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There are no guarantees in life 

 From the terms of service of a certain cloud computing service... 

 Can we obtain guarantees of correctness of the computation? 

– Without repeating the computation? 

– Without storing all the input? 



Interactive Proofs 

What’s the answer? 

42 

Prove it! 

1010101001000110110101100010001 

110101? 

11010010001000110101010010001101 

OK! 



 



(Streaming) Interactive Proofs 

 Two party-model: outsource to a more powerful “prover” 

– Fundamental problem: how to be sure that the prover is honest?  

 Prover provides “proof” of the correct answer  

– Ensure that “verifier” has very low probability of being fooled 

– Measure resources of the participants, rounds of interaction 

– Related to communication complexity Arthur-Merlin model, and 
Algebrization, with additional streaming constraints 

 Data Stream 

P 
V “Proof” 



Starter Problem: Index 

 Fundamental (hard) problem in data streams 

– Input is a length m binary string x followed by index y 

– Desired output is x[y] 

– Requires (m) space even allowing error probability 

 Can we find a protocol to allow recovery of arbitrary bits 

– Without having the verifier store the entire sequence? 
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Real problem: Nearest neighbor 



Parameters 

 m data points (m very large) 

– Verifier V processes data using small space << m 

– Prover P processes data using space at least m 

 V and P have a conversation to determine the answer 

– If P is honest, 0.99 probability that V accepts the answer 

– If P is dishonest, 0.99 probability that V rejects the answer 

– Measure the space used by V, P, communication used by both 

Data Stream 

P 
V 

“Proof” 

Space p Space v 

Communication h 



Index: 1 Round Upper Bound 

 Divide the bit string into blocks of H bits 

 Verifier remembers a hash on each block 

 After seeing index, Prover replays its block 

 Verifier checks hash agrees, and outputs x[y] 

 

 Cost: H bits of proof from the prover, V = m/H hashes 

– So HV = O(m log m), any point on tradeoff is possible 
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2 Round Index Protocol 

Data indexed  
in Boolean 
hypercube {0,1}b 

Extended to  
hypercube Fb 

Challenge line l 

Query 
point y 

Random point r  Fb 

1. V picks r and evaluates low-
degree extension of input at r 
to get q 

2. V sends l to P 

3. P sends polynomial p’ which 
is input restricted to l 

4. V checks that p’(r) = q, and 
outputs p’(y) 



Streaming LDE Computation 

 Given query point r  Fb, evaluate extension of input at r 

 Initialize: z = 0 

 Update with impact of each data point y=(y1, … yb) in turn. 
Structure of polynomial means update causes 
 
   z  z + i =1

b ((1-yi)(1-ri) + yiri)
 

 

– Lagrange polynomial, can be evaluated in small space 
 

 Can be computed quickly, using appropriate precomputed 
look-up tables 



Correctness and Cost 

 Correctness of the protocol 

– If P is honest: V will always accept 

– If P is dishonest: V only accepts if p’(r) = q 
This happens with probability b/|F|: can make |F| bigger 

 Costs of the protocol 

– V’s space: O(b log |F|) = O(log n log log n) bits 

– P and V exchange l and p’ as (b + 1) values in F,  
so communication cost is O(log n log log n) bits 

– Exponential improvement over one round 

 Consequences: can do other computations via Index e.g. median 

– What about more complex functions? 



Nearest Neighbour Search 

 Basic idea: convert NNS into an (enormous) index problem 

– Work with input points in [n]d 

– Assume all distances are multiples of  = 1/nd 

 Let B = {all distinct balls}; note |B|  n2d 

– Convert input points to virtual set of balls from B:  

– point x  all balls  such that x    

 V processes virtual stream  through index protocol 

 For query y  X, P specifies point z  X, claiming z = NN(y,X) 

– Show ball(z,0)   via Index Protocol 

– And ball(z, dist(y, z)-)   via Index Protocol 

 Protocol allows correct demonstration of nearest neighbour 

 Drawback: blow-up of input size costs V a lot! 



Practical Proof Protocol 

 Exploit structure of the metric space containing the points 

– Let (,x) be the function that reports 1 iff x is in ball  

– Goal: query the vector v[] = x in input (,x) 

– (,x) has a simple circuit for common metrics (Hamming, L1, L2…) 

– “Arithmetize” the formula to compute distances 

 Transform formula  to polynomial ’ via 

 G1  G2  G’1 G’2 and    G1  G2  1-(1-G’1)(1-G’2) 

 Low-degree extension of v: v’(B1… B2d log n) = x ’(B1 … B2d log n, x) 

– Can then apply Index protocol to v’ – v never materialized by P or V 

 Final costs of the protocol: 

– Verifier can process each data point in time poly(d,log n) 

