

Building Blocks of Privacy:
Differentially Private Mechanisms

Graham Cormode
graham@cormode.org

The data release scenario

2

Data Release

 Much interest in private data release

– Practical: release of AOL, Netflix data etc.

– Research: hundreds of papers

 In practice, many data-driven concerns arise:

– How to design algorithms with a meaningful privacy guarantee?

– Trading off noise for privacy against the utility of the output?

– Efficiency / practicality of algorithms as data scales?

– How to interpret privacy guarantees?

– Handling of common data features, e.g. sparsity?

 This talk: describe some tools to address these issues

3

Differential Privacy

 Principle: released info reveals little about any individual

– Even if adversary knows (almost) everything about everyone else!

 Thus, individuals should be secure about contributing their data

– What is learnt about them is about the same either way

 Much work on providing differential privacy (DP)

– Simple recipe for some data types e.g. numeric answers

– Simple rules allow us to reason about composition of results

– More complex algorithms for arbitrary data (many DP mechanisms)

 Adopted and used by several organizations:

– US Census, Common Data Project, Facebook (?)

Differential Privacy Definition

The output distribution of a differentially private algorithm
changes very little whether or not any individual’s data is
included in the input – so you should contribute your data

A randomized algorithm K satisfies ε-differential privacy if:
Given any pair of neighboring data sets,
D and D’, and S in Range(K):

 Pr[K(D) = S] ≤ eε Pr[K(D’) = S]

Neighboring datasets differ in one individual: we say |D–D’|=1

Achieving Differential Privacy

 Suppose we want to output the number of left-handed
people in our data set

– Can reduce the description of the data to just the answer, n

– Want a randomized algorithm K(n) that will output an integer

– Consider the distribution Pr[K(n) = m] for different m

 Write exp() = , and Pr[K(n) = n] = pn. Then:
Pr[K(n) = n-1]   Pr[K(n-1)=n-1] =  pn-1

 Pr[K(n) = n-2]   Pr[K(n-1) = n-2]  2 Pr[K(n-2)=n-2] = 2 pn-2

 Pr[K(n) = n-i]  i pn-i

 Similarly, Pr[K(n) = n+i]  i pn+i

6

Achieving Differential Privacy

 We have Pr[K(n) = n-i]  i pn-i and Pr[K(n) = n+i]  i pn+i

 Within these constraints, we want to maximize pn

– This maximizes the probability of returning “correct” answer

– Means we turn the inequalities into equalities

 For simplicity, set pn = p for all n

– Means the distribution of “shifts” is the same whatever n is

 Yields: Pr[K(n) = n-i] = i p and Pr[K(n) = n+i]  i p

– Sum over all shifts i:
 p + i=1

 2i p = 1
 p + 2p /(1-) = 1
 p(1 -  + 2)/(1-) = 1
 p = (1-)/(1+)

7

Geometric Mechanism

 What does this mean?

– For input n, output distribution is Pr[K(n) = m]= |m-n| . (1-)/(1+)

 What does this look like?

– Symmetric geometric distribution, centered around n

– We draw from this distribution centered around zero, and add to
the true answer

– We get the “true answer plus (symmetric geometric) noise”

 A first differentially private mechanism for outputting a count

– We call this “the geometric mechanism”

8

Truncated Geometric Mechanism

 Some practical concerns:

– This mechanism could output any value, from - to +

 Solution: we can “truncate” the output of the mechanism

– E.g. decide we will never output any value below zero, or above N

– Any value drawn below zero is “rounded up” to zero

– Any value drawn above N is “rounded down” to N

– This does not affect the differential privacy properties

– Can directly compute the closed-form probability of these
outcomes

9

Laplace Mechanism

 Sometimes we want to output real values instead of integers

 The Laplace Mechanism naturally generalizes Geometric

– Add noise from a symmetric continuous distribution to true answer

– Laplace distribution is a symmetric exponential distribution

– Is DP for same reason as geometric: shifting the distribution
changes the probability by at most a constant factor

– PDF: Pr[X = x] = 1/2 exp(-|x|/)
Variance = 22

10

Sensitivity of Numeric Functions

 For more complex functions, we need to calibrate the noise
to the influence an individual can have on the output

– The (global) sensitivity of a function F is the maximum
(absolute) change over all possible adjacent inputs

