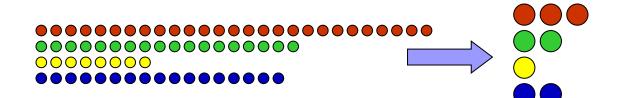
Engineering Streaming Algorithms

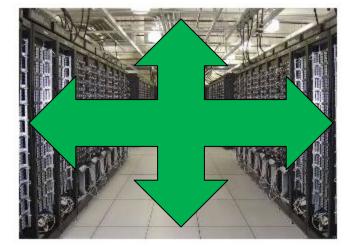


Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

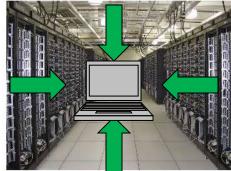
Computational scalability and "big" data

- Most work on massive data tries to scale up the computation
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move code to data, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
- This talk is not about this approach!



Downsizing data

- A second approach to computational scalability: scale down the data as it is seen!
 - A compact representation of a large data set
 - Capable of being analyzed on a single machine
 - What we finally want is small: human readable analysis / decisions
 - Necessarily gives up some accuracy: approximate answers
 - Often randomized (small constant probability of error)
 - Much relevant work: samples, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or
- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don't allow any useful summary

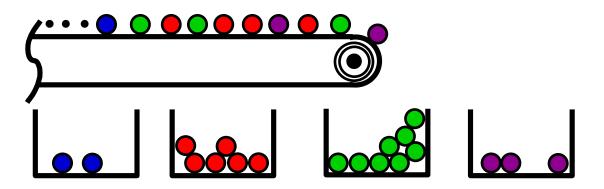


Outline for the talk

- The frequent items problem
- Engineering streaming algorithms for frequent items
 - From algorithms to prototype code
 - From prototype code to deployed code
- Next steps: robust code, other hardware targets
- Bulk of the talk is on two (actually, one) very simple algorithms
 - Experience and reflections on a 'simple' implementation task

The Frequent Items Problem

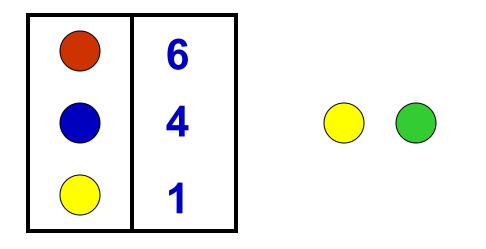
- The Frequent Items Problem (aka Heavy Hitters): given stream of N items, find those that occur most frequently
 - E.g. Find all items occurring more than 1% of the time
- Formally "hard" in small space, so allow approximation
- Find all items with count $\geq \phi N$, none with count $< (\phi \varepsilon) N$
 - Error $0 < \epsilon < 1$, e.g. $\epsilon = 1/1000$
 - Related problem: estimate each frequency with error $\pm\epsilon N$



Why Frequent Items?

- A natural question on streaming data
 - Track bandwidth hogs, popular destinations etc.
- The subject of much streaming research
 - Scores of papers on the subject
- A core streaming problem
 - Many streaming problems connected to frequent items (itemset mining, entropy estimation, compressed sensing)
- Many practical applications deployed
 - In search log mining, network data analysis, DBMS optimization

Misra-Gries Summary (1982)



Misra-Gries (MG) algorithm finds up to k items that occur more than 1/k fraction of the time in the input

Update: Keep k different candidates in hand. For each item:

- If item is monitored, increase its counter
- Else, if < k items monitored, add new item with count 1
- Else, decrease all counts by 1

Frequent Analysis

- Analysis: each decrease can be charged against k arrivals of different items, so no item with frequency N/k is missed
- Moreover, $k=1/\varepsilon$ counters estimate frequency with error εN
 - Not explicitly stated until later [Bose et al., 2003]
- Some history: First proposed in 1982 by Misra and Gries, rediscovered twice in 2002
 - Later papers discussed how to make fast implementations

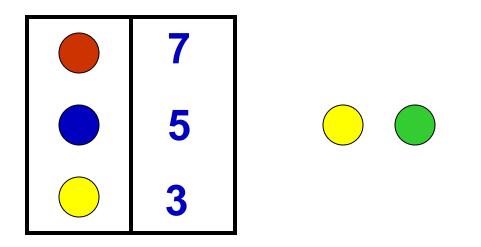
Merging two MG Summaries [ACHPWY '12]

Merge algorithm:

- Merge the counter sets in the obvious way
- Take the (k+1)th largest counter = C_{k+1} , and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M₁₂
- This keeps the same guarantee as Update:
 - Merge subtracts at least $(k+1)C_{k+1}$ from counter sums
 - So $(k+1)C_{k+1} \leq (M_1 + M_2 M_{12})$
 - By induction, error is $((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/(k+1) = ((N_1+N_2) - M_{12})/(k+1)$

(prior error) (from merge) (as claimed)

SpaceSaving Algorithm



- "SpaceSaving" (SS) algorithm [Metwally, Agrawal, El Abaddi 05] is similar in outline
- Keep k = 1/ε item names and counts, initially zero Count first k distinct items exactly
- On seeing new item:
 - If it has a counter, increment counter
 - If not, replace item with least count, increment count

