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The data release scenario 
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Data Release 

 Much interest in private data release 

– Practical: release of AOL, Netflix data etc. 

– Research: hundreds of papers 

 In practice, many data-driven concerns arise: 

– How to design algorithms with a meaningful privacy guarantee? 

– Trading off noise for privacy against the utility of the output? 

– Efficiency / practicality of algorithms as data scales? 

– How to interpret privacy guarantees? 

– Handling of common data features, e.g. sparsity? 

 This talk: describe some tools to address these issues 
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Differential Privacy 

 Principle: released info reveals little about any individual 

– Even if adversary knows (almost) everything about everyone else! 

 Thus, individuals should be secure about contributing their data 

– What is learnt about them is about the same either way 

 Much work on providing differential privacy (DP) 

– Simple recipe for some data types e.g. numeric answers 

– Simple rules allow us to reason about composition of results 

– More complex algorithms for arbitrary data (many DP mechanisms) 

 Adopted and used by several organizations: 

– US Census, Common Data Project, Facebook (?) 



Differential Privacy Definition 

The output distribution of a differentially private algorithm 
changes very little whether or not any individual’s data is 
included in the input – so you should contribute your data 

A randomized algorithm K satisfies ε-differential privacy if: 
Given any pair of neighboring data sets,  
D and D’, and S in Range(K): 
 
 Pr[K(D) = S]  ≤  eε Pr[K(D’) = S]  
 

Neighboring datasets differ in one individual: we say |D–D’|=1 



Achieving Differential Privacy 

 Suppose we want to output the number of left-handed 
people in our data set 

– Can reduce the description of the data to just the answer, n 

– Want a randomized algorithm K(n) that will output an integer 

– Consider the distribution Pr[K(n) = m] for different m 

 Write exp() = , and Pr[K(n) = n] = pn. Then: 
Pr[K(n) = n-1]   Pr[K(n-1)=n-1] =  pn-1 

 Pr[K(n) = n-2]   Pr[K(n-1) = n-2]  2 Pr[K(n-2)=n-2] = 2 pn-2 

 Pr[K(n) = n-i]  i pn-i 

 Similarly, Pr[K(n) = n+i]  i pn+i 
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Achieving Differential Privacy 

 We have Pr[K(n) = n-i]  i pn-i and Pr[K(n) = n+i]  i pn+i 

 Within these constraints, we want to maximize pn  

– This maximizes the probability of returning “correct” answer 

– Means we turn the inequalities into equalities 

 For simplicity, set pn = p for all n  

– Means the distribution of “shifts” is the same whatever n is 

 Yields: Pr[K(n) = n-i] = i p and Pr[K(n) = n+i]  i p 

– Sum over all shifts i:  
 p + i=1

  2i p = 1 
 p + 2p /(1-)  = 1 
 p(1 -  + 2)/(1-) = 1 
 p = (1-)/(1+) 
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Geometric Mechanism 

 What does this mean? 

– For input n, output distribution is Pr[K(n) = m]= |m-n| . (1-)/(1+) 

 What does this look like? 

 

 

– Symmetric geometric distribution, centered around n 

– We draw from this distribution centered around zero, and add to 
the true answer 

– We get the “true answer plus (symmetric geometric) noise” 

 A first differentially private mechanism for outputting a count 

– We call this “the geometric mechanism” 
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Truncated Geometric Mechanism 

 Some practical concerns:  

– This mechanism could output any value, from - to + 

 Solution: we can “truncate” the output of the mechanism 

– E.g. decide we will never output any value below zero, or above N 

– Any value drawn below zero is “rounded up” to zero 

– Any value drawn above N is “rounded down” to N 

– This does not affect the differential privacy properties 

– Can directly compute the closed-form probability of these 
outcomes  
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Laplace Mechanism 

 Sometimes we want to output real values instead of integers 

 The Laplace Mechanism naturally generalizes Geometric 

 

 

