

Intro to Sketches

� “Sketch” data structures are compact, randomized summaries

� Term coined by Broder in 1997

– Exact interpretation varies

� Common sketch properties:

– Approximate a holistic function– Approximate a holistic function

– Sublinear in size of the input

– Linear transform of input

– Can easily merge sketches

Sketches2

Compact summary
Limited independence

Linear transform

Sketch Types

� (Linear) Fingerprints for equality tests (~1981)

– Gives updatable randomized equality tests in constant space

� Bloom filters for set membership queries (1970)

– Can be made linear transforms of the input

� Min-wise hashes for (Jaccard) similarity and sampling (~1997)� Min-wise hashes for (Jaccard) similarity and sampling (~1997)

– Not linear, but mergeable / distributable

� Counting sketches summarize distributions (1996, 99, 02, 03)

– Count sketch, AMS, Count-min etc.

� Count-Distinct sketches (1983, 2001, 2002)

– Flajolet-Martin, Gibbons-Tirthapura, BJKST etc.

Sketches3

Sketches in the Field

� Sketches have been widely used in many applications

� Why are they successful?

– Often simple to implement

– Solve foundational problems well

– Can seem magical on first encounter– Can seem magical on first encounter

� Why aren’t they more successful?

– Primarily: not yet fully mainstream

� What can we do to promote their success?

Sketches4

Count-Min Sketch

� Simple sketch idea, can be used within many different tasks

� Model input data as a vector x of dimension m

� Creates a small summary as an array of w × d in size

� Use d hash function to map vector entries to [1..w]

� (Implicit) linear transform of input vector, so flexible

Sketches5

� (Implicit) linear transform of input vector, so flexible

w

d
Array:
CM[i,j]

Count-Min Sketch Structure

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d=
log 1/δ

Sketches6

� Each entry in vector x is mapped to one bucket per row.

� Merge two sketches by entry-wise summation

� Estimate x[j] by taking mink CM[k,hk(j)]

– Guarantees error less than εF1 in size O(1/ε log 1/δ) (Markov ineq)

– Probability of more error is less than 1-δ

+c

w = 2/ε

[C, Muthukrishnan ’04]

Count-Min for “Heavy Hitters”

� After sequence of items, can estimate fi for any i (up to εN)

� Heavy Hitters are all those i s.t. fi > φ N

� Slow way: test every i after creating sketch

� Faster way: test every i after it is seen, and keep largest fi’s

� Alternate way:

Sketches7

� Alternate way:

– keep a binary tree over the domain of input items, where each

node corresponds to a subset

– keep sketches of all nodes at same level

– descend tree to find large frequencies, discarding branches with

low frequency

F0 Sketch

� F0 is the number of distinct items in a multiset

– a fundamental quantity with many applications

� [BJKST02] Pick random hash over items, h: [m] � [m3]

m30m3 vt

Sketches8

� For each item i, compute h(i), and track the t distinct items

achieving the smallest values of h(i)

– Note: whenever i occurs, h(i) is same

– Let vt = t’th smallest value of h(i) seen.

� If F0 < t, give exact answer, else estimate F’0 = tm3/vt

– vt/m3 ≈ fraction of hash domain occupied by t smallest

– Analysis shows relative error (1 ± 1/√t) via Chebyshev bound

mvt

F0 Sketch Properties

� Space cost for 1 ± ε error:

– Store t=1/ε2 hash values, so O(1/ε2 log m) bits

– Can improve to O(1/ε2 + log m) with additional tricks

Sketches9

� Time cost:

– Hash i, update vt and list of t smallest if necessary

– Total time O(log 1/ε + log m) worst case

� Generalization [Gibbons-Tirthapura 01, Beyer-HRSG09]:

– Store t original items with their hash values (“distinct sample”)

– Estimate number of distinct items satisfying some predicate

– Other extensions: can allow (multiset) deletions

Application: Compressed Sensing

� “Compressed Sensing” has been rocking the EE world since 2004

linear
measurements

sketch recovery

– Design a compact measurement matrix M

– Given product (Mx), recover a good approximation of vector x

– Optimize: rows of M, density of M, recovery time, error prob

� Sketch techniques yield compressed sensing techniques

– Very sparse binary M, very fast decoding, but weaker error prob

� Has launched a line of research on sparse recovery

– See Gilbert-Indyk survey, wiki

Sketches10

Application: Stream Data Analysis

� Many “big data” applications generate large data streams

– Network traffic analysis, web log analysis

� Sketches allow complex reports on large streaming data

– In GS-tool (AT&T), CMON (Sprint) for telecom/network data

– In Sawzall (Google), the only permitted tool for any log analysis

� E.g. track popular queries, number of distinct destinations

Sketches11

Application: Sensor Networks

� Sensor networks distribute many small, weak sensors � Sensor networks distribute many small, weak sensors

– (Mergeable) sketches fit in here exactly

� Problem: no one actually does anything like this [Welsh 10]

– Most sensor deployments have few nodes, careful placement

– Attempt to capture all data, no in-network processing

� Hundreds of papers, but algorithms not in this field (yet)

Sketches12

Other Emerging Applications

� Machine learning over huge numbers of features

� Data mining: scalable anomaly/outlier detection

� Database query planning

� Password quality checking [HSM 10]

� Large linear algebra computations� Large linear algebra computations

� Cluster computations (MapReduce)

� Distributed Continuous Monitoring

� Privacy preserving computations

� … [Your application here?]

Sketches13

More

speculative

Sketch Issues

Strengths

� Easy to code up and use

– Easier than exact algs

� Small — cache-friendly

Weaknesses

� (Still) resistance to random,

approx algs

– Less so for Bloom filter, hashes

� Memory/disk is cheapSmall — cache-friendly

– So can be very fast

� Open source implementations

– (maybe barebones, rigid)

� Easily teachable

– As intro to probabilistic analysis

� Highly parallel

– Unless data is “too Big To File”

� Not yet in standard libraries

� Not yet in ugrad curricula/texts

– “this CM sketch sounds like the bomb!

(although I have not heard of it before)”

� Looking for killer parallel apps

Sketches
14

Open Problems

� More sketches for applications

� More applications for sketches

� More outreach/PR for sketches

� More info:

– Wiki: sites.google.com/site/countminsketch/

– “Sketch Techniques for Approximate Query Processing”
www.eecs.harvard.edu/~michaelm/CS222/sketches.pdf

Sketches15

