
Engineering Streaming
Algorithms

Graham Cormode

University of Warwick

G.Cormode@Warwick.ac.uk

Computational scalability and “big” data

 Most work on massive data tries to scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move code to data, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
2

Engineering Streaming Algorithms

Downsizing data

 A second approach to computational scalability:
scale down the data as it is seen!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
3

Engineering Streaming Algorithms

Outline for the talk

 The frequent items problem

 Engineering streaming algorithms for frequent items

– From algorithms to prototype code

– From prototype code to deployed code

 Next steps: robust code, other hardware targets

 Bulk of the talk is on two (actually, one) very simple algorithms

– Experience and reflections on a ‘simple’ implementation task

4
Engineering Streaming Algorithms

Engineering Streaming Algorithms
5

The Frequent Items Problem

 The Frequent Items Problem (aka Heavy Hitters):
given stream of N items, find those that occur most frequently

– E.g. Find all items occurring more than 1% of the time

 Formally “hard” in small space, so allow approximation

 Find all items with count N, none with count < (-e)N

– Error 0 < e < 1, e.g. e = 1/1000

– Related problem: estimate each frequency with error eN

Engineering Streaming Algorithms
6

Why Frequent Items?

 A natural question on streaming data

– Track bandwidth hogs, popular destinations etc.

 The subject of much streaming research

– Scores of papers on the subject

 A core streaming problem

– Many streaming problems connected to frequent items
(itemset mining, entropy estimation, compressed sensing)

 Many practical applications deployed

– In search log mining, network data analysis, DBMS optimization

Engineering Streaming Algorithms
7

Misra-Gries Summary (1982)

 Misra-Gries (MG) algorithm finds up to k items that occur
more than 1/k fraction of the time in the input

 Update: Keep k different candidates in hand. For each item:

– If item is monitored, increase its counter

– Else, if < k items monitored, add new item with count 1

– Else, decrease all counts by 1

7

5

1 2 1

4

6

Engineering Streaming Algorithms
8

Frequent Analysis

 Analysis: each decrease can be charged against k arrivals of
different items, so no item with frequency N/k is missed

 Moreover, k=1/e counters estimate frequency with error eN

– Not explicitly stated until later [Bose et al., 2003]

 Some history: First proposed in 1982 by Misra and Gries,
rediscovered twice in 2002

– Later papers discussed how to make fast implementations

Engineering Streaming Algorithms
9

Merging two MG Summaries [ACHPWY ‘12]

 Merge algorithm:

– Merge the counter sets in the obvious way

– Take the (k+1)th largest counter = Ck+1, and subtract from all

– Delete non-positive counters

– Sum of remaining counters is M12

 This keeps the same guarantee as Update:

– Merge subtracts at least (k+1)Ck+1 from counter sums

– So (k+1)Ck+1 (M1 + M2 – M
12

)

– By induction, error is
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)

(prior error) (from merge) (as claimed)

Engineering Streaming Algorithms
10

SpaceSaving Algorithm

 “SpaceSaving” (SS) algorithm [Metwally, Agrawal, El Abaddi 05]
is similar in outline

 Keep k = 1/e item names and counts, initially zero
Count first k distinct items exactly

 On seeing new item:
– If it has a counter, increment counter

– If not, replace item with least count, increment count

7

5

1 2 3

Engineering Streaming Algorithms
11

SpaceSaving Analysis

 Smallest counter value, min, is at most en

– Counters sum to n by induction

– 1/e counters, so average is en: smallest cannot be bigger

 True count of an uncounted item is between 0 and min

– Proof by induction, true initially, min increases monotonically

– Hence, the count of any item stored is off by at most en

 Any item x whose true count > en is stored

– By contradiction: x was evicted in past, with count mint

– Every count is an overestimate, using above observation

– So est. count of x > en min mint, and would not be evicted

 So: Find all items with count > en, error in counts en

Two algorithms, or one?

 A belated realization: SS and MG are the same algorithm!

– Can make an isomorphism between the memory state

 Intuition: “overwrite the min” is conceptually equivalent to
delete elements with (decremented) zero count

 The two perspectives on the same algorithm lead to different
implementation choices

Engineering Streaming Algorithms
12

7

5

1 2 1

4

6 7

5

1 2 3

Implementation Issues

 These algorithms are really simple, so should be easy… right?

 There is surprising subtlety in implementing them

 Basic steps:

– Lookup is current item stored? If so, update count

– If not:

 Find min weight item and overwrite it (SS)

 Decrement counts and delete zero weights (MG)

 Several implementation choices for each step

– Optimization goals: speed (throughput, latency) and space

– I discuss my implementation experience and current thoughts

Engineering Streaming Algorithms
13

Lookup Item

 Lookup: is current item stored

– The canonical dictionary data structure problem

 Misra Gries paper: use balanced search tree

– O(log k) worst case time to search

 Hash table: hash to O(k) buckets

– O(1) expected time, but now alg is randomized

 May have bad worst case performance?