– Add noise from a symmetric continuous distribution to true answer 

– Laplace distribution is a symmetric exponential distribution 

– Is DP for same reason as geometric: shifting the distribution 
changes the probability by at most a constant factor 

– PDF: Pr[X = x] = 1/2 exp(-|x|/) 
Variance = 22 
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Sensitivity of Numeric Functions 

 For more complex functions, we need to calibrate the noise 
to the influence an individual can have on the output 

– The (global) sensitivity of a function F is the maximum 
(absolute) change over all possible adjacent inputs 

– S(F) = maxD, D’ : |D-D’|=1  |F(D) – F(D’)| = 1 

– Intuition: S(F) characterizes the scale of the influence of one 
individual, and hence how much noise we must add 

 S(F) is small for many common functions 

– S(F) = 1 for COUNT 

– S(F) = 2 for HISTOGRAM 

– Bounded for other functions (MEAN, covariance matrix…) 

11 



Laplace Mechanism with Sensitivity 

 Release F(x) + Lap(S(F)/) to obtain -DP guarantee 

– F(x) = true answer on input x 

– Lap() = noise sampled from Laplace dbn with parameter  

– Exercise: show this meets -differential privacy requirement 

 Intuition on impact of parameters of differential privacy (DP): 

– Larger S(F), more noise (need more noise to mask an individual) 

– Smaller , more noise (more noise increases privacy) 

– Expected magnitude of |Lap()| is (approx) 1/ 
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Sequential Composition 

 What happens if we ask multiple questions about same data? 

– We reveal more, so the bound on  differential privacy weakens 

 Suppose we output via K1 and K2 with 1, 2 differential privacy: 

 Pr[ K1(D) = S1 ]  exp(1) Pr[K1(D’) = S1], and 

 Pr[ K2(D) = S2 ]  exp(2) Pr[K2(D’) = S2] 

 Pr[ (K1(D) = S1), (K2(D) = S2)] = Pr[K1(D)=S1] Pr[K2(D) = S2] 
    exp(1) Pr[K1(D’) = S1] exp(2) Pr[K2(D’) = S2]  
   = exp(1 + 2) Pr[(K1(D’) = S1), (K2(D’) = S2)] 

– Use the fact that the noise distributions are independent 

 Bottom line: result is 1 + 2 differentially private 

– Can reason about sequential composition by just “adding the ’s” 
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Parallel Composition 

 Sequential composition is pessimistic 

– Assumes outputs are correlated, so privacy budget is diminished 

 If the inputs are disjoint, then result is max(1, 2) private 

 Example:  

– Ask for count of people broken down by handedness, hair color 

 

 

 

 

– Each cell is a disjoint set of individuals 

– So can release each cell with -differential privacy (parallel 
composition) instead of 6 DP (sequential composition) 
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Redhead Blond Brunette 

Left-handed 23 35 56 

Right-handed 215 360 493 



Exponential Mechanism 

 What happens when we want to output non-numeric values? 

 Exponential mechanism is most general approach  

– Captures all possible DP mechanisms 

– But ranges over all possible outputs, may not be efficient 

 Requirements: 

– Input value x 

– Set of possible outputs O 

– Quality function, q, assigns “score” to possible outputs o  O 

 q(x, o) is bigger the “better” o is for x 

– Sensitivity of q = S(q) = maxx,x’,o |q(x,o) – q(x’,o)| 
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Exponential Mechanism 

 Sample output o  O with probability 
 Pr[K(x) = o] = exp( q(x,o)) / (o’O exp(q(x,o’))) 

 Result is (2 S(q))-DP 

– Shown by considering change in numerator and denominator 
under change of x is at most a factor of exp( S(q)) 

 Scalability: need to be able to draw from this distribution 

 Generalizations: 

– O can be continuous,  becomes an integral 

– Can apply a prior distribution over outputs as P(o) 

 We assume a uniform prior for simplicity 
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Exponential Mechanism Example 1: Count 

 Suppose input is a count n, we want to output (noisy) n 

– Outputs O = all integers 

– q(o,n) = -|o-n| 

– S(q) = 1 

– Then Pr[ K(n) = o] = exp(- |o-n|)/(o -|o-n|) = -|o-n|  (1-)/(1-) 

– Simplifies to the Geometric mechanism! 