– S(F) = maxD, D’ : |D-D’|=1 |F(D) – F(D’)| = 1

– Intuition: S(F) characterizes the scale of the influence of one
individual, and hence how much noise we must add

 S(F) is small for many common functions

– S(F) = 1 for COUNT

– S(F) = 2 for HISTOGRAM

– Bounded for other functions (MEAN, covariance matrix…)

11

Laplace Mechanism with Sensitivity

 Release F(x) + Lap(S(F)/) to obtain -DP guarantee

– F(x) = true answer on input x

– Lap() = noise sampled from Laplace dbn with parameter 

– Exercise: show this meets -differential privacy requirement

 Intuition on impact of parameters of differential privacy (DP):

– Larger S(F), more noise (need more noise to mask an individual)

– Smaller , more noise (more noise increases privacy)

– Expected magnitude of |Lap()| is (approx) 1/

12

Sequential Composition

 What happens if we ask multiple questions about same data?

– We reveal more, so the bound on  differential privacy weakens

 Suppose we output via K1 and K2 with 1, 2 differential privacy:

 Pr[K1(D) = S1]  exp(1) Pr[K1(D’) = S1], and

 Pr[K2(D) = S2]  exp(2) Pr[K2(D’) = S2]

 Pr[(K1(D) = S1), (K2(D) = S2)] = Pr[K1(D)=S1] Pr[K2(D) = S2]
  exp(1) Pr[K1(D’) = S1] exp(2) Pr[K2(D’) = S2]
 = exp(1 + 2) Pr[(K1(D’) = S1), (K2(D’) = S2)]

– Use the fact that the noise distributions are independent

 Bottom line: result is 1 + 2 differentially private

– Can reason about sequential composition by just “adding the ’s”

13

Parallel Composition

 Sequential composition is pessimistic

– Assumes outputs are correlated, so privacy budget is diminished

 If the inputs are disjoint, then result is max(1, 2) private

 Example:

– Ask for count of people broken down by handedness, hair color

– Each cell is a disjoint set of individuals

– So can release each cell with -differential privacy (parallel
composition) instead of 6 DP (sequential composition)

14

Redhead Blond Brunette

Left-handed 23 35 56

Right-handed 215 360 493

Exponential Mechanism

 What happens when we want to output non-numeric values?

 Exponential mechanism is most general approach

– Captures all possible DP mechanisms

– But ranges over all possible outputs, may not be efficient

 Requirements:

– Input value x

– Set of possible outputs O

– Quality function, q, assigns “score” to possible outputs o  O

 q(x, o) is bigger the “better” o is for x

– Sensitivity of q = S(q) = maxx,x’,o |q(x,o) – q(x’,o)|

15

Exponential Mechanism

 Sample output o  O with probability
 Pr[K(x) = o] = exp( q(x,o)) / (o’O exp(q(x,o’)))

 Result is (2 S(q))-DP

– Shown by considering change in numerator and denominator
under change of x is at most a factor of exp( S(q))

 Scalability: need to be able to draw from this distribution

 Generalizations:

– O can be continuous,  becomes an integral

– Can apply a prior distribution over outputs as P(o)

 We assume a uniform prior for simplicity

16

Exponential Mechanism Example 1: Count

 Suppose input is a count n, we want to output (noisy) n

– Outputs O = all integers

– q(o,n) = -|o-n|

– S(q) = 1

– Then Pr[K(n) = o] = exp(- |o-n|)/(o -|o-n|) = -|o-n|  (1-)/(1-)

– Simplifies to the Geometric mechanism!

 Similarly, if O = all reals, applying exponential mechanism results
in the Laplace Mechanism

 Illustrates the claim that Exponential Mechanism captures all
possible DP mechanisms

17

Exponential Mechanism, Example 2: Median

 Let M(X) = median of set of values in range [0,T] (e.g. median age)

 Try Laplace Mechanism: S(M) = T

– There can be datasets X, X’ where M(X) = 0, M(X’) = T, |X-X’|=1

– Consider X = [0n, 0, Tn], X’ = [0n, T, Tn]

– Noise from Laplace mechanism outweighs the true answer!

