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Big Data

m “Big” data arises in many forms:
— Physical Measurements: from science (physics, astronomy)
— Medical data: genetic sequences, detailed time series
— Activity data: GPS location, social network activity
— Business data: customer behavior tracking at fine detail
@ Common themes:
— Datais large, and growing
— There are important patterns and trends in the data
— We don’t fully know how to find them
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Making sense of Big Data

m Want to be able to interrogate data in different use-cases:
— Routine Reporting: standard set of queries to run
— Analysis: ad hoc querying to answer ‘data science’ questions
— Monitoring: identify when current behavior differs from old
— Mining: extract new knowledge and patterns from data

m In all cases, need to answer certain basic questions quickly:
— Describe the distribution of particular attributes in the data
— How many (distinct) X were seen?
— How many X <Y were seen?
— Give some representative examples of items in the data

Small Summaries for Big Data
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Data Models

m We model data as a collection of simple tuples
m Problems hard due to scale and dimension of input
m Arrivals only model:

_ . (x, 3), (v, 2), (x, 2) encodes X OQOOO

the arrival of 3 copies of item x, y . .
2 copies of y, then 2 copies of x.

— Could represent eg. packets on a network; power usage
m Arrivals and departures:
_ (%, 3), (v,2), (x, -2) encodes x Q00
final state of (x, 1), (y, 2). Yy ..

— Can represent fluctuating quantities, or measure differences
between two distributions
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F_ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Frequency Distributions

m Given set of items, let f. be the number of occurrences of item i

m Many natural questions on f, values:
— Find those i’s with large f, values (heavy hitters)
— Find the number of non-zero f, values (count distinct)
— Compute F, = 2. (f.)*—the k’th Frequency Moment
— Compute H=2. (f/F,) log (F,/f) — the (empirical) entropy
Alon, Matias, Szegedy in STOC 1996
— Awarded Godel prize in 2005
— Set the pattern for many streaming algorithms to follow
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Concentration Bounds

m Will provide randomized algorithms for these problems
m Each algorithm gives a (randomized) estimate of the answer
m Give confidence bounds on the final estimate X

— Use probabilistic concentration bounds on random variables

m A concentration bound is typically of the form
Pr[ [ X—x| >ey]<d
— At most probability 0 of being more than gy away from x

Probability
distribution

Tail probability

/

u
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Markov Inequality

m Take any probability distribution X s.t. Pr[X<0] =0

m Consider the event X > k for some constant k>0

m Forany draw of X, kI(X > k) <X
— Either0<X<k,sol(X>k)=0
— OrX=k, lhs=k

m Take expectations of both sides: k Pr[ X > k] < E[X]

m Markov inequality: Pr[ X > k ] < E[X]/k
— Prob of random variable exceeding k times its expectation < 1/k

IX| k

— Relatively weak in this form, but still useful
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Sketch Structures

m Sketch is a class of summary that is a linear transform of input
— Sketch(x) = Sx for some matrix S

— Hence, Sketch(ax + By) = o Sketch(x) + B Sketch(y)
— Trivial to update and merge

m Often describe S in terms of hash functions

— If hash functions are simple, sketch is fast

m Aim for limited independence hash functions h: [n] > [m]
— If Pr,_4[ h(iy)=j; A h(i,)=j, A ... h(i,)=], ] = m¥,
then H is k-wise independent family (“h is k-wise independent”)
— k-wise independent hash functions take time, space O(k)
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F_ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Count-Min Sketch

Simple idea relies primarily on Markov inequality
Model input data as a vector x of dimension U

Creates a small summary as an array of w x d in size
Use d hash function to map vector entries to [1..w]

Works on arrivals only and arrivals & departures streams

W

Array:
CMI[i.] |
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Count-Min Sketch Structure

J,+C

m Each entry in vector x is mapped to one bucket per row.

/'|;C
] -
+C
§ | .
\:‘t
T
w = 2/¢

m Merge two sketches by entry-wise summation
m Estimate x[j] by taking min, CM[k,h,(j)]

— Guarantees error less than €F, in size O(1/¢ log 1/0)
— Probability of more error is less than 1-0

12
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Approximation of Point Queries

Approximate point query X'[j] = min, CM[k,h,(j)]
m Analysis: In k'th row, CM[k,h,(j)] = x[j] + X, ,
= Xi;= Zi x[i] I(h,(i) = hy(j))

- E[Xk,j] = Ziij X[i]*Pr[h,(i)=h(j)]
< Prlh(i)=h,(j)] * Z; x[i]
= ¢ F,/2 — requires only pairwise independence of h

