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Module Summary. This module introduces the student to the process of 

mathematical modeling. It shows how the process starts in the “real world” with a 

physical system and some observations or an experiment.  When  the  laws  of  

physics  that are thought to govern the behavior of the  system  are  translated  in  

mathematical terms, the result is what is called a mathematical model. The 

mathematical model is subsequently analyzed for its properties and used to generate 

predictions about the behavior of the system in a changing environment. These 

predictions are tested against observations, and if there is agreement between 

predictions and observations, the model is accepted; otherwise, the model is refined, 

for example by bringing in more details of the physics, and the process is repeated. 

Thus, mathematical modeling is an iterative process. 

 

To illustrate this iterative process, this module builds a series of zero-dimensional 

energy balance models for the Earth’s climate system. In a zero-dimensional energy 

balance model, the Earth’s climate system is described in terms of a single variable, 

namely the temperature of the Earth’s surface averaged over the entire globe. In 

general, this variable varies with time; its time evolution is governed by the 

amount of energy coming in from the Sun (in the form of ultraviolet radiation) 

and the amount of energy leaving the Earth (in the form of infrared radiation). 

The mathematical challenge is to find expressions for the incoming and outgoing 

energy that are consistent with the observed current state of the climate system on 

Earth, that corresponds to the average temperature on Earth of 16 degrees Celsius. 

 

Informal Description. This module introduces the student to the mathematical 

modeling process by showing how to build a zero-dimensional energy balance 

model for the Earth’s climate system. The process is an iterative one and generates 

various versions of the model. Successive versions include more physics to 

better match the observations. The emphasis in the module is on the process, 

rather than the models derived in the process, because the process is universal 

and independent of the complexity of the model. The process is illustrated in 

Figure 1. 
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Figure 1: The modeling cycle. 

 

 
The mathematical modeling process starts in the “real world” with a physical system 

and some observations or an experiment.  We assume that the behavior of the 

system is governed by the laws of nature—Newton’s law of motion, Fourier’s law 

of heat conduction, etc. When these laws are formulated in mathematical terms, 

we obtain what we call a “mathematical model”—a set of mathematical equations 

that describe the state of the physical system as it evolves in time. In the next step of 

the modeling process, we “analyze” the model—that is, we apply our mathematical 

knowledge to extract information from the model, to see whether we understand 

and can explain what we see in the real world. In the third step we use the model to 

make predictions about what we will see in additional experiments and observations. 

We then return to the real world to test these predictions by running the experiments 

or collecting more observations, and either accept the model if we find that the 

outcome matches our predictions, or refine the model if we find that improvements 

are needed. Typically, we go around this modeling cycle many times, building 

progressively better models, thus improving our understanding of the physical 

system and increasing our ability to make predictions about its behavior. 

In this module, the physical system of interest is the Earth’s climate system—a proto- 

typical “complex system” that has many components: the atmosphere, oceans, lakes 

and other bodies of water, snow and ice, land surface, all living things, and so 

on. The components interact and influence each other in ways that we don’t always 

understand, so it is difficult to see how the system as a whole evolves, let alone why 

it evolves the way it does. For some complex system it is possible to build a 

physical model and observe what happens if the environment changes. This is the 

case, for example, for a school of fish whose behavior we can study in an aquarium. 

It is also true for certain aspects of human behavior, which we can study in a 
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social network. But in climate science this is not possible; we have only one 

Earth, and we cannot perform a controlled real-life experiment. The best we can 

do if we want to gain insight into what might have happened to the Earth’s 

climate system in the past, or what might happen to it in the future, is to build 

mathematical models and “play” with them.  Mathematical models are the climate 

scientist’s only experimental tools. 

 

The modeling process—building and testing a series of imperfect models—is the 

most essential brick in the foundation of climate science and an indispensable tool 

to evaluate the arguments for or against climate change. Models are never perfect—

at best, they provide some understanding and some ability to test “what-if” scenarios. 

Especially in an area as complex as the Earth’s climate, we cannot and should not 

expect perfection.  Recognizing and identifying imperfection and uncertainty are key 

parts of all modeling and, especially, climate modeling. 

 

Mathematical models of the Earth’s climate system come in many flavors. They 

can be simple—simple enough that we can use them for back-of-the-envelope 

calculations, or they can be so complicated that we need a supercomputer to learn 

what we want to know. But whatever kind of models we use, we should always 

keep in mind that they are simplified representations of the real world, they are not 

the “real world,” and they are made for a purpose, namely to better understand 

what is driving our climate system. 

