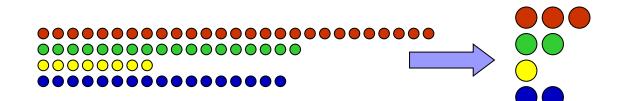
Sketch Data Structures and Concentration Bounds



Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

Big Data

- "Big" data arises in many forms:
 - Physical Measurements: from science (physics, astronomy)
 - Medical data: genetic sequences, detailed time series
 - Activity data: GPS location, social network activity
 - Business data: customer behavior tracking at fine detail
- Common themes:
 - Data is large, and growing
 - There are important patterns and trends in the data
 - We don't fully know how to find them

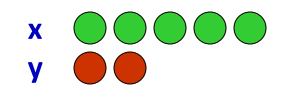
Making sense of Big Data

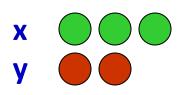
Want to be able to interrogate data in different use-cases:

- Routine Reporting: standard set of queries to run
- Analysis: ad hoc querying to answer 'data science' questions
- Monitoring: identify when current behavior differs from old
- Mining: extract new knowledge and patterns from data
- In all cases, need to answer certain basic questions quickly:
 - Describe the distribution of particular attributes in the data
 - How many (distinct) X were seen?
 - How many X < Y were seen?</p>
 - Give some representative examples of items in the data

Data Models

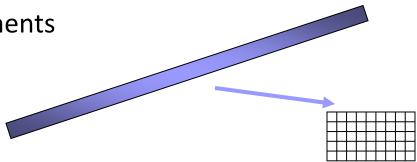
- We model data as a collection of simple tuples
- Problems hard due to scale and dimension of input
- Arrivals only model:
 - Example: (x, 3), (y, 2), (x, 2) encodes the arrival of 3 copies of item x, 2 copies of y, then 2 copies of x.
 - Could represent eg. packets on a network; power usage
- Arrivals and departures:
 - Example: (x, 3), (y,2), (x, -2) encodes
 final state of (x, 1), (y, 2).
 - Can represent fluctuating quantities, or measure differences between two distributions





Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

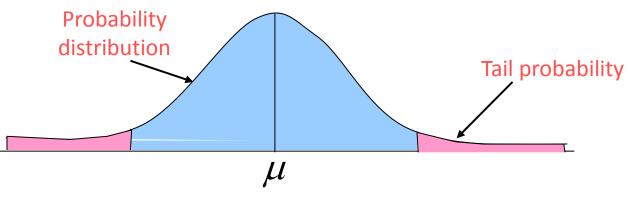


Frequency Distributions

- Given set of items, let f_i be the number of occurrences of item i
- Many natural questions on f_i values:
 - Find those i's with large f_i values (heavy hitters)
 - Find the number of non-zero f_i values (count distinct)
 - Compute $F_k = \sum_i (f_i)^k$ the k'th Frequency Moment
 - Compute $H = \sum_{i} (f_i/F_1) \log (F_1/f_i)$ the (empirical) entropy
- "Space Complexity of the Frequency Moments" Alon, Matias, Szegedy in STOC 1996
 - Awarded Gödel prize in 2005
 - Set the pattern for many streaming algorithms to follow

Concentration Bounds

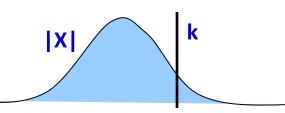
- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer
- Give confidence bounds on the final estimate X
 - Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form $\Pr[|X - x| > \varepsilon y] < \delta$
 - At most probability δ of being more than ϵy away from x



Markov Inequality

- Take any probability distribution X s.t. Pr[X < 0] = 0</p>
- Consider the event $X \ge k$ for some constant k > 0
- For any draw of X, $kI(X \ge k) \le X$
 - Either $0 \le X < k$, so $I(X \ge k) = 0$
 - Or $X \ge k$, lhs = k

- Markov inequality: $Pr[X \ge k] \le E[X]/k$
 - Prob of random variable exceeding k times its expectation < 1/k
 - Relatively weak in this form, but still useful