- Pr[X, ;= eF;] = Pr[ X ;= 2E[X, ;] ] £ 1/2 by Markov inequality
m So, Prx'[j] = x[j] + eFy] = Pr[V k. X, ;> eF,] < 1/2/°81/6=§

m Final result: with certainty x[j] < x’[j] and
with probability at least 1-9, x'[j] < x[j] + €F,
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Applications of Count-Min to Heavy Hitters

Count-Min sketch lets us estimate f. for any i (up to €F,)
asks to find i such that f.is large (> ¢ F,)
Slow way: test every i after creating sketch

Alternate way:
— Keep binary tree over input domain: each node is a subset
— Keep sketches of all nodes at same level
— Descend tree to find large frequencies, discard ‘light” branches
— Same structure estimates arbitrary range sums

m A first step towards compressed sensing style results...
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Application to Large Scale Machine Learning

®m In machine learning, often have very large feature space
— Many objects, each with huge, sparse feature vectors
— Slow and costly to work in the full feature space

m ”: work with a sketch of the features
— Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]
m Similar analysis explains why:

— Essentially, not too much noise on the important features

=
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F__ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Chebyshev Inequality

17

Markov inequality is often quite weak
But Markov inequality holds for any random variable
Can apply to a random variable that is a function of X
SetY = (X — E[X])?
By Markov, Pr[ Y > kE[Y] ] < 1/k
- E[Y] = E[(X-E[X])?]= Var[X]
Hence, Pr[ | X —E[X]| > V(k Var[X]) ] < 1/k
Chebyshev inequality: Pr[ | X — E[X]| > k ] < Var[X]/k?
— If Var[X] < &2 E[X]?, then Pr[|X = E[X]]| > € E[X] ] = O(1)
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F, estimation

m AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
— Allows estimation of F, (second frequency moment)

— Used at the heart of many streaming and non-streaming
applications: achieves dimensionality reduction

m Here, describe AMS sketch by generalizing CM sketch.
m Uses extra hash functions g;...8,,, 1/5 {1...U}2 {+1,-1}

— (Low independence) Rademacher variables
m Now, given update (j,+c), set CM[k,h,(j)] += c*g,(j)

linear
projection

AMS sketch
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F, analysis

j,+C —— +§<92G)
\st)
\@940)

W = 4/¢?
Estimate F, = median, 2. CM[k,i]?
Each row’s result is 2, g(i)2x[i]? + 2y i-n(p 2 8(1) 8() x[i] x[j]
But g(i)2=-12=+12=1, and 2 x[i]* = F,
g(i)g(j) has 1/2 chance of +1 or —1 : expectationis O ...
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F, Variance

m Expectation of row estimate R, = 2.. CM[k,i]? is exactly F,
m Variance of row k, Var[R,], is an expectation:

- Var[Rk] = E[ (Zbuckets b (C|\/I[klb])2 - F2)2]

— Good exercise in algebra: expand this sum and simplify

— Many terms are zero in expectation because of terms like
g(a)g(b)e(c)g(d) (degree at most 4)

— Requires that hash function g is four-wise independent: it
behaves uniformly over subsets of size four or smaller

m Such hash functions are easy to construct
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F, Variance

m Terms with odd powers of g(a) are zero in expectation

- g(a)g(b)g*(c), g(a)g(b)g(c)g(d), g(a)g*(b)
B Leaves
Var[R,] < 2., g*(i) x[i]*
+2 2., 8%(i) g2() x[i]* x[j]?
+4 Zh(i):h i) g2(i) g2(j) x[i]> x[j]°
(TR 32X X(G12)
<F,?/w
m Row variance can finally be bounded by F,%/w
— Chebyshev for w=4/¢? gives probability % of failure:
Pr[ |[R,—F,] > g2 F, 1<%
— How to amplify this to small 6 probability of failure?
— Rescaling w has cost linear in 1/0
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Tail Inequalities for Sums

m We achieve stronger bounds on tail probabilities for the sum of
independent Bernoulli trials via the Chernoff Bound:

22

Let X,, ..., X, be independent Bernoulli trials s.t. Pr[X.=1] = p
(Pr[X.=0] = 1-p).

Let X=2>._,™ X, ,and u = mp be the expectation of X.

Pr[ X > (1+€)u]

= Prexp(tX) > exp(t(1+€)u)] < E[exp(tX)]/exp(t(1+e)p)

E[exp(tX)] = I1; E[exp(tX)] = I ]; (1-p + pe') <11, exp(p (e'-1))

= exp(u(e*-1))

Pr[ X > (1+&)u] < exp(u(et—1) - ut(1+e)) = exp(u(-et + t?/2 +t3/6 + ...)