– How to handle collisions and deletions?

 (My implementations used chaining)

– Could surely be further optimized…

 Use cuckoo hashing or other options?

 Can we use fact that table occupancy is guaranteed at most k?

 Engineering Streaming Algorithms
14

Decrement Counts

 Decrement counts could be done simply

– Iterate through all counts, subtract by one

– A blocking operation, O(k) time

 Proof of correctness means it happens < n/k times

– So would be O(1) cost amortized…

– (considered too fiddly to deamortize when I implemented)

 Multithreaded/double buffered approach could simplify

Engineering Streaming Algorithms
15

Decrement Counts: linked list approach

 Linked list approach (Demaine et al. 02):

– Keep elements in a list sorted by frequency

– Store the difference between successive items

– Decrement now only affects the first item

 But increments are more complicated:

– Keep elements with same frequency in a group

– Since we only increase count by 1, move to next group

 Increments and decrements now take time O(1) but:

– Non-standard, lots of cases (housekeeping) to handle

– Forward and backward pointers in circular linked lists

– Significant space overhead (about 6 pointers per item)

Engineering Streaming Algorithms

16

7

+2

+1

A

C

D

B

E

Hash

table

Overwrite min

 Could also adapt the linked list approach

– Keep items in sorted order, overwrite current min

 Findmin is a more standard data structure problem

– Could use a minheap (binary, binomial, fibonacci…)

– Increments easy: update and reheapify O(log k)

 Probably faster, since only adding one to the count

– All operations O(log k) worst case, but may be faster “typically”:

 Heap property can often be restored locally

 Head of heap likely to be in cache

 Access pattern non-uniform?

Engineering Streaming Algorithms
17

Engineering Streaming Algorithms
18

Experimental Comparison

 Implementation study (several years old now)

– Best effort implementations in C (use a different language now?)

– All low-level data structures manually implemented
(using manual memory management)

– http://hadjieleftheriou.com/frequent-items/index.html

 Experimental comparison highlights some differences not
apparent from analytic study

– E.g. algorithms are often more accurate than worst-case analysis

– Perhaps because real inputs are not worst-case

 Compared on a variety of web, network and synthetic data

http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html

Engineering Streaming Algorithms
19

Frequent Algorithms Experiments

 Two implementations of SpaceSaving (SSL, SSH) achieve
perfect accuracy in small space (10KB – 1MB)

 Misra Gries (F) has worse accuracy: different estimator used

 Very fast: 20M – 30M updates per second

– Heap seems faster than linked list approach

Engineering Streaming Algorithms
20

Frequent Algorithms Summary

 These algorithms very efficient for arrivals-only case

– Use O(1/e) space, guarantee eN accuracy

– Very fast in practice (many millions of updates per second)

 Similar algorithms, but a surprisingly clear “winner”

– Over many data sets, parameter settings, SpaceSaving
algorithm gives appreciably better results

 Many implementation details even for simple algorithms

– “Find if next item is monitored”: search tree, hash table…?

– “Find item with smallest count”: heap, linked lists…?

 Not much room left for improvement in core algorithm?

– Maybe more explicitly model input distributions (skewed)?

Ready for prime time?

Engineering Streaming Algorithms
21

Streaming in practice: Packet stream analysis

 AT&T Gigascope / GS tool: stream data analysis

– Developed since early 2000s

– Based on commodity hardware + Endace packet capture cards

 High-level (SQL like) language to express continuous queries

– Allows “User Defined Aggregate Functions” (UDAFs) plugins

– Sketches in gigascope since 2003 at network line speeds (Gbps)

– Flexible use of streaming algs to summarize behaviour in groups

– Rolled into standard query set for network monitoring

– Software-based approach to attack, anomaly detection

 Current status: latest generation of GS in production use at AT&T
Also in Twitter analytics, Yahoo, other query log analysis tools

22
Engineering Streaming Algorithms

More Recent Progress

[Anderson et al ’17] report their experience at Yahoo!

 Delete min operation can be amortized over multiple steps

 Instead of deleting based on min of k, used median of 2k counts

 Estimate median by sampling rather than quickselect

 May be seen as similar to a merge and prune approach

 Several times faster again than heap-based method

 Moderately increased error
compared to delete min

 Java sketch library:
https://datasketches.github.io/

Engineering Streaming Algorithms
23

Engineering Streaming Algorithms
24

Conclusions

 Finding the frequent items is one of the most studied
problems in data streams

– Continues to intrigue researchers (for better or worse)

– Many variations proposed (for weighted or negative updates)

– Algorithms have been deployed in Google, AT&T, elsewhere…

– New variants continue to be suggested

 Other streaming primitives have been similarly engineered

– E.g. Bloom Filters, Hyperloglog (Heule et al ‘13), Quantiles

– More general sketches that can handle deletions and insertions

 Areas for more work:

– Allow easier composition of algorithms

– Adapt to new models (parallel, distributed, FPGA/GPU)