 Similarly, if O = all reals, applying exponential mechanism results 
in the Laplace Mechanism 

 Illustrates the claim that Exponential Mechanism captures all 
possible DP mechanisms 
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Exponential Mechanism, Example 2: Median 

 Let M(X) = median of set of values in range [0,T] (e.g. median age) 

 Try Laplace Mechanism: S(M) = T 

– There can be datasets X, X’ where M(X) = 0, M(X’) = T, |X-X’|=1 

– Consider X = [0n, 0, Tn], X’ = [0n, T, Tn] 

– Noise from Laplace mechanism outweighs the true answer! 

 Exponential Mechanism: set q(o,X) = -| rankX(o) - |X|/2| 

– Define rankX(o) as the number of elements in X dominated by o 

– Note, rankX(M(X)) = |X|/2 : median has rank half 

– S(q) = 1: adding or removing an individual changes q by at most 1 

– Then Pr[ K(X) = o] = exp( q(o,X))/(o’  O exp( q(o’,X))) 

– Problem: O could be very large, how to make efficient? 
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Exponential Mechanism, Example 2: Median 

 Observation: for many values of o, q(o, X) is the same: 

– Index X in sorted order so x1  x2  x3  …  xn 

– Then for any xi  o < o’  xi+1, rankX(o) = rankX(o’) 

– Hence q(o,X) = q(o’,X) 

 Break possible outputs into ranges: 

– O0 = [0,x1] O1 = [x1, x2] … On = [xn, T] 

– Pick range Oj with probability proportional to |Oj|exp(q(O,X)) 

– Pick output o  Oj uniformly from the range 

– Time cost is proportional to number of ranges n (after sorting X) 

 Similar tricks make exponential mechanism practical elsewhere 
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Recap 

 Have developed a number of building blocks for DP: 

– Geometric and Laplace mechanism for numeric functions 

– Exponential mechanism for sampling from arbitrary sets 

 And “cement” to glue things together: 

– Parallel and sequential composition theorems 

 With these blocks and cement, can build a lot 

– Many papers arrive from careful combination of these tools! 

 Useful fact: any post-processing of DP output remains DP 

– (so long as you don’t access the original data again) 

– Helps reason about privacy of data release processes 
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Case Study: Sparse Spatial Data 

 Consider location data of many individuals 

– Some dense areas (towns and cities), some sparse (rural) 

 Applying DP naively simply generates noise 

– lay down a fine grid, signal overwhelmed by noise 

 Instead: compact regions with sufficient number of points 
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Private Spatial decompositions 

 

 

 

 

 

 

 

 Build: adapt existing methods to have differential privacy 

 Release: a private description of data distribution  
(in the form of bounding boxes and noisy counts) 

quadtree kd-tree 
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Building a Private kd-tree 

 Process to build a private kd-tree 

 Input: maximum height h, minimum leaf size L, data set 

 Choose dimension to split 

 Get (private) median in this dimension 

 Create child nodes and add noise to the counts 

 Recurse until: 

 Max height is reached 

 Noisy count of this node less than L 

 Budget along the root-leaf path has used up 

 The entire PSD satisfies DP by the composition property 
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Building PSDs – privacy budget allocation 

 Data owner specifies a total budget  reflecting the level of 
anonymization desired 

 Budget is split between medians and counts 

– Tradeoff accuracy of division with accuracy of counts 

 Budget is split across levels of the tree 

– Privacy budget used along any root-leaf path should total  

 
 Sequential 

composition 

Parallel composition 
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Privacy budget allocation 

 How to set an i for each level? 

– Compute the number of nodes touched by a ‘typical’ query 

– Minimize variance of such queries 

– Optimization: min i  2
h-i / i

2 s.t. i i =  

– Solved by i  (2(h-i))1/3 : more to leaves 

– Total error (variance) goes as 2h/2 

 Tradeoff between noise error and spatial uncertainty 

– Reducing h drops the noise error 

– But lower h increases the size of leaves, more uncertainty 
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Post-processing of noisy counts 

 Can do additional post-processing of the noisy counts 

– To improve query accuracy and achieve consistency 

 Intuition: we have count estimate for a node and for its children 

– Combine these independent estimates to get better accuracy 

– Make consistent with some true set of leaf counts 

 Formulate as a linear system in n unknowns 

– Avoid explicitly solving the system 

– Expresses optimal estimate for node v in terms of estimates of 
ancestors and noisy counts in subtree of v 

– Use the tree-structure to solve in three passes over the tree 

– Linear time to find optimal, consistent estimates 

 



Data Transformations 

 Can think of trees as a ‘data-dependent’ transform of input 

 Can apply other data transformations 

 General idea: 

– Apply transform of data 

– Add noise in the transformed space (based on sensitivity) 

– Publish noisy coefficients, or invert transform (post-processing) 

 Goal: pick a transform that preserves good properties of data 

– And which has low sensitivity, so noise does not corrupt 
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Coefficients 

Noisy 
Coefficients 

Noise Private 
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Wavelet Transform 

 Haar wavelet transform commonly used to approximate data 

– Any 1D range is expressed using log n coefficients 

– Each input point affects log n coefficients 

– Is a linear, orthonormal transform 

 Can add noise to wavelet coefficients 

– Treat input as a 1D histogram of counts  

– Bounded sensitivity: each individual affects coefficients by O(1) 

– Can transform noisy coefficients back to get noisy histogram 

 Range queries are answered well in this model 

– Each range query picks up noise (variance) O(log3 n / ) 

– Directly adding noise to input would give noise O(n / ) 
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Other Transforms 

Many other transforms can be applied within DP 

 (Discrete) Fourier Transform: also bounded sensitivity 

– Often need only a fixed set of coefficients: further reduces S(F) 

– Used for representing data cube counts, time series 

 Hierarchical Transforms: binary trees and quadtrees 

 Randomized Transforms: sketches and compressed sensing 
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Local Sensitivity 

 A common fallacy: using local sensitivity instead of global 

– Global sensitivity S(F) = maxx,x’ : |x-x’|=1 |F(x)-F(x’)| 

– Local sensitivity S(F,x) = maxx’ : |x-x’|=1 |F(x)-F(x’)| 

– These can be very different: local can be much smaller than global 

– It is tempting (but incorrect) to calibrate noise to local sensitivity 

 Bad case for local sensitivity: Median 

– Consider X = [0n, 0, 0, Tn-1], X’ = [0n, 0, Tn], X’’ = [0n, T, Tn] 

– S(F,X) = 0 while S(F, X’) = T 

– Scale of the noise will reveal exactly which case we are in 

 Still, there has to be something better than always using global? 

– Such bad cases seem artificial, rare  

 
30 



Smooth Sensitivity 

 Previous case was bad because local sensitivity was low, but 
“close” to a case where local sensitivity was high 

 “Smooth sensitivity” combines sensitivity from all 
neighborhoods (based on parameter ) 

– SS(F,x) = maxo  O LS(F,o) exp(- |o – x|) 

– Contribution of output o is decayed exponentially based on 
distance of o from x, |o – x| 

– Can add Laplace noise scaled by SS(F,x) to obtain (variant of) DP 
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Smooth Sensitivity: Example 

 Consider the median function M over n items again 

– Compute the maximum change in the median for each distance d 

– LS measures when median changes from xi to xi+1 

 So LS at distance d is at most max0 jd (xn/2 +j – xn/2+j-d-1) 

– Largest gap that can be created by inserting/deleting at most d 
items 

 Gives SS(M,x) = max0 d  n exp(-d) max0j d (xn/2+j - xn/2+j-d-1) 

– Can compute in time O(n2)   

– Empirically, exponential mechanism seems preferable 

– No generic process for computing smooth sensitivity 
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Sample-and-aggregate 

 Sample-and-aggregate gives a useful template 

– Intuition: sampling is almost DP - can’t be sure who is included 

– Break input into moderate number of blocks, m 

– Compute desired function on each block 

– Snap to some range [min, max] and aggregate (e.g. mean) 

– Add Laplace noise scaled by sensitivity (max-min) 
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Data 

Block1 Block2 Block3 Blockm … 

f1 f2 f3 fm … 

(Windsorized) 
Mean 

Noisy 
mean 



Sparse Data 

 Suppose we have many (overlapping) queries, most of which 
have a small answer, but we don’t know which 

– We are only interesting in large answers (e.g. frequent itemsets) 

– Two problems: time efficiency, and “privacy efficiency” 

 Time efficiency: 

– Don’t want to add noise to every single zero-valued query 

– Assume we can materialize all non-zero query answers 

– Count how many are zero 

– Compute probability of noise pushing a zero-query past threshold 

– Sample from Binomial distribution how many to “upgrade” 

– Sample noisy value conditioned on passing threshold 
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Sparse Data – Privacy Efficiency 

 Only want to pay for c queries with that exceed threshold T 

– Assume all queries have sensitivity S 

 Compute noisy threshold T’ = T + Lap(2S/)  

 For each query, add noise Lap(2Sc/), only output if above T’ 

 Result is -DP 

– For “suppressed” answers, probability of seeing same output is 
about the same as if T’ was a little higher on neighboring input 

– For released answers, DP follows from Laplace mechanism 

 Result is reasonably accurate: with high probability, 

– All suppressed answers are smaller than T +  

– All released answers have error at most  

for parameter (c,1/, S), and at most c query answers > T -  
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Multiplicative weights 

 The idea of “multiplicative weights” widely used in optimization 

– Up-weight ‘good’ answers, down-weight ‘poor’ answers 

– Applied to output of DP mechanism 

 Set-up:  

– (Private) input, represented as vector D with n entries 

– Q, set of queries over x (matrix) 

– T, bound on number of iterations 

– Output: -DP vector A so that Q(A)  Q(D) 
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Multiplicative Weights Algorithm 

 Initialize vector A0 to assign uniform weight for each value 

 For i=1 to T: 

– Exponential Mechanism (/2T) to sample j prop. to |Qj(Ai) – Qj(D)| 

 Try to find query with large error 

– Laplace Mechanism to estimate  = (Qj(A) – Qj(D)) + Lap(2T/) 

 Error in the selected query 

– Set Ai = Ai-1 . exp( Qj(D)/2n), normalize so that Ai is a distribution 

 (Noisily) reward good answers, penalize poor answers 

 Output A = averagei nAi 

– Privacy follows via sequential composition of EM and LM steps 

– Accuracy (should) improve in each iteration, up to log iterations 
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Other topics 

 Huge amount of work in DP across theory, security, DB… 

 Many topics not touched on in this tutorial: 

– Connections to game theory and auction design 

– Mining primitives: regression, clustering, frequent itemsets 

– Efforts in programming languages and systems to support DP 

– Variant definitions: (, )-DP, other privacy/adversary models 

– Lower bounds for privacy (what is not possible) 

– Applications to graph data (social networks), mobility data etc. 

– Privacy over data streams: pan-privacy and continual observation 
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Concluding Remarks 

 Differential privacy can be applied effectively for data release 

 Care is still needed to ensure that release is allowable 

– Can’t just apply DP and forget it: must analyze whether data 
release provides sufficient privacy for data subjects 

 Many open problems remain: 

– Transition these techniques to tools for data release 

– Want data in same form as input: private synthetic data? 

– Allow joining anonymized data sets accurately 

– Obtain alternate (workable) privacy definitions 
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