Balance: choose t=¢g/2 < exp(-p €2/2)

<exp(u(t’/2 - et))
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Applying Chernoff Bound

m Each row gives an estimate that is within € relative error with
probability p’ > %

m Take d repetitions and find the median. Why the median?

00000000 O®

— Because bad estimates are either too small or too large
— Good estimates form a contiguous group “in the middle”
— At least d/2 estimates must be bad for median to be bad
m Apply Chernoff bound to d independent estimates, p=1/4
— Pr[ More than d/2 bad estimates ] < 2exp(-d/8)
— So we set d = ®(In 1/9) to give 0 probability of failure

m Same outline used many times in summary construction
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Applications and Extensions

m F, guarantee: estimate ||x||, from sketch with error ¢ |[x||,

— Since [Ix + y[I,2 = [Ix[l,2 + lyll, + 2x - y
Can estimate (x - y) with error x|, |lyll,

— Ify= e obtain (x - &;) = x; with error € [[x]|, :
L, guarantee (”Count Sketch”) vs L, guarantee (Count-Min)

m Can view the sketch as a low-independence realization of the
Johnson-Lindendestraus lemma

— Best current JL methods have the same structure
— JLis stronger: embeds directly into Euclidean space

— JLis also weaker: requires O(1/g)-wise hashing, O(log 1/3)
independence [Kane, Nelson 12]
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Sketches and Frequency Moments

m Frequency Moments and Sketches

m Count-Min sketch for F__ and frequent items
m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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F, Estimation

m F,isthe number of distinct items in the stream

— a fundamental quantity with many applications

m Early algorithms by Flajolet and Martin [1983] gave nice
hashing-based solution

— analysis assumed fully independent hash functions

m Will describe a generalized version of the FM algorithm due to
Bar-Yossef et. al with only pairwise indendence

— Known as the “k-Minimum values (KMV)” algorithm
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F, Algorithm

B Let m be the domain of stream elements
— Each item in datais from [1...m]

m Pick a random (pairwise) hash function h: [m] — [m?]
— With probability at least 1-1/m, no collisions under h

00 ® o ® O

Om3 Vt m3

m For each stream item i, compute h(i), and track the t distinct
items achieving the smallest values of h(i)

— Note: if same i is seen many times, h(i) is same
— Let v, = t'th smallest (distinct) value of h(i) seen

m If Fy<t, give exact answer, else estimate F', = tm3/v,
— v,/m3 = fraction of hash domain occupied by t smallest
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Analysis of F, algorithm

m Suppose F'y =tm3/v, > (1+¢) F, [estimate is too high]

Ool'oo e © 0 ®69

Oms3 Ivt tm3/(1+e)F, m?3

m So forinput=setS e 2IM we have
— |{s eS| h(s) <tm3/(1+g)F, }| >t
— Because € < 1, we have tm3/(1+¢)F, < (1-¢/2)tm3/F,
— Pr[ h(s) < (1-&/2)tm3/F,] = 1/m3 * (1-¢/2)tm3/F, = (1-&/2)t/F,

— (this analysis outline hides some rounding issues)
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Chebyshev Analysis

m Let Y be number of items hashing to under tm3/(1+¢)F,
— E[Y] =F, * Pr[ h(s) < tm3/(1+¢)F ] = (1-&/2)t
— For each item i, variance of the event = p(1-p) < p
— Var[Y] = 2, _¢ Var[ h(s) < tm3/(1+¢)F,] < (1-&/2)t
m We sum variances because of pairwise independence

m Now apply Chebyshev inequality:

— Pr[Y>t] <Pr[|Y—E[Y]| > et/2]
< 4Var[Y]/et2
< 4t/(e%1?)

— Set t=20/¢2 to make this Prob < 1/5
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Completing the analysis

m We have shown
Pr[F'y>(1+g) Fy]1 < 1/5
m Canshow Pr[ F, < (1-¢) F,] < 1/5 similarly
— too few items hash below a certain value
m SoPr[(1-¢) F,<F,<(1+g)F,] >3/5 [Good estimate]

m Amplify this probability: repeat O(log 1/0) times in parallel
with different choices of hash function h

— Take the median of the estimates, analysis as before
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F, Issues

B Space cost:
— Store t hash values, so O(1/¢? log m) bits
— Can improve to O(1/¢? + log m) with additional tricks