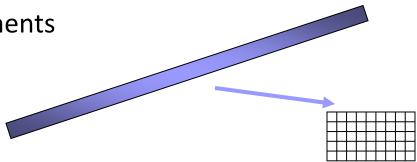
Sketch Structures

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - If hash functions are simple, sketch is fast
- Aim for limited independence hash functions h: $[n] \rightarrow [m]$
 - If $Pr_{h \in H}[h(i_1)=j_1 \land h(i_2)=j_2 \land ... h(i_k)=j_k] = m^{-k}$, then H is k-wise independent family ("h is k-wise independent")
 - k-wise independent hash functions take time, space O(k)

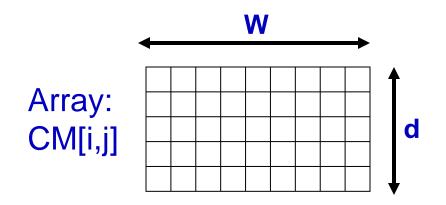
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

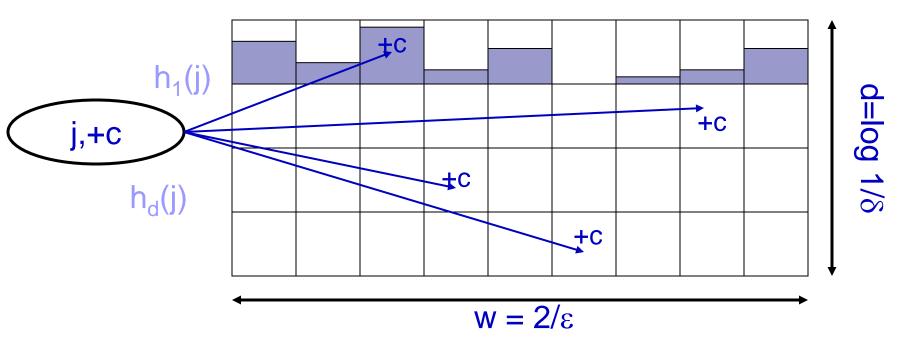


Count-Min Sketch

- Simple sketch idea relies primarily on Markov inequality
- Model input data as a vector x of dimension U
- Creates a small summary as an array of w × d in size
- Use d hash function to map vector entries to [1..w]
- Works on arrivals only and arrivals & departures streams



Count-Min Sketch Structure



- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than εF_1 in size O(1/ $\varepsilon \log 1/\delta$)
 - Probability of more error is less than 1- δ

Approximation of Point Queries

Approximate point query x'[j] = min_k CM[k,h_k(j)]

- Analysis: In k'th row, CM[k,h_k(j)] = x[j] + X_{k,j}
 - $X_{k,j} = \sum_i x[i] I(h_k(i) = h_k(j))$
 - $\begin{array}{ll} & \ \mathsf{E}[\mathsf{X}_{k,j}] & = \sum_{i \neq j} \, x[i]^* \mathsf{Pr}[\mathsf{h}_k(i) \! = \! \mathsf{h}_k(j)] \\ & \leq \mathsf{Pr}[\mathsf{h}_k(i) \! = \! \mathsf{h}_k(j)] \, * \, \Sigma_i \, x[i] \\ & = \epsilon \, \mathsf{F}_1/2 \mathsf{requires only pairwise independence of } \mathsf{h} \end{array}$

– $\Pr[X_{k,j} \ge \epsilon F_1] = \Pr[X_{k,j} \ge 2E[X_{k,j}]] \le 1/2$ by Markov inequality

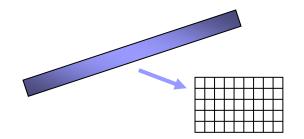
- So, $\Pr[x'[j] \ge x[j] + \varepsilon F_1] = \Pr[\forall k. X_{k,j} > \varepsilon F_1] \le 1/2^{\log 1/\delta} = \delta$
- Final result: with certainty x[j] ≤ x'[j] and with probability at least 1-δ, x'[j] < x[j] + εF₁

Applications of Count-Min to Heavy Hitters

- Count-Min sketch lets us estimate f_i for any i (up to εF_1)
- Heavy Hitters asks to find i such that f_i is large (> ϕF_1)
- Slow way: test every i after creating sketch
- Alternate way:
 - Keep binary tree over input domain: each node is a subset
 - Keep sketches of all nodes at same level
 - Descend tree to find large frequencies, discard 'light' branches
 - Same structure estimates arbitrary range sums
- A first step towards compressed sensing style results...

