue: k-anonymity requires each tuple in (the multiset) T[QI] to appear ≥ k times, but does not say anything about the SA values
 - If (almost) all SA values in a QI group are equal, loss of privacy!
 - The problem is with the choice of grouping, not the data
 - For some groupings, no loss of privacy

DOB	Sex	ZIP	Salary		DOB	Sex	ZIP	Salary
1/21/76	М	53715	50,000		76-86	*	53715	50,000
4/13/86	F	53715	55.000	Ok!	76-86	*	53715	55,000
2/28/76	M	53703	60,000	\rightarrow	76-86	*	53703	60,000
1/21/76	Μ	53703	50,000		76-86	*	53703	50,000
4/13/86	F	53706	55,000		76-86	*	53706	55,000
2/28/76	F	53706	60,000		76-86	*	53706	60,000

I-Diversity [Machanavajjhala+ 06]

- Intuition: Most frequent value does not appear too often compared to the less frequent values in a QI group
- Simplified *I*-diversity defn: for each group, max frequency $\leq 1/l$

- /-diversity((1/21/76, *, 537**)) = 1

DOB	Sex	ZIP	Salary	
1/21/76	*	537**	50,000	
4/13/86	*	537**	55,000	
2/28/76	*	537**	60,000	
1/21/76	*	537**	50,000	
4/13/86	*	537**	55,000	
2/28/76	*	537**	60,000	

Simple Algorithm for *I*-diversity

Simple "Greedy Grouping" algorithm provides *l*-diversity

- Sort tuples based on attributes so similar tuples are close
- Start with group containing just first tuple
- Keeping adding tuples to group in order until l-diversity met
- Output the group, and repeat on remaining tuples

DOB	Sex	ZIP	Salary		DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000		1/21/76	Μ	53715	50,000
4/13/86	F	53715	50,000		4/13/86	F	53715	50,000
2/28/76	Μ	53703	60,000	2-diversity	2/28/76	Μ	53703	60,000
1/21/76	Μ	53703	65,000		1/21/76	Μ	53703	65,000
4/13/86	F	53706	50,000		4/13/86	F	53706	50,000
2/28/76	F	53706	60,000		2/28/76	F	53706	60,000

Outline

- Introduction to Anonymization
- Linking Attack and k-anonymization
- Homogeneity Attack and I-diversity
- Minimality Attack and analysis

Minimality Attack [Wong Fu Wang Pei 07]

- In *I*-diversity analysis, we assume that all possible inputs consistent with the output are equally likely
- Minimality attack: condition on knowledge of the algorithm
 - Some inputs would not have resulted in that output

DOB	Sex	ZIP	Salary		DOB	Sex	ZIP	Salary
1/21/76	Μ	53715	50,000		1/21/76	Μ	53715	50,000
4/13/86	F	53715	60,000		4/13/86	F	53715	60,000
2/28/76	Μ	53703	50,000	2-diversity	2/28/76	Μ	53703	50,000
1/21/76	Μ	53703	65,000		1/21/76	Μ	53703	65,000
4/13/86	F	53706	50,000		4/13/86	F	53706	50,000
2/28/76	F	53706	60,000		2/28/76	F	53706	60,000

Minimality attack

- In our example, can use knowledge of anonymization algorithm to learn sensitive values!
 - No additional knowledge needed
- More generally, attacker associates a probability with each tuple and each sensitive value
 - I-diversity: this probability should be at most 1/l
 - Using minimality attack, this probability exceeds 1/l
- Our goal: understand this attack better
 - Can the attack inflate probabilities arbitrarily?

Binary I-diversity

• For simplicity, study a special case: sensitive attribute is binary

- (binary) I-diversity: each group should have at most 1/l fraction of positive values
- Safe to have a group of all negative values

DOB	Sex	ZIP	Disease
1/21/76	Μ	53715	Ν
4/13/86	F	53715	Υ
2/28/76	Μ	53703	Ν
1/21/76	Μ	53703	Ν
4/13/86	F	53706	Y
2/28/76	F	53706	Ν

Analysis of Greedy Grouping + Minimality

Consider each group output by GG independently

- Fraction of positive tuples $\leq 1/I$ (by l-diversity)
- By minimality, each prefix of group has > 1/l positive tuples
- First I tuples must have ≥ 2 positives \rightarrow prob on these is $\geq 2/I$
- Divide group into each "bucket" of I tuples
 - Cannot distinguish between tuples in each bucket
 - Each bucket b has an associated probability, p(b)

DOB	Sex	ZIP	Disease	
1/21/76	Μ	53715	Ν	ר
4/13/86	F	53715	Y	b ₁
2/28/76	Μ	53703	Ν	
1/21/76	Μ	53703	Ν	
4/13/86	F	53706	Y	b_2
2/28/76	F	53706	Ν	J

Reduction to First Bucket

Claim: first bucket b₁ has highest probability in group

- Consider all possible worlds that have n_i positives in bucket i
- Over m buckets, must have $n_1 + n_2 + ... + n_m = m$ (by l-diversity)
- Consider buckets b_i , and b_{i+1} , holding other n'_i 's constant
- Then $n_i + n_{i+1} = r$ must be fixed
- Let t denote smallest value of n_i that gives a valid sequence
- Let N_i denote number of worlds with (n_i = j, n_{i+1} = r-j)
 - Then $N_i = N_{r-i}$ can give bijection by swapping buckets
- Calculate probabilities for each bucket

 $- p(b_i) = \sum_{j=t}^{r} j N_j / \sum_{j=t}^{r} N_j \text{ and } p(b_{i+1}) = \sum_{i=t}^{r} (r-j) N_j / \sum_{j=t}^{r} N_j$