 

The present module looks at the simplest possible description of the Earth’s 

climate system. In the following models, the state of the climate system is 

characterized by a single variable—the temperature of the Earth’s surface, averaged 

over the entire globe (referred to as “zero-dimensional energy balance” models in 

physics). An energy balance equation is a formal statement of the fact that the 

temperature of the Earth increases if the Earth receives more energy from the Sun 

than it re-emits into space, and that it decreases if the opposite is the case. The 

module shows how to construct energy balance models by finding mathematical 

expressions for the incoming and outgoing energy. The models are tested against 

“real-world” data and improved in successive steps of the iterative modeling process 

to better match the available data. 

 

In this module, the focus is on the physics, but we emphasize that modeling 

the Earth’s climate system is fundamentally an interdisciplinary activity. 

Understanding the Earth’s climate requires knowledge, skills, and perspectives 

from multiple disciplines. For example, atmospheric chemistry explains why 

much of the incoming energy from the Sun (largely in the ultraviolet and visible 

regions of the spectrum) passes through the atmosphere and reaches the Earth’s 

surface, but much of the black-body radiation emitted by the Earth (largely in the 

infrared regions of the spectrum) is trapped by greenhouse gases like water vapor 

and carbon dioxide. Similarly, the life sciences help us understand the part played 

by the biosphere in the Earth’s cli-mate system—the effects of the biosphere on the 
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Earth’s albedo and the interactions between atmospheric chemistry and plant and 

animal life. 

 
 

Target Audience. This module is suitable Lab for undergraduate students in an 

introductory differential equation class. 

 
 

Prerequisites. Basic knowledge of the concept of derivatives and ordinary 

differential equations. 

 

Mathematical Fields. Ordinary differential equations. 

 

Applications Areas.   Geophysics and climate science. 

 
 

Goals and Objectives. 

 
• Teach the process of “mathematical modeling. 

• Show how a simple model like a single variable energy balance model can 

provide insight into aspects of climate dynamics.  
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1 Climate Model – Cycle #1 

 
We consider the Earth with its atmosphere, oceans, and all other components of 

the climate system as a homogeneous solid sphere, ignoring differences in the 

atmosphere’s composition (clouds!), differences among land and oceans, differences 

in topography (altitude), and many other things. 

 
 

1.1 Observation 

 
The climate system is powered by the Sun, which emits radiation in the 

ultraviolet (UV) regime (wavelength less than 0.4 µm). This energy reaches the 

Earth’s surface, where it is converted by physical, chemical, and biological 

processes to radiation in the infrared (IR) regime (wavelength greater than 5 µm). 

This IR radiation is then reemitted into space. If the Earth’s climate is in 

equilibrium (steady state), the average temperature of the Earth’s surface does not 

change, so the amount of energy received must equal the amount of energy re-

emitted. 

 

 

 

 
 

 

 

 

 

 

 

 

 
    Figure 2. Simplest Climate Model 

 

1.2 Modeling 

 
Units: 

 
meter (m) for length,  watt (W) for energy; and kelvin (K) for temperature. Water 

freezes at 273.15 K which is equivalent to 0 degrees Celsius, with the increase of 

one degree Celsius being the same as an increase of one degree Kelvin;  
 

Variables: 

 
• T , the temperature of the Earth’s surface averaged over the entire globe.
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Black body radiation 
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Building the model. 

 
• Viewed from the Sun, the Earth is a disk (Figure 2). 

• The area of the disk as seen by the Sun is πR2, where R is the radius of the 

Earth. 

• S, the energy flux density (also referred to as the energy flux) amount of 

energy (W) flowing through a flat surface of area 1 m2. From satellite observations 

we know that the energy flux from the Sun is S = 1367.6 Wm−2. It is customary to 

define    𝑄 =
1

4
 𝑆 and use Q instead of S . 

 

• The amount of energy flowing through the disk (i.e., reaching the Earth) is 

Incoming energy (W): 𝐸𝑖𝑛 =  𝜋𝑅2𝑆 = 4𝜋𝑅2𝑄 All bodies radiate energy in the form of 

electromagnetic radiation. 

• The amount of energy radiated out depends on the temperature of the 

body. 

• In physics, it is shown that for “black-body radiation” the temperature 

dependence is given by the Stefan–Boltzmann law (in units of Wm−2), 

𝐹𝑆𝐵 (𝑇 )  =  𝜎𝑇 4                           (1) 

(The subscript SB refers to the mathematical physicists Joseph Stefan and 

Ludwig  Boltzmann, who  first proposed this formula in the 1880s.) 

 σ (Greek, pronounced “sigma”), Stefan–Boltzmann constant; its value is 𝜎 =  5.67 

· 10
− 8 

𝑊𝑚
− 2𝐾

− 4. 

 

• The area of the Earth’s surface is 4πR2. 