 Exponential Mechanism: set q(o,X) = -| rankX(o) - |X|/2|

– Define rankX(o) as the number of elements in X dominated by o

– Note, rankX(M(X)) = |X|/2 : median has rank half

– S(q) = 1: adding or removing an individual changes q by at most 1

– Then Pr[K(X) = o] = exp( q(o,X))/(o’  O exp( q(o’,X)))

– Problem: O could be very large, how to make efficient?

18

Exponential Mechanism, Example 2: Median

 Observation: for many values of o, q(o, X) is the same:

– Index X in sorted order so x1  x2  x3  …  xn

– Then for any xi  o < o’  xi+1, rankX(o) = rankX(o’)

– Hence q(o,X) = q(o’,X)

 Break possible outputs into ranges:

– O0 = [0,x1] O1 = [x1, x2] … On = [xn, T]

– Pick range Oj with probability proportional to |Oj|exp(q(O,X))

– Pick output o  Oj uniformly from the range

– Time cost is proportional to number of ranges n (after sorting X)

 Similar tricks make exponential mechanism practical elsewhere

19

Recap

 Have developed a number of building blocks for DP:

– Geometric and Laplace mechanism for numeric functions

– Exponential mechanism for sampling from arbitrary sets

 And “cement” to glue things together:

– Parallel and sequential composition theorems

 With these blocks and cement, can build a lot

– Many papers arrive from careful combination of these tools!

 Useful fact: any post-processing of DP output remains DP

– (so long as you don’t access the original data again)

– Helps reason about privacy of data release processes

20

Case Study: Sparse Spatial Data

 Consider location data of many individuals

– Some dense areas (towns and cities), some sparse (rural)

 Applying DP naively simply generates noise

– lay down a fine grid, signal overwhelmed by noise

 Instead: compact regions with sufficient number of points

21

Private Spatial decompositions

 Build: adapt existing methods to have differential privacy

 Release: a private description of data distribution
(in the form of bounding boxes and noisy counts)

quadtree kd-tree

22

Building a Private kd-tree

 Process to build a private kd-tree

 Input: maximum height h, minimum leaf size L, data set

 Choose dimension to split

 Get (private) median in this dimension

 Create child nodes and add noise to the counts

 Recurse until:

 Max height is reached

 Noisy count of this node less than L

 Budget along the root-leaf path has used up

 The entire PSD satisfies DP by the composition property

23

Building PSDs – privacy budget allocation

 Data owner specifies a total budget  reflecting the level of
anonymization desired

 Budget is split between medians and counts

– Tradeoff accuracy of division with accuracy of counts

 Budget is split across levels of the tree

– Privacy budget used along any root-leaf path should total 

 Sequential

composition

Parallel composition

24

Privacy budget allocation

 How to set an i for each level?

– Compute the number of nodes touched by a ‘typical’ query

– Minimize variance of such queries

– Optimization: min i 2
h-i / i

2 s.t. i i = 

– Solved by i  (2(h-i))1/3 : more to leaves

– Total error (variance) goes as 2h/2

 Tradeoff between noise error and spatial uncertainty

– Reducing h drops the noise error

– But lower h increases the size of leaves, more uncertainty

25

Post-processing of noisy counts

 Can do additional post-processing of the noisy counts

– To improve query accuracy and achieve consistency

 Intuition: we have count estimate for a node and for its children

– Combine these independent estimates to get better accuracy

– Make consistent with some true set of leaf counts

 Formulate as a linear system in n unknowns

– Avoid explicitly solving the system

– Expresses optimal estimate for node v in terms of estimates of
ancestors and noisy counts in subtree of v

– Use the tree-structure to solve in three passes over the tree

– Linear time to find optimal, consistent estimates

Data Transformations

 Can think of trees as a ‘data-dependent’ transform of input

 Can apply other data transformations

 General idea:

– Apply transform of data

– Add noise in the transformed space (based on sensitivity)

– Publish noisy coefficients, or invert transform (post-processing)

 Goal: pick a transform that preserves good properties of data

– And which has low sensitivity, so noise does not corrupt

27

Original
Data

Transform
Coefficients

Noisy
Coefficients

Noise Private
Data

Invert

Wavelet Transform

 Haar wavelet transform commonly used to approximate data

– Any 1D range is expressed using log n coefficients

– Each input point affects log n coefficients

– Is a linear, orthonormal transform

 Can add noise to wavelet coefficients

– Treat input as a 1D histogram of counts

– Bounded sensitivity: each individual affects coefficients by O(1)