SpaceSaving Analysis

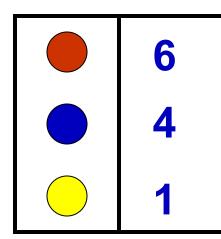
- Smallest counter value, min, is at most εn
 - Counters sum to n by induction
 - $1/\epsilon$ counters, so average is ϵn : smallest cannot be bigger
- True count of an uncounted item is between 0 and min
 - Proof by induction, true initially, min increases monotonically
 - Hence, the count of any item stored is off by at most εn
- Any item x whose true count > en is stored
 - By contradiction: x was evicted in past, with count $\leq \min_{t}$
 - Every count is an overestimate, using above observation
 - So est. count of $x > \varepsilon n \ge \min \ge \min_t$, and would not be evicted

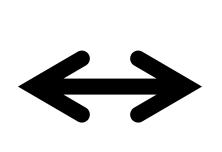
So: Find all items with count > εn , error in counts $\leq \varepsilon n$

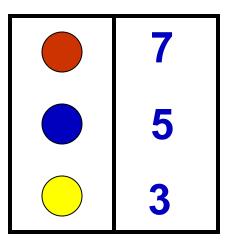
Two algorithms, or one?

• A belated realization: SS and MG are the same algorithm!

- Can make an isomorphism between the memory state
- Intuition: "overwrite the min" is conceptually equivalent to delete elements with (decremented) zero count
- The two perspectives on the same algorithm lead to different implementation choices





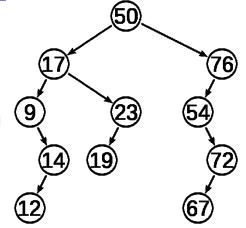


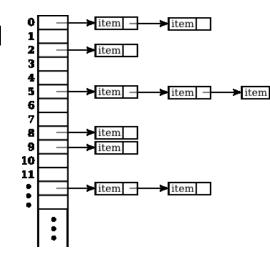
Implementation Issues

- These algorithms are really simple, so should be easy... right?
- There is surprising subtlety in implementing them
- Basic steps:
 - Lookup is current item stored? If so, update count
 - If not:
 - Find min weight item and overwrite it (SS)
 - Decrement counts and delete zero weights (MG)
- Several implementation choices for each step
 - Optimization goals: speed (throughput, latency) and space
 - I discuss my implementation experience and current thoughts

Lookup Item

- Lookup: is current item stored
 - The canonical dictionary data structure problem
- Misra Gries paper: use balanced search tree
 - O(log k) worst case time to search
- Hash table: hash to O(k) buckets
 - O(1) expected time, but now alg is randomized
 - May have bad worst case performance?
 - How to handle collisions and deletions?
 - (My implementations used chaining)
 - Could surely be further optimized...
 - Use cuckoo hashing or other options?
 - Can we use fact that table occupancy is guaranteed at most k?





Decrement Counts

Decrement counts could be done simply

- Iterate through all counts, subtract by one
- A blocking operation, O(k) time

Proof of correctness means it happens < n/k times </p>

- So would be O(1) cost amortized...
- (considered too fiddly to deamortize when I implemented)
 - Multithreaded/double buffered approach could simplify

item

item

item

item

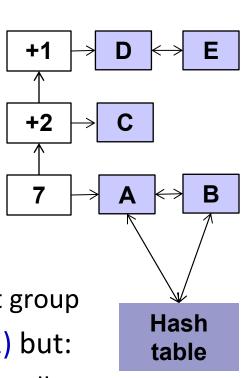
item

item

Decrement Counts: linked list approach

Linked list approach (Demaine et al. 02):

- Keep elements in a list sorted by frequency
- Store the difference between successive items
- Decrement now only affects the first item
- But increments are more complicated:
 - Keep elements with same frequency in a group
 - Since we only increase count by 1, move to next group
- Increments and decrements now take time O(1) but:
 - Non-standard, lots of cases (housekeeping) to handle
 - Forward and backward pointers in circular linked lists
 - Significant space overhead (about 6 pointers per item)



Overwrite min

- Could also adapt the linked list approach
 - Keep items in sorted order, overwrite current min
- Findmin is a more standard data structure problem
 - Could use a minheap (binary, binomial, fibonacci...)
 - Increments easy: update and reheapify O(log k)
 - Probably faster, since only adding one to the count
 - All operations O(log k) worst case, but may be faster "typically":

2

19

17

25

3

36

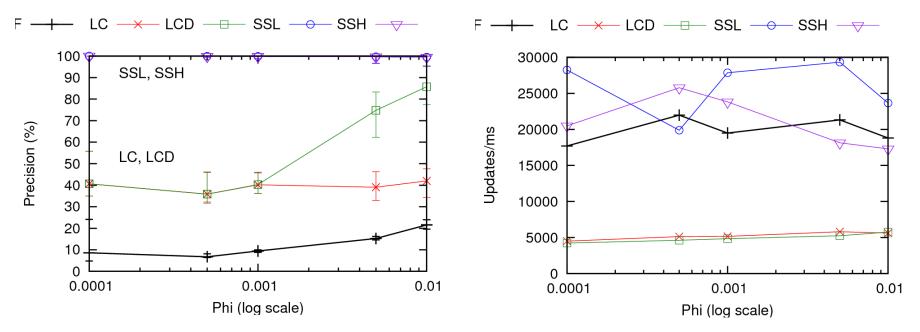
- Heap property can often be restored locally
- Head of heap likely to be in cache
- Access pattern non-uniform?