• The amount of energy radiated out by the Earth is 

Outgoing energy (W): 𝐸𝑜𝑢𝑡 =  4𝜋𝑅2𝜎𝑇 4. 
 

Conclusion 

 

 𝑬𝒊𝒏 = 𝟒𝝅𝑹𝟐𝑸 

 𝑬𝒐𝒖𝒕 =  𝟒𝝅𝑹𝟐𝝈𝑻 𝟒 
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1.3 Analysis 

 
If the incoming energy is greater than the outgoing energy, the Earth’s temperature 

increases. If the incoming energy is lower than the outgoing energy, the Earth’s 

temperature decreases. If the incoming energy balances the outgoing energy, the 

Earth’s temperature remains constant; the planet is said to be in thermal equilibrium. 

At thermal equilibrium, the temperature T must be such that Ein = Eout. 

 

 

 Our mathematical model gives the equation 

 4𝜋𝑅2𝑄 = 4𝜋𝑅2𝜎𝑇 4 
 

𝑄 =  𝜎𝑇 4. 
 

Solving for T , we obtain the expression 

 

𝑇 = (
𝑄

𝜎
)

1
4 

With σ = 5.67 · 10−8  and S = 1376.6, we find 𝑇 ≈  278.7   
 
Conclusion. Model #1 gives the average temperature at equilibrium T ≈ 278.7 K, about 

5.5 degrees Celsius. 
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2 Climate Model – Cycle #2 

 
The value T ≈ 5.5 degrees Celsius seems reasonable but is not in agreement with 

the known average temperature of the Earth, which is about 16 degrees Celsius. We 

need a better model. 

 
 

2.1 Observation 

 
Model #1 omitted a number of important factors. The fi factor we want to add 

involves reflection—some of the incoming energy from the Sun is reflected back 

out into space. Snow, ice, and clouds, for example, reflect a great deal of the 

incoming light from the Sun. We use the term albedo to measure the Earth’s 

reflectivity. 

 
 

2.2 Modeling 

 
Additional physical constants. 

 
• α, albedo. The Earth’s average albedo is about 0.3, which means that 

roughly 70% of the incoming energy is absorbed by the Earth’s surface. 

 
 

Building the model. 

 
• The amount of energy reaching the Earth is 

Incoming energy (W): 𝐸𝑖𝑛 =  4𝜋𝑅2𝑄(1 −  𝛼). 
• The amount of energy radiated out by the Earth is 

Outgoing energy (W): 𝐸𝑜𝑢𝑡 =  4𝜋𝑅2𝜎𝑇 4. 
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2.3 Analysis 

 
At thermal equilibrium, the temperature must be such that 𝐸𝑖𝑛 =  𝐸𝑜𝑢𝑡. Our 

mathematical model gives the equation 
 

𝑄(1 −  𝛼)  =  𝜎𝑇 4. 
Exercise: Solve for T. 
 

With α = 0.3  

 
𝑇 ≈  254.9 𝐾. 

 
 

Conclusion. Although Model #2 is better, in the sense that it includes more 

physics, its prediction of the temperature value at equilibrium is worse than 

the prediction of Model #1. 

 

 

3 Climate Model – Cycle #3 

 
It is somewhat disconcerting that we construct a better model and get a result 

that is not as good as that of the earlier model. But once we accept the 

mathematical model, we must accept the result. The only option is to look where 

we might have overlooked something in the model. In this cycle, we focus on the 

outgoing radiation. 

 
 

3.1 Observation 

 
Greenhouse gases like carbon dioxide, methane, and water, as well as dust and 

aerosols have a significant effect on the properties of the atmosphere. The 

effect on the outgoing radiation is difficult to model, but the simplest approach 

is to reduce the Stefan–Boltzmann law by some factor. 



10  

1 

 

 

3.2 Modeling 

 
Additional physical parameter. 

 
• ε, greenhouse factor (0 < ε < 1). This artificial parameter has no 

immediate physical meaning. It is introduced to model the effect of greenhouse 

gases on the permittivity of the atmosphere; its value is unknown. 

 
 

Building the model. 

 
• The amount of energy reaching the Earth is 

Incoming energy (W): 𝐸𝑖𝑛 =  4𝜋𝑅2𝑄(1 −  𝛼). 
• The amount of energy radiated out by the Earth is 

Outgoing energy (W): 𝐸𝑜𝑢𝑡  =  4𝜋𝑅2𝜀𝜎𝑇 4. 

 

3.3 Analysis 

 
At thermal equilibrium, the temperature must be such that Ein = Eout. Our 

mathematical model gives the equation: 
 

𝑄(1 −  𝛼)  =  𝜀𝜎𝑇 4. 

 (2) 

Exercise: Solve for T . 
 