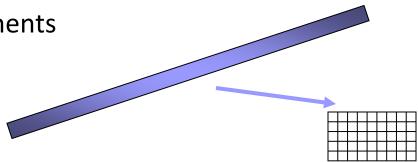
Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- "Hash kernels": work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg '09]
- Similar analysis explains *why*:
 - Essentially, not too much noise on the important features



Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments



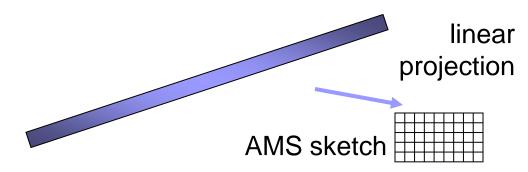
Chebyshev Inequality

- Markov inequality is often quite weak
- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set Y = (X E[X])²
- By Markov, Pr[Y > kE[Y]] < 1/k</p>
 - $E[Y] = E[(X-E[X])^2] = Var[X]$
- Hence, Pr[|X E[X]| > V(k Var[X])] < 1/k
- Chebyshev inequality: Pr[|X E[X]| > k] < Var[X]/k²
 - If $Var[X] \le \varepsilon^2 E[X]^2$, then $Pr[|X E[X]| > \varepsilon E[X]] = O(1)$

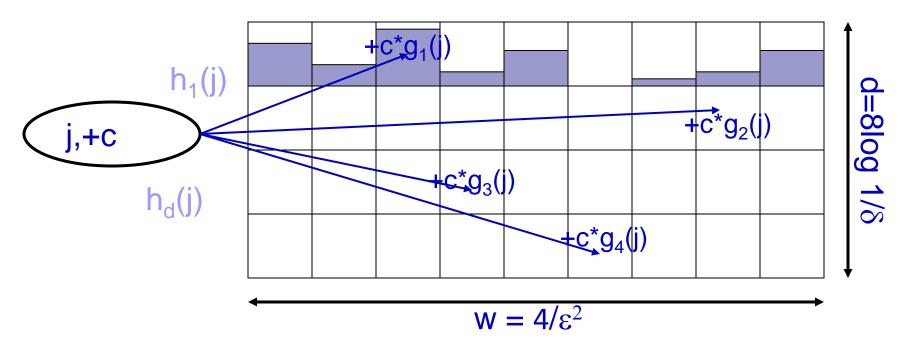
F₂ estimation

AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

- Allows estimation of F₂ (second frequency moment)
- Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
- Here, describe AMS sketch by generalizing CM sketch.
- Uses extra hash functions $g_1...g_{\log 1/\delta}$ {1...U} → {+1,-1}
 - (Low independence) Rademacher variables
- Now, given update (j,+c), set CM[k,h_k(j)] += c*g_k(j)



F₂ analysis



• Estimate F_2 = median_k $\sum_i CM[k,i]^2$

- Each row's result is $\sum_{i} g(i)^2 x[i]^2 + \sum_{h(i)=h(j)} 2 g(i) g(j) x[i] x[j]$
- But $g(i)^2 = -1^2 = +1^2 = 1$, and $\sum_i x[i]^2 = F_2$
- g(i)g(j) has 1/2 chance of +1 or -1 : expectation is 0 ...

F₂ Variance

- Expectation of row estimate $R_k = \sum_i CM[k,i]^2$ is exactly F_2
- Variance of row k, Var[R_k], is an expectation:
 - $Var[R_k] = E[(\sum_{buckets b} (CM[k,b])^2 F_2)^2]$
 - Good exercise in algebra: expand this sum and simplify
 - Many terms are zero in expectation because of terms like g(a)g(b)g(c)g(d) (degree at most 4)
 - Requires that hash function g is *four-wise independent*: it behaves uniformly over subsets of size four or smaller
 - Such hash functions are easy to construct