– Communication cost and verifier space both poly(d,log m,log n) bits 

 



General Computations 

 Want to be able to solve more general computations 

 Framework: “Interactive Proofs for Muggles”, STOC’08 
Goldwasser, Kalai, Rothblum [GKR08] 

 Idea: computations modeled by arithmetic circuits 

– Arranged into layers of addition and multiplication gates 

 (Super)Round i: Prover claims value of LDE of layer i at ri 
Run multiround IP to reduce to a claim about layer i-1 at ri-1 

 Start with claimed output, end with LDE of input 

– Verifier can check against own calculated LDE 

– V only needs LDE + compact circuit description 



Primitive: Sum Check Protocol 

Hold prover to a claim about a (low-degree) function of the input 

Index data using {0,1}b in b = log N dimensional space 

 Verifier picks one (r1 … rb)  Fb, and evaluates fk(r1, r2, … rb) 

 Round 1: Prover sends g1(x1)=x2…xb
 fk(x1, x2…xb), V sends r1 

 Round i: Prover sends gi(xi) = xi+1…xb
fk(r1, r2…ri-1, xi, xi+1…xb) 

  Verifier checks gi-1(ri-1) = gi(0) + gi(1), sends ri 

 Round d:  Prover sends gb(xb) = fk(r1, … rd-1, xb) 
  Verifier checks gb(rb) =  fk(r1, r2, … rb) = the LDE 
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Putting GKR08 into practice 

 Verifier needs LDEs of “wiring polynomials” of the circuit 

– E.g. add(a, b, c) = 1 iff gate a at layer i has inputs b, c from layer i-1 

– Looks costly to evaluate directly, need to sum LDE over n3 values? 

– Use the multilinear extension of the add() and mult() polynomials 

– Each gate contributes one term to the sum, so linear in circuit size 

– Going layer to layer keeps degree low: ensures probability holds  

 Linear in circuit size is still slow – same as evaluating the circuit! 

– Take advantage of regularity in common wiring patterns 

– E.g. binary tree: compute contribution of all gates at once 

– Also holds for circuits for FFT, Matrix multiplication etc. 



Engineering GKR08 

 Include some “shortcut” gates in addition to add, mult 

– Wide-sum ⊕ : add up a large number of inputs 

 Only needs a single sum-check protocol 

– Exponentiation: raise to a constant power (x8, x16) 

 More efficient than repeated self-multiplication 

 Choose the right field size for computations 

– Work modulo a large Mersenne prime allows efficient arithmetic 



Experimental Results 

 (Relatively) efficient results for frequency moments (F2, F0), 
pattern matching with wildcards (PMwW) 

Problem Gates Size (gates) P time V time Rounds Comm  

F2 +, × 0.4M 8.5 s .01 s 986 11.5 KB 

F2 +, ×, ⊕ 0.2M 6.5 s .01 s 118 2.5 KB 

F0 +, × 16M 552.6 s .01 s 3730 87.4 KB 

F0 +, ×, x8, ⊕ 8.2M 432.6 s .01 s 1310 51.0 KB 

F0 +, ×, x16, ⊕ 6.2M 441.2 s .01 s 1024 56.8 KB 

PMwW +, ×, x8, ⊕ 9.6M 482.2 s .01 s 1513 56.1 KB 



Concluding Remarks 

 These protocols are truly practical 

– No, really, they are 

 Also provide insight into the theory of 
Arthur-Merlin communication games 

 

 Many open problems around this area 

– Extend to other data mining/machine learning problems 

– Prove lower bounds: some problems are hard 

– Evaluations on real data, optimization of implementations 

– Variant models: power of two provers… 



Connections 

 Full papers and connection to computational complexity 

– “Verifiable Stream Computation and Arthur–Merlin 
Communication”, Computational Complexity Conference 2015 

– “Practical Verified Computation with Streaming Interactive Proofs”, 
Innovations in Theoretical Computer Science 2012  

 Streaming Computation: what can be computed in one pass? 

– Typical focus on statistical security (no crypto assumptions) 

 Fully Homomorphic Encryption: crypto security allows repetition 

– Make use of circuit garbling to provide secrecy as well as integrity 

 Argument Systems (ginger/pepper/zaatar/pinnochio) 

– Need hefty preprocessing of computation 

 Other directions: multiple provers, ZKP, public verifiability 



Related Directions 

 Prover’s work is data parallel: can take use of GPU for 
acceleration [Thaler et al. HotCloud 2012] 

 Further tricks shave log factors off prover’s effort  
[Thaler, Crypto 2013] 

 Reduce dependency on domain size when data is sparse  
[Chakrabarti et al., 2013] 

 Three party model (data owner, server, clients)  
[Cormode et al., SIGMOD 2013] 

Streaming Verification of Outsourced Computation 