 

Question. Which value of ε gives a climate model that correctly predicts the 

current global average temperature  𝑇
∗ 

≈  288 𝐾? (Take 𝛼 =  0.3 as before).  

[Answer: 𝜀 = 0.66] 
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Question. What happens if the combined effects of greenhouse gases, dust, and 

aerosols reduce the parameter ε from 0.66 to 0.5?  

 

[Answer: The equilibrium temperature T increases.] 

 

Our climate model predicts that, if the amount of greenhouse gasses in the Earth’s 

atmosphere increases, then the Earth will warm up. This is the well-known greenhouse 

gas effect. However, this model is certainly too simple to predict the state of our planet 

with any great accuracy, so we should interpret this finding with great care. 

An interesting question is what actually happens when the balance of incoming 

and outgoing energy is perturbed. Perhaps a volcanic eruption throws dust into 

the atmosphere, or humans release increasing amounts of CO2 or other greenhouse 

gases into the atmosphere. Greenhouse gases affect the Earth’s climate by 

absorbing some of the outgoing radiation. 

 
 

Question. What do you expect to happen to the Earth’s temperature if Ein > Eout? 

What if Eout > Ein?  

[Answer: The temperature increases if Ein > Eout, decreases if Eout > Ein] 

We can ask more questions.  Will the temperature continue to increase or will 

it eventually level off at a higher value? What does the diff Ein − Eout represent? 

How fast will the temperature change?  

To answer these questions, we need a fancier model. 

 
 

4. Modeling the dynamics 

 
The simplest model assumes that the temperature changes at a rate proportional 

to the energy imbalance. 

 
 

Question. Rewrite the last sentence as a mathematical equation.  

[Answer: (most likely) 
𝑑𝑇

𝑑𝑡
 =  𝑘 (𝐸𝑖𝑛 −  𝐸𝑜𝑢𝑡). ] 

 

In fact, it is traditional to formulate the equation in terms of energy densities 

(Wm−2). Recall that Ein and Eout are energies, so they are expressed in units of 

watts (W). To convert to energy densities, we need to divide by the Earth’s surface 

area (πR2). In terms of energy densities, the temperature evolution equation is 

𝐶
𝑑𝑇

𝑑𝑡
 =Q(1 − α) - εσT 4 
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This is an ordinary differential equation (ODE) for the temperature T as a function 

of time t. The constant C is the planetary heat capacity, which connects the rate of 

change of the temperature to energy densities. 

 

Question.   What is the dimension of C?  

[Answer: Joule per kelvin.] 

 

Eq. (5) is an ODE of the type  𝑑𝑇/𝑑𝑡 =  𝑓 (𝑇 ). A visual representation helps 

us to understand how the Earth’s temperature changes when the balance of the 

incoming and outgoing energy is perturbed. 

Sketch the graph of  𝑓 (𝑇 )  = (1 −  𝛼)𝑄 −  𝜀𝜎𝑇 4  

taking ε = 0.66 and α = 0.3 and ignoring the constant C since it does not affect the 

solution of  𝑓 (𝑇 ) = 0.   

Then use the graph to answer the following questions. 
 
 

Question. 

 

 
 
• What does the vertical axis represent in the physical world? [Answer: 

Rate at which the temperature changes.] 

• What is the zero of f (T ) in the range between 200 K and 400 K? Where 

have we seen this value before? What does it represent?  [Answer: f (T ) = 0 for 

T = 288 K. This equilibrium solution of the ODE is the same as the solution 

found in the previous section. It corresponds to the current state of the climate.] 

• If the temperature is 300 K, do you expect the temperature to increase, 

decrease, or remain the same? Use the graph to help you. 

• If the temperature is 250 K, do you expect the temperature to increase, 

decrease, or remain the same? Use the graph to help you. 

 
Do the same, taking ε = 0.5, and compare your findings in the two cases. 
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4.1  Analysis 

 
The graph of f is referred to as the phase line. It contains all the information about 

the dynamics of the system.   Consider the case α = 0.3 and ε = 0.66, where we 

found an equilibrium at T∗  = 288 K. If the average temperature T is less than T∗ , 

the Earth’s surface will warm up; on the other hand, if T is greater than T∗, it 

will cool down.  If T is exactly equal to T∗ , it will stay the same.  Thus, after any

small perturbation, the average temperature tends to be restored to its 

equilibrium value T∗. In mathematics, we say that T∗  corresponds to a stable 

equilibrium. 

 

Question.  Is the equilibrium you found for ε = 0.5 stable? [Answer: Yes.] 

 
 

Conclusion. We can match the current climate state by taking into account the 

effect of greenhouse gases. Our model indicates that the current climate state is 

stable
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