O o ®e o e ©C 0 @0

B Time cost:
— Find if hash value h(i) <,
— Update v, and list of t smallest if h(i) not already present
— Total time O(log 1/¢ + log m) worst case
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Count-Distinct

m Engineering the best constants: Hyperloglog algorithm
— Hash each item to one of 1/¢? buckets (like Count-Min)
— In each bucket, track the function max LIog(h(x))J
m Can view as a coarsened version of KMV
m Space efficient: need log log m = 6 bits per bucket
m Can estimate intersections between sketches
— Make use of identity |AnB| = |A| + [B]| - |A U B|
— Error scales with ¢ V(|A||B]), so poor for small intersections
— Higher order intersections via inclusion-exclusion principle
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Bloom Filters

m Bloom filters compactly encode set membership
— k hash functions map items to bit vector k times
— Set all k entries to 1 to indicate item is present
— Can lookup items, store set of size nin O(n) bits

e

m Duplicate insertions do not change Bloom filters
m Can merge by OR-ing vectors (of same size)
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Bloom Filter analysis

m How to set k (number of hash functions), m (size of filter)?

m False positive: when all k locations for an item are set

— If p fraction of cells are empty, false positive probability is (1-p)X
m Consider probability of any cell being empty:

— Fornitems, Pr[celljisempty ] =(1-1/m) = p = exp(-kn/m)

— False positive prob = (1 - p)¢=exp(k In(1 - p))

= exp(-m/n In(p) In(1-p))

m For fixed n, m, by symmetry minimized at p =%

— Half cells are occupied, half are empty

— Give k= (m/n)In 2, false positive rate is ¥k

— Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP
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Bloom Filters Applications

m Bloom Filters widely used in “big data” applications
— Many problems require storing a large set of items
m Can generalize to allow deletions
— Swap bits for counters: increment on insert, decrement on delete
— If representing sets, small counters suffice: 4 bits per counter
— If representing multisets, obtain sketches (next lecture)
m Bloom Filters are an active research area
— Several papers on topic in every networking conference...

1 1 1
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Frequency Moments

Intro to frequency distributions and Concentration bounds
Count-Min sketch for F_ and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments
— Combined frequency moments
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Higher Frequency Moments

m F fork>2. Use a sampling trick [Alon et al 96]:
— Uniformly pick an item from the stream length 1...n
— Set r = how many times that item appears subsequently
— Set estimate F’, = n(rk— (r-1)%)

m E[F ]=1/n*n*[fX- (f-1)%+ (f-1)% - (f-2)% + ... + 1k-0K]+...
=fk+fk+..=F
m Var[F ]<1/n*n2*[(f *(f-1)%)% + ...]
— Use various bounds to bound the variance by k m*-V/k F,2
— Repeat k mIk times in parallel to reduce variance

m Total space needed is O(k m¥1/%) machine words

— Not a sketch: does not distribute easily. See part 2!

37 Sketch Data Structures and Concentration Bounds



I
Combined Frequency Moments

m Let GJi,j] =1if (i,j) appears in input.

E.g. graph edge from i toj. Total of m distinct edges
m letd =X_,"G[ij] (aka degree of node i)
m Find aggregates of d.’s:

— Estimate heavy d.’s (people who talk to many)

— Estimate frequency moments:
number of distinct d, values, sum of squares

— Range sums of d’s (subnet traffic)
m Approach: nest one sketch inside another, e.g. HLL inside CM

— Requires new analysis to track overall error

38 Sketch Data Structures and Concentration Bounds



I
Range Efficiency

m Sometimes input is specified as a collection of ranges [a,b]
— [a,b] means insert all items (a, a+1, a+2 ... b)
— Trivial solution: just insert each item in the range
m Range efficient F, [Pavan, Tirthapura 09]
— Start with an alg for F, based on pairwise hash functions
— Key problem: track which items hash into a certain range
— Dives into hash fns to divide and conquer for ranges

m Range efficient F, [Calderbank et al. 05, Rusu,Dobra 06]
— Start with sketches for F, which sum hash values

— Design new hash functions so that range sums are fast
m Rectangle Efficient F [Tirthapura, Woodruff 12]
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Current Directions in Streaming and Sketching

m Sparse representations of high dimensional objects
— Compressed sensing, sparse fast fourier transform
m Numerical linear algebra for (large) matrices
— k-rank approximation, linear regression, PCA, SVD, eigenvalues
m Computations on large graphs
— Sparsification, clustering, matching
m Geometric (big) data
— Coresets, facility location, optimization, machine learning
m Use of summaries in distributed computation
— MapReduce, Continuous Distributed models
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