Experimental Comparison

Implementation study (several years old now)

- Best effort implementations in C (use a different language now?)
- All low-level data structures manually implemented (using manual memory management)
- http://hadjieleftheriou.com/frequent-items/index.html
- Experimental comparison highlights some differences not apparent from analytic study
 - E.g. algorithms are often more accurate than worst-case analysis
 - Perhaps because real inputs are not worst-case
- Compared on a variety of web, network and synthetic data

Frequent Algorithms Experiments

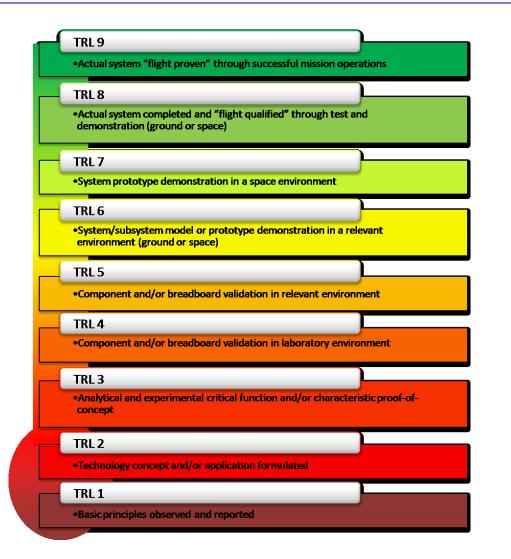


- Two implementations of SpaceSaving (SSL, SSH) achieve perfect accuracy in small space (10KB – 1MB)
- Misra Gries (F) has worse accuracy: different estimator used
- Very fast: 20M 30M updates per second
 - Heap seems faster than linked list approach

Frequent Algorithms Summary

- These algorithms very efficient for arrivals-only case
 - Use $O(1/\epsilon)$ space, guarantee ϵN accuracy
 - Very fast in practice (many millions of updates per second)
- Similar algorithms, but a surprisingly clear "winner"
 - Over many data sets, parameter settings, SpaceSaving algorithm gives appreciably better results
- Many implementation details even for simple algorithms
 - "Find if next item is monitored": search tree, hash table...?
 - "Find item with smallest count": heap, linked lists...?
- Not much room left for improvement in core algorithm?
 - Maybe more explicitly model input distributions (skewed)?

Ready for prime time?

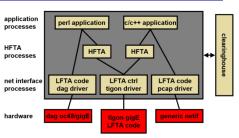


Engineering Streaming Algorithms

Streaming in practice: Packet stream analysis

AT&T Gigascope / GS tool: stream data analysis

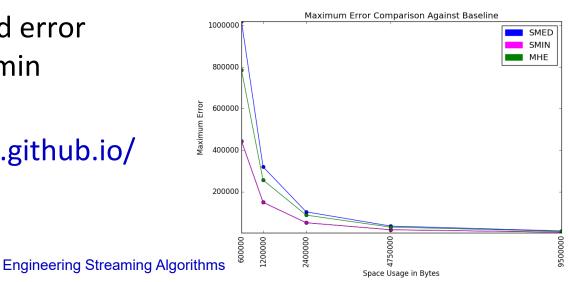
Developed since early 2000s



- Based on commodity hardware + Endace packet capture cards
- High-level (SQL like) language to express continuous queries
 - Allows "User Defined Aggregate Functions" (UDAFs) plugins
 - Sketches in gigascope since 2003 at network line speeds (Gbps)
 - Flexible use of streaming algs to summarize behaviour in groups
 - Rolled into standard query set for network monitoring
 - Software-based approach to attack, anomaly detection
- Current status: latest generation of GS in production use at AT&T Also in Twitter analytics, Yahoo, other query log analysis tools

[Anderson et al '17] report their experience at Yahoo!

- Delete min operation can be amortized over multiple steps
- Instead of deleting based on min of k, used median of 2k counts
- Estimate median by sampling rather than quickselect
- May be seen as similar to a merge and prune approach
- Several times faster again than heap-based method
- Moderately increased error compared to delete min
- Java sketch library: https://datasketches.github.io/



Conclusions

- Finding the frequent items is one of the most studied problems in data streams
 - Continues to intrigue researchers (for better or worse)
 - Many variations proposed (for weighted or negative updates)
 - Algorithms have been deployed in Google, AT&T, elsewhere...
 - New variants continue to be suggested
- Other streaming primitives have been similarly engineered
 - E.g. Bloom Filters, Hyperloglog (Heule et al '13), Quantiles
 - More general sketches that can handle deletions and insertions
- Areas for more work:
 - Allow easier composition of algorithms
 - Adapt to new models (parallel, distributed, FPGA/GPU)