Analysis of bucket probabilities

- First bucket is most probable if p(b_i) − p(b_{i+1}) ≥ 0 for all i
 - We have $p(b_i) p(b_{i+1}) = \sum_{i=t}^{r} (2j r)N_j / \sum_{j=t} N_j$
- ♦ When t > r/2, (2j r)N_i for all j
- For t < r/2, split the numerator into pieces around r/2:</p>

-
$$p(b_i) - p(b_{i+1}) = T + \sum_{j=t}^{\lfloor r/2 \rfloor} (2j-r)N_j + \sum_{j=\lfloor r/2 \rfloor + 1}^{r-t} (2j-r) N_j$$

- $= T + \sum_{j=r-\lfloor r/2 \rfloor} r-t (2(r-j)-r)N_{r-j} + \sum_{j=\lfloor r/2 \rfloor + 1} r-t (2j-r) N_j [swap N_j \text{ for } N_{r-j}]$
- $\begin{aligned} &- = T + \sum_{j \in \lfloor r/2 \rfloor + 1} r^{r-t} (r-2j) N_j + \sum_{j \in \lfloor r/2 \rfloor + 1} r^{r-t} (2j-r) N_j \qquad \text{[rearrange]} \\ &- = T \ge 0 \end{aligned}$
- This proves the claim that highest probability is in first bucket

Analyze first bucket probability

- Let m* = min{m, l}, an upper bound on any n_i
- Let N_k be number of possible worlds where $n_1 = k$
- Then $p(b_1) = \sum_{k=2}^{m^*} k N_k / \sum_{k=2}^{m^*} I N_k$
 - Expected fraction of positives in first bucket
- Sequence of steps to analyze p(b₁):
 - Compute N_k
 - Compute the numerator $\sum_{k=2}^{m^*} k N_k$
 - Compute the denominator $\sum_{k=2}^{m^*} | N_k$

Analysis of N_k

Consider all sequences of n_i's which begin with k

- (k, n₂, n₃, ... , n_m)
- Consider all permutations of this set of n'_i 's which keep k first
- Validity: must have $k + \sum_{i=2}^{j} n_i > j$ for j<m else prefix is l-diverse
- Claim: exactly a (k-1)/(m-1) fraction of permutations are valid
 - Proof by induction on m
 - Base case: any permutation of (m, 0, ... 0) is valid
 - Inductive case: build a m+1 valid sequence from m sequences
 - Connection to Catalan numbers and Dyck paths

Computing N_k

Consider how to make a world with n₁ = k

- Pick k positions from first bucket to be positive
- Place rest of positive items in rest of positions
- Gives (I C k) ((ml I) C (m-k)) possibilities
- Exactly a (k-1)/(m-1) fraction of these are 'valid'

- So $N_k = (k-1)/(m-1) (I C k) ((mI - I) C (m-k))$

Computing Numerator and Denominator

- Numerator: $\sum_{k=2}^{m^*} k N_k = \sum_{k=2}^{m^*} \frac{k(k-1)}{(m-1)} (|C k|(m|-|C m-k))$ $= \sum_{k=2}^{m^*} \frac{|(l-1)}{(m-1)} (|-2 C k-2|(m|-|C m-k))$ = |(l-1)/(m-1) (m|-2 C m-2)
- Denominator:

$$(m-1)\sum_{k=2}^{m^*} N_k = \sum_{k=2}^{m^*} (k-1)/(m-1) (|Ck|)(m|-1Cm-k)$$

= $\sum_{k=1}^{m^*} k(|Ck|)(m|-1Cm-k) - (|Ck|)(m|-1Cm-k)$
= $\sum_{k=1}^{m^*} |(l-1Ck-1)(m|-|Cm-k) - ((m|Cm) - (m|-|CM)))$
= $|(m|-1Cm-1) - (m|Cm) + (m|-1Cm)$
= $(m|-|Cm)$

Bounding $p(b_1)$

- ♦ p(b₁) = (I-1)(mI -2 C m-2)/(mI I C m) = (mI -2)! (mI - I - m)!/(I(mI-m)! (mI-I)!) = $\prod_{j=1}^{I-1} (mI-1-j)/I(mI-m-j)$ = $\prod_{j=1}^{I-1} (1 + (m-1)/(mI-m-j))/I$ ≤ $\prod_{j=1}^{I-1} (1 + (m-1)/(mI-m-(I-1)))/I$ = 1/I (1 + 1/(I-1))^(I-1) < e/I</p>
- So applying the minimality attack on this algorithm increases probability from 1/l to at most e/l

In first bucket, probability is at least 2/I

Using bound on p(b₁)

- Simply set I based on e/I probability
- Apply randomization
 - Inference was possible due to predictability of merging
 - Instead, randomly choose to keep going even when diverse
 - Higher probability of merging decreases $p(b_1)$

Experimental Study

- Ran GG on UCI machine learning data set, career as SA
- Small fraction of tuples are vulnerable to attack
- Privacy risk as factor increase in probability < 2.7818

Use of Randomization

- Set I=6, randomly merge safe groups with probability p
- Rapid decrease in number of vulnerable tuples as p increases
- Privacy risk decreases to 1 (no increase in probability)

Utility Study

- Group size increases somewhat as p increases
- But accuracy of query answering barely affected!

Concluding Remarks

- Like crypto, anonymization proceeds by proposing anonymization methods and attacks upon them
 - Difference: Successful attacks on crypto reveal messages
 - Attacks on anonymization increase probability of inference
- Shown impact of minimality attack can be bounded
- Other attacks continue to be proposed
 - Use of inferred relationships to increase probabilities [Kifer 09]
- Long-term goal: propose anonymization methods which resist feasible attacks