F₂ Variance

Terms with odd powers of g(a) are zero in expectation

 $- g(a)g(b)g^{2}(c), g(a)g(b)g(c)g(d), g(a)g^{3}(b)$

Leaves

$$\begin{split} \text{Var}[\mathsf{R}_k] &\leq \sum_i g^4(i) \; x[i]^4 \\ &+ 2 \sum_{j \neq i} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &+ 4 \sum_{h(i) = h(j)} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &- (x[i]^4 + \sum_{j \neq i} 2x[i]^2 \; x[j]^2) \\ &\leq F_2^2/w \end{split}$$

- Row variance can finally be bounded by F_2^2/w
 - Chebyshev for w=4/ ϵ^2 gives probability ¼ of failure: Pr[$|R_k - F_2| > \epsilon^2 F_2$] $\leq \frac{1}{4}$
 - How to amplify this to small δ probability of failure?
 - Rescaling w has cost linear in $1/\delta$

Tail Inequalities for Sums

- We achieve stronger bounds on tail probabilities for the sum of independent *Bernoulli trials* via the Chernoff Bound:
 - Let X₁, ..., X_m be independent Bernoulli trials s.t. Pr[X_i=1] = p (Pr[X_i=0] = 1-p).
 - Let $X = \sum_{i=1}^{m} X_i$, and $\mu = mp$ be the expectation of X.
 - $\Pr[X > (1+\epsilon)\mu] = \Pr[\exp(tX) > \exp(t(1+\epsilon)\mu)] \le E[\exp(tX)]/\exp(t(1+\epsilon)\mu)$
 - $E[exp(tX)] = \prod_i E[exp(tX_i)] = \prod_i (1-p + pe^t) \le \prod_i exp(p (e^t-1))$ $= exp(\mu(e^t 1))$
 - $\Pr[X > (1+\epsilon)\mu] \le \exp(\mu(e^t 1) \mu t(1+\epsilon)) = \exp(\mu(-\epsilon t + t^2/2 + t^3/6 + \dots)$
 - $\leq \exp(\mu(t^2/2 \epsilon t))$

- Balance: choose $t=\epsilon/2$

$$\leq \exp(-\mu \epsilon^2/2)$$

Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability p' > ³/₄
- Take d repetitions and find the median. Why the median?

- Because bad estimates are either too small or too large
- Good estimates form a contiguous group "in the middle"
- At least d/2 estimates must be bad for median to be bad
- Apply Chernoff bound to d independent estimates, p=1/4
 - Pr[More than d/2 bad estimates] < 2exp(-d/8)</p>
 - So we set $d = \Theta(\ln 1/\delta)$ to give δ probability of failure
- Same outline used many times in summary construction

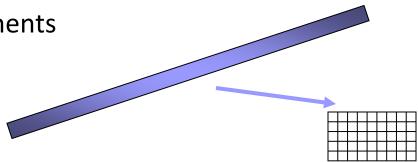
Applications and Extensions

F₂ guarantee: estimate $\|\mathbf{x}\|_2$ from sketch with error $\varepsilon \|\mathbf{x}\|_2$

- Since $||x + y||_2^2 = ||x||_2^2 + ||y||_2^2 + 2x \cdot y$ Can estimate $(x \cdot y)$ with error $\varepsilon ||x||_2 ||y||_2$
- If $y = e_j$, obtain $(x \cdot e_j) = x_j$ with error $\varepsilon ||x||_2$: L₂ guarantee ("Count Sketch") vs L₁ guarantee (Count-Min)
- Can view the sketch as a low-independence realization of the Johnson-Lindendestraus lemma
 - Best current JL methods have the same structure
 - JL is stronger: embeds directly into Euclidean space
 - JL is also weaker: requires $O(1/\epsilon)$ -wise hashing, $O(\log 1/\delta)$ independence [Kane, Nelson 12]

Sketches and Frequency Moments

- Frequency Moments and Sketches
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

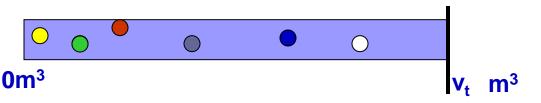


F₀ Estimation

- F₀ is the number of distinct items in the stream
 - a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
 - analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise indendence
 - Known as the "k-Minimum values (KMV)" algorithm