– Can transform noisy coefficients back to get noisy histogram

 Range queries are answered well in this model

– Each range query picks up noise (variance) O(log3 n / )

– Directly adding noise to input would give noise O(n / )

28

Other Transforms

Many other transforms can be applied within DP

 (Discrete) Fourier Transform: also bounded sensitivity

– Often need only a fixed set of coefficients: further reduces S(F)

– Used for representing data cube counts, time series

 Hierarchical Transforms: binary trees and quadtrees

 Randomized Transforms: sketches and compressed sensing

29

Local Sensitivity

 A common fallacy: using local sensitivity instead of global

– Global sensitivity S(F) = maxx,x’ : |x-x’|=1 |F(x)-F(x’)|

– Local sensitivity S(F,x) = maxx’ : |x-x’|=1 |F(x)-F(x’)|

– These can be very different: local can be much smaller than global

– It is tempting (but incorrect) to calibrate noise to local sensitivity

 Bad case for local sensitivity: Median

– Consider X = [0n, 0, 0, Tn-1], X’ = [0n, 0, Tn], X’’ = [0n, T, Tn]

– S(F,X) = 0 while S(F, X’) = T

– Scale of the noise will reveal exactly which case we are in

 Still, there has to be something better than always using global?

– Such bad cases seem artificial, rare

30

Smooth Sensitivity

 Previous case was bad because local sensitivity was low, but
“close” to a case where local sensitivity was high

 “Smooth sensitivity” combines sensitivity from all
neighborhoods (based on parameter )

– SS(F,x) = maxo  O LS(F,o) exp(- |o – x|)

– Contribution of output o is decayed exponentially based on
distance of o from x, |o – x|

– Can add Laplace noise scaled by SS(F,x) to obtain (variant of) DP

31

Smooth Sensitivity: Example

 Consider the median function M over n items again

– Compute the maximum change in the median for each distance d

– LS measures when median changes from xi to xi+1

 So LS at distance d is at most max0 jd (xn/2 +j – xn/2+j-d-1)

– Largest gap that can be created by inserting/deleting at most d
items

 Gives SS(M,x) = max0 d  n exp(-d) max0j d (xn/2+j - xn/2+j-d-1)

– Can compute in time O(n2)

– Empirically, exponential mechanism seems preferable

– No generic process for computing smooth sensitivity

32

Sample-and-aggregate

 Sample-and-aggregate gives a useful template

– Intuition: sampling is almost DP - can’t be sure who is included

– Break input into moderate number of blocks, m

– Compute desired function on each block

– Snap to some range [min, max] and aggregate (e.g. mean)

– Add Laplace noise scaled by sensitivity (max-min)

33

Data

Block1 Block2 Block3 Blockm …

f1 f2 f3 fm …

(Windsorized)
Mean

Noisy
mean

Sparse Data

 Suppose we have many (overlapping) queries, most of which
have a small answer, but we don’t know which

– We are only interesting in large answers (e.g. frequent itemsets)

– Two problems: time efficiency, and “privacy efficiency”

 Time efficiency:

– Don’t want to add noise to every single zero-valued query

– Assume we can materialize all non-zero query answers

– Count how many are zero

– Compute probability of noise pushing a zero-query past threshold

– Sample from Binomial distribution how many to “upgrade”

– Sample noisy value conditioned on passing threshold

34

Sparse Data – Privacy Efficiency

 Only want to pay for c queries with that exceed threshold T

– Assume all queries have sensitivity S

 Compute noisy threshold T’ = T + Lap(2S/)

 For each query, add noise Lap(2Sc/), only output if above T’

 Result is -DP

– For “suppressed” answers, probability of seeing same output is
about the same as if T’ was a little higher on neighboring input

– For released answers, DP follows from Laplace mechanism

 Result is reasonably accurate: with high probability,

– All suppressed answers are smaller than T + 

– All released answers have error at most 

for parameter (c,1/, S), and at most c query answers > T - 
35

Multiplicative weights

 The idea of “multiplicative weights” widely used in optimization

– Up-weight ‘good’ answers, down-weight ‘poor’ answers

– Applied to output of DP mechanism

 Set-up:

– (Private) input, represented as vector D with n entries

– Q, set of queries over x (matrix)

