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Perhaps the simplest possible formal privacy algorithm: <4 «
¢ Scenario. Each user has a single private bit of informatioﬁw

— Encoding e.g. political/sexual/religious preference, illness, etc.
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¢ Aggregation. Collect responses from a large number N of users

— Can ‘unbias’ the estimate (if we know p) of the population fraction
— The error in the estimate is proportional to 1/VN
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Privacy with a coin toss

Perhaps the simplest possible formal privacy algorithm:

¢ Scenario. Each user has a single private bit of information® ‘»
— Encoding e.g. political/sexual/religious preference, illness, etc. '
¢ Algorithm. Toss a (biased) coin, and
— With probability p > %, report the true answer
— With probability 1-p, lie
¢ Aggregation. Collect responses from a large number N of users
— Can ‘unbias’ the estimate (if we know p) of the population fraction
— The error in the estimate is proportional to 1/VN
¢ Analysis. Gives differential privacy with parameter € = In (p/(1-p))

— Works well in theory, but would anyone ever use this?
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Privacy in practice ! gnd
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¢ Differential privacy based on coin tossing is widely deployed

— In Google Chrome browser, to collect browsing statistics
— In Apple iOS and MacOS, to collect typing statistics
— This yields deployments of over 100 million users
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— In Google Chrome browser, to collect browsing statistics
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— This yields deployments of over 100 million users
¢ The model where users apply differential privately and then
aggregated is known as “Local Differential Privacy”
— The alternative is to give data to a third party to aggregate
— The coin tossing method is known as ‘randomized response’
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Privacy in practice 3
¢ Differential privacy based on coin tossing is widely deployed
— In Google Chrome browser, to collect browsing statistics

— In Apple iOS and MacOS, to collect typing statistics
— This yields deployments of over 100 million users

¢ The model where users apply differential privately and then
aggregated is known as “Local Differential Privacy”

— The alternative is to give data to a third party to aggregate

— The coin tossing method is known as ‘randomized response’

¢ Local Differential privacy is state of the artin 2017:
Randomized response invented in 1965: five decade lead time!
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Going beyond | bit of data

1 bit can tell you a lot, but can we do more?
¢ Recent work: materializing marginal distributions

— Each user has d bits of data (encoding sensitive data)
— We are interested in the distribution of combinations of attributes
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Alice 1 0 0 1 0
Bob 0 1 0 1 1
Zayn 0 0 1 0 0
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Going beyond | bit of data

1 bit can tell you a lot, but can we do more?
¢ Recent work: materializing marginal distributions
— Each user has d bits of data (encoding sensitive data)

— We are interested in the distribution of combinations of attributes

-mm

Alice
Bob 0 1 0 1 1
Zayn 0 0 1 0 0

Gender/Obese ““ Disease/Smoke “
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Nail, meet hammer

¢ Could apply Randomized Reponse to each entry of each marginal
— To give an overall guarantee of privacy, need to change p
— The more bits released by a user, the closer p gets to /% (noise)
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Nail, meet hammer

¢ Could apply Randomized Reponse to each entry of each marginal
— To give an overall guarantee of privacy, need to change p
— The more bits released by a user, the closer p gets to /% (noise)
¢ Need to design algorithms that minimize information per user
¢ First observation: a sampling trick
— If we release n bits of information per user, the error is n/VN
— If we sample 1 out of n bits, the error is V(n/N)
— Quadratically better to sample than to share!
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What to materialize!?

Different approaches based on how information is revealed
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1. We could reveal information about all marginals of size k
— There are (d choose k) such marginals, of size 2k each
2. Or we could reveal information about the full distribution
— There are 29 entries in the d-dimensional distribution
— Then aggregate results here (obtaining additional error)
¢ Still using randomized response on each entry
— Approach 1 (marginals): cost proportional to 232 d¥/2/yN
— Approach 2 (full): cost proportional to 2(d+k/2/yN
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What to materialize!?

Different approaches based on how information is revealed
1. We could reveal information about all marginals of size k
— There are (d choose k) such marginals, of size 2k each
2. Or we could reveal information about the full distribution
— There are 29 entries in the d-dimensional distribution
— Then aggregate results here (obtaining additional error)
¢ Still using randomized response on each entry
— Approach 1 (marginals): cost proportional to 232 d¥/2/yN
— Approach 2 (full): cost proportional to 2(d+k/2/yN

¢ If kis small (say, 2), and d is large (say 10s), Approach 1 is better
— But there’s another approach to try...
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Hadamard transform

Instead of materializing the data, we can transform it

: : 1111 - ]

¢ Via Hadamard transform (the discrete D111 :i i i
Fourier transform for the binary hypercube) |1 111 1 1-11

, H* H*| _ 111-1 111-1

— Simple and fast to apply H* e 1111 1-1.11
1-111 -11-1-1
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Hadamard transform

Instead of materializing the data, we can transform it

¢ Via Hadamard transform (the discrete Tl o
Fourier transform for the binary hypercube) [11-11 1 1-11

, H* H*| _ 111-1 111-1

— Simple and fast to apply [H* _H*] 1111 1-1-1-1

¢ Property 1: only (d choose k) coefficients i: i i :i i j
are needed to build any k-way marginal 1111 1-1-11)]

— Reduces the amount of information to release
¢ Property 2: Hadamard transform is a linear transform

— Can estimate global coefficients by sampling and averaging
¢ Yields error proportional to 2¥2d%/2/vN

— Better than both previous methods (in theory)
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Empirical behaviour
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Compare three methods: Hadamard based (Inp HT), marginal

materialization (Marg_PS), Expectation maximization (Inp_EM)

¢ Measure sum of absolute error in materializing 2-way marginals

¢ N =0.5M individuals, vary privacy parameter € from 0.4 to 1.4
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Applications — x-squared test
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¢ Anonymized, binarized NYC taxi data
¢ Compute x-squared statistic to test correlation
¢ Want to be same side of the line as the non-private value!
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Application — building a Bayesian model

S goum Of Mutual Information Of Chow-Liu Tree Edges
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¢ Aim: build the tree with highest mutual information (Ml)
¢ Plot shows Ml on the ground truth data for evaluation purposes
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