F₀ Algorithm

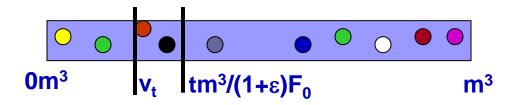
- Let m be the domain of stream elements
 - Each item in data is from [1...m]
- Pick a random (pairwise) hash function h: $[m] \rightarrow [m^3]$
 - With probability at least 1-1/m, no collisions under h



- For each stream item i, compute h(i), and track the t distinct items achieving the smallest values of h(i)
 - Note: if same i is seen many times, h(i) is same
 - Let v_t = t'th smallest (distinct) value of h(i) seen
- If $F_0 < t$, give exact answer, else estimate $F'_0 = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest

Analysis of F₀ algorithm

Suppose $F'_0 = tm^3/v_t > (1+\varepsilon) F_0$ [estimate is too high]



- So for input = set S ∈ 2^[m], we have
 - $|{s ∈ S | h(s) < tm³/(1+ε)F₀}| > t$
 - Because $\varepsilon < 1$, we have $tm^3/(1+\varepsilon)F_0 \le (1-\varepsilon/2)tm^3/F_0$
 - Pr[h(s) < $(1-\epsilon/2)tm^3/F_0$] $\approx 1/m^3 * (1-\epsilon/2)tm^3/F_0 = (1-\epsilon/2)t/F_0$
 - (this analysis outline hides some rounding issues)

Chebyshev Analysis

• Let Y be number of items hashing to under $tm^3/(1+\epsilon)F_0$

- $E[Y] = F_0 * Pr[h(s) < tm^3/(1+\epsilon)F_0] = (1-\epsilon/2)t$
- For each item i, variance of the event = p(1-p) < p</p>
- Var[Y] = $\sum_{s \in S} Var[h(s) < tm^3/(1+\epsilon)F_0] < (1-\epsilon/2)t$
 - We sum variances because of pairwise independence
- Now apply Chebyshev inequality:
 - $\begin{array}{ll} & \Pr[Y > t] \\ & \leq \Pr[|Y E[Y]| > \epsilon t/2] \\ & \leq 4 \operatorname{Var}[Y]/\epsilon^2 t^2 \\ & < 4 t/(\epsilon^2 t^2) \end{array}$

– Set $t=20/\epsilon^2$ to make this Prob $\leq 1/5$

Completing the analysis

We have shown Pr[F'₀ > (1+ε) F₀] < 1/5

- Can show $\Pr[F'_0 < (1-\varepsilon)F_0] < 1/5$ similarly
 - too few items hash below a certain value
- So $Pr[(1-\epsilon) F_0 \le F'_0 \le (1+\epsilon)F_0] > 3/5$ [Good estimate]
- Amplify this probability: repeat O(log 1/δ) times in parallel with different choices of hash function h
 - Take the median of the estimates, analysis as before

F₀ Issues

Space cost:

- Store t hash values, so $O(1/\epsilon^2 \log m)$ bits
- Can improve to $O(1/\epsilon^2 + \log m)$ with additional tricks

Time cost:

- Find if hash value $h(i) < v_t$
- Update v_t and list of t smallest if h(i) not already present
- Total time $O(\log 1/\epsilon + \log m)$ worst case

Count-Distinct

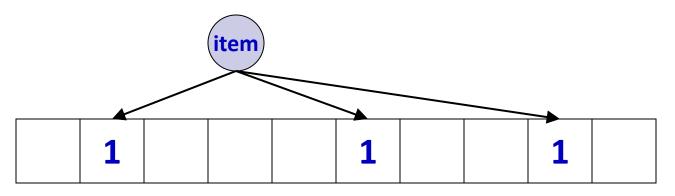
Engineering the best constants: Hyperloglog algorithm

- Hash each item to one of $1/\epsilon^2$ buckets (like Count-Min)
- In each bucket, track the function $\max \lfloor \log(h(x)) \rfloor$
 - Can view as a coarsened version of KMV
 - Space efficient: need log log m ≈ 6 bits per bucket
- Can estimate intersections between sketches
 - Make use of identity $|A \cap B| = |A| + |B| |A \cup B|$
 - Error scales with $\varepsilon \sqrt{(|A||B|)}$, so poor for small intersections
 - Higher order intersections via inclusion-exclusion principle

Bloom Filters

Bloom filters compactly encode set membership

- k hash functions map items to bit vector k times
- Set all k entries to 1 to indicate item is present
- Can lookup items, store set of size n in O(n) bits



- Duplicate insertions do not change Bloom filters
- Can merge by OR-ing vectors (of same size)

Bloom Filter analysis

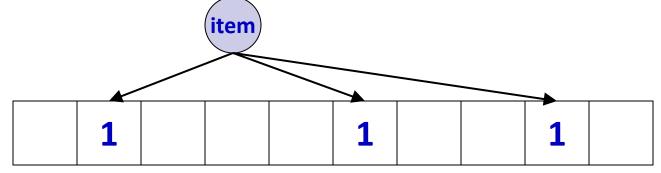
- How to set k (number of hash functions), m (size of filter)?
- False positive: when all k locations for an item are set
 - If ρ fraction of cells are empty, false positive probability is $(1-\rho)^k$
- Consider probability of any cell being empty:
 - For n items, Pr[cell j is empty] = $(1 1/m)^{kn} \approx \rho \approx exp(-kn/m)$
 - False positive prob = $(1 \rho)^k = \exp(k \ln(1 \rho))$

= exp(-m/n ln(ρ) ln(1- ρ))

- For fixed n, m, by symmetry minimized at $\rho = \frac{1}{2}$
 - Half cells are occupied, half are empty
 - Give $k = (m/n) \ln 2$, false positive rate is $\frac{1}{2}^k$
 - Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP</p>

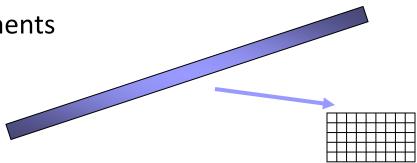
Bloom Filters Applications

- Bloom Filters widely used in "big data" applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...



Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments



Higher Frequency Moments

■ F_k for k>2. Use a sampling trick [Alon et al 96]:

- Uniformly pick an item from the stream length 1...n
- Set r = how many times that item appears subsequently
- Set estimate $F'_k = n(r^k (r-1)^k)$
- $E[F'_k] = 1/n^*n^*[f_1^k (f_1-1)^k + (f_1-1)^k (f_1-2)^k + ... + 1^k 0^k] + ... = f_1^k + f_2^k + ... = F_k$
- $Var[F'_k] \le 1/n^* n^{2*}[(f_1^k (f_1 1)^k)^2 + ...]$
 - Use various bounds to bound the variance by $k m^{1-1/k} F_k^2$
 - Repeat k m^{1-1/k} times in parallel to reduce variance
- Total space needed is O(k m^{1-1/k}) machine words
 - Not a sketch: does not distribute easily. See part 2!

Combined Frequency Moments

- Let G[i,j] = 1 if (i,j) appears in input.
 E.g. graph edge from i to j. Total of m distinct edges
- Let $d_i = \sum_{j=1}^{n} G[i,j]$ (aka degree of node i)
- Find aggregates of d's:
 - Estimate heavy d_i's (people who talk to many)
 - Estimate frequency moments: number of distinct d_i values, sum of squares
 - Range sums of d_i's (subnet traffic)
- Approach: nest one sketch inside another, e.g. HLL inside CM
 - Requires new analysis to track overall error

Range Efficiency

Sometimes input is specified as a collection of ranges [a,b]

- [a,b] means insert all items (a, a+1, a+2 ... b)
- Trivial solution: just insert each item in the range
- Range efficient F₀ [Pavan, Tirthapura 05]
 - Start with an alg for F_0 based on pairwise hash functions
 - Key problem: track which items hash into a certain range
 - Dives into hash fns to divide and conquer for ranges
- Range efficient F₂ [Calderbank et al. 05, Rusu, Dobra 06]
 - Start with sketches for F_2 which sum hash values
 - Design new hash functions so that range sums are fast
- Rectangle Efficient F₀ [Tirthapura, Woodruff 12]

Current Directions in Streaming and Sketching

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- Numerical linear algebra for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Computations on large graphs
 - Sparsification, clustering, matching
- Geometric (big) data
 - Coresets, facility location, optimization, machine learning
- Use of summaries in distributed computation
 - MapReduce, Continuous Distributed models