– T, bound on number of iterations

– Output: -DP vector A so that Q(A)  Q(D)

36

Multiplicative Weights Algorithm

 Initialize vector A0 to assign uniform weight for each value

 For i=1 to T:

– Exponential Mechanism (/2T) to sample j prop. to |Qj(Ai) – Qj(D)|

 Try to find query with large error

– Laplace Mechanism to estimate  = (Qj(A) – Qj(D)) + Lap(2T/)

 Error in the selected query

– Set Ai = Ai-1 . exp( Qj(D)/2n), normalize so that Ai is a distribution

 (Noisily) reward good answers, penalize poor answers

 Output A = averagei nAi

– Privacy follows via sequential composition of EM and LM steps

– Accuracy (should) improve in each iteration, up to log iterations

37

Other topics

 Huge amount of work in DP across theory, security, DB…

 Many topics not touched on in this tutorial:

– Connections to game theory and auction design

– Mining primitives: regression, clustering, frequent itemsets

– Efforts in programming languages and systems to support DP

– Variant definitions: (, )-DP, other privacy/adversary models

– Lower bounds for privacy (what is not possible)

– Applications to graph data (social networks), mobility data etc.

– Privacy over data streams: pan-privacy and continual observation

38

Concluding Remarks

 Differential privacy can be applied effectively for data release

 Care is still needed to ensure that release is allowable

– Can’t just apply DP and forget it: must analyze whether data
release provides sufficient privacy for data subjects

 Many open problems remain:

– Transition these techniques to tools for data release

– Want data in same form as input: private synthetic data?

– Allow joining anonymized data sets accurately

– Obtain alternate (workable) privacy definitions

39

Thank you!

References – Basic Building Blocks

 Differential privacy, Laplace Mechanism and Sensitivity:
– Calibrating Noise to Sensitivity in Private Data Analysis. Cynthia

Dwork, Frank McSherry, Kobbi Nissim, Adam Smith. Theory of
Cryptography Conference (TCC), 2006.

– Differential Privacy. Cynthia Dwork, ICALP 2006

 Geometric Mechanism
– Universally utility-maximizing privacy mechanisms. Arpita Ghosh, Tim

Roughgarden, Mukund Sundararajan. STOC 2009

 Sequential and Parallel Composition, Median Example
– Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. Frank McSherry. SIGMOD 2009.

 Exponential Mechanism
– Mechanism Design via Differential Privacy. Frank McSherry and Kunal

Talwar. FOCS, 2007 40

References – Applications & Transforms

 Spatial Data Application
– Differentially private spatial decompositions. Graham Cormode,

Magda Procopiuc, Entong Shen, Divesh Srivastava, and Ting Yu. In
International Conference on Data Engineering (ICDE), 2012

 Data Transforms
– Differential privacy via wavelet transforms. Xiaokui Xiao, Guozhang

Wang, Johannes Gehrke, ICDE 2010

– Privacy, accuracy, and consistency too: a holistic solution to
contingency table release. Boaz Barak, Kamalika Chaudhuri, Cynthia
Dwork, Satyen Kale, Frank Mcsherry, Kunal Talwar. PODS 2007

– Differentially Private Aggregation of Distributed Time-Series with
Transformation and Encryption. Vibhor Rastogi and Suman Nath,
SIGMOD 2010

41

References – Advanced Mechanisms

 Smooth Sensitivity, Sample and Aggregate
– Smooth Sensitivity and Sampling in Private Data Analysis.

Kobbi Nissim, Sofya Raskhodnikova and Adam Smith. STOC 07

– GUPT: Privacy Preserving Data Analysis Made Easy. Prashanth Mohan,
Abhradeep Thakurta, Elaine Shi, Dawn Song, David Culler. SIGMOD 2012

 Sparse Data Processing
– Differentially Private Summaries for Sparse Data. Graham Cormode,

Magda Procopiuc, Divesh Srivastava, and Thanh Tran. ICDT 2012

– A Multiplicative Weights Mechanism for Privacy Preserving Data Analysis.
Moritz Hardt and Guy Rothblum. FOCS 2010.

 Multiplicative Weights
– A simple and practical algorithm for differentially private data release.

Moritz Hardt, Katrina Ligett, Frank McSherry. NIPS 